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Abstract

We consider self-similar solutions of the fast diffusion equation ut =
∇ · (u−n∇u) in (0,∞)× R

N , for N ≥ 3 and 2

N
< n < 1, of the form

u(x, t) = (T − t)αf
(

|x| (T − t)−β
)

.

Because mass conservation does not hold for these values of n, this
results in a nonlinear eigenvalue problem for f and α. We employ
phase plane techniques to prove existence and uniqueness of solutions
(f, α), and we investigate their behaviour when n↑1 and when n↓ 2

N
.

1 Introduction

The equation
ut = ∇ · (u−n∇u) (1.1)

arises in many areas of applications. The case n = 0 corresponds to the
classical heat conduction equation. When n < 0, the equation models the
flow of a gas in a porous medium. Because the diffusion coefficient u−n

vanishes when u = 0, disturbances of u = 0 propagate at finite speed.
Therefore (1.1) with n < 0 is also known as the slow diffusion equation,
and has been the focus of extensive study during the past two decades. We
mention the survey papers by Aronson [1] and L.A. Peletier [16] for further
reference.

In this paper we consider the solutions in the case of fast diffusion, i.e.
n > 0. For n = 1, equation (1.1) arises in the study of the expansion of
a thermalised electron cloud [14], in gas kinetics as the central dynamical
limit of Carleman’s model of the Boltzman equation ([5], [8], [9], [13], [15]),
and in ion exchange kinetics in cross-field convective diffusion of plasma [6].
In [10] a model is described for the diffusion of impurities in silicon, in which
equation (1.1) arises for values of n between 0 and 1.
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We shall consider equation (1.1) in R
N , for a spatial dimension N larger

than two, subject to an initial condition

u(x, 0) = u0(x) for x ∈ R
N , (1.2)

where the initial distribution u0 is non-negative and u0 ∈ L1(RN ).
When 0 < n < 2

N , it is well-known that solutions of the initial value
problem (1.1), (1.2) are smooth and exist for all time (see e.g. [16]). For
values of n ≥ 1 no solutions with finite initial mass exist [18]; in [3] it is
proved that when 2

N < n < 1, finite-mass solutions become identically equal
to zero in finite time, due to a non-zero flux at infinity. We will be concerned
with a special kind of such solutions, namely those which are of a self-similar
form. In particular we take N > 2 and 2

N < n < 1, and seek solutions u of
(1.1) which vanish at a finite time T , and which are of the form

u(x, t) = (T − t)αf(η) where η = |x|(T − t)−β , (1.3)

where α > 0 and β ∈ R are constants that need to be determined. Such
solutions were also considered by J.R. Philip [17] and in more detail by
J.R. King [12], who gave a formal motivation for the existence of such solu-
tions, and for the convergence of solutions with arbitrary initial distributions
to these self-similar profiles. In this article we provide a rigorous proof of
King’s conjectures concerning existence and uniqueness of self-similar solu-
tions and some of their properties. When β = 0, the solution u given in
(1.3) is separable, and for this case V. A. Galaktionov and L. A. Peletier
have proved convergence of general finite-mass solutions to the separable
one. A similar statement on bounded domains can be found in [4].

The character of fast diffusion implies that at any time t at which a
solution of (1.1) is not identically equal to zero, it is in fact strictly positive
in R

N and smooth [7]. Hence, when looking for solutions of the form (1.3),
it is no restriction to assume that f(η) is positive and smooth for all η ≥ 0.

Substituting expression (1.3) into (1.1), we find that if we choose

αn+ 2β = 1, (1.4)

then f satisfies the equation

η1−N (ηN−1f−nf ′)′ − βηf ′ + αf = 0 for η > 0. (1.5)

Symmetry and smoothness require that

f ′ = 0 at η = 0. (1.6)

The restriction that f represent a solution of (1.1) of finite mass translates
into the condition

∫ ∞

0
ηN−1f(η) dη <∞. (1.7)
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One can show that (1.7), when combined with (1.5), is equivalent with the
statement that the flux F (η) = ηN−1f−nf ′(η) has a finite (negative) limit
at infinity. This statement is equivalent to the assertion that

f(η) ³ η−(N−2)/(1−n) as η →∞, (1.8)

where the notation a(t) ³ b(t) signifies

lim
t→∞

a(t)

b(t)
exists and is positive.

To conclude our preliminary remarks about equation (1.5), note that the
scaling

f̄(η) = γ−2/nf(η/γ) for γ > 0 (1.9)

leaves the equation as well as both boundary conditions invariant. Through-
out this article we therefore set f(0) = 1.

Therefore the problem to be studied in this article is: Find f : [0,∞)→
R, positive and smooth, and parameters α > 0 and β ∈ R such that

(P )























η1−N (ηN−1f−nf ′)′ − βηf ′ + αf = 0, f > 0

f ′(0) = 0 and f(0) = 1

f(η) ³ η−(N−2)/(1−n)

αn+ 2β = 1.

for η > 0

as η →∞

(1.5)

(1.6)

(1.8)

(1.4)

The relation (1.4) between the two parameters introduced by the Ansatz
(1.3) arises from the requirement that f satisfy an equation involving only η.
In situations where the problem under consideration satisfies a conservation
law (e.g. conservation of mass), this law supplies a second condition on
α and β, thus fixing the parameters. In this case we speak of self-similar

solutions of the first kind. Since we seek solutions that do not conserve mass,
there is no second condition on α and β for Problem (P). This extra degree
of freedom gives it the character of a nonlinear eigenvalue problem: the
parameter α (or β) is to be determined together with the solution function
f . The function f is then called a self-similar solution of the second kind

[2].
The main results of this article are summarised in the following two

theorems. The first one gives existence and uniqueness for Problem (P).

Theorem A. For every N > 2 and 2
N < n < 1, Problem (P) has exactly

one solution (f, α, β). Moreover,

0 < α <
N − 2

nN − 2
. (1.10)
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This theorem implies that for every value of n in the given range, there
exists exactly one self-similar solution of equation (1.1) of the form (1.3).

The second result concerns the behaviour of the eigenvalues α and β,
as given by Theorem A and equation (1.4), when we vary the parameter n.
We indicate the dependence of α and β on n by writing α(n) and β(n). Let
n0 = 4/(N + 2). We prove the following assertions:

Theorem B.

1. α(n) and β(n) depend continuously on n;

2. β(n0) = 0; if n > n0 then β(n) > 0, and if n < n0 then β(n) < 0;

3. When n↓ 2N , then α(n)→∞ and β(n)→ −∞;

4. When n↑1, then α(n)→ 0 and β(n)→ 1
2 .

Theorem B can be interpreted in the following way. The parameter α deter-
mines the decay rate of the maximum of the solution. When n approaches
one, α(n) tends to zero, implying that the decay of the solution near t = T
is very slow. On the other hand, when n tends to 2

N , α(n) tends to infinity,
signifying a very fast decay rate. The parameter β determines the spread
of the profile. When β < 0, the profile of the solution spreads out as t
approaches T , while for β > 0 the profile shrinks, all mass concentrating
in the origin. Because β(n0) = 0, the solution u for n = n0 is separable,
consisting of a fixed profile multiplied by the factor (T − t)(N+2)/4. This
situation is very similar to the one considered by Berryman and Holland in
[4]. In Figure 1 the dependence of α and β on n is drawn for N = 3.
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Figure 1: The dependence of α (left) and β on n, for N = 3 and 0.7 <
n < 1.

To prove these results we first consider in Section 2 an alternative formu-
lation for Problem (P). In that section we also derive estimates and proper-
ties of solutions that will be used later. In Section 3 we prove the existence
and uniqueness of solutions of Problem (P) (Theorem A), and in Section 4
we prove Theorem B.

4



Acknowledgements. The authors would like to express their gratitude
towards L.A. Peletier for many stimulating discussions and helpful remarks.
This work was effected during a visit of Hongfei Zhang to the University of
Delft, and the authors wish to thank C.J. van Duijn for making this possible.

2 Preliminaries

Inspired by the analysis of J.R. King [12] we first transform equation (1.5)
into a first-order autonomous system. This is the key step in our approach
because it allows for an analysis in the phase plane. In particular we con-
centrate on the first order equation which holds along integral curves in the
phase plane.

Let f ∈ C2((0,∞)) ∩ C1([0,∞)) be a positive solution of Problem (P).
Then introduce the functions t, z : (0,∞)→ R, defined by

t(η) = 1
2 log(2η

−2f−n(η)) and z(η) = −1− n

2

ηf ′(η)

f(η)
.

They are well-defined for all η > 0, and {(t(η), z(η)) : 0 < η < ∞} is a
continuously differentiable curve in the t, z-plane. Remark that this curve
is invariant under the scaling (1.9). Along the curve we have for z 6= 0

dz

dt
=

(

2

n
− 2

)

z −
(

N + 2− 4

n

)

−
(

N − 2

n

)

1

z
+ e−2t

(

λ+
1

z

)

. (2.1)

The boundary conditions (1.6) imply

t→∞ and z → −1 as η↓0, (2.2)

and (1.8) yields

t→∞ and z → L
def
=

nN − 2

2(1− n)
as η →∞. (2.3)

To summarise, every solution f of Problem (P) can be represented as
a continuously differentiable orbit in the t, z-plane that satisfies (2.1) and
connects the points (∞,−1) and (∞, L).

For brevity we introduce the notation

a =
2

n
− 2 and λ = 2β,

and write equation (2.1) as

dz

dt
=
a

z
(z − L)(z + 1) + e−2t

(

λ+
1

z

)

. (2.4)
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A solution of equation (2.4) is locally unique, since for every (t, z) ∈ R
2,

either dz/dt or dt/dz depends on t and z in a Lipschitz continuous manner.

We can immediately use this formulation to restrict the admissible values
of λ:

Lemma 2.1 Suppose there exists a λ ∈ R and a continuously differentiable
orbit γ in the t, z-plane that satisfies (2.4) and connects the points (∞,−1)
and (∞, L). Then

− 1

L
< λ < 1.

Proof. We argue by contradiction. First suppose λ > 1. By the conti-
nuity of γ there exists (t0, z0) ∈ γ such that

z0 = −
1

λ
and

dz

dt
≤ 0 in (t0, z0),

which contradicts equation (2.4). If λ = 1, then the line z = −1 is a
solution curve of (2.4); we will prove in Lemma 3.2 that for fixed values of
λ, an orbit with behaviour (2.2) is unique. In a similar fashion one proves
the lower bound: here the contradiction is also on the line {z = −1/λ}, but
with the crossing in the other direction. •

Solution curves that satisfy (2.4) have a simple structure. This is the
content of the following lemma.

Lemma 2.2 If f is a solution of Problem (P), and γ is the corresponding
orbit in the t, z-plane, then γ intersects the t-axis exactly once. Furthermore,
there exist functions z+(t) and z−(t), such that z+ ≥ 0 and z− ≤ 0, and that

γ = {(t, z) : z = z+(t)} ∪ {(t, z) : z = z−(t)}.

It follows immediately from the preceding remarks that the functions z+
and z− satisfy (2.4).

Proof. We can write the isocline Γ = {(t, z) : dz/dt = 0} as the union
of Γ+ = {z = φ+(t)} and Γ− = {z = φ−(t)}, where the functions φ± are
given by

φ±(t) = −
1− L

2
+

λ

2a
e−2t ± 1

2

√

(

1− L+
λ

a
e−2t

)2

+ 4

(

L− 1

a
e−2t

)

.

The phase plane is drawn in Figure 2; we should remark that φ′+ > 0 and
φ′− < 0, and that

lim
t→∞

φ+(t) = L and lim
t→∞

φ−(t) = −1.
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Figure 2: The phase plane

From the vector field in Figure 2 and the limiting behaviour (2.2) and
(2.3) we can deduce that an orbit with more than one intersection with the
t-axis has to intersect itself. This is ruled out by the local uniqueness. Any
solution curve can therefore be split into two parts, one above the t-axis,
and one below. Since dz/dt is finite whenever z is non-zero, the two parts
can each be represented by a single-valued function of t, as in Figure 3. •
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Figure 3: A typical solution

The following lemma describes how the functions z+ and z− approach
their limits as t tends to infinity.

Lemma 2.3 1. Let z+ satisfy equation (2.4) and the asymptotic behaviour
z+(t)→ L as t→∞. Then

z+(t) = L−Ae−2t + x(t)

where

A =
n

2

1 + λL

L+ 1− n
and x(t) = O

(

e−4t
)

as t→∞.
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2. Let z− satisfy equation (2.4) and the asymptotic behaviour z−(t)→ −1
as t→∞. Then

z−(t) = −1 +Be−2t + y(t)

where

B =
1− λ

N
and y(t) = O

(

e−4t
)

as t→∞.

Proof. We only prove the first part; the proof of the second part is
similar. First remark that the isocline φ+(t) tends to L as L− a−1e−2t, and
that therefore L− z+ tends to zero at least as fast as a−1e−2t. Set

z+(t) = L−Ae−2t + x(t) (2.5)

and define q(t) = x(t)e2t. By the previous remark, q remains bounded as t
tends to infinity. Using (2.5) in (2.4) we find the following equation for q:

q′ =

(

a
L+ 1

L
+ 2

)

q + (aq − aA+ 1)
L− z+
z+L

.

= κq + µ(t). (2.6)

Remark that since z+(t) → L as fast as e−2t, |µ(t)| ≤ Ce−2t for some
constant C. Equation (2.6) implies

q(t) = −eκt
∫ ∞

t
e−κsµ(s) ds,

and thus

|q(t)| ≤ C

κ+ 2
e−2t.

•

We now are in a position to prove the equivalence of the two formulations
that we have discussed so far.

Lemma 2.4 With every solution f of Problem (P) correspond functions z+
and z−, such that

1. z+ and z− are defined on [T,∞) for some T ∈ R;

2. z+ and z− satisfy (2.4) on (T,∞), and z+(T ) = z−(T ) = 0;

3. z+(t)→ L and z−(t)→ −1 as t→∞.

Conversely, every pair of continuously differentiable functions z+ and z−
that satisfies the above conditions defines a solution f of Problem (P).
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In what follows, we shall refer to z+ as the upper solution and to z− as
the lower solution of equation (2.4).

Proof. The first assertion was shown in Lemma 2.2; we only need to
prove the inverse case. First let us remark that we can choose a parametri-
sation (t̃(ξ), z̃(ξ)) of the union of the two curves S = {(t, z) : z = z+(t)} ∪
{(t, z) : z = z−(t)}, in such a way that

t̃(0) = T and z̃(0) = 0; (2.7)

z̃(ξ) = z+(t̃(ξ)) if ξ ≥ 0, and z̃(ξ) = z−(t̃(ξ)) if ξ ≤ 0; (2.8)

t̃′(ξ) = z̃(ξ). (2.9)

Indeed, with any point (τ, ζ) ∈ S we associate the parameter value ξ as
follows:

ξ =















∫ τ

T

ds

z+(s)
if ζ ≥ 0

∫ τ

T

ds

z−(s)
if ζ < 0.

(2.10)

From equation (2.4) we deduce that

lim
t↓T

d

dt
z2+(t) = lim

t↓T

d

dt
z2−(t) = −2aL+ 2e−2T (2.11)

which implies that 1/z+(t) and 1/z−(t) are integrable near t = T . Therefore
the integrals in (2.10) are well defined. Observation (2.11) also implies that
the orbit thus obtained is continuously differentiable for all ξ ∈ R.

We can then construct the solution f of Problem (P) by defining

η = eξ and f(η)n = 2e−2t̃(ξ)η−2. (2.12)

From differentiation of (2.12) it follows that f is a solution of equation (1.5).
It remains to prove that boundary conditions (1.6) and (1.8) are satisfied.
It follows from (2.12) that

d

dη
(fn)(η) = −4η−3(1 + z̃(ξ))e−2t̃(ξ).

Using the limiting behaviour of z− (Lemma 2.3) we find that f ′(0) = 0.
This proves (1.6). For the boundary condition at η =∞, we calculate

η
n(N−2)

1−n f(η)n = 2e2(Lξ−t̃(ξ)).

The limiting behaviour of z+ implies that

d

dξ

(

Lξ − t̃(ξ)
)

= L− z̃(ξ) ≤ 2Ae−2t̃(ξ) ≤ 2Ae−Lξ,
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where the second inequality is true if ξ is large enough, and therefore

lim
ξ→∞

(

Lξ − t̃(ξ)
)

is finite. This concludes the proof. •

3 Existence and uniqueness

Problem (P) is a nonlinear eigenvalue problem: the number β is to be de-
termined together with the solution function f . In this section we prove the
following theorem:

Theorem 3.1 For every N > 2 and 2
N < n < 1, Problem (P) has exactly

one solution (f, α, β). Moreover,

− 1− n

nN − 2
< β <

1

2
. (3.1)

Note that statement (3.1) is an immediate consequence of Lemma 2.1.

By Lemma 2.4, the assertion of Theorem 3.1 is equivalent to the existence
and uniqueness of a number λ ∈ R and functions z+ and z− as described in
the Lemma. The proof shall proceed as follows: for every −1/L < λ < 1 we
show that there exist functions z+ and z−, solutions of (2.4), which have the
prescribed behaviour at t = ∞. Both functions intersect the t-axis, but in
general at different values of t. For exactly one value of λ, the two half-orbits
connect in a continuous way, and therefore define a solution of Problem (P).

Lemma 3.2 For every −1/L < λ < 1, the following statements hold:

1. There exist unique solutions z+(t) and z−(t) of (2.4), defined for t
large enough, such that

z+(t)→ L and z−(t)→ −1

as t tends to infinity;

2. The solutions z+ and z− can be uniquely continued for decreasing t as
long as they remain non-zero.

Proof. If we choose t0 sufficiently large, then φ+(t0) > 0, and the part
of the phase plane to the right of t = t0 will have a structure as shown in
Figure 4.
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Figure 4: The existence proof

Let γ+(τ, ζ) denote the orbit in the t, z-plane that starts in (τ, ζ) and
continues for increasing t. Define the set S = {(t, z) : t = t0, φ+(t0) ≤ z ≤
L} and the subsets

S1 = {(t, z) ∈ S : γ+(t, z) intersects the line z = L}
S2 = {(t, z) ∈ S : γ+(t, z) intersects the curve z = φ+(t)}.

By a classical argument it can be shown that S1 and S2 are disjoint, and
that both are non-empty and open relative to S. It follows that there exists
an s ∈ S \ (S1 ∪ S2). The orbit γ+(s) then remains between z = φ+(t) and
z = L for all t > t0. Let z+ be defined by

γ+(s) = {(t, z) : z = z+(t), t ≥ t0};

since φ+(t) → L as t tends to infinity, it follows that z+(t) → L as t → ∞
as well.

To prove the uniqueness of z+, consider two solutions z+ and z̄+, and
suppose that z̄+ > z+ on t > t0 (local uniqueness does not permit that
solution curves intersect). If we subtract the equations (2.4) for z+ and z̄+
and integrate the result from t1 > t0 to t2 > t1, we find that

[

z̄2+ − z2+
]t2
t1
≥ 1

2a

∫ t2

t1

(z̄2+ − z2+) dt,

provided t1 is large enough. Letting t2 tend to infinity yields

−
{

z̄+(t1)
2 − z+(t1)

2
}

≥ 1
2a

∫ ∞

t1

(z̄2+ − z2+) dt.

Hence z̄+ and z+ are equal on t ≥ t1.
Because solutions of (2.4) are locally unique as long as z remains non-

zero, we can continue z+ for decreasing t in a unique manner as long as
z+(t) > 0.

This proves the theorem as far as z+ is concerned. The result for z− is
derived in a similar way. •
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The uniqueness shown above implies that when λ = −1/L, the only
orbit in the phase plane for which z tends to L as ξ →∞ is the line z = L.
Obviously, this orbit can never match up with a lower solution z−. In a
similar way, a solution can not have λ = 1, either. This proves the strictness
of the inequalities of Lemma 2.1.

Define the functions T+(λ) and T−(λ) as follows:

T±(λ) = inf{t ∈ R : z±(t) > 0}.

A priori these functions need not be finite, and there is no reason why T+(λ)
should be equal to T−(λ) for any λ. The next Lemma leads the way to the
conclusion that there exists exactly one value of λ such that T+(λ) = T−(λ).

Lemma 3.3 1. For all −1/L < λ < 1, T+(λ) and T−(λ) are finite;

2. T+ is a strictly increasing function of λ, and T− a strictly decreasing
one;

3. We have the following upper bounds:

T+(λ) ≤ T̂+(λ) and T−(λ) ≤ T̂−(λ),

where T̂+ and T̂− are defined by

e−2T̂+(λ) =







2

λ2
{λL− log(1 + λL)} for λ 6= 0

L2 for λ = 0

e−2T̂−(λ) =

{

− 2

λ2
{λ+ log(1− λ)} for λ 6= 0

1 for λ = 0;

4.







T+(λ)→ −∞ as λ↓− 1

L
;

T−(λ)→ −∞ as λ↑1;
5. T+(λ) and T−(λ) are continuous in λ.

Proof. We shall only prove the assertions for T+, as the extension to
T− is straightforward. Assume the converse of part 1 of the lemma: z+(t)
exists and is positive for all t ∈ R. Since z′+(t) > 0 for all t, this implies
z′+(t)↓0 as t→ −∞. This contradicts equation (2.4).

For part two, suppose that T+(λ1) ≥ T+(λ2) while λ1 < λ2. From
Lemma 2.3 we conclude that for t0 large enough, z+(t0, λ1) > z+(t0, λ2).
Between t = T+(λ1) and t = t0, the solutions z+(t, λ1) and z+(t, λ2) must
intersect in such a way that

d

dt
z+(t, λ1) ≥

d

dt
z+(t, λ2).

12



Again we find a contradiction with equation (2.4).
Part three is proved by considering the solution ζ of the problem











ζ ′(t) = e−2t
(

λ+
1

ζ(t)

)

for t ∈ R

ζ(∞) = L.

The function ζ can be calculated explicitly:

e−2t =
2

λ2

{

λ(L− ζ(t)) + log
1 + λζ(t)

1 + λL

}

. (3.2)

From (3.2) we calculate that ζ tends to L as L− (1 + λL)/(2L)e−2t, which
implies by Lemma 2.3 that z+(t) > ζ(t) for large t. Then, if t0 is the largest
value of t for which the graphs of z+ and ζ intersect, we have z′+(t0) ≥ ζ ′(t0).
This is contradicted by equation (2.4).

Part four follows from the observation that

lim
λ↓−1/L

2

λ2
{λL− log(1 + λL)} =∞.

To prove the continuity of T+ with respect to λ, suppose that for some
−1/L < λ0 < 1, `` = limλ↑λ0 T+(λ) and `r = limλ↓λ0 T+(λ) do not coincide.
In proving part 2 of this Lemma we not only showed that T+ decreases, but
also that the function z+(t) increases when λ increases. We can therefore de-
fine the limit functions w`(t) = limλ↑λ0 z+(λ, t) and wr(t) = limλ↓λ0 z+(λ, t).
By considering a weak formulation of (2.4) and passing to the limit in λ, we
find that w` and wr both satisfy equation (2.4) for λ = λ0. Since they both
lie between z ≡ L and z = φ+(λ0, t), and therefore they both tend to L as
t→∞, this is in contradiction with the uniqueness of z+. •

To conclude the proof of Theorem 3.1, let us draw T+ and T− in one
diagram (Figure 5). Lemma 3.3 guarantees that there is exactly one value
of λ such that T+(λ) = T−(λ). For this value of λ, z+ and z− match up
continuously at t = T±(λ). Using Lemma 2.4 we conclude that there exists
exactly one solution (f, α, β) of Problem (P). •

4 Qualitative properties.

In the previous section we have proved that for every value of n between
2
N and 1, there exists exactly one solution (f, α, β) of Problem (P). In this
section we study the behaviour of β, or equivalently, λ = 2β, as we vary n.
We will write λ∗(n) for the value of λ given by Theorem 3.1.

First we prove continuity of λ∗ with respect to n.

13
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T±(λ)

−1/L

T+

T−

λ

Figure 5: The functions T+ and T−

Lemma 4.1 λ∗ is a continuous function of n.

Proof. In Lemma 3.3 it was proved that for fixed n, T+(λ) and T−(λ) are
continuous functions of λ. One can extend this result in a straightforward
way to state that the functions T+ and T− are continuous in the variable
pair (λ, n) for all (λ, n) in the appropriate range.

Now suppose that λ∗ is discontinuous in ñ. Then we can choose a se-
quence {ni} converging to ñ such that λi = λ∗(ni)→ λ1 6= λ∗(ñ). Therefore,
by definition, T+(λi, ni) = T−(λi, ni), and

0 = lim
i→∞

{T+(λi, ni)− T−(λi, ni)} = T+(λ1, ñ)− T−(λ1, ñ),

which implies that there exists a solution (f1, λ1) other than the one given
by Theorem 3.1. This is contradicted by the uniqueness. •

It has been known for some time (see [16] or [11]) that when n equals

n0
def
=

4

N + 2
,

the solution of Problem (P) can be calculated explicitly:

f(η) =

(

1 +
η2

4N

)− 1
2
N−1

.

By substituting f into equation (1.5) one finds that λ∗(n0) = 0. The values
of λ∗ are ordered with respect to n = n0:
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Lemma 4.2 If n < n0 then λ∗(n) < 0, and if n > n0 then λ∗(n) > 0.

Proof. Suppose that n < n0; when n > n0 the argument is similar. We
shall show that T+(0) > T−(0). This implies by the monotonicity of T+ and
T− that λ∗ < 0 (see Figure 5).

Let z+ and z− be the upper and lower solution of equation (2.4) in which
we have set λ = 0. Then z−(t) → −1 as t → ∞. Set ẑ− = −z−. Then
ẑ−(t) → 1 as t → ∞, and since L < 1 because n < n0, it follows that
ẑ−(t) > z+(t) when t is sufficiently large. Plainly, it is enough to show that
ẑ−(t) > z+(t) for all T+(0) < t <∞.

To prove that this is indeed the case, suppose to the contrary that

τ = inf{t > T+(0) : ẑ− > z+ on (t,∞)} > T+(0).

Then
ẑ−(τ) = z+(τ) and ẑ′−(τ) ≥ z′+(τ). (4.1)

Hence, from (2.4) we deduce that at t = τ ,

ẑ′− = aẑ− − a(1− L)− (aL− e−2τ )
1

ẑ−

< aẑ− + a(1− L)− (aL− e−2τ )
1

ẑ−

= az+ + a(1− L)− (aL− e−2τ )
1

z+
= z′+,

which contradicts (4.1). •

The ordering given by Lemma 4.2 has an important consequence for the
behaviour of the solution u. When n > n0, λ

∗(n) > 0, which is equivalent
with β(n) > 0, and therefore the solution u given by (1.3) contracts as t
approaches T . When n < n0, the profile of u spreads out when t → T .
When n equals n0, η is in fact equal to |x|, and the solution u is given by

u(x, t) = (T − t)(N+2)/4
(

1 +
|x|2
4N

)−(N+2)/2

.

The remainder of this section is devoted to the calculation of the two
limits

lim
n↓ 2

N

λ∗(n) and lim
n↑1

λ∗(n).

To simplify the notation, we shall drop the superscript ‘∗’ from λ∗, and write
T = T (λ(n)) = T (n) for the common vanishing point of z+ and z−.

15



First we consider the limit process n↓ 2N . Recall that

a =
2

n
− 2 > 0 and L =

nN − 2

2(1− n)
> 0.

Hence n↓ 2N implies that

a↑a def= N − 2 and L↓0.

Therefore the upper half of the phase plane ‘collapses’: the line z = L
descends to zero. In addition, the isocline φ+(t) vanishes for the value of t
given by

aL = e−2t, (4.2)

and this vanishing point clearly ‘runs off’ to plus infinity when n↓ 2N . These
observations suggest the following scaling of z+:

e−2t = aLe−2σ ⇐⇒ σ = t+ 1
2 log(aL) and w(σ) =

1

L
z+(t). (4.3)

For every n, the function w tends to 1 as σ tends to infinity, and satisfies
the following equation (in which primes denote differentiation with respect
to σ):

L

a
ww′ = (Lw + 1)(w − 1) + e−2σ(1− γw), (4.4)

where we have written γ for −λL. Note that by Lemmas 2.1 and 4.2,
0 < γ < 1. The coefficient of the derivative w′ in (4.4) tends to zero as
n↓ 2N . We therefore introduce a second scaling of the independent variable.
Define Σ as the vanishing point of w (the analogue of T in the variable σ):

Σ = T + 1
2 log(aL),

and set
σ = Σ+ aLτ and x(τ) = w(σ).

We find that x satisfies the following equation (where the prime now denotes
differentiation with respect to τ):

1

a2
xx′ = (Lx+ 1)(x− 1)e−2Σ−2aLτ (1− γx) for τ > 0. (4.5)

Before we can continue with this equation, we have to consider the lower
part of the phase plane. We shall see later that γ → 1, and therefore
λ = −γ/L→ −∞. We can rid equation (2.4) of this parameter blow-up by
introducing a scaling of z− which is different from the one we use for z+:

−λe−2t = e−2s ⇐⇒ s = t− 1
2 log(−λ) and y(s) = z−(t),

16



which results in the equation

yy′ = a(y − L)(y + 1)− e−2s
(

y +
1

λ

)

. (4.6)

We also define
S = T − 1

2 log(−λ).
Note that S and Σ are linked in the following way:

S = Σ− 1
2 log(aγ). (4.7)

Now we are in a position to formulate our result. To facilitate the nota-
tion, the functions x and y are defined equal to zero outside of their domain
of definition.

Lemma 4.3 Let n↓ 2N . Then

1. γ → 1;

2. S → S = −12 logN , which is equivalent to Σ→ Σ = 1
2 log

N − 2

N
;

3. x tends to the solution of the problem







xx′ =
2

N − 2
(1− x) for τ > 0

x(τ) = 0 for τ ≤ 0;

4. y tends to the limit function y given by

y(s) =

{

−1 + 1

N
e−2s for s > S

0 for s ≤ S;
(4.8)

Here the convergence of x and y is uniform on compact subsets of the real
line.

Proof. In the same way as the existence and uniqueness of solutions was
shown by matching the upper half of the phase plane with the lower half,
we prove this lemma by studying, separately, first the functions y and then
the functions x, and then combining the results.

Step 1: The lower half of the phase plane. Throughout step one
we shall assume that λ is bounded away from zero as n ↓ 2

N . In step two
we shall prove, independently of these results, that γ → 1 and therefore
λ = −γ/L→ −∞, thereby justifying this assumption.

17



First we prove that S can not tend to plus infinity as n↓ 2N . This follows
from Lemma 3.3, in the following way:

e−2S = −λe−2T ≥ −λe−2T̂−(λ) = 2 +
2

λ
log(1− λ),

and since we assume that λ stays bounded away from zero, this last expres-
sion is positive and bounded away from zero. This implies that S is bounded
from above.

Now choose a sequence {ni}, converging to 2
N , such that S → S ∈

[−∞,∞) and λ→ λ ∈ [−∞, 0] along that sequence. Equation (4.6) implies
that the sequence of functions y2 is equicontinuous. By the Arzela-Ascoli
theorem we can extract a subsequence of {ni} such that y2 converges uni-
formly on compact subsets of R along that subsequence. The same holds for
the sequence of functions y, because the function t 7→

√
t is uniformly con-

tinuous, and the limit function y is continuous on R. We integrate equation
(4.6) from s1 > S to s2 > s1:

1
2y
2(s2)− 1

2y
2(s1) = a

∫ s2

s1

{

(y − L)(y + 1)− e−2s̃
(

y +
1

λ

)}

ds̃,

and by passing to the limit we deduce that the limit function y satisfies

{

yy′ = ay(y + 1)− e−2s
(

y + 1
λ

)

for s > S

y(s) = 0 for s ≤ S (if S > −∞).
(4.9)

If, for the moment, we assume that λ → ∞, then we can integrate the
equation for y to obtain

y(s) =

{

−1 + 1

N
e−2s for s > S

0 for s ≤ S.
(4.10)

The continuity of y implies that S is equal to either −∞ or − 1
2 logN . Since

all y are positive, the former is ruled out. We conclude that S → − 1
2 logN .

Step 2: The upper half of the phase plane. For all n, the so-
lution z+ lies above the isocline φ+, and therefore (4.2) implies that T ≤
−12 log(aL), or Σ ≤ 0. Choose a sequence {ni}, converging to 2

N , such that
Σ→ Σ ∈ [−∞, 0] along that sequence. Then integrate (4.5) from τ1 > 0 to
τ2 > τ1:

1

2a2
(

x2(τ2)− x2(τ1)
)

= −
∫ τ2

τ1

(Lx+1)(1−x) dτ−e−2Σ
∫ τ2

τ1

e−2aLτ (γx−1) dτ.
(4.11)

First we use (4.11) to prove that Σ does not tend to minus infinity.
Suppose that it does. Then e−2Σ becomes very large, while the first two
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terms in (4.11) remain bounded. Since x and γ both are less than or equal
to one, this implies that γ → 1 as n ↓ 2

N . But then λ = −γ/L tends to
minus infinity, and we have previously calculated that in that case S tends
to −12 logN . Using (4.7), we find that

Σ→ −12 logN + 1
2 log a > −∞,

which contradicts the assumption. Therefore Σ is bounded from below (and
also from above, since Σ ≤ 0).

It follows that γ can not tend to zero. For if it did, then using (4.7) and
the boundedness of Σ, S would tend to plus infinity, a contradiction. This
implies that λ = −γ/L indeed tends to infinity.

To prove the convergence of x, we pass to the limit in equation (4.11).
Since γ is bounded between zero and one, we can extract a subsequence such
that γ → γ ∈ (0, 1]. We find the following differential equation for the limit
function x:

{

1
a2xx

′ = −(1− x)− e−2Σ(γx− 1) for τ > 0

x(τ) = 0 for τ ≤ 0.
(4.12)

It follows from (4.12) that

x→ e−2Σ − 1

γe−2Σ − 1
as τ →∞. (4.13)

Note that

Σ→ −12 logN + 1
2 log(aγ) ≤ 1

2 log
N − 2

N
< 0,

and therefore e−2Σ > 1. The limit value (4.13) can only be less or equal to
one (as is necessary, since all x are less or equal to one) if γ = 1.

A final remark to conclude the proof. We have liberally taken subse-
quences to arrive at this result. Because of the exact characterisation of the
limit functions x and y and of the limit value 1 of γ, however, the assertions

automatically apply to any sequence such that n↓ 2N . •

In Figure 6 the convergence of γ towards 1 is plotted from numerical
calculations.
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Figure 6: Plot of γ against n, for two values of N . The continuous line
is for N = 3, the dashed line for N = 4.

If we translate the results of Lemma (4.3) back in terms of z+ and z−,
we find the following statements:

Theorem 4.4 Let n↓ 2N , and write ε(n) = n− 2
N . Then

1. ε(n)λ(n)→ −2N − 2

N2
;

2. T (n) + 1
2 log ε(n)→ 1

2 log 2
N − 2

N3
;

3.
1

ε(n)
z+

(

T (n) + ε(n)
N

n
τ

)

→ N2

2(N − 2)
x(τ) for all τ ∈ R;

4. z−
(

s+ 1
2 log(−λ(n))

)

→ y(s) for all s ∈ R.

The convergence is uniform on compact subsets of R in the variables τ and s.

Let us now direct our attention towards the other limit, n ↑ 1. As n
approaches 1, the parameter a = 2

n−2 tends to zero and L = (nN−2)/2(1−
n) → ∞. Note that aL → N − 2. In the previous limit, λ converged to its
lower bound (−∞); here we therefore expect λ to tend to its upper bound,
one. We shall show that this is indeed the case.

Since n ≥ n0, the values of λ are confined to the interval [ 0, 1], and
we can choose a sequence {ni}, converging to one, such that λ→ λ̄ ∈ [ 0, 1]
along that sequence. When L tends to infinity, T̂+(λ)—as defined in Lemma
3.3—tends to minus infinity uniformly in λ, thereby forcing T+(λ) = T−(λ)
to minus infinity, too. We shall write T = T (n) = T±(λ(n)).
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With this remark in mind we introduce the following variable transfor-
mations:

α = e2T , t = T + ασ, and y(σ) = z−(t).

This leads to

yy′ = αa(y − L)(y + 1) + e−2ασ(λy + 1) for σ > 0, (4.14)

while y(0) = 0. Define y(σ) = 0 for all σ < 0, too. Equation (4.14) implies
that the sequence of functions y2 is equicontinuous as n ↑ 1. The Arzela-
Ascoli theorem then implies that we can extract a subsequence such that
the functions y2, and therefore also the functions y, converge uniformly on
compact sets. The limit function ȳ is continuous and by passing to the limit
in the equivalent integral equation we find that ȳ satisfies

{

ȳ′ = λ̄+
1

ȳ
for σ > 0

ȳ(σ) = 0 for σ ≤ 0.
(4.15)

From (4.15) it follows that the limit function ȳ tends to −λ̄−1 as σ → ∞,
and by the fact that y ≥ −1 for all σ and n, we conclude that λ̄ must be
equal to one.

The behaviour of z+ can be retrieved with the following scaling:

ae−2t = e−2τ ⇐⇒ τ = t− 1
2 log a and x(τ) =

1

L
z−(t),

leading to

xx′ = a(x− 1)

(

x+
1

L

)

+
1

aL
e−2τ

(

λx+
1

L

)

, (4.16)

for τ > T − 1
2 log a. Again we set x(τ) equal to zero for τ ≤ T − 1

2 log a.
The Arzela-Ascoli theorem yields the convergence of a subsequence of the
functions x, uniform on compact subsets of R, to a continuous limit function
x̄. Define

τ̄ = lim sup
n↑1

(T − 1
2 log a).

It follows from the upper bound T̂+ defined in Lemma 3.3 that τ̄ <∞. On
{τ > τ̄} we can pass to the limit in equation (4.16), finding

x̄′ =
1

N − 2
e−2τ ,

which results in

x̄(τ) = 1− 1

2(N − 2)
e−2τ for all τ > τ̄ .
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The continuity of the limit function x now implies that τ̄ = − 1
2 log 2(N−2).

It follows from the explicitness of this value that T − 1
2 log a converges to

−12 log 2(N − 2) along every sequence n↑1.
Let us summarise our results in the

Lemma 4.5 Let n↑1. Then

1. λ→ 1;

2. T − 1
2 log a→ −12 log 2(N − 2);

3. x tends to the limit function







x̄(τ) = 1 +
1

2(N − 2)
e−2τ for τ > −12 log 2(N − 2)

x̄(τ) = 0 for τ ≤ − 1
2 log 2(N − 2)

4. y tends to the function ȳ given by

{

ȳ(σ)− log(1 + ȳ(σ)) = σ for σ > 0
ȳ(σ) = 0 for σ ≤ 0

Here convergence is uniform on compact subsets of the real line.

Figure 7 shows the convergence of λ to 1 as n tends to 1.
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Figure 7: Graph of λ as a function of n. The curves are for N =
3, 4, . . . , 12, where the dimension increases from right to left.

We conclude with the translation of these assertions into the original
variables. We again define z+(t) = z−(t) = 0 for all t < T (n).

Theorem 4.6 Let n↑1. Then
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1. λ(n)→ 1;

2. T (n)− 1
2 log(1− n)→ − 12 log(N − 2);

3. (1− n)z+(τ + 1
2 log(1− n))→ (N − 2)x̄(τ − 1

2 log 2) for all τ ∈ R;

4. z−(T (n) + ασ)→ ȳ(σ) for all σ ∈ R.

The convergence is uniform on compact subsets of R in the variables τ and
σ.
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