
Global Existene Conditions for a Non-loal Problem Arising inStatistial MehanisC. J. van Duijnz; I. A. Guerray; M. A. Peletiery;zyCentrum voor Wiskunde en Informatia,PO Box 94079 1090 GB Amsterdam, The Netherlandsz Department of Mathematis and Computer Siene, TU Eindhoven,PO Box 513 5600 MB Eindhoven, The NetherlandsDeember 11, 2001AbstratWe onsider the evolution of the density and temperature of a three-dimensional loud of self-interatingpartiles. This phenomenon is modelled by a paraboli equation for the density distribution ombiningtemperature-dependent di�usion and onvetion driven by the gradient of the gravitational potential. Thisequation is oupled with Poisson's equation for the potential generated by the density distribution. Thesystem preserves mass by imposing a zero-ux boundary ondition. Finally the temperature is �xed by energyonservation, that is, the sum of kineti energy (temperature) and gravitational energy remains onstant intime. This model is thermodynamially onsistent, obeying the �rst and the seond law of thermodynamis.We prove loal existene and uniqueness of weak solutions for the system, using a Shauder �xed-pointtheorem. In addition, we give suÆient onditions for global in time existene and blow-up for radiallysymmetri solutions. We do this using a omparison priniple for an equation for the aumulated radialmass. 11 IntrodutionLet 
 � R3 be a bounded open set satisfying supx2
 jxj = 1: In 
 we onsider the paraboli -elliptisystem nt = divf�(t)rn + nr�g in 
� R+ ; (1.1)�� = n in 
� R+ ; (1.2)1AMS subjet lassi�ation numbers (2000): 35K60, 35A07, 35B40, 82C21.1



ombined with the energy relationE = ��(t) + Z
 n�dx in R+ ; (1.3)where E 2 R and � > 0 are given parameters. At the boundary �
 2 C1+� (� > 0) we presribe(�(t)rn+ nr�) � ~� = 0 on �
 � R+ ; (1.4)� = 0 in �
 � R+ ; (1.5)where ~� denotes the exterior normal vetor on �
. At t = 0 we have the initial onditionn(x; 0) = n0(x) in 
; (1.6)satisfying Z
 n0 dx = 1; and n0(x) � 0 in 
: (1.7)This set of equations de�nes Problem P for the unknowns n; � and �. The underlying model isdisussed in Setion 2, as well as some known properties of the system.The purpose of the paper is to demonstrate loal existene for Problem P and to givesuÆient onditions on E; �; and n0 for global existene. Loal existene is shown in Setion3. The proof uses a Shauder �xed-point theorem and a areful onstrution of an invariantset to avoid degenerate di�usion in (1.1). It requires n0 2 Lp(
) for p > 32 ; implying thatn 2 L1lo((0; T ℄;L1(
)) for some T 2 (0;1): Hene we an allow for ertain singular initial datawhih result in solutions that are loally bounded in (0; T ℄. LetT � = supf T > 0 j Problem P has a solution in (0; T ℄ g:If T � =1; the solution is de�ned globally and if T � <1 we have at least limt!T � kn(t)kLq(
) =1for eah q > 32 . For Problem P the optimal Lp(
) spae seems to be p = 32 , sine there existsa singular stationary solution in the radial ase belonging to L3=2(
) n Lq(
), with q > 32 . Thissolution is given in Setion 2.3. Uniqueness is proven for n0 2 Lp(
) with p � 2:Problem P with � = 3 was reently studied in [17℄: loal existene and uniqueness wasobtained for p > 3:In Setion 4 we onsider an auxiliary problem in whih we drop the energy relation (1.3)and treat �(t) as a given funtion. This provides insight and bounds whih we need in orderto prove our main result about global existene. In Setion 5, we �rst give the following resultabout blow-up:Theorem 1.1 Let 
 = B1(0) be the unit ball in R3 : If � > 6 and E < 14� , then T � <1.2



In Remark 5.2, we show that this hoie of parameters implies n(x; T �) = Æx=0 and onse-quently limt!T � kn(t)kLp(
) = 1 for all p > 1. When the solution satis�es this last ondition, werefer to this situation as gravitational ollapse.Before stating the global existene result we note from (1.3) at t = 0, that instead of pre-sribing E and n0 one ould equivalently presribe �0 := �(0) and n0. In fat it seems morenatural to onsider �0 and n0 as initial values. In view of the physial interpretation of themodel we onsider �0 > 0. With this in mind we haveTheorem 1.2 Let 
 = B1(0) and assume that solutions of Problem P are radially symmetri.If the pair hn0;�0i satis�es one of the following onditions(i) n0 2 L1(
) and �0 is suÆiently large;(ii) there exists B > 0 and � = �(n0; �) 2 (0; 1℄ suh thatkn0kL1(Br(0)) � (1 +B) r3r2 +B � r for r 2 [0; 1℄; and �0 � 32 (1 +B)� ;(iii) n0 � 34� and �0 > 32 ;then T � =1 (global existene).Remark 1.3 (i) Due to the paraboli regularity, n0 2 L1(
) is not so restritive.(ii) Condition (iii) is an speial ase of (ii).(iii) The ondition on n0 in (ii) implies a bound on the Morrey norm of exponent 3=2, sinekn0kM3=2(
) = supx2R3; 0�r�1 r�1kn0kL1(
\Br(x)). In [4℄, the spae M3=2(
) was suggested as thenatural spae to prove existene.The proof of Theorem 1.2 ontains two essential steps. To extend the loal solution we�rst need a uniform bound from below on �: To ahieve this we use a Lyapunov funtionalassoiated with Problem P, the so-alled Boltzmann entropy (2.7). This funtional provides auniform lower bound on �, whih only depends on the initial data and �. If �0 is positive, then� remains positive in the whole existene interval, inluding the blow-up time.In the seond step we onstrut a ontrol on n. Here we use the radial symmetry whihallows us to transform equations (1.1) and (1.2) into a single equation, still ontaining � asunknown. It has the ruial property that an ordered pair of given �0s results in an ordered pairof solutions. As a omparison funtion we now use the solution of (1.1)-(1.2) with a suitably3



hosen �xed �: Under ertain hypotheses this auxiliary problem has a global solution whihprovides the ontrol on n. The di�erent onditions in Theorem 1.2 are losely related to globalexistene onditions for the auxiliary problem.2 Preliminaries2.1 Model issuesProblem P desribes the evolution of density and temperature of a self-attrating luster ofBrownian partiles in a bounded three-dimensional region. During the evolution mass andenergy are onserved. A detailed derivation and disussion on the physial assumptions an befound in [5, 8, 19℄ and the referenes therein. Below we present a brief summary.Suppose a luster of partiles is ontained in a bounded region 
 � R3 . The spatial partiledensity n satis�es the mass balane equationnt = divn 1� (k�rn + nr�)o in 
� R+ ; (2.1)where � > 0 is the frition oeÆient, k the Boltzmann onstant and � the temperature of thesystem. To ensure that the luster of partiles preserves mass we impose zero mass ux alongthe boundary: i.e. (k�rn + nr�) � ~� = 0 on �
: (2.2)This implies Z
 n(x; t) dx = onstant =M for all t > 0;where M is the total partile mass of the system, spei�ed by the initial ondition.The funtion � in (2.1) is the gravitational potential. It satis�es�� = 4�Gn in 
� R+ ; (2.3)with � = �GMR on �
� R+ : (2.4)Here G is the gravitational onstant and R := maxx2
 jxj. Note that we have hosen as boundaryondition the gravitational potential of a mass M entered at the origin of a ball of radius R.In general the temperature varies in spae and time. It satis�es an energy balane equationontaining thermal di�usion, heat onvetion and a term due to gravitational e�ets [8, Eq.4



