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We consider both stationary and time-dependent versions of a model describing the vertical
movement of water and salt in a porous medium in which a continuous extraction of water takes
place (by the roots of mangroves). The problem is formulated in terms of a coupled system of
partial differential equations for the salt concentration and the water flow which generalizes previous
models. We study the existence and uniqueness of solutions and the conditions under which the
maximum principle does hold, showing a counter-example for the general situation. We also analyse
the stability of the steady state solution. Finally, we investigate the occurrence of dead cores (sets
where the threshold salt concentration is attained) by means of the comparison principle in the
stationary problem and of suitable energy estimates in the evolution problem.
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1. Introduction

Mangroves grow on saturated soils or muds which are subject to regular inundation by tidal water
with salt concentration cw close to that of sea water see, for example, [9]. The mangrove roots take
up fresh water from the saline soil and leave behind most of the salt, resulting in a net flow of water
downward from the soil surface, which carries salt with it. As pointed out by Passioura et al. [13],
in the absence of lateral flow, the steady state salinity profile in the root zone must be such that
the salinity around the roots is higher than cw, and that the concentration gradient is large enough
so that the advective downward flow of salt is balanced by the diffusive flow of salt back up to
the surface. In [13] the authors disregarded daily variations of evapotranspiration, and presented
steady state equations governing the flow of salt and uptake of water in the root zone, assuming that
there is an upper limit cc to the salt concentration at which roots can take up water, and that the
rate of uptake of water is proportional to the difference between the local concentration c and the
assumed upper limit cc. They also assumed that the root zone is unbounded, and that the constant of
proportionality for root water uptake is independent of depth through the soil. They gave numerical
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results for variation of salt concentration with depth, obtained from a perturbation solution of the
steady state water and salt flow equations.

Their results showed salt concentration increasing with depth from the value cw at the surface,
and approaching the limiting value cc at large depth, with a corresponding decrease in water uptake
from a maximum at the surface to the limiting value of zero at large depth. The assumption of an
infinitely deep root zone requires that the concentration at large depth approaches cc, otherwise the
total uptake would be infinite. For real mangroves the root distribution is not uniform and does not
extend to an infinite depth. For one mangrove species Lin and Sternberg [11] measured the root
distribution and found that the root density decreased with depth, with more than half of the fine
roots being contained in the top 50 cm of the soil. The depth distribution of root water uptake is
expected to be related to the distribution of fine roots in the soil.

In this paper our aim is to extend the steady state model of [13] in two important ways. First, we
will consider more general root water uptake functions, which vary with depth and which depend
on a general power p of the concentration difference cc − c. Denoting by S the volume of water
taken up by the roots per unit volume of porous material per unit time, we use

S :=

κ(z)

(
1 − c

cc

)p

for 0 � c � cc,

0 for c > cc,

(1.1)

where p > 0 and κ(z) is determined by the root distribution as a function of the depth z below the
soil surface. This root distribution function will be non-negative, and in accordance with [11] we
assume that it is non-increasing with z. Passioura et al. [13] used the value p = 1 corresponding to
a linear dependence of uptake on concentration difference, which is consistent with the assumption
that uptake is governed by osmotic pressure difference. However, there is no experimental evidence
for this choice. Therefore, we investigate the consequences of more general values of p in the uptake
model. In particular, we show that the behaviour of the salinity profile differs in an essential manner
between the two cases p < 1 and p � 1.

As shown in Remark 2.1, the estimated values of the physical parameters imply a time scale
which allows us to disregard daily variations in the salt concentration at the boundary and which
yields, well within the life span of the mangroves, a steady configuration in which diffusion
balances the tree-induced convection. Therefore, we will study time-dependent behaviour of salt
concentration and flow. In addition to the theoretical issues of existence and uniqueness, we
rigorously show some characteristic qualitative properties of the solutions. Using a finite difference
solution procedure, we also demonstrate these properties numerically.

The outline of the paper is the following: in Section 2 we formulate a mathematical model for
arbitrary root distribution κ . This model involves two coupled differential equations: a convection–
diffusion equation for the transport of salt, and an ordinary differential equation describing the fluid
balance. We restrict ourselves to one-dimensional transport only.

The time-independent state is considered in Section 3. Under stationary conditions the model
reduces to a single second-order ordinary differential equation, with well known properties of
existence, uniqueness and comparison of solutions. We present a qualitative analysis for two simple
but realistic functional forms of the root distribution κ . Both choices allow us to use a phase plane
argument to investigate the steady state.

In Section 4 we discuss some results concerning the evolution problem. The existence of
solutions is shown by means of a fixed point argument. The uniqueness and comparison of solutions
is a more subtle problem. Under certain restrictive conditions uniqueness is proven. We also show
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that a comparison principle holds between spatial monotonic solutions and general solutions. We
present a counter-example showing that in general terms a comparison principle cannot be expected.

In Section 5 we prove some qualitative properties of solutions. In particular, we demonstrate the
stability of the steady state solution.

Next, in Section 6, we study the formation of dead cores, regions in which the concentration
reaches the threshold value cc. We first state a result for the stationary problem, giving conditions
under which solutions have a dead core. The proof uses the comparison principle. For the time-
dependent case, such a principle does not hold in general, and here we have to rely on techniques
using energy estimates to show the occurrence of dead cores.

Finally, in Section 7, we show some numerical examples.

2. The mathematical model

In this section we formulate the mathematical model which describes the salt movement below
the surface where the mangroves are growing and the uptake of fresh water by the root system
of the mangroves. We consider the case where the mangroves are present in the horizontal x, y
plane, with an homogeneous porous medium located below this plane. This porous medium is
characterized by a constant porosity θ , indicating that we are assuming the mangroves roots to
be homogenized throughout the porous medium, without affecting its properties. As discussed in
the introduction, they are accounted for by the distribution function κ . Assuming further that the
hydrodynamic dispersion tensor, D, is constant and isotropic, i.e. neglecting the velocity dependence
in the mechanical dispersion, we find for the salt concentration the equation, see [4],

θ
∂c

∂τ
+ div(cq − θD∇c) = 0, (2.1)

where the vector q denotes the specific discharge of the fluid, D = DI, I is the identity matrix and
τ denotes time. We also have a fluid balance. Disregarding density variations in the mass balance
equation of the fluid, we obtain a fluid volume balance expressed by

div q + S = 0, (2.2)

where S is given by (1.1). If the mangroves are uniformly distributed throughout the x, y-plane
and there is no lateral fluid flow, we may consider the problem as one-dimensional in the vertical
z-direction. If the z-axis is positive when pointing downwards, the flow domain is characterized by
the interval 0 < z < L < ∞. In the one-dimensional setting equations (2.1) and (2.2) combined
with (1.1) become

θ
∂c

∂τ
+ ∂cqz

∂z
− θ D

∂2c

∂z2
= 0, (2.3)

with qz the z-component of q, and

∂qz

∂z
+ κ(z)

(
1 − c

cc

)p

= 0, (2.4)

which we want to solve for 0 < z < L and τ > 0, say. Note that in writing (2.4) we implicitly
assume that c � cc. We prescribe along the bottom of the domain a no-flow condition for water and
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salt:

qz(L , τ ) = ∂c

∂z
(L , τ ) = 0 for all τ > 0. (2.5)

Along the top boundary and initially we assume the salt concentration to be given:

c(0, τ ) = cD(τ ) for all τ > 0, (2.6)

and

c(z, 0) = c0(z) for all 0 < z < L . (2.7)

In many cases of practical interest one would choose the seawater salt concentration along the top
boundary, implying cD(τ ) = cw for all τ > 0. Throughout this work we assume

0 � c0(z), cD(τ ) � cc for all 0 � z � L and τ � 0. (2.8)

Regarding the root distribution, κ(z), we shall keep in mind the following two characteristic
examples. For the first, we assume that the function κ is a positive constant above a certain depth
z∗, and zero below that depth, i.e.

κ(z) :=
{

κ0/z∗ 0 < z < z∗,
0 z∗ < z < ∞.

(2.9)

For the second distribution we assume that the strength of the uptake decreases with depth according
to

κ(z) := κ0/z∗(1 + z/z∗)−2, (2.10)

where z∗ is a reference depth. This choice is inspired by a transformation that allows for a phase-
plane analysis of the associated stationary problem (see Section 3). Both distributions have the same
weight κ0 since both of (2.9) and (2.10) satisfy∫ ∞

0
κ(z) dz = κ0.

Therefore for both distributions the quantity κ0 is the total amount of root water uptake in the
profile with no salt present, in volume per unit surface per unit time, i.e. the transpiration rate of
the mangrove plants in the absence of salinity. For the first root distribution (2.9) the depth z∗ is at
the bottom of the root zone. For the second distribution (2.10)∫ z∗

0
κ(z) dz = 1

2κ0,

so z∗ corresponds to the median depth in that case. Note that for the distribution defined by (2.10) a
mean depth cannot be defined because the relevant integral diverges. We recast the equations in an
appropriate dimensionless form. Introducing the dimensionless variables and constants


u := c

cc
, u0 := c0

cc
, u D := cD

cc
, x := z

z∗
, d := L

z∗
,

t := Dτ

z2∗
, q := z∗qz

θ D
, k := z2∗κ

θ D
, k0 := z∗κ0

θ D
,

(2.11)
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we arrive at the following mathematical statement. Let QT := Ω × (0, T ] and Ω := (0, d), with
d ∈ (0, ∞) given and T ∈ (0, ∞) arbitrarily chosen. Find u, q : Q̄T → R such that

(P)




ut + (uq)x − uxx = 0
qx + f (x, u) = 0

}
in QT ,

with

u(0, t) = u D(t)
ux (d, t) = q(d, t) = 0

}
for 0 < t < T,

u(x, 0) = u0(x) for x ∈ Ω .

Here the subscripts t and x denote partial differentiation with respect to these variables. Note
that (2.8) implies

0 � u D(t), u0(x) � 1 (2.12)

for all x ∈ (0, d) and t ∈ (0, T ). In Problem P we introduced the notation

f (x, s) := k(x)(1 − s)p
+. (2.13)

The two characteristic distributions (2.9) and (2.10) become

k(x) :=
{

k0 0 < x < 1,

0 1 < x < d,
(2.14)

or

k(x) := k0

(1 + x)2
. (2.15)

Instead of restricting ourselves to the special case (2.13), with k for example given by (2.14)
or (2.15), we will consider in Problem P a function f : Ω̄ × [0, 1] → R satisfying

(H)




1.1. f (x, ·) ∈ C([0, 1]) for a.e. x ∈ Ω;
1.2. f (·, s) ∈ L∞(Ω) for all s ∈ [0, 1];
2. f (x, ·) is non-increasing in [0, 1] and f (x, 1) = 0 for a.e. x ∈ Ω .

Note that (H2) implies f � 0 in Ω̄ × [0, 1].
REMARK 2.1 Using [13] as a reference we find the following values for the physical constants:
D = 7 · 10−5 m2/day, θ = 0.5, and κ0/z∗ = 0.1/day. Taking z∗ in the range 0.2–0.5 m, this
implies a time scale in the range 2–10 years.

3. The stationary problem

To select candidates for the long-term behaviour of time-dependent solutions, we consider the
stationary problem, with f satisfying (H):

(S1)




(uq)′ − u′′ = 0
q ′ + f (x, u) = 0,

}
in Ω ,

with boundary conditions

u(0) = ũ, u′(d) = q(d) = 0,
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with ũ ∈ [0, 1] and where primes denote differentation with respect to x . Clearly, ũ = 1 and ũ = 0
imply the trivial solutions u = 1, q = 0 and u = 0, q(x) = ∫ d

x f (s, 0) ds, respectively. The latter
corresponds to the physical situation when no salt is present in the system and the mangroves extract
the maximal amount of water. We therefore restrict our discussion to the case ũ ∈ (0, 1). Integrating
the first equation in Problem S1 over (x, d), and using the boundary conditions, we obtain

u′(x) = u(x)q(x) for x ∈ Ω . (3.1)

Clearly u � ũ > 0 in Ω̄ . Therefore we can set

w(x) := log u(x) for x ∈ Ω̄ , (3.2)

for which we find the boundary value problem

(S2)

{
w′′ + g(x, w) = 0 for x ∈ Ω ,

w(0) = log ũ, w′(d) = 0,

with g(x, w) := f (x, ew). As a consequence of (H) the function g satisfies:


(a) g(x, ·) ∈ C((−∞, 0]) for a.e. x ∈ Ω;
(b) g(·, s) ∈ L∞(Ω) for all s ∈ (−∞, 0];
(c) g(x, ·) is non-increasing in (−∞, 0] and g(x, 0) = 0 for a.e. x ∈ Ω .

We can apply well known results (see, e.g. [5]) to prove the existence of solutions of Problem S2
in the class W 1,1(Ω). By the additional regularity in (b) it is straightforward to show that solutions
of (S2) belong to W 2,∞(Ω) (note that W 1,1(Ω) ⊂ L∞(Ω) in one space dimension). Finally, due
to (c), we observe that the solution of Problem S2 depends monotonically in ũ. We also point out
that the possible non-Lipschitz continuity of f (x, ·) carries over to g(x, ·). Consequences of this
will be discussed in Section 6 which deals with the formation of dead cores.

When f and k are given by (2.13) and (2.14) or (2.15), qualitative statements about the behaviour
of solutions can be made relatively easily. The reason is that in these cases the non-trivial part of a
solution of Problem S2 is determined by two first-order autonomous equations (directly, when k is
as in (2.14), or after a straightforward transformation when k is given by (2.15)). We briefly sketch
the corresponding phase plane analysis.

Let k be given by (2.14) with x0 = 1 and d > 1. In the interval 1 � x � d, where no uptake of
water takes place, we deduce directly

q(x) = 0 and u(x) = u(1) for x ∈ [1, d]. (3.3)

In the interval (0, 1) we consider the system{
w′ = q,

q ′ = k0(1 − ew)p.
(3.4)

Without giving the details of the phase plane analysis, we show in Fig. 1a (with ũ = 0.25, k0 = 10
and p = 1) the result of the shooting procedure starting from u(0) = ũ with q(0) as shooting
parameter. The behaviour of the orbits is typical for all values of p � 1. The right-hand side of
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FIG. 1. Construction of the orbits. Parameters are u0 = 0.25, k0 = 10, and the root distribution k(x) is given by (2.14).
Numbers on curves are values of q(0) used for shooting. The dashed lines indicate the values of w(0) and q(0) that are
found. In the case p = 1, the curve {z = 1} has been obtained numerically by shooting. (a) p = 1. (b) p = 0.5.

the second equation of (3.4) is smooth for that range of p, which means that the critical point
(w, q) = (0, 0) (corresponding to u = 1, q = 0) can never be reached at finite distance see, for
instance, [1, 8]. Consequently, the threshold concentration u = 1 can never be attained. The desired
orbit is the one that satisfies q(1) = 0. The solution for x > 1 is constant, see (3.3).

For 0 < p < 1 the qualitative behaviour of the solution is drastically different. Then, the right-
hand side of the second equation of (3.4) loses its smoothness near w = 0, implying that now the
singular point (0, 0), or the threshold concentration, can be attained at finite depth. Note that the
situation in the w, q plane is quite different from the p � 1 case. This is shown in Fig. 1b, where
p = 0.5. For an appropriate choice of the parameters, the orbit will enter the origin at a distance
less than or equal to x = 1. That is to say, the threshold concentration u = 1 occurs in or just below
the mangrove root zone.

For other choices of the parameters a situation as in Fig. 1a may occur. Then the q = 0 axis
is reached at x = 1 with w(1) < 0, leading to a salt distribution that again can never attain the
threshold value.

Next we consider k given by (2.15). A direct phase plane analysis for system (3.4), which is now
non-autonomous, or otherwise a reduction of Problem S1 to first integrals, seems not so transparent.
However, because of the special form of k we can transform (3.4) into an autonomous system which
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we can analyse as before. Set v(x) := q(x)(1 + x). Rewriting (3.4) in terms of w and v yields{
(1 + x)w′ = v,

(1 + x)v′ = v − k0(1 − ew)p.
(3.5)

Changing the independent variable into

s := log(1 + x), when 0 � s � log(1 + d),

we obtain 


dw

ds
= v,

dv

ds
= v − k0(1 − ew)p,

(3.6)

with w(0) = log ũ < 0 and v(0) = u′(0)/ũ. Again the shooting procedure is: to find a value of
v(0), or equivalently of u′(0), so that the corresponding orbit intersects the v = 0 axis, precisely
when s = log(1 + d). This implies u′(d) = 0, the desired boundary condition at x = d. A similar
smoothness argument as mentioned previously gives that for all p � 1 an orbit cannot enter the
origin w = 0, v = 0 at finite distance. Hence for all p � 1 we have w(log(1 + d)) < 0, implying
that u(d) < 1. Since u is monotone in x , which follows from the positivity of v along the appropriate
orbit, we conclude that

u(x) < u(d) < 1 for 0 � x � d and for all p � 1. (3.7)

Again this changes for 0 < p < 1. As before, for certain parameter combinations we may find an
orbit that reaches the origin at a distance s∗ < log(1 + d). This implies that

u(x) = 1 and q(x) = 0 for x∗ = es∗ − 1 � x � d. (3.8)

For other parameter combinations the desired orbits intersects the v = 0 axis as s = log(1 + d) for
negative w, giving for u the inequalities from (3.7).

REMARK 3.1 In the case of an arbitrary root distribution function k(x) � 0, a simple reduction
to a phase plane analysis as in the previous examples is not possible. Nevertheless, it is possible to
analyse solutions of (3.4) qualitatively. The results are:

(1) If p � 1, then u(x) < 1 for all x ∈ [0, d]. Hence no maximal concentration can occur in or
below the root zone.

(2) If p < 1, then u = 1 in [x0, d] for some x0 ∈ [0, d], is possible. As in the two examples, this
depends on the value of the parameters ũ, k0 and d.

(3) When comparing solutions corresponding to different root distribution functions, we have
the following ordering: if ui (x) corresponds to the root distribution ki (x), for i = 1, 2, and if
k1(x) � k2(x) then u1(x) � u2(x) for all x ∈ [0, d].

A more detailed analysis concerning conditions under which the threshold concentration is
reached is presented in Section 6.
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4. The evolution problem

In this section we study the mathematical setting of Problem P. In the time-dependent case,
integration and change of variable as performed in Section 3 is no longer useful and a direct
treatment of the coupled system is required. One of the main difficulties in studying Problem P is
that, in general, the comparison principle does not hold. As a consequence, techniques involving
comparison with sub- and super-solutions are not available and a more general approach must
be considered. Using a fixed-point argument, we prove existence of a strong solution. Sufficient
conditions for the uniqueness of solutions follow from a duality technique. We also give a counter-
example for the comparison principle.

4.1 Existence of solutions

Because only boundedness of f with respect to x is required (see also example (2.14)), one cannot
expect in general to find classical solutions. Therefore, we introduce the following class of strong
solutions.

DEFINITION 4.1 A pair u : QT → [0, 1], q : QT → R is said to be a strong solution of Problem P
if

(i) for any r < ∞ and for V := {v ∈ W 2,r (Ω) : v(0) = 0},
u ∈ u D + W 1,r (0, T ; Lr (Ω)) ∩ Lr (0, T ;V)

q ∈ L∞(0, T ; W 1,∞(Ω)).

(ii) The differential equations and boundary conditions are satisfied almost everywhere, and
(iii)

lim
t↓0

‖u(x, t) − u0(x)‖L2(Ω) = 0. (4.1)

Concerning the data of Problem P we assume u0 : Ω̄ → (0, 1] and u D : [0, T ] → (0, 1] such
that

u0 ∈ H1(Ω), u D ∈ H1(0, T ) (4.2)

and

u D(0) = u0(0). (4.3)

THEOREM 4.1 Let (H) and (4.2), (4.3) be satisfied. Then there exists a strong solution (u, q) of
Problem P, for which

min

{
inf

(0,T )
u D, inf

Ω
u0

}
� u � 1 a.e. in QT . (4.4)

If f (x, u) = k(x)(1 − u)
p
+ for some p ∈ (0, 1), and if k, u0, u D are smooth enough, then

u ∈ C2+p,1+ p
2 (Q̄T ),

q ∈ C1+p,p(Q̄T ).
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Proof. The proof uses a fixed point argument. First we extend the domain of f (x, ·) to R by setting
for each x ∈ Ω̄ ,

f̃ (x, s) :=




0 if s > 1,

f (x, s) if 0 � s � 1,

f (x, 0) if s < 0,

and we introduce Problem P̃ by putting f = f̃ in Problem P. Fix α ∈ (2, ∞) and consider the set

K := {(F, G) ∈ L2(QT ∗) × L2(QT ∗) : ‖F‖L2(QT ∗ ) < R, ‖G‖Lα(QT ∗ ) < ρ},
for certain positive numbers T ∗, R and ρ which will be chosen later. Clearly, K is a convex weakly
compact subset of L2(QT ∗)× L2(QT ∗). We define the mapping Q : K → L2(QT ∗)× L2(QT ∗) by

Q(F, G) := (−(uq)x , − f̃ (x, u)),

where u, q are solutions of 


ut − uxx = F in QT ∗ ,

u(0, t) = u D(t) in (0, T ∗),
ux (d, t) = 0 in (0, T ∗),
u(x, 0) = u0(x) in Ω ,

(4.5)

and {
qx = G in QT ∗ ,

q(d, t) = 0 in (0, T ∗).
(4.6)

Note that a fixed point of Q is a (local in time) solution of (P̃). The regularity for F , G, u0 and u D

implies, see for instance [10], that (4.5) and (4.6) have unique solutions in the classes

u ∈ H1(0, T ∗; L2(Ω)) ∩ L2(0, T ∗; H2(Ω)) ∩ L∞(0, T ∗; H1(Ω)),

q ∈ Lα(0, T ∗; W 1,α(Ω)).
(4.7)

In fact, replacing F , G, u0 and u D by smooth approximations, testing the differential equation
in (4.5) with (u − u D)t and taking the limit yields the estimate

‖ut‖L2(Qτ ) + ‖ux (τ )‖L2(Ω) � C{‖u′
0‖L2(Ω) + ‖u′

D‖L2(0,T ∗) + ‖F‖L2(QT ∗ )} (4.8)

which implies

‖u(τ )‖L∞(Ω) � u D(τ ) + C{‖u′
0‖L2(Ω) + ‖u′

D‖L2(0,T ∗) + ‖F‖L2(QT ∗ )} (4.9)

for all τ ∈ (0, T ∗). Note that using (4.8) we deduce from the differential equation in (4.5)

‖uxx‖L2(Qτ ) � C{‖u′
0‖L2(Ω) + ‖u′

D‖L2(0,T ∗) + ‖F‖L2(QT ∗ )}. (4.10)

Clearly Problem (4.6) leads to

‖q‖Lα(0,T ∗;L∞(Ω)) � C‖G‖Lα(QT ∗ ). (4.11)

Finally, the regularity of u implies that the initial data is satisfied in the sense of (4.1).
Having established the bounds of (4.5) and (4.6), we are now in a position to apply the fixed

point theorem of [3]. For this we need to show:
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(i) Q(K ) ⊂ K ;

(ii) Q is weakly–weakly sequentially continuous in L2(QT ∗) × L2(QT ∗).

To verify (i) we need to show that for appropiately chosen T ∗, R, and ρ,

‖(uq)x‖L2(QT ∗ ) < R and ‖ f (x, u)‖Lα(QT ∗ ) < ρ. (4.12)

Using (4.8)–(4.11) we get

‖(uq)x‖L2(QT ∗ )� ‖ux‖L∞(0,T ∗;L2(Ω))‖q‖L2(0,T ∗;L∞(Ω)) + ‖u‖L∞(QT ∗ )‖qx‖L2(QT ∗ )

� C{‖u′
0‖L2(Ω) + ‖u′

D‖L2(0,T ∗) + ‖F‖L2(QT ∗ )}‖G‖Lα(QT ∗ )

< C{‖u′
0‖L2(Ω) + ‖u′

D‖L2(0,T ∗) + R}ρ
and from (H) we obtain

‖ f (·, u)‖Lα(QT ∗ ) � c(T ∗)1/α‖ f ‖L∞(Ω×(0,1)).

We now fix 0 < ρ < 1/C and 0 < T ∗ < ρα(c‖ f ‖L∞(Ω×(0,1)))
−α . By choosing R large enough,

we can ensure that condition (4.12) is satisfied.
To verify (ii) one has to show that for every sequence (Fn, Gn) ∈ K such that (Fn, Gn) →

(F, G) ∈ K weakly–weakly in L2(QT ∗) × L2(QT ∗), the images Q(Fn, Gn) converge to Q(F, G)

also weakly–weakly in L2(QT ∗) × L2(QT ∗) (at least along a subsequence). Since (Fn, Gn) is
bounded in L2(QT ∗) × Lα(QT ∗) it follows that the solutions (un, qn) of (4.5 ) and (4.6) associated
with these data satisfy uniform bounds of the type (4.8)–(4.11). Therefore, there exist subsequences,
again denoted by the subindex n, and functions u, q, such that

un → u weakly star in L∞(QT ∗),
un → u weakly-star–weakly in L∞(0, T ; H1

c (Ω)),
(4.13)

with H1
c (Ω) := {v ∈ H1(Ω) : v(0) = 0},

unt → ut , unxx → uxx , weakly in L2(QT ∗) (4.14)

and

qnx → qx weakly in Lα(QT ∗). (4.15)

Applying [14] we deduce from (4.13), (4.14) that un → u strongly in C([0, T ]; L2(Ω)) and
strongly in L2(0, T ; H1

c (Ω)). Therefore, it also converges a.e. in QT , at least for a subsequence.
Consequently, using the continuity of f̃ ,

f̃ (·, un) → f̃ (·, u) strongly in L2(QT ∗).

Let ϕ ∈ L2(QT ∗). Then∫
QT ∗

(unqn)xϕ =
∫

QT ∗
un(qnx − qx )ϕ +

∫
QT ∗

unqxϕ +
∫

QT ∗
unx qnϕ

=: I1n + I2n + I3n .
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Using (4.15) and the observation that un → u strongly in Lr (QT ∗) for any r ∈ [1, ∞) we find
along a subsequence n → ∞

I1n → 0 and I2n →
∫

QT ∗
uqxϕ.

As a consequence of estimates (4.8) and (4.10), unx → ux strongly in L2(QT ∗) (see [12] ). Using
further that ‖ux‖L∞(0,T ∗;L2(Ω)) � C , we deduce unx → ux strongly in Lr (0, T ∗; L2(Ω)). Again
with (4.15) this gives

I3n →
∫

QT ∗
ux qϕ.

To conclude the proof of (ii) we note, by the linearity of Problems (4.5) and (4.6), that u and q are
solutions corresponding to F and G, respectively.

Hence, there exists a fixed point (u, q) of Q which is a local (in time) solution of (P̃). By
iterating the construction we can extend the solution to one which is global in time. Next we show
that this solution satisfies Definition 4.1. Since f̃ ∈ L∞(Ω × IR) the second equation of (P̃) implies
q ∈ L∞(0, T ; W 1,∞(Ω)), and then, applying a bootstrap argument in u, the first equation yields
ut − uxx ∈ L∞(QT ). Then the regularity stated in Definition 4.1 follows from well known results
in [10].

Using ϕ := min{0, u} and ϕ := max{0, u − 1} as test functions one easily shows that u � 0
and u � 1 in Q̄T . We note at this point that 0 � u � 1 in Q̄T implies f̃ (·, u) = f (·, u) in Q̄T and
therefore the pair u, q is also a solution of Problem P. To show min{inf(0,T ) u D, infΩ u0} � u we
use f̃ � 0 and the maximum principle. Indeed,

ut + qux − uxx � ut + qux − uxx − u f̃ (x, u) = 0,

and the maximum principle implies the assertion. Finally, the additional regularity of Theorem 4.1
follows from classical regularity theory for linear problems: for instance, see again [10].

4.2 Uniqueness and comparison of solutions

In many parabolic scalar problems involving monotone or Lipschitz-continuous nonlinearities,
the uniqueness of solutions arises as a particular case of the comparison property. However, this
situation, in general, changes for systems of equations, where the comparison principle may be
violated even though uniqueness may still hold. In this section we show that this is the case for
Problem P. We start with the following example.
Counter-example to the comparison property. Let φ : [0, 1] → [0, 1] be a smooth function
satisfying φ(0) = φ(1) = α ∈ (0, 1), and φ′(0) = φ′′(0) = φ′(1) = φ′′(1) = 0. Set d = 3
and define the initial data u10, u20 : [0, 3] → [0, 1] by

u10(x) :=
{

φ(x) x ∈ [0, 1],
0 x ∈ (1, 3], u20(x) :=




φ(x) x ∈ [0, 1],
0 x ∈ (1, 2),

φ(3 − x) x ∈ [2, 3].
Note that u10, u20 ∈ C2([0, 3]) and u10 � u20 in [0, 3]. Further, let f (x, u) = 1−u and u D(t) ≡ α,
both C∞ functions in their domains. By Theorem 4.1 there exist solutions of (P), (u1, q1) and
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(u2, q2), corresponding to these data such that u1, u2 ∈ C2,1(Q̄T ). At t = 0 we have

q1(x, 0) − q2(x, 0) = −
∫ 3

x
(u10(s) − u20(s)) ds.

For x � 2 this expression is equal to the constant c = ∫ 1
0 φ(x) dx > 0. By subtracting the equations

corresponding to u1 and u2 we find

(u1 − u2)t = (u1 − u2)xx − ((u1 − u2)q1)x − (u2(q1 − q2))x ,

and if we consider this equation for 0 < x < 2 and at t = 0 we get

(u1 − u2)t = −cu′
20.

Then it follows from the form of u20 that (u1 − u2)t cannot be non-positive everywhere on [0, 2] at
t = 0, and that therefore we can find points (x, t) such that u1(x, t) > u2(x, t). This contradicts the
comparison principle.

We show below, however, that uniqueness holds for this example. In fact, we demonstrate
uniquenes for f (x, ·) being Lipschitz continuous in [0, 1]. For general, i.e. non-Lipschitz, functions
f (x, ·) we only have a partial result. It involves an additional condition on the component u. In
Section 4.3 we show that the class of solutions satisfying this condition is non-empty.

THEOREM 4.2

(1) Uniqueness of solutions. Let (u1, q1) and (u2, q2) be two strong solutions of Problem P and
let (H) be satisfied. If either

f (x, ·) is Lipschitz continuous in [0, 1] for almost all x ∈ Ω , (4.16)

or any one of the solutions satisfies

u(x, t) >

∫ x

0
|ux (y, t)| dy a.e. in QT , (4.17)

then (u1, q1) = (u2, q2) a.e. in QT .
(2) Comparison of solutions. Assume now that (u1, q1) and (u2, q2) correspond to ordered data,

i.e. u1D � u2D in (0, T ) and u10) � u20. Then, if

uix � 0 in QT and ui D > 0 in (0, T ], (4.18)

for either i = 1 or i = 2, then

u1 � u2 and q1 � q2 in QT .

REMARK 4.1

1. By (3.1) we have that the solution of the stationary problem is monotonic in space.
Theorem 4.2 implies then that if (u1D, u10) � (vD, v) � (u2D, u20), where v is the stationary
solution corresponding to the boundary data vD , then

u1 � v � u2 and q1 � r � q2 in QT .
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2. For both (4.16) and (4.17) it is unclear why they should influence the uniqueness of solutions.
We believe that both are in fact only technical restrictions, and that uniqueness should hold
under weaker assumptions on f and u.

Proof of Theorem 4.2. We first discuss the proof of part (1). Let (u1, q1) and (u2, q2) be solutions
of Problem P and set (u, q) := (u1 − u2, q1 − q2). Then (u, q) satisfies



ut + (uq1 + u2q)x − uxx = 0
qx + f (x, u1) − f (x, u2) = 0

}
a.e. in QT ,

with
u D(0, ·) = 0
ux (d, ·) = q(d, ·) = 0

}
in (0, T ),

u0 = 0 in Ω .

(4.19)

Multiplying the differential equations of (4.19) by smooth functions ϕ, ψ satisfying

ϕ(0, t) = ϕx (d, t) = ψ(0, t) = 0 for any t ∈ [0, T ], (4.20)

integrating in Qτ , with τ ∈ (0, T ), and adding the resulting integral identities we obtain∫
Ω

u(τ )ϕ(τ) =
∫

Qτ

u[ϕt + q1ϕx + ϕxx ] −
∫

Qτ

q[ψx + u2xϕ]

+
∫

Qτ

( f (x, u1) − f (x, u2))[u2ϕ + ψ].
(4.21)

We consider the function

h(x, t) :=



f (x, u1) − f (x, u2)

u
if u �= 0,

0 if u = 0,
(4.22)

which is non-positive because f (x, ·) is non-increasing. For m ∈ N, m � 1, we consider the
functions h H(h + m), where H denotes the Heaviside function: H(s) = 1 for s � 0, H(s) = 0
for s � 0. We regularize these functions in such a way that we obtain a smooth sequence {hm} ⊂
C2(Qτ ) satisfying

(i) hm+1 � hm in Qτ ,
(ii) 0 � hm � max{−m, h},

(iii) hm → h a.e. in Qτ .

The regularity of solutions of Problem P allows us to introduce sequences {qn
1 }n�1, {un

2}n�1 ⊂
C2(QT ) such that

qn
1 → q1 and un

2 → u2 strongly in L2(0, T ; H1(Ω)) (4.23)

as n → ∞ with

lim‖qn
1 ‖L∞(QT ) � ‖q1‖L∞(QT ), lim‖qn

1x‖L2(QT ) � ‖q1x‖L2(QT ),

lim‖un
2‖L∞(QT ) � ‖u2‖L∞(QT ), lim‖un

2x‖L2(QT ) � ‖u2x‖L2(QT )

(4.24)
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and un
2 satisfying (4.17). Using these approximations we rewrite (4.21) as∫
Ω

u(τ )ϕ(τ) =
∫

Qτ

u[ϕt + qn
1 ϕx + ϕxx + hm(un

2ϕ + ψ)] −
∫

Qτ

q[ψx + un
2xϕ]

+
∫

Qτ

u(h − hm)(u2ϕ + ψ) −
∫

Qτ

ux (q1 − qn
1 )ϕ

−
∫

Qτ

u(q1x − qn
1x )ϕ +

∫
Qτ

uhm(u2 − un
2)ϕ −

∫
Qτ

q(u2x − un
2x )ϕ. (4.25)

Next we select the functions ϕ and ψ , being the solutions of


ϕt + qn
1 ϕx + ϕxx + hm(un

2ϕ + ψ) = 0
ψx + un

2xϕ = 0

}
in Qτ ,

ϕ(τ ) = ξ in Ω ,

(4.26)

with ϕ, ψ satisfying (4.20) and with ξ ∈ C∞
0 (Ω), ξ � 0.

LEMMA 4.3

(i) Assume either (4.16) or (4.17). Then, for each n and m there exists a unique solution ϕ, ψ ∈
C2,1(Q̄τ ) of (4.26) such that ‖ϕ‖L∞(Qτ ) and ‖ψ‖L∞(Qτ ) are uniformly bounded with respect
to n and m.

(ii) Assume (4.18). Then, in addition to the uniform bounds we have

ϕ � 0 in QT and ϕx (0, t) � 0 in (0, T ). (4.27)

End of proof of Theorem 4.2. Using the functions provided by Lemma 4.3 we obtain from (4.25)

∫
Ω

u(τ )ξ =
∫

Qτ

u(h − hm)(u2ϕ + ψ) −
∫

Qτ

ux (q1 − qn
1 )ϕ

−
∫

Qτ

u(q1x − qn
1x )ϕ +

∫
Qτ

uhm(u2 − un
2)ϕ −

∫
Qτ

q(u2x − un
2x )ϕ. (4.28)

Finally, by the uniform estimates from Lemma 4.3 and (4.24), we can pass to the limit in (4.28) and
obtain for n → ∞ ∫

Ω
u(τ )ξ =

∫
Qτ

u(h − hm)(u2ϕ + ψ). (4.29)

Using Lemma 4.3 again and the convergence properties of the sequence {hm} we find∫
Qτ

u(h − hm)(u2ϕ + ψ) → 0 as m → ∞, (4.30)

and hence we obtain from (4.29) ∫
Ω

u(τ )ξ = 0, (4.31)



30 C. J. VAN DUIJN, G. GALIANO, & M. A. PELETIER

for any test function ξ � 0. We therefore deduce that u1 = u2 a.e. in Qτ for any τ ∈ (0, T ).
Checking that this implies q1 = q2 is straightforward.

To prove part (2) we define again (u, q) := (u1 − u2, q1 − q2) and consider the problem for
(u, q) given by (4.19) but with u D := u1D − u2D � 0 and u0 := u10 − u20 � 0. Following the
proof of part (1) we get

∫
Ω

u(τ )ϕ(τ) =
∫
Ω

u0ϕ(0) +
∫ T

0
u D(t)ϕx (0, t) dt + I1, (4.32)

with I1 given by the right-hand side of (4.25). By Lemma 4.3 the solution (ϕ, ψ) of (4.26) satisfies
ϕ(0, t) � 0 and ϕx (0, t) � 0. Hence, we obtain from (4.32) and (4.26)∫

Ω
u(τ )ξ � 0,

for all ξ � 0, from which the assertion follows.

Proof of Lemma 4.3. Because (4.26) is linear with smooth coefficients and data, the existence,
uniqueness and regularity of solutions is well known [10]. To show the uniform L∞ bounds we
consider separately the cases (4.16) and (4.17). If (4.16) holds, then h defined by (4.22) is bounded,
and consequently, {hm} is uniformly bounded in L∞(Qτ ) with respect to m. Further, (4.24) ensures
that qn

1 , un
2 and un

2x are uniformly bounded in L∞(Qτ ) with respect to n.
Next assume (4.17). We assert that the global maximum of |ϕ| is attained either at the boundary

x = 0 or initially at t = τ implying ‖ϕ‖L∞(Qτ ) uniformly bounded with respect to m and n. Suppose
this is not true. Let (x0, τ0) ∈ Qτ be the point where the global maximum of |ϕ| is attained. Then
(x0, τ0) is either a point of global maximum or a point of global minimum for ϕ. Let us consider
first the case in which (x0, τ0) is a point of global maximum. The boundary data for ϕ implies
ϕ(x0, τ0) > 0 and the ϕ-equation in (4.26) yields, using hm � 0,

un
2(x0, τ0)ϕ(x0, τ0) + ψ(x0, τ0) � 0. (4.33)

Integrating the ψ-equation of (4.26) in (0, x) gives

ψ(x, t) =
∫ x

0
(−un

2x (y, t))ϕ(y, t) dy. (4.34)

Therefore, from (4.33), (4.34) and assumption (4.17) we obtain

un
2(x0, τ0)ϕ(x0, τ0) �

∫ x0

0
un

2x (y, τ0)ϕ(y, τ0) dy

�
∫ x0

0
|un

2x (y, τ0)| dy sup
y∈(0,x0)

|ϕ(y, τ0)|

=
∫ x0

0
|un

2x (y, τ0)| dy ϕ(x0, τ0) < un
2(x0, τ0)ϕ(x0, τ0), (4.35)

a contradiction. If the global maximum is attained at a point (d, τ0), then by the strong maximum
principle ϕx (d, τ0) > 0. This gives again a contradiction. Finally, if (x0, τ0) is a point of global
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minimum for ϕ, we may repeat the argument above, obtaining a similar contradiction. To finish the
proof of (i) we use (4.34) and (4.24) to find

‖ψ‖L∞(Qτ ) � ‖ϕ‖L∞(Qτ )‖u2‖L∞(0,τ ;W 1,1(Ω)),

which is also independent of m and n.
The proof of (ii) follows the same ideas as that of (i). We assume (4.18) and assert that the

global minimum of ϕ is attained either at the boundary x = 0 or initially at t = τ implying (4.27),
see (4.20) and (4.26). Suppose this is not true. Then, using the arguments of part (i) for the function
ϕ instead of |ϕ|, we are led to an expression similar to (4.35):

un
2(x0, τ0)ϕ(x0, τ0) �

∫ x0

0
un

2x (y, τ0)ϕ(y, τ0) dy

�
∫ x0

0
un

2x (y, τ0) dy inf
y∈(0,x0)

ϕ(y, τ0) > un
2(x0, τ0)ϕ(x0, τ0),

a contradition.

4.3 Condition (4.17)

Since inequality (4.17) is difficult to verify directly, the following observation is useful.

PROPOSITION 4.4 Let umin > 0 be given by (4.4). If there exists L > 0 such that

ux � L in QT , with L <
umin

2d
(4.36)

then (4.17) is satisfied.

Proof. Define w(x, t) := u(x, t) − Lx for (x, t) ∈ QT . Then wx � 0 in QT and |ux | � −wx + L ,
implying ∫ x

0
|ux | � u D − u + 2Ld in QT .

Using (4.4) and (4.36) we obtain∫ x

0
|ux | � 2Ld < umin � u in QT .

Clearly, the condition of Proposition 4.4 is stronger than (4.17). However, the following example
shows that it is relatively straightforward to obtain.

PROPOSITION 4.5 Let f (x, s) := k(x)(1 − s)p
+, with k � 0 and k′ � 0 a.e. in Ω . Assume

u0 ≡ u D = ũ, with

ũ > max{ 2

2 + p
, 1 − (d2k(0))−p}. (4.37)

Then (4.36) holds.
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Proof. We regularize f by fn , with { fn} a sequence of smooth functions converging to f strongly-
uniformly in Lr (Ω) × C([0, 1]), for any r < ∞, and with the following properties:{

n−1 � fn � f + n−1

fnx � 0
in Ω × [0, 1] and 2 fn + un fnu < 0 in QT . (4.38)

It is easy to see that due to the special form of f assumed in the statement of the proposition such
a sequence exists. We then consider the sequence of regularized problems {Pn} and their solutions
{un, qn}. Note that Theorem 4.1 implies un � ũ in QT . Differentiating the first equation of Problem
Pn with respect to x , we obtain the following problem for vn := unx :

vnt + qnvnx − vnxx − (2 fn + un fnu)vn = fnx un in QT , (4.39)

with 


vn(0, t) � 0 in (0, T ),

vn(d, t) = 0 in (0, T ),

vn(x, 0) = 0 in (0, d).

Applying the maximum principle to (4.39) we deduce that the maximum of vn is at x = 0. We
now consider the solution (Un, Qn) of the stationary problem (Sn) corresponding to (Pn) and use
Theorem 4.2 to deduce Un � un in QT , and therefore Unx (0) � unx (0, t) in (0, T ). We then obtain,
see (3.1),

unx (x, t) � Unx (0) = Un(0)Qn(0)

and then, by (4.38),

unx (x, t) � ũ
∫ d

0
fn(y, U (y)) dy � dũ[(1 − ũ)pk(0) + 1

n
]. (4.40)

To pass to the limit we note that the bounds obtained in Theorem 4.1 are valid for Problem Pn ,
uniformly in n. Therefore the sequence (un, qn) converges pointwise to (u, q). To show that this
limit is a solution of Problem P only requires to consider the limit of fn(·, un) since the other
terms are treated as in Theorem 4.1. But this is a consequence of the pointwise convergence of un

to u and the strong-uniform convergence of fn to f in Lr (Ω) × C([0, 1]). Note that (4.40) gives
ux (x, t) � dũ(1 − ũ)pk(0), which implies (4.36).

5. Qualitative properties

In this section we derive some properties of solutions of Problem P. For simplicity we confine
ourselves to the case of constant boundary data, i.e.

u D ≡ ũ ∈ (0, 1), (5.1)

and let (U, Q) be the stationary solution corresponding to this boundary condition. Since U is
increasing in x , it is admissible as a comparison function by Theorem 4.2: if the initial data, u0, and
U are ordered, e.g. u0 � U , then this ordering persists through time: u(x, t) � U (x) for all x ∈ Ω
and t > 0. This property allows us to prove the convergence for t → ∞ to the stationary state.
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THEOREM 5.1 Let (u, q) be a solution of Problem P and let (U, Q) be the corresponding steady
state solution of Problem S1. Let u0 and U be ordered, i.e. either u0(x) � U (x) for all x ∈ Ω , or
u0(x) � U (x) for all x ∈ Ω . Then

u(·, t) → U
q(·, t) → Q

as t → ∞,

uniformly in Ω .

Proof. For the proof we assume that u0 � U ; for the opposite inequality the argument is identical.
Writing

q(0, t) =
∫
Ω

f (x, u(x, t)) dx,

the inequality u(·, t) � U , provided by Theorem 4.2, implies that q(0, t) � Q(0). It also follows
from this inequality that ux (0, t) � Ux (0). By integrating the first equation of Problem P we find

d

dt

∫
Ω

u(x, t) dx = −ux (0, t) + ũq(0, t) (5.2)

� −Ux (0) + ũQ(0) = 0.

The last equality follows from the equation satified by (U, Q) and the boundary conditions Ux (d) =
Q(d) = 0. This implies that the mass

∫
u is a Lyapunov function, and even a strict Lyapunov

function if q(0, t) > Q(0).
We next derive a priori estimates that provide the necessary compactness. The function w =

u − ũ satisfies the equation

wt + wx q − (w + ũ) f (·, w + ũ) − wxx = 0,

and by a standard partial integration we derive from this equation the energy inequality

1

2

∫
Ω

w(x, τ + 1)2 dx +
∫ τ+1

τ

∫
Ω

w2
x � 1

2

∫
Ω

w(x, τ )2 dx

+
∫ τ+1

τ

∫
Ω

(w + ũ − 1
2w2) f (·, w + ũ).

Since w is bounded, it follows that there exists a constant C , independent of τ , such that∫ τ+1

τ

∫
Ω

w2
x � C.

Therefore there exists a sequence τn → ∞, with |τn+1 − τn| � 2, such that∫
Ω

u2
x (x, τn) dx � C,

and by combining this sequence with the argument of the existence proof (Theorem 4.1) it
follows that the bounds on u and q in the spaces L∞(0, T ; H1(Ω)) and L∞(0, T ; W 1,∞(Ω)) are
independent of T .
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We choose a sequence tn → ∞ such that (u, q)(·, tn) converges uniformly to a limit (u∞, q∞).
Standard Lyapunov arguments imply that the mass is constant for the solution with initial data u∞.
The final part of this proof consists of showing that this property implies that u∞ = U .

To do this, we now switch to the solution (v, r) of Problem P which has u∞ as its initial datum.
Note that by construction u∞ � U and therefore v(·, t) � U for all t � 0. As remarked above, the
mass is a strictly increasing Lyapunov function if r(0, t) > Q(0), in which case a contradiction is
obtained and the proof is complete. We therefore only need to concentrate on the situation v(·, t) �≡
U , but r(0, t) = Q(0) for all t . It follows from the latter equality and v(·, t) � U that r(x, t) =
Q(x) for all x and t ; therefore v and U satisfy

vt + (vQ)x − vxx = 0 and Ut + (U Q)x − Uxx = 0.

By hypothesis v(·, t) � U for all t � 0, and v(·, t) �≡ U ; it follows from the boundary point lemma
that vx (0, t) < Ux (0) for all t > 0. At the same time, the fact that the mass

∫
v remains constant

implies (by (5.2)) that vx (0, t) = ũQ(0). This contradicts the properties of U and Q:

0 < Ux (0) − vx (0, t) = ũQ(0) − ũQ(0) = 0.

This concludes the proof of the Theorem.

In the remainder of this section we consider the special case when f is given by

f (x, u) := k(x)(1 − u)
p
+, 0 < p < 1, (5.3)

with k satisfying (2.14). Of particular interest here is the formation of the dead core {u = 1}, where
the salt concentration reaches its maximum value and when the uptake of water by the roots of the
mangroves stops. In Section 6 we will discuss the existence of dead cores for both the steady and
time-dependent problem. In particular we show that a dead core can be formed in finite time. Here
we show the opposite. By using appropiate super-solutions we will estimate the set {u < 1}. To
simplify the discussion we assume for the rest of this section that u0 = ũ.

Let (U, Q) be the solution of Problem S1 and suppose parameters are chosen such that

U (x) < 1 if x ∈ [0, x0) and U (x) = 1 if x ∈ [x0, d] (5.4)

with x0 � 1. As a first observation we have the following proposition.

PROPOSITION 5.2 u < 1 in (1, d] × [0, T ].
Proof. In the set (1, d) × (0, T ) we have

ut − uxx = 0, q = 0

and

u(1, t) ∈ [ũ, 1], ux (d, t) = 0, u(x, 0) = ũ.

We construct an explicit supersolution on (1, d) × (0, T ]:

φ(x, t) = 1 − (1 − ũ) exp

(
− π2

4(d − 1)2
t

)
sin

(
π

2

x − 1

d − 1

)
.

It follows that u(x, t) � φ(x, t) < 1 on (1, d] × [0, T ].
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Using the steady-state solution we find the following proposition.

PROPOSITION 5.3 u < 1 in [0, x0) × [0, T ].
Proof. Theorem 4.2 gives u � U in QT . Using (5.4) the assertion follows.

Finally, we use a time-dependent super-solution to show the following proposition.

PROPOSITION 5.4 There exists T0 > 0 such that u < 1 in [0, d] × [0, T0].
Proof. Let ξ : [0, ∞) → R be the solution of{

ξ̇ = k0ξ(1 − ξ)
p
+ t > 0,

ξ(0) = ũ.
(5.5)

Clearly, there exists T0 > 0 such that ũ < ξ < 1 and ξ̇ > 0 in (0, T0), and ξ = 1 in [T0, ∞). The
pair

ū(x, t) := ξ(t),

q̄(x, t) :=
∫ d

x
f (y, ξ(t)) dy

is a solution of Problem P with data ū D = ξ � ũ and ū0 = ũ. Since ū is constant in space,
condition (4.18) is trivially satisfied. Then, by Theorem 4.2 we have

u(x, t) � ξ(t) for (x, t) ∈ QT ,

which proves the assertion of the proposition.

6. Formation of a dead core

In this section we present results concerning the formation of dead cores in the stationary and time-
dependent problems. For the stationary problem we use the comparison principle to give accurate
conditions on the data implying the existence of a dead core. For the time-dependent problem the
comparison principle can provide some results on the occurrence of dead cores (see the previous
section), but to obtain more general results we need to apply more sophisticated techniques.

We therefore use a local energy method for free boundary problems [2, 7]. First we introduce
an energy functional given in terms of the norms of the natural energy spaces associated with the
problem. Then we obtain a differential inequality for such a functional and, finally, we deduce the
formation of a dead core from the properties of this inequality.

6.1 The steady state problem

To study conditions implying the formation of a dead core in the stationary problem we consider
the formulation (S2). Note that, by the maximum principle, the solution satisfies log ũ � w � 0 in
Ω , and that the dead core, if it does exist, is given by the set {x ∈ [0, d] : w(x) = 0}. We will define
a subsolution of Problem S2 vanishing in a subset of Ω and use the comparison principle to deduce
the same property for the solution of Problem S2. We assume, in addition to (H), the following
structural property on f :

f (·, s) � k0(1 − s)p, for s ∈ [0, 1], (6.1)

in (0, d), with k0 a positive constant and p ∈ (0, 1).
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THEOREM 6.1 Assume (6.1) and

− log ũ

(1 − ũ)p
< k0d2 (1 − p)2

2(1 + p)
. (6.2)

Then {x : w(x) = 0} ⊃ (x0, d), with x0 given by (6.4).

Proof. We consider the following subsolution of Problem S2:

w(x) :=
{

a(x0 − x)
2

1−p if x ∈ (0, x0),

0 if x ∈ (x0, d),
(6.3)

with

a := −
(

k0

∣∣∣∣1 − ũ

log ũ

∣∣∣∣
p

(1 − p)2

2(1 + p)

) 1
1−p

and x0 :=
(

log ũ

a

) 1−p
2

. (6.4)

It is easy to check that if (6.2) holds then x0 < d from where the result follows by applying the
maximum principle.

REMARK 6.1 The result of Theorem 6.1 may be localized. Assuming that (6.1) holds in an interval
(z0, z1) ⊂ (0, d) then we can define a local subsolution by (6.3) with a given by (6.4) but x0

redefined by x0 := z0 + ( log ũ
a

)(1−p)/2. These conditions imply w � w in (z0, z1) and w(x) = 0 in
(x0, z1). Besides, since w′ � 0 in (0, d), we deduce w = 0 in (x0, d).

6.2 The evolution problem

Since the stationary solutions considered above are the long-term profiles for the time-dependent
problem, the presence of a dead core in the stationary profile suggests that the non-stationary profile
approaches the value 1 in that region. In fact, more is true: in this section we show that the time-
dependent profiles can attain the value 1, i.e. the dead core appears in finite time. Theorem 6.2,
which gives sufficient conditions for the occurrence of dead cores, is proved by using local energy
estimates, following the ideas of [2, 7].

We first introduce some notation. Performing the change of unknown v := 1 − u in Problem P
to remove the singularity from u = 1 to v = 0, we get



vt + (vq)x − vxx + f (x, 1 − v) = 0
qx + f (x, 1 − v) = 0

}
in QT ,

with
v(0, t) = 1 − u D(t)
vx (d, t) = q(d, t) = 0

}
in (0, T ).

(6.5)

For any t ∈ (0, T ) we consider the set

P(t) := {(x, τ ) : |x − x0| < R(τ ; t), τ ∈ (t, T )},
with R(τ ; t) := (τ − t)ν , 0 < ν < 1 to be fixed and α > 0, x0 ∈ (0, d) such that

R(T ; 0) < x0 < d − R(T ; 0),



A DIFFUSION–CONVECTION PROBLEM WITH DRAINAGE 37

FIG. 2. The set P(t).

implying P(t) ⊂ QT for all t ∈ (0, T ) (see Fig. 2). For brevity, we shall write P instead of P(t).
We decompose the boundary of P into final and lateral parts:

∂P(t) := ∂ f P(t) ∪ ∂lP(t),

with ∂ f P(t) := {(x, T ) ∈ ∂P} and ∂lP(t) := {(x, τ ) ∈ ∂P : t < τ < T }. Finally, we define the
local energy functions

E(t) :=
∫
P(t)

|vx |2 dx dτ and C(t) :=
∫
P(t)

v p+1 dx dτ. (6.6)

Concerning function f we assume, in addition to (H), the existence of constants k0 and k1 such that

0 < k0s p+1 � s f (·, 1 − s) � k1s p+1 for s ∈ [0, 1] (6.7)

in P(t) for a.e. t ∈ (0, T ), with p ∈ (0, 1) and k0 > k1/2.

THEOREM 6.2 Assume (6.7). Then there exists a positive constant M such that if E(0)+C(0) � M
then v ≡ 0 in P(t∗), for some t∗ ∈ (0, T ).

REMARK 6.2

(i) If f (x, u) = k(x)(1−u)p, with k given by ( 2.14) then (6.7) is trivially satisfied in the region
where k �= 0.

(ii) Testing the first equation of (6.5) with v and using the second equation of (6.5) leads to the
following estimate:

E(0) + C(0) �
∫
Ω

v2
0(x) dx +

∫ T

0
vD(t)vx (0, t) dt.

In some situations, for instance when vD(t) � v0(x) for t ∈ (0, T ) and x ∈ (0, d), we have
vx (0, t) � 0 for t ∈ (0, T ), allowing us to obtain an estimate of E(0) + C(0) only in terms
of the initial datum. Notice that a typical data is vD = v0 = constant, for which the above
condition is satisfied.
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Proof. The proof consists of three steps.
Step 1. Multiplying the first equation of (6.5) by v and integrating in P gives∫

P

{
1
2 (v2)t + 1

2 ((v2q)x + v2qx ) + (|vx |2 − (vvx )x ) + v f (x, 1 − v)
}

dx dτ = 0.

Using the divergence theorem, the second equation of (6.5) and (6.7) we find∫
P

|vx |2 dx dτ +k0

∫
P

v p+1 dx dτ �
∫

∂lP
vvx nx dx dτ

− 1

2

∫
∂lP

v2(nτ + qnx ) dx dτ + k1

2

∫
P

v p+2 ,

with (nx , nτ ) the unitary outward normal vector to P , given by

(nx , nτ ) :=



(0, 1) in ∂ f P,

((τ − t)1−ν, −ν)

(ν2 + (τ − t)2(1−ν))1/2
in ∂lP.

Using v � 1, q � dk1 in QT and (nx , nτ ) unitary we obtain

E(t) +
(

k0 − k1

2

)
C(t) � 1 + dk1

2

∫ T

t
[v2] dτ +

∫
∂lP

|v||vx | dx dτ, (6.8)

where we introduced the notation [v] := |v(x0 + R(τ ; t), τ )| + |v(x0 − R(τ ; t), τ )|.
Step 2. Our aim is to estimate the right-hand side of (6.8) by means of the functions at the left-hand
side and their derivatives. First notice that

dE

dt
(t) =

∫ T

t
[|vx |2]∂ R

∂t
(τ ; t) dτ,

and therefore we can use Hölder’s inequality to get

∫
∂P

|v||vx | dx dτ �
(∫ T

t
−∂ R

∂t
[|vx |2] dτ

)1/2 (∫ T

t

(
−∂ R

∂t

)−1

[v2] dτ

)1/2

= I1(t)

(
−dE

dt
(t)

)1/2

� I1(t)

(
−d(E + C)

dt
(t)

)1/2

, (6.9)

with

I1(t) :=
(∫ T

t

(
−∂ R

∂t

)−1

[v2] dτ

)1/2

and I2(t) :=
∫ T

t
[v2] dτ.

To handle I1(t) and I2(t) of (6.8) we shall apply a simple version of an interpolation-trace inequality
introduced in a more general setting in [7]. The proof is given in Section 6.2.1.

LEMMA 6.3 Let ϕ ∈ H1(x0 − ρ, x0 + ρ), for x0 ∈ R and a positive constant ρ. Then

|ϕ(x0 − ρ)| + |ϕ(x0 + ρ)| � L0(‖ϕx‖2 + ρ−δ‖ϕ‖p+1)
γ ‖ϕ‖1−γ

r , (6.10)
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with L0 � 16 , r ∈ [1, 2], p � 0,

γ := 2

2 + r
and δ := p + 3

2(p + 1)
. (6.11)

Here we used the notation ‖ · ‖s := ‖ · ‖Ls (x0−ρ,x0+ρ).
We take r < 2 and find, by applying Hölder’s inequality with exponent θ := 1−p

2−r

‖ϕ‖r � ‖ϕ‖
2

rθ ′
2 ‖ϕ‖

p+1
rθ

p+1. (6.12)

Combining (6.10) and (6.12) with ϕ(x) := v(x, τ ) and using v � 1 we get

[v2] � [v]2 � L2
0m(R)(‖vx‖2

2 + ‖v‖p+1
p+1)

γ |QT | 2(1−γ )

rθ ′ ‖v‖
2(1−γ )(p+1)

rθ

p+1 (6.13)

with m(R) := max{1, R−2δγ }. We then deduce from (6.13)

I1 � L0|QT | 1−γ

rθ ′
(∫ T

t
m(R)

(
−∂ R

∂t

)−1

(‖vx‖2
2 + ‖v‖p+1

p+1)
γ+ 2(1−γ )

rθ dτ

)1/2

. (6.14)

Due to the crucial assumption p < 1, it is compatible to choose r < 2 and r � 4
3−p . Then we obtain

that µ given by

µ−1 := γ + 2(1 − γ )

rθ
(6.15)

satisfies µ � 1. Using Hölder’s inequality with exponent µ and substituting the explicit expression
of R we obtain from (6.14)

I1 � Λ(t)(E(t) + C(t))
γ
2 + 1−γ

rθ , (6.16)

with

Λ(t) := L0|QT | 1−γ

rθ ′ ν−1/2
(∫ T

t
(τ − t)µ

′(1−ν−2δνγ ) dτ

)1/2µ′

. (6.17)

Function Λ is finite whenever we choose ν <
µ+1

µ(1+2δ)
which is always possible since the only

restriction assumed on ν is 0 < ν < 1. Gathering (6.9) and (6.16) we get

∫
∂P

|u||ux | dx dτ � Λ(t)

(
−d(E + C)

dt
(t)

)1/2

(E(t) + C(t))
γ
2 + 1−γ

r .

In a similar way, but choosing r = 2 in (6.10), we get the following estimate:

I2 � L0Γ (t)(E(t) + C(t)), (6.18)

with Γ 2(t) := ∫ T
t (τ − t)−δν dτ < ∞ if ν < 1/δ.
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Step 3. From (6.8), (6.14) and (6.18) we deduce

c0(E(t) + C(t)) � Λ(t)

(
−d(E + C)

dt
(t)

)1/2

(E(t) + C(t))
γ
2 + 1−γ

r ,

with c0 � k0 − k1
2 − 1+dk1

2 L0Γ (t). Notice that making T − t small enough, say T − t � ε, we
can ensure c0 > 0. Making the assumption, to force a contradiction, that E(t) + C(t) > 0 for all
t ∈ [0, T ], we arrive at the inequality

c2
0(E(t) + C(t))

2
(

1− γ
2 − 1−γ

r

)
� −Λ(t)2 d(E + C)

dt
(t). (6.19)

Due again to p < 1 we find σ := 2
(

1 − γ
2 − 1−γ

r

)
< 1. We assume T > ε and restrict t to

take values on (T − ε, T ) (so T − t � ε is fulfilled). Integrating ( 6.19) in t ∈ (T − ε, t∗) with
t∗ ∈ (T − ε, T ) we obtain

(E + C)1−σ (t∗) � (E + C)1−σ (T − ε) − (1 − σ)c2
0

∫ t∗

T −ε

Λ(t)−2 dt.

Therefore, since E + C is non-increasing we have that if the initial energy satisfies

(E + C)1−σ (0) � (1 − σ)c2
0

∫ t∗

T −ε

Λ(t)−2 dt =: M1−σ

then E(t∗) + C(t∗) = 0 and therefore v = 0 in P(t∗).

6.2.1 Appendix: an interpolation trace inequality. Lemma 6.3 is a particular case of a more
general result obtained in [7] for any spatial dimension and a wider range of exponents. However,
due to the space dimension, the proof is much simpler in our case, and all the constants appearing
in it can be explicitly computed.

Proof of Lemma 6.3. We proceed in several steps:
Step 1. We first consider ϕ ∈ H1(0, 1). From the identity

ϕ2(x) − ϕ2(0) = 2
∫ x

0
ϕ(x)ϕx (x) dx (6.20)

and

ϕ2(0) =
∫ 1

0
ϕ2(x) dx − 2

∫ 1

0

∫ x

0
ϕ(x)ϕx (x) dx � ‖ϕ‖2

2 + 2‖ϕ‖2‖ϕx‖2,

we obtain

[ϕ2] := ϕ2(1) + ϕ2(0) � 8‖ϕ‖2(‖ϕ‖2 + ‖ϕx‖2) = 8‖ϕ‖2‖ϕ‖H1(0,1). (6.21)

Step 2. If ψ ∈ H1(0, 1) with ψ(0) = 0 then from (6.20) and Hölder’s inequality we get ‖ψ‖2 �√
8‖ψx‖2. Taking ψ(x) := ϕ(x) − ϕ(0) we find

∫ 1

0
ϕ2 + ϕ(0)2 � 8

∫ 1

0
ϕ2

x + 2ϕ(0)

∫ 1

0
ϕ � 8

∫ 1

0
ϕ2

x + ϕ(0)2 + 2

(∫ 1

0
ϕ

)2
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and then ‖ϕ‖2 �
√

8(‖ϕx‖2 + ‖ϕ‖1), from where we deduce

‖ϕ‖H1(0,1) � (
√

8 + 1)(‖ϕx‖2 + ‖ϕ‖1). (6.22)

Step 3. We use Hölder’s interpolation inequality:

‖ϕ‖s � ‖ϕ‖α
l ‖ϕ‖1−α

q with
1

s
= α

l
+ 1 − α

q
and 1 � l � s � 2 � ∞. (6.23)

This inequality is true even if l ∈ (0, 1). Indeed, if we set ϕ := ψm with m < 1
l the above inequality

reads ‖ϕ‖sm � ‖ϕ‖lm‖ϕ‖qm , with 1
s = α

l + 1−α
q and lm < 1. Applying (6.23) to the function ϕ2

with the parameters s := 1, l = α := r/2, q = ∞ we get

‖ϕ‖2
1 � ‖ϕ‖r

r‖ϕ2‖1−r/2∞ .

By Sobolev’s theorem

‖ϕ2‖∞ � 2‖ϕ2‖W 1,1(0,1) = 2(‖ϕ‖2
2 + ‖(ϕ2)x‖1),

but ‖(ϕ2)x‖1 � 2‖ϕ‖2‖ϕx‖2 and therefore

‖ϕ2‖∞ � 4‖ϕ‖2(‖ϕ‖2 + ‖ϕx‖2) = 4‖ϕ‖2‖ϕ‖H1(0,1).

We then obtain

‖ϕ‖2
2 � ‖ϕ‖r

r (4‖ϕ‖2‖ϕ‖H1(0,1))
1−r/2,

implying

‖ϕ‖2 � 4
2−r
2+r ‖ϕ‖

2r
2+r
r ‖ϕ‖

2−r
2+r

H1(0,1)
. (6.24)

Step 4. From (6.21) and (6.24) we get

[ϕ] � [ϕ2]1/2 �
(

42+ 2−r
2+r ‖ϕ‖

2r
2+r
r ‖ϕ‖

2−r
2+r +1

H1(0,1)

)1/2

= 2
6+r
2+r ‖ϕ‖

r
2+r
r ‖ϕ‖

2
2+r

H1(0,1)
,

and using (6.22) we obtain

[ϕ] � 2
10+r
2+r (‖ϕx‖2 + ‖ϕ‖1)

2
2+r ‖ϕ‖

r
2+r
r .

Finally, since ‖ϕ‖1 � ‖ϕ‖p+1 (recall that the measure of the domain is 1) we find

[ϕ] � 2
10+r
2+r (‖ϕx‖2 + ‖ϕ‖p+1)

2
2+r ‖ϕ‖

r
2+r
r . (6.25)

Notice that since r ∈ [1, 2] we have 2
10+r
2+r � 16.

Step 5. Finally, we consider the change of unknown y := x0 − R + 2x R which maps the interval
(0, 1) onto (x0 − R, x0 + R). We obtain for any q � 1

‖ψ‖Lq (0,1) = 1

(2R)q
‖ψ‖Lq (x0−R,x0+R), ‖ψ‖H1(0,1) = √

2R‖ψ‖H1(x0−R,x0+R).

Therefore, from (6.25) we deduce

[ϕ] � 2
10+r
2+r (‖ϕx‖2 + (2R)

− 3+p
2(p+1) ‖ϕ‖p+1)

2
2+r ‖ϕ‖

r
2+r
r

for any ϕ ∈ H1(x0 − R, x0 + R).
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FIG. 3. Evolution of dimensionless salinity u for root distribution k(z) given by (2.14), and for parameter values p = 0.5,
k0 = 15, d = 4, and u0 = 0.7. Numbers in the figure are values of t .

7. Numerical examples

For the numerical solution of Problem P we considered the equivalent non-local formulation




ut + (u
∫ d

x
f (·, u))x − uxx = 0 in QT ,

u(0, t) = u D(t), ux (d, t) = 0 for 0 < t < T,

u(x, 0) = u0(x) for 0 < x < d,

(7.1)

which is obtained after the integration in (x, d) of the second equation of Problem P. To
compute approximate solutions we employed an explicit upwind finite difference scheme with
51 equidistributed spatial nodes in the region 0 � x � d = 4, and with fixed time increment
steps.

We calculated numerical solutions for the evolution of the u(x, t) profile when u D = u0 = 0.7
and f takes the form (2.13), with a non-uniform root distribution, k, given by (2.14) with k0 = 15.

We investigated the effects of linear (p = 1) and strong (0 < p < 1) absorption on the formation
of dead cores. Figs 3 and 4 show several time slices of u for p = 0.5 and p = 1, respectively. It
is clear from the pictures that in the superlinear case a dead core arises in finite time, meanwhile it
never occurs in the linear case. Remark that the region 1 < x < d salinizes slowly by diffusion of
salt down from the root zone.

Note that in the case p < 1 the results of Section 4 do not guarantee uniqueness of the solutions
calculated here. However, as remarked before, we believe that the hypotheses of Theorem 4.2 are
unnecessarily restrictive, and that uniqueness in fact holds in a suitably general sense. This should
also include the cases studied here numerically.
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FIG. 4. As Fig. 3, but for p = 1.

8. Discussion and conclusion

In the preceding sections we have analysed a problem that arises in the study of soil salinization.
The root systems of mangroves extract water from the soil, leaving most of the dissolved salt behind.
Since the sea water that enters the soil to replace the extracted water is saline, the salt concentration
c in the root zone increases. One of the aims of this paper was to investigate the possibility that
this mechanism can (locally) bring the water uptake to a complete standstill. In order to study this
question, a system of equations was formulated that govern the transport of both salt and water in a
general time-dependent setting. We introduced a critical salt concentration cc, above which the root
system is unable to extract water.

The stationary version of this problem is relatively simple in nature, and allows for a detailed
analysis. We used a phase plane approach to investigate solutions of this problem, and discussed
some qualitative properties. We showed that if the water uptake function is proportional (at least
locally, around c = cc) to (1 − c/cc)

p, then the character of the solutions depends critically on p. If
p � 1, then the stationary salt profile shows an increased level of salt, but this level remains below
cc, and therefore water continues to be absorbed. On the other hand, if 0 < p < 1, then under
suitable conditions a ‘dead core’ forms, in which the critical concentration is attained, and therefore
no water is extracted.

The time-dependent problem exhibits a coupling of the mass-balance and the fluid-balance
equations via convective terms. The theory of such systems is relatively underdeveloped, and no
general well-posedness results in the literature are known to us. In this paper we have proved a
general existence theorem, as well as a uniqueness/comparison result. However, the latter requires
an a priori restriction on the solution, and although this restriction appears purely technical, other
problems are known in which similar restrictions appear [6], and the question of the optimal
hypotheses for a uniqueness result remains open. The comparison principle only holds for this
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system of equations when one of the solutions is monotone; this condition can not, in general, be
relaxed.

The stationary solutions are natural candidates for the long-term behaviour of the time-
dependent solutions, and in Section 5 we show that this suggestion is justified. However, the
comparison principle is necessary in the current formulation of the proof of this result, and therefore
the theorem only applies to a certain class of initial data. This restriction again appears to be purely
technical, and this is also borne out by numerical simulations.

The behaviour of the root water uptake function near the critical salt concentration is crucial in
determining the appearance of dead cores, not only for the stationary solutions but also for time-
dependent ones. In Section 6 we employ a method based on local energy estimates to show that if
0 < p < 1, the salt concentration may attain the critical value cc after finite time.
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