(1.4)℄. This results in the so-alled Streater model. However, the integrated energy balanedoes not ontain the thermal di�usivity [8, Eq. (2.1)℄. Furthermore we expet that a largethermal di�usivity will result in a temperature whih is nearly onstant in spae. Taking thislimit in the integrated energy balane, one �ndsE = �M2 �(t) + 12 Z
 n�dx in R+ ; (2.5)where E denotes the total energy of the system and � the spei� heat of the partiles. If theluster resembles an ideal gas we have � = 3k.Regarding the initial data for the system (2.1)-(2.5) there are two ways to proeed. If theenergy E is given, it suÆes to speify only the initial densityn(x; 0) = n0(x) � 0 for x 2 
: (2.6)Equivalently we an speify both initial density and temperature�(0) = �0 > 0:Now E is �xed by (2.5) at t = 0.If the temperature is onstant in time as well we drop the energy balane (2.5) and obtainthe isothermal model. This model also arises in the ontext of polytropi stars and the biologialphenomena of hemotaxis. The orresponding mathematial problem has reeived onsiderableattention in the past years beause of its rih struture. Blow-up in the form of singular solutionsand gravitational ollapse an our, as well as global existene. To our knowledge there is nofull desription of these phenomena in R3 : The reason is that in ontrast to the two dimensionalase, global existene in R3 not only depends on the parameters of the problem, but also on theshape of the initial density pro�le. A detailed disussion and referenes are given in [13℄. Theisothermal model, however, plays a ruial role in the analysis presented in this paper.Sine Problem P has an additional equation, one expets that onservation of energy willat as a seletion priniple to favor global existene. This has been demonstrated in [18℄ for thetwo-dimensional ase: the energy balane implies that temperature inreases whenever densityonentrates near a point. This in turn has a smoothing e�et (through (2.1)) on the densitypro�le, preventing blow-up from happening. Theorem 1.1 tells us that this general observationis not true in R3 .Problem P an also be derived for ollisionless systems suh as galaxies. The underlyingargument is that rapid utuations of the gravitational �eld during the early stage of violentrelaxation plays the same role as ollisions, although the time sales involved for ollisionlesssystems are smaller than for ollisional systems (Brownian motion). The proess of violentrelaxation is onsidered in [14℄. 5



2.2 Non-dimensionalizationWe put equations (2.1)-(2.5) in dimensionless form by setting~x = 1Rx; ~n = R3M n; ~� = R4�GM (�+ GMR )and ~� = kR4�GM�; ~t = 4�GM�R3 t:Introduing ~E = R2�GM2 �E + 12 GM2R � and ~� = 1k�, and dropping the tildes, results in ProblemP.2.3 Lyapunov funtional and stationary solutionsIf a triple hn; �;�i solves Problem P, then it is easy to hek thatW (t) = Z
 n logn dx� �2 log�E � Z
 n� dx� on R+ (2.7)satis�es ddtW (t) = � Z
 j�(t)rn+ nr�j2�(t)n dx; for all t > 0: (2.8)Hene W is a Lyapunov funtional for Problem P, sometimes alled the Boltzmann entropy[17℄.One onsequene of (2.8) is the following. Let hns; �s;�si denote a stationary solution ofProblem P. Then (2.8) implies �srns + nsr�s � 0 in 
:Introduing the saled potential  := �s�s we observe that ns � e� R
 e� dx; where  satis�es(S) 8<: � = 1�s e� R
 e� dx in 
; = 0 on �
:6



The orresponding energy relation takes the formE 1(�s)2 = � 1�s � Z
 jr j2dx: (2.9)Problem S has only one singular radially symmetri solution [12℄, the Chandrasekhar solutionns = U := 14� 1jxj2 ; (2.10)provided �s = 18� . It is satis�es (2.9) for E = (��2)8� : Observe that U 2 L3=2(
) n Lq(
), withq > 32 : If this solution is attained by Problem P for t " T � < 1; we have a blow-up withoutonentration of mass at the origin.For ompleteness we reall a result [5, Proposition 5.6.℄ for bounded radially symmetrisolutions of Problem S and (2.9).Theorem 2.1 Let 
 = B1(0). For any � > 0; there exists E� 2 R suh that:(i) If E > E� there exist bounded negative solutions;(ii) If E < E� there are no nontrivial bounded negative solutions.This observation is originally due to Antonov [1℄ as a result of a omputational approah.He also showed that stationary solutions are loal maxima or saddle points of an entropy andthere is no global entropy maximum.Theorem 2.1 is still open for general domains [5℄. This is related to the non-trivial nature ofthe set of singular solutions [12℄.2.4 Radially symmetri solutionsOur main theorem about global existene is stated in terms of radially symmetri solutions.Radial symmetry in Problem P not only redues the spatial dimension, it also allows us toombine equations (1.1) and (1.2) into a single equation for the aumulated massQ(r; t) := ZBr(0) n(x; t)dx for r 2 (0; 1℄ and t 2 R+ :This is shown in [7℄. Rede�ning t := 34� t and � := 12��; we obtain in terms of Q(y; t) := Q(r; t);with y = r3; the equationQt = y4=3�(t)Qyy +QQy for y 2 (0; 1) and t 2 R+ : (2.11)7



To transform the energy relation (1.3), we �rst note that (1.2) and (1.5) give R n�dx =� R jr�j2dx: Further, radial symmetry and (1.2) imply 4�r2�r� = Q(r; t). Finally we introdueE := 12�E; to get in terms of Q(y; t)E = ��(t)� Z 10 Q2y4=3dy for t 2 R+ : (2.12)The boundary onditions for Q areQ(0; t) = 0; Q(1; t) = 1; for t 2 R+ ; (2.13)and the initial ondition beomesQ(y; 0) = Q0(y) := 4�3 Z y0 n0(y1=3)dy for 0 � y � 1: (2.14)Equations (2.11)-(2.14) de�ne Problem Q.Note that �(t) = onstant = 32 and Q(y; t) = y1=3satisfy equation (2.11) and boundary onditions (2.13). The energy relation (2.12) is satis�edfor E = 32(�� 2): This is the transformed Chandrasekhar solution (2.10).3 Well-posedness for Problem PBefore we give a formal solution de�nition for Problem P we observe that � is known in termsof n by the boundary value problem (1.2) and (1.5). Therefore we denote a solution by hn;�iinstead of the triple hn; �;�i.We all hn;�i a weak solution of Problem P if for some T > 0:(i) n 2 L2�0; T ;H1(
)� and nt 2 L2�0; T ; (H1(
))0�;(ii) � 2 C([0; T ℄) and �(t) > 0 for t 2 [0; T ℄;(iii) the triple hn; �;�i; where � 2 C�[0; T ℄;H10(
)� solves the boundary value problem (1.2)and (1.5), satis�es (1.1) in the weak sense and (1.3) for all t 2 [0; T ℄;(iv) n(�; 0) = n0 � 0 a.e in 
.Remark 3.1 The regularity in (i) implies n 2 C�[0; T ℄;L2(
)� [20, p. 260℄. Therefore � and� are ontinuous in time in the sense of (ii) and (iii) respetively and the initial value of n anbe presribed. 8



3.1 Loal existeneLet RT := 
� (0; T ℄ for arbitrarily hosen T > 0.The �rst result asserts loal existene for Problem P.Theorem 3.2 Let E 2 R, � > 0; and let n0 2 L2(
) be suh that �(0) = �0 > 0. Then thereexists a weak solution hn;�i of Problem P with T = T (kn0kL2(
);
;�0) > 0. It satis�es n � 0in RT and n 2 L1lo�(0; T ℄;L1(
)�.Proof: The proof uses a Shauder �xed-point theorem [21, Corollary 9.7℄. For any �xed T > 0,let X = �v 2 L2�0; T ;H1(
)� with vt 2 L2�0; T ; (H1(
))0�	and let F : X ! C([0; T ℄) be de�ned byF (v)(t) = 1��kv(t)k2H�1(
) + E� for any t 2 [0; T ℄; (3.1)and for all v 2 X. This map is learly well-de�ned: observe that v and vt belong to L2�0; T ;H�1(
)�:Note that F (n)(t) is the temperature �(t) whenever n is the solution of Problem P.Next de�ne N : X ! X, with u = N(v) satisfyingut = div(F (v)(t)ru+ ur�)�� = u � in RT (3.2)� = 0(F (v)(t)ru+ u) � ~� = 0 � on �
 � [0; T ℄; (3.3)u(x; 0) = n0(x) for x 2 
: (3.4)For given v 2 X, this problem is essentially Problem P with presribed temperature. As wepoint out in Remark 4.1, we have loal existene and uniqueness provided F remains positivelybounded from below. Under this ondition the operator N is well-de�ned.To apply the �xed point theorem, we need to prove that there exists C � X, with C onvex,bounded and losed in (X; k � k), suh that:(i) N(C) � C;(ii) N is weakly-weakly sequentially ontinuous in X.For any v 2 C, the operator N has to be well de�ned. Thus in addition to (i) and (ii) we need9



(iii) there exists F0 = F0(C) suh that F (v)(t) � F0 > 0 for all t 2 [0; T ℄ and for all v 2 C:We show below thatC = �v 2 X j v(0) = n0; kvkL2(0;T ;L2(
)) � RT 1=2; krvkL2(0;T ;L2(
)) � R0;and kvtkL2(0;T ;(H1(
))0) � R00 	;for suitably hosen onstants R;R0; R00 and for T suÆiently small. In fat R = 2kn0kL2(
);R0 = 2kn0kL2(
)=�1=20 and R00 = 2kn0kL2(
)�1=20 + 4Ckn0k2L2(
)=�1=20 ; where C = C(
) is apositive onstant. Clearly C is onvex, bounded, and losed in X. Note that C is not empty:the solution of the heat equation with initial value n0 and di�usion oeÆient �0=4 satis�eskrnkL2(0;T ;L2(
)) � p2kn0kL2(
)=�1=20 and kntkL2(0;T ;(H1(
))0) � 12p2kn0kL2(
)�1=20 . Hene n 2 Cfor T > 0.We �rst show (iii). Di�erentiating expression (3.1), applying Cauhy-Shwartz and the on-tinuous injetions (H1(
))0 ,! H�1(
) and L2(
) ,! H�1(
); yields the estimate�jF (v)t(t)j � 2kv(t)kH�1(
)kvt(t)kH�1(
) � Ckv(t)kL2(
)kvt(t)k(H1(
))0 a.e. in [0; T ℄; (3.5)where C = C(
) > 0. Integration now givesjF (v)(t)� F (n0)j � C� R0RT 1=2 for all t 2 [0; T ℄: (3.6)Hene F (v)(t) � F (n0)�C�R0RT 1=2 = �0�C�R0RT 1=2 for 0 < t � T . If we now hoose F0 = �0=2and T � suh that C�R0R(T �)1=2 = �0=2, we have established (iii) for all 0 < t � T � T �.Next we verify (i) for a suitable T � T �: Starting point is inequality (4.3) with � = F (v)(t)and v 2 C. It follows that the solution of (3.2)-(3.4) satis�es12 ddtkuk2L2(
) + F (v)(t)kruk2L2(
) � kukL3(
)kr�kL6(
)krnkL2(
):Sine (4.4) holds for any � > 0; we use it with � = F0 to �nd12 ddt(ku(t)k2L2(
)) + (F (v)(t)� F02 )kruk2L2(
) � CF 30 (ku(t)k2L2(
))3 + F02 ku(t)k2L2(
) (3.7)for 0 � t � T and for some C = C(
) > 0:Sine v 2 C and onsequently F (v)(t) � F0, we obtain12 ddt(kuk2L2(
)) + F02 kruk2L2(
) � CF 30 (ku(t)k2L2(
))3 + F02 ku(t)k2L2(
) in [0; T ℄: (3.8)10



This inequality implies some useful bounds. Disregarding the gradient in the left-hand side of(3.8) gives a di�erential inequality in terms of ku(t)k2L2(
). It follows that there exists T0 =T0(�0;
; kn0kL2(
)) suh that u is well de�ned in RT0 and satis�essupt2[0;T0℄ ku(t)k2L2(
) � (2kn0kL2(
))2; and thus kukL2(0;T0;L2(
)) � 2kn0kL2(
)T 1=20 : (3.9)Integrating (3.8) and using (3.9) giveskrukL2(0;T0;L2(
)) � CT 1=20 + kn0kL2(
)=(F0)1=2 = CT 1=20 +p2kn0kL2(
)=�1=20 : (3.10)for a positive onstant C = C(�0;
; kn0kL2(
)): Note that (3.9) and (3.10) implyu 2 L1�0; T0;L2(
)� and u 2 L2�0; T0;H1(
)�:To show that u 2 C; for suÆiently small T , it remains to prove the bound on ut. With� 2 L2�0; T ;H1(
)�, we have from (3.2)Z T0 hut; �i dt = � TZ0 F (v)(t) Z
 rur� dxdt+ TZ0 Z
 ur�r� dxdt; (3.11)where h�; �i denotes the pairing between (H1(
))0; and H1(
). To estimate the right hand sidewe �rst note that F (v) 2 L1(0; T �). Indeed, from (3.6) we dedueF0 < F (v)(t) � C� RR0T 1=2 +�0; for 0 � t � T � T �: (3.12)Next we use (6.3) and interpolation inequality (6.2) from the appendix. This gives���� Z
 ur�r� dx���� � kukL3(
)kr�kL6(
)kr�kL2(
) � C1=2s CIkukH1(
)kukL2(
)kr�kL2(
):Finally we ombine this expression with (3.9), (3.10), and (3.12), and obtain after some ma-nip ulationZ T0 jhut; �ij dt � �C(T 1=2 + T ) +p2kn0kL2(
)�1=20 + 2p2C1=2s CIkn0k2L2=�1=20 	k�kL2(0;T;H1(
)):for some C = C(
; kn0kL2(
);�0): Taking now T1 < T0 < T � suÆiently small we obtain thatu 2 C for 0 � T � T1 and onsequently N(C) � C.Next we show (ii): i.e. we laim that vk 2 C, vk * v in X implies N(vk)* N(v) in X. Forany suh sequene vk, de�ne uk := N(vk) 2 C. Using the weak ompatness of C we extrat a11



subsequene uk0 2 C suh that uk0 * u� in X. We show below that u� = N(v), whih provesthe assertion. Sine vk0 * v and uk0 * u� in C;we obtain by Aubin's Lemma [16, pag. 58℄ for a subsequene, denoted again by k0,vk0 ! v and uk0 ! u� in L2�0; T ;L2(
)�:We use this in (3.11) for uk0; vk0; and �k0: Sine ��k0 = uk0; we have �k0 ! �� in L2�0; T ;H2(
)�satisfying ��� = u�. Moreover, as k0 !1;uk0t * u�t in L2�0; T; (H1(
))0�;r�k0 ! r�� in L2�0; T;H1(
)�;ruk0 * ru� in L2�0; T ;L2(
)�:Now suppose F (vk0) ! F (v) in C([0; T ℄). Then letting k0 ! 1 in (3.11) we obtain a solutionu� of problem (3.2)-(3.4) for the temperature F (v)(t): By uniqueness we have u� = N(v):It remains to show that F (vk0) ! F (v) in C([0; T ℄). In view of the ontinuous injetionL2(
) ,! H�1(
); we �nd from (3.1)�jF (vk0)(t)� F (v)(t)j � C(
) �kvk0(t)kL2(
) + kv(t)kL2(
)� kvk0(t)� v(t)kL2(
):This implies diretly F (vk0)! F (v) in L1([0; T ℄). Writing (3.5) for the di�erene F (vk0)�F (v),using the ontinuous injetion (H1(
))0 ,! H�1(
); and integrating the result gives� Z T0 jF (vk0)t(t)� F (v)t(t)jdt � TZ0 j(v(t); vk0t(t)� vt(t))H�1 j dt+ kv � vk0kL2(0;T ;L2(
))k(vk0)tkL2(0;T ;(H1(
))0):Sine vk0t * vt, in L2�0; T;H�1(
)�, we obtain F (vk0) ! F (v) in W 1;1([0; T ℄). This onludesthe proof of (ii) and establishes loal existene for Problem P.The boundedness of n follows from [6, Theorem 2℄ and n � 0 a.e. in RT is essentiallydemonstrated in [11℄.Remark 3.3 Let n0 2 Lp(
) with p > 3 and let �(0) = �0 > 0. Then Problem P has aloal solution satisfying n 2 L1�0; T ;Lp(
)� and np=2 2 L2�0; T ;H1(
)�. The proof is almostidential to the proof of Theorem 3.2. 12



3.2 UniquenessUniqueness is stated for an equivalent formulation of Problem P in whih we replae t by� = R t0 �(t)dt: This transformation only a�ets equation (1.1), whih now beomesn� = div�rn+ n�(�)r�� in RT̂ : (3.13)for T̂ = R T0 �(t)dt: The problem stated in terms of x and � is denoted by Problem Pe. Withoutproof we remark that hn = n(x; t);� = �(t)i solves Problem P if and only if hn = n(x; �);� =�(�)i solves problem Problem Pe. This is due to the strit positivity of � in the existeneinterval.Theorem 3.4 If n0 2 L2(
) and �0 > 0, then Problem Pe has at most one solution hn;�i.Proof: We use a uniqueness result of Biler & Nadzieja [11℄, who onsidered the problemn� = div�rn+ nX(n)� in RT ; (3.14)�rn + nX(n)� � ~� = 0 on �
 � [0; T ℄; (3.15)n(�; 0) = n0 in 
; (3.16)where X is a general non-loal vetor �eld operator in R3 . For this problem uniqueness in L2(
)was proved in [11, Theorem 1 (i)℄ under the following ondition: there exists C > 0 suh that(U) kX(u)�X(v)kL6(
) � Cku� vkL2(
)for all u; v 2 L2(
).Note that the onstant C in (U) does not depend on the hoie of u; v 2 L2(
): In our aseX(n) = r��(�) : Below, in Lemma 3.5, we show that again (U) holds but with C depending onboth norms kukL2(
) and kvkL2(
): Now suppose that Problem Pe admits two solutions hn1;�1iand hn2;�2i in some interval [0; T ℄: From the solution de�nition we know that both kn1(t)kL2(
)and kn2(t)kL2(
) are uniformly bounded in [0; T ℄: Therefore (U) is satis�ed for the two solutionsn1(t) and n2(t), with 0 � t � T; for an appropriately hosen onstant C: As a onsequene wean apply the result of [11℄. This proves the theorem.Lemma 3.5 Suppose there exist Æ > 0 and u; v 2 L2(
) suh thatmin��u := E + Z
 jr�uj2 dx; �v := E + Z
 jr�vj2 dx� � Æ > 0;13



where ��u = u; ��v = v in 
; (3.17)�u = �v = 0 on �
: (3.18)Then r� �u�u � �v�v�L6(
) � Cku� vkL2(
)where C = C(Æ; kukL2(
); kvkL2(
)):Proof: Using kr(�u � �v)kL6(
) � CIku� vkL2(
)we estimater� �u�u � �v�v�L6(
) = r� �u�u � �u�v + �u�v � �v�v�L6(
)� 1�u�v kr�ukL6(
)j�u � �vj+ CI�v ku� vkL2(
)� CI�v�kukL2(
)�u ���� Z
 �jr�uj2 � jr�vj2� dx����+ ku� vkL2(
)�:Sine ���� Z
 �jr�uj2 � jr�vj2� dx���� � kr(�u + �v)kL2(
)kr(�u � �v)kL2(
);� C�kukL2(
) + kvkL2(
)�ku� vkL2(
)for some C > 0, we obtain the assertion.Remark 3.6 Note that for n0 2 Lp(
) with p > 2; we an apply the above theorem and obtainuniqueness of solutions for suh initial data. Thus the loal solution given in Remark 3.3 ofTheorem 3.2 for n0 2 Lp(
) with p > 3 is unique.Remark 3.7 A slight modi�ation of the above argument diretly gives uniqueness for n0 2Lp(
) with p > 3 and �0 > 0. Again following [11, Theorem 1 (ii)℄, we need to show(U 0) kX(u)�X(v)kL1(
) � Cku� vkLp(
) (p > 3):With X(n) = r��(�) ; inequality (U 0) results from inequality (6.3).14



The next theorem extends the loal existene result for n0 2 Lp(
) with p > 32 . To do thiswe modify our de�nition of weak solution for 1 < p < 2. We replae (i) by n 2 L1(0; T ;Lp(
))and nt 2 Lp�0; T ; (W 1;p0)0� with 1p + 1p0 = 1: We show that n 2 C�[0; T ℄;Lp(
)�, implying thatn0 an be presribed. In fat as n 2 L1�0; T ;Lp(
)� and n 2 C�[0; T ℄; (W 1;p0(
))0�, (sine n 2Lp�0; T ; (W 1;p0(
))0� and nt 2 Lp�0; T ; (W 1;p0(
))0� ), we use the injetion Lp(
) ,! (W 1;p0(
))0;and follow the argument in [16, p. 23℄ to onlude.Theorem 3.8 Let n0 2 Lp(
) with p > 3=2; and �(0) = �0 > 0. Then there exists T =T (
; kn0kLp(
);�0) > 0, and a weak solution hn;�i of Problem P. It satis�es np=2 2 L2�0; T ;H1(
)�and furthermore n 2 L1lo�0; T ℄;L1(
)�. This solution is unique.Proof: Due to Remarks 3.3 and 3.6, we only need to demonstrate loal existene for n0 2 Lp(
)with p 2 (3=2; 3): We follow the proof of [11, Theorem 1 (iii)℄ and approximate n0 2 Lp(
) byfuntions in Lp�(
) with p� > 3. Thus let fn0�g � Lp�(
) satisfy kn0� � n0kLp(
) ! 0 as �! 0.For eah � > 0 we onsider Problem P with initial data hn0�;�0i. By Remark 3.6 there existsa solution hn�;��i, with �� � �0=2, in some interval [0; T�℄. Next we use the estimate [11, Eq.(10)℄ kn�(t)kpLp(
) + tZ0 ��rjn�jp=2��2 d� � exp C tZ0 r����  2qq�3Lq(
) d�!kn0�kpLp(
) (3.19)for almost every t 2 [0; T�℄. Here p 2 (3=2; 3); 1=q = 1=p � 1=3 and C = C(
; p). Note thatq > 3. Further, using kr��kLq(
) � Ckn�kLp(
) and the uniform lower bound on ��; we obtainkn�(t)kpLp(
) � C exp 2�0 tZ0 n�(�) 2qq�3Lp(
) d�! for almost every t 2 [0; T�℄;where C = C(��) > 0 and 0 < � � ��. Sine C does not depends on � we have that T� = T andkn�(t)kLp(
) � C and ��(t) � �0=2 for almost every t 2 [0; T ℄ (3.20)and for all 0 < � � ��: Using this and (3.19), we deduekn�(t)p=2kH1(
) � C and ��(t) � �0=2 for almost every t 2 [0; T ℄: (3.21)and for all 0 < � � ��:Next we separate the demonstration into two ases: p < 2 and p > 2.15



We begin with p < 2. Under this ondition, we havekrnkLp(
) � C(
; p)krnp=2kL2(
)knk(2�p)=2Lp(
) for np=2 2 H1(
):Combining this with (3.20) and (3.21), sine p < 2, we obtainkrn�kLp(0;T ;Lp(
)) � C for all 0 < � � ��: (3.22)Consequently, we an hek that kn�tkLp�0;T;(W 1;p0(
))0� � C for all 0 < � � ��: Now using aompatness theorem [16, p. 141℄, with Lp(
) ,! (W 1;p0(
))0; we �nd for a subsequene �! 0;n� ! n in Lp�0; T ;Lp(
)�: (3.23)Now using standard arguments and above estimates, we get as �! 0n�t * nt in Lp�0; T; (W 1;p0(
))0�; (3.24)r�� !r� in Lp�0; T;W 1;p(
)�; (3.25)rn� * rn in Lp�0; T ;Lp(
)�: (3.26)To onlude, it suÆes to prove �� ! � in C([0; T ℄). This follows from showing that� TZ0 j��t ��tj dt � 2 TZ0 ���� Z
 n���t � n�t dx���� dt! 0 as �! 0: (3.27)We obtain this using [21, Proposition 23.9 (d)℄, ombining (i) strong onvergene of n� !n in Lp0�0; T ;Lp(
)� with (ii) weak onvergene of ��t * �t in Lp�0; T ;Lp0(
)�: In fat (i)is onsequene of (3.20) and (3.23); and (ii) yields using (3.24) and the estimate k��tkp0 �Ck��tkW 1;p(
) � Ckn�tk(W 1;p0 (
))0 ; where we have used p > 32 .Now we take the limit �! 0 to onlude that n satis�es Problem P.For p > 2; we use that n0� 2 L2(
) and in partiular (3.20) implieskn�(t)kL2(
) � C and ��(t) � �0=2 for all t 2 [0; T ℄:We follow the proof of Theorem 3.2, to �nd kn�tkL2(0;T;(H1(
))0) � C. With this we may applyagain the ompatness theorem [16, p. 141℄, now with Lp(
) ,! (H1(
))0, sine p > 2; andobtain n� ! n in Lp�0; T; Lp(
)�: Finally, we show (3.27) using p = p0 = 2 and obtain �� ! �in C([0; T ℄); whih onludes the proof of the theorem.16



3.3 Radially symmetri solutionsIn Setion 2.4 we introdued Problem Q desribing radially symmetri solutions of Problem Pin the unit ball. In this paper we do not prove existene for Problem Q. Instead we shall assumethat if 
 = B1(0) and if n0 is radially symmetri, then the orresponding weak solution is radiallysymmetri. By standard regularity theory weak solutions of Problem P satisfy equations (1.1)-(1.3) and boundary onditions (1.4)-(1.5) in a lassial sense. With this in mind we introduefor Problem Q the following solution de�nition.Let DT = (0; 1)� (0; T ℄. A pair hQ;�i solves Problem Q, if for some T > 0:(i) Q 2 C2;1(DT ) \ C(DT ); and � 2 C([0; T ℄);(ii) (Q;�) satis�es equations (2.11)-(2.14);(iii) Qy � 0 in DT and � > 0 in [0; T ℄:Clearly radial solutions of Problem P with n0 2 Lp(B1(0)); p > 32 , satisfy this de�nition. Thisfollows diretly from the identityQy(y; t) = 4�3 n(y1=3; t) for (y; t) 2 DT : (3.28)4 Presribed temperature problemIn this setion we study Problem P with presribed temperature �(t) satisfying�: [0; T ℄! R suh that � 2 C([0; T ℄) and �(t) > Æ > 0 for t 2 [0; T ℄: (4.1)Thus we drop the energy relation (1.3) and assume that � in (1.1) and (1.4) is given and satis�es(4.1). We denote this modi�ed problem by P�. Clearly, if Problem P� has a radially symmetrisolution, then the orresponding formulation in terms of the mass Q, whih we denote by Q�;has a lassial solution aording to the de�nition given in Setion 3.3.We �rst reall some reent results of Biler & Nadzieja [3, 11℄, related to loal existene forProblem P� and global existene for Problem Q�:Remark 4.1(i) Let n0 2 L2(
) and let � satisfy (4.1). Then there exists T = T (
; kn0kL2(
); Æ) > 0 sothat Problem P� has a unique weak solution in [0; T ℄ whih satis�es n 2 L1lo�(0; T ℄; L1(
)�:Proof: see [11, Theorem 1 (i)℄. 17



(ii) Let n0 2 Lp(
) with p > 32 and let � satisfy (4.1). Then there exist T = T (
; kn0kLp(
); Æ) >0 so that Problem P� has a weak solution in [0; T ℄ satisfying n 2 L1�0; T; Lp(
)� andnp=2 2 L2�0; T;H1(
)�: For p > 3 the solution is unique. Proof: see [11, Theorem 1 (ii)and (iii)℄.(iii) If for some B > 0, Q0(y) � y 1+By2=3+B for 0 � y � 1 and �(t) = onstant � 32(1 + B) thenProblem Q� has a global lassial solution satisfying Q(y; �) � y 1+By2=3+B for (y; �) 2 D1:Proof: see [3, Theorem 1 (iii)℄.In the remainder of this setion we present some new results related to ProblemP� with onstanttemperature � > 0. We �rst extend a global existene result of [9℄.Theorem 4.2 For a given domain 
; there exist positive onstants, �1; �2; A; B; and C with�2 � �1 so that if the onstant temperature � and the initial ondition n0 satisfy� � �1 and kn0k2L2(
) � A+ B�4or � � �2 and kn0k2L2(
) � C(�2 � �);then Problem P� has a global (weak) solution for whih the L2(
) norm is uniformly boundedin time.Proof: Integrating (1.1) we obtain the expression12 ddtknk2L2(
) +�krnk2L2(
) = � Z
 nrnr� dx: (4.2)As in the proof of [9, Theorem 2 (iii)℄ we estimate12 ddtknk2L2(
) +�krnk2L2(
) � knkL3(
)kr�kL6(
)krnkL2(
): (4.3)The aim is to obtain a di�erential inequality for kn(t)k2L2(
). From the appendix we �rst use(6.2) and then (6.3) with r = 6 and p = 2. This givesknkL3(
)kr�kL6(
)krnkL2(
) � �2 knk2H1(
) + C1�3 (knk2L2(
))3: (4.4)Further, we use (6.1) with q = 2 and p = 1 to obtain2�knk2L2(
) � �2 knk2H1(
) + C2�knk2L1(
): (4.5)18



The ombination (4.3)-(4.5) eliminates the gradient term. Sine knkL1(
) = 1, we are left withan inequality of the formddtw � p�(w) := C1�3w3 � �w + C2� for t > 0 (4.6)with w(t) := kn(t)k2L2(
): Here C1 and C2 are positive onstants only depending on 
: Theassertions of the theorem now follow from partiular properties of (4.6).First observe that if � > �1 := 33=421=2 (C2C1=21 )1=2, then p�(w) = 0 has two positive real rootsw� < w� and p�(w) < 0 for w� < w < w�: If � = �1; these roots oinide. A simple alulationshows that w0 = C2 + C32C1�4satis�es 0 < w0 < w� for all � � �1: Sine p�(w) > 0 for 0 � w < w�; we dedue that w(t);with w(0) � w0; satis�es w(t) � w� for all t � 0: This proves the �rst assertion.Next onsider w0 := C�1=21 (�2 � �):Then p�(w0) � 0 provided� � �2 =  �3 + C2C1=214 �2 � 12!1=2 + 3 + C2C1=214 :Clearly �2 � �1; sine p�(w) > 0 for � < �1 and for all w > 0. As before we have that w(t);with w(0) � w0; satis�es w(t) � w0 � w� for all t � 0: This proves the seond assertion.In a similar fashion global existene results are obtained in Lp(
) for p > 3=2. Instead of(4.6) one now �nds ddtw � C1��w� ��w + C2� for t > 0 (4.7)with w(t) := kn(t)kpLp(
): Here� = 8<: 2p�12p�3 for 3=2 < p < 3p+2p for p > 3:Inequality (4.7) implies the following result.19



Theorem 4.3 For a given domain 
; there exist positive onstants, �1; �2; �A; �B; and �C with�2 � �1 so that if the onstant temperature � and the initial ondition n0 satisfy� � �1 and kn0kpLp(
) � �A + �B��+1or � � �2 and kn0kpLp(
) � �C(� � �); with  = � + 1� � 1 ;then Problem P� has a global (weak) solution for whih the Lp(
) norm is uniformly boundedin time.5 Global existene for Problem QIn this setion we study radially symmetri solutions of Problem P. We will use the lassi-al formulation in terms of Problem Q. Before we prove the global existene results, we �rstdemonstrate the blow-up result Theorem 1.1.Theorem 5.1 Let � > 6 and E < 3. Then T � <1:Proof: Suppose Problem Q has a global solution Q = Q(y; t) and � = �(t) 2 (0;1) for allt > 0: Setting w�(t) := 1Z� Q(y; t)y�1=3 dy for all t > 0;we �nd, after di�erentiating and using equation (2.11),dw�(t)dt = �(t)Qy(1; t)� ��(t)Qy(�; t)� �(t) + �(t)Q(�; t)� 12Q(�; t)2�1=3 + 12 + �6�(t)� E6 + 16 �Z0 Q2(y; t)y�4=3 dy for all t > 0: (5.1)Sine �(t) <1; we obtain from (2.12)Q(y; t)2=y4=3 2 L1(0; 1) for all t > 0;whih implies that we an hoose a sequene �n # 0 along whih lim�n#0 Q(�n;t)�1=6n = 0 for all t > 0:Using this and Qy(1; t) � 0 in (5.1), we �nd in the limitdw0(t)dt � 12 ��(t) + �6�(t)� E6 for all t > 0:20



The parameter hoie implies that dw0(t)dt � Æ > 0 for all t > 0: This ontradits w0 � 32 (impliedby Q � 1 in D1).Remark 5.2 Using (3.28) we an express w0(t) in terms of the seond moment of the orre-sponding radially symmetri solution:ZB1(0) n(x; t)jxj2 dx = 1� 23w0(t):Sine dw0(t)=dt is bounded away from zero, there exists a T � 2 (0;1) (blow-up time) suh thatlimt"T � w0(t) = 32 and limt!T � ZB1(0) n(x; t)jxj2 dx = 0:This implies the gravitational ollapse n(x; T �) = Æx=0:Next we turn to global existene. The proof uses a omparison priniple for the Q-equation(2.11) with respet to given ordered temperatures, and the fat that temperature is positivelybounded from below. The results are stated in terms of an equivalent formulation, as in (3.13),in whih we replae t by � : i.e.Q� = y4=3Qyy + 1�(�)QQy in DT (5.2)Q(0; �) = 0; Q(1; �) = 1 for � 2 [0; T ℄; (5.3)Q(y; 0) = Q0(y) for y 2 [0; 1℄; (5.4)and the energy relation E = ��(�)� 1Z0 Q2y4=3dy for � 2 [0; T ℄: (5.5)We �rst onsider (5.2)-(5.4) for given ordered temperatures and ordered initial data.Proposition 5.3 Let i = 1; 2: Suppose Qi solves (5.2)-(5.4) in DTi subjet to Q0 = Q0i; andgiven � = �i; satisfying (4.1) in [0; Ti℄: Let T = minfT1; T2g: If�1 � �2 in [0; T ℄; and Q01 � Q02 in (0; 1)and if there exists K > 0 suh that either0 � Q1y � K or 0 � Q2y � K in DT ;21



then Q1 � Q2 in DT :Proof: Suppose 0 � Q2y � K: SineQ2� = y4=3Q2yy + 1�1(�)Q2Q2y + � 1�2(�) � 1�1(�)�Q2Q2y in DT :It follows from �1 � �2 and Q2y � 0 thatQ2� � y4=3Q2yy + 1�1(�)Q2Q2y in DT :This inequality and the boundedness of Q2y allows us to use [15, Theorem 3.2℄, whih show thatQ2 is a subsolution for the Q-equation with �1:Next we use the Boltzmann entropy (2.7) in terms of Q = Q(y; �) to establish a positivelower bound on �:Proposition 5.4 Let hQ;�i be a solution of Problem (5.2)-(5.5). Suppose �(0) = 1��E +1R0 Q0(y)y4=3 dy� > 0: Then�(�) � ��(0) for � > 0; with � = exp��2� 1Z0 Q0y logQ0y dy�: (5.6)Proof: Rewriting (2.7) results inW (�) := 1Z0 Qy logQy dy � �2 log�E + 1Z0 Q2y4=3 dy� for � > 0and di�erentiation gives, see also (2.8),dW (�)d� = � 1Z0 Q2�y4=3Qy dy � 0 for � > 0:
22



Hene W (�) is dereasing in � . As a onsequeneW (�) = 1Z0 Qy logQy dy � �2 log�E + 1Z0 Q2y4=3 dy� �� W (0) = 1Z0 Q0y logQ0y dy � �2 log�E + 1Z0 Q20y4=3 dy� for � > 0:Here we use Jensen's inequality to estimate1Z0 Qy logQy dy � � 1Z0 Qy dy� log� 1Z0 Qy dy� = 0;from whih lower bound (5.6) diretly follows.Note that whenever � is bounded away from zero, blow-up in Problem (5.2)-(5.5) an onlyour at the boundary y = 0: This is a diret onsequene of lassial regularity theory, whihimplies that Q is smooth away from y = 0. Blow-up manifests itself through singular behaviourof Qy as (y; �) approahes the point (0; T �): This orresponds to unbounded density at theorigin of the radially symmetri solution of Problem P. Below we use the omparison argument(Proposition 5.3) to ontrol the behaviour of Qy(0; �). We show that this implies a uniformbound on kQy(�)kL2(0;1) and thus on kn(�)kL2(B1(0)) for all 0 � � < T �: Global existene forQ = Q(y; �) as a onsequene of Theorem 3.2. The results translate in a straightforwardmanner to the assertions of Theorem 1.2Theorem 5.5 Let Q0 : [0; 1℄ 7! [0; 1℄ be nondereasing, Q0y 2 L1(0; 1) and Q0(0) = 0, Q(1) =1. Let �(0) = �0 > 0. If either(i) �0 is suÆiently large;or(ii) there exists B > 0 suh that�0 � 32 (1 +B)� ; and Q0(y) � y(1 +B)y2=3 +B ; with � = exp�� 2� 1Z0 Q0y logQ0ydy�:Then Problem (5.2)-(5.5) has a global solution hQ;�i in the sense of Setion 3.3. Moreover thereexist onstants L > 0 and �� > 0 suh that �(�) � �� and kQy(�)kL2(0;1) � kQ0ykL2(0;1) exp(L�)23



for all � > 0: If (ii) is satis�ed we have in additionQ(y; �) � y(1 +B)y2=3 +B for all (y; �) 2 D1:Proof: First we onsider the auxiliary problem(AP) 8>>>><>>>>: �Q� = y4=3 �Qyy + 1A �Q �Qy in D1;�Q(0; �) = 0; �Q(1; �) = 1 for � > 0;�Q(y; 0) = Q0(y) for y 2 [0; 1℄; (5.7)where A > 0 and where Q0 satis�es the onditions of the theorem.By Theorem 4.2 and Remark 4.1 (iii), we have: if either(H1) A � �2 and kQ0yk2L2(0;1) � C(A2 � A)or(H2) A = 32(1 +B) and Q0(y) � y(1+B)y2=3+B for 0 � y � 1; and for some B > 0;then Problem AP has a global solution �Q : D1 7! [0; 1℄: Sine Q0y 2 L1(0; 1), the regularitytheory of [7, Theorem 2℄ gives k �QykL1(0;1) 2 L1lo([0;1)): (5.8)The onditions on Q0 and �0 guarantee that Problem (5.2)-(5.5) has a lassial solution in DTfor some T . Now supposeT � = supfT > 0 j solution of Problem (5.2)-(5.5) exists in DTg <1: (5.9)Fix A > 0 suh that (H1) is satis�ed, and hoose �0 � A� : By (5.6), we have�(�) � A for all � 2 [0; T �) (5.10)and by Proposition 5.3 and (5.8), we �ndQ(y; �) � �Q(y; �) � Ky for (y; �) 2 [0; 1℄� [0; T �) (5.11)for some K > 0: Below we show that this implies a uniform bound on kQy(�)kL2(
) in [0; T �):Multiplying (5.2) by Q�=y4=3 gives1y4=3Q2� = Q�Qyy + 1�(�)y4=3Q�QQy in [0; 1℄� (0; T �): (5.12)24



Using (5.10) and (5.11), the seond term on the right an be estimated by1�(�)y4=3Q�QQy � 1y4=3Q2� + 14�2(�)y4=3Q2Q2y� 1y4=3Q2� + K24A2Q2Q2y:Using this in (5.12) and integrating the results givesdd� kQy(�)k2L2(0;1) � K22A2kQy(�)k2L2(0;1) for all 0 � � < T �:Hene kQy(�)kL2(0;1) � kQ0ykL2(0;1) exp �M2A�2T �!and A � �(�) � 1��E + 1Z0 �Q2(y; �)y4=3 dy� � 1��E + 35K2�for all 0 � � < T �: This allows us to use Theorem 3.2 at T ��; whih ontradits (5.9). Theuniform upper bound in the temperature follows from the observation�Q(y; �) = yZ0 �Qy(y; �) dy � y1=2k �Qy(�)kL2(0;1);implying 1Z0 �Q2(y; �)y4=3 dy � 32k �Qy(�)k2L2(0;1);and thus last expression is uniformly bounded if A satis�es (H1) (Theorem 4.2).If (ii) holds, global existene follows in a idential way. Again (5.10) and (5.11) hold, yieldingthe same bounds on kQy(�)kL2(0;1) and �(�): The pointwise bound on Q in D1 results from thefat that y(1+B)=(y2=3+B) is a supersolution for Problem AP if A and Q0 satisfy (H2): Takefor instane K = B+1B in (5.11). The orresponding temperature bound is a diret onsequene.As a speial ase of Theorem 5.5 (ii) we haveCorollary 5.6 If Q0(y) = y, and �0 > 32 , then Problem (5.2)-(5.5) has a global hQ;�i solutionand �0 � �(�) < �0 + 125� for all � � 0. 25



Proof: Sine � = 1; we an selet a suÆiently small B > 0 suh that Theorem 5.5 (ii) holds.The pointwise bound on Q implies Q(y; �) � y1=3 for all (y; �) 2 D1: Sine�(�) = �0 + Z 10 Q2(y; �)�Q20(y)y4=3 dy;the upper bound is immediate.6 Appendix: InequalitiesFor ompleteness we give in this appendix some inequalities whih are used at various plaes inthe paper.Let 
 be a bounded open subset of RN with a C1+�(� > 0) boundary.First interpolation inequality. LetN > 2; r � 2NN�2 and let p � q � r satisfy 1q = �p+ (1��)rfor some � 2 (0; 1): ThenknkLq(
) � C1��s knk1��H1(
)knk�Lp(
) for all n 2 H1(
) \ Lp(
): (6.1)Proof: Use the Sobolev inequality knkLr(
) � CsknkH1(
) for N > 2 and r � 2NN�2 ; and theinterpolation inequality knkLq(
) � knk�Lp(
)knk1��Lr(
):Seond interpolation inequality. Let N = 3. ThenknkL3(
) � C1=2s knk1=2H1(
)knk1=2L2(
) for all n 2 H1(
): (6.2)Proof: Take p = 2, q = 3; r = 2NN�2 = 6 and � = 1=2 in (6.1).Poisson's equation and Lp-norms. Let n 2 Lp(
); p > N2 ; and let � satisfy (1.2) and(1.5). Then8<: kr�kLr(
) � CIknkLp(
) for 1 < r � pNN�p and N2 < p < N;kr�kL1(
) � CIknkLp(
) for p > N: (6.3)where the onstant CI depends on 
 and p:Proof: Sine � satis�es (1.2) with (1.5), we use the representation by the Green's funtionto obtain k�kLp(
) � k��kLp(
) for N > 2 and p > N=2: If p < N we ombine this with theSobolev inequality kr�kLr(
) � C(k��kLp(
) + k�kLp(
)) for r � pN=(N � p) to obtain thedesired inequality. If p > N we proeed similarly.26



AknowledgmentsThe authors are grateful to P.-H. Chavanis for bringing this problem to their attention and J.Dolbeault for pointing out referene [5℄.Referenes[1℄ Antonov, V.A., Most Probable phase distribution in spherial star systems and onditionsfor its existene, Vest. Leningr. gos. Univ., 7 (1962), 135. (English version: Hut P., ed.,1984, IAU Symp. 113, Dynamis of stars lusters. Reidel, Dordreht)[2℄ Biler, P., Growth and aretion of mass in an astrophysial model, Appliationes Math.,23 (1995), 179-189.[3℄ Biler, P. and Nadzieja T., Growth and aretion of mass in an astrophysial model II,Appliationes Math., 23 (1995), 351-361.[4℄ Biler, P., Existene and nonexistene of solutions for a model of gravitational interationof partiles, III, Colloq. Math., 68 (1995), 229-239.[5℄ Biler, P., Dolbeault, J., Esteban, M.J., Markowih, P.A., and Nadzieja T.,Steady States for Streater's Energy-transport Models of Self-Gravitating Partiles, submittedto IMA Volumes in Mathematis Series, Springer Verlag, 2000.[6℄ Biler, P., Hebish, W. and Nadzieja T., The Debye system: existene and long timebehaviour of solutions, Nonlinear Analysis, 23 (1994), 1189-1209.[7℄ Biler, P., Hilhorst D. and Nadzieja T., Existene and nonexistene of solutions fora model of gravitational interation of partiles, II, Colloq. Math., 67 (1994), 297-308.[8℄ Biler, P., Krzywiki, A. and Nadzieja T., Self-interation of Brownian partilesoupled with thermodynami proesses, Rep. Math. Phys. 42 (1998), 359-372.[9℄ Biler, P. and Nadzieja T., Existene and nonexistene of solutions for a model ofgravitational interation of partiles, I, Colloq. Math., 66 (1994), 319-334.[10℄ Biler, P. and Nadzieja T., Nonloal paraboli problems in statistial mehanis, Non-linear Analysis, (8) 30 (1997), 5343-5350.[11℄ Biler, P. and Nadzieja T., A lass of nonloal paraboli problems ourring in statis-tial mehanis, Colloq. Math., 66 (1993), 131-145.[12℄ Bidaut-V�eron, M.-F. and V�eron, L., Nonlinear ellipti equations on ompat Rieman-nian manifolds and asymptotis of Emden equations, Invent. Math. 106 (1991), 489-539.27



[13℄ Brenner, M.P., Constantin, P., Kadanoff, L.P., Shnkel, A., Venkatara-mani, S.C., Di�usion, attration and ollapse, Nonlinearity, 12 (1999) 1071-1098.[14℄ Chavanis, P.H. Sommeria, J. and Robert, R., Statistial mehanis of two-dimensional vorties and ollisionless stellar systems, Astrophys. J. 471 (1996), 385-399.[15℄ Hilhorst D., A nonlinear evolution problem arising in the physis of ionized gases, SIAMJ. Math. Anal. 13 (1982), 16-39.[16℄ Lions, J.L., Quelques m�ethodes de r�esolution des probl�emes aux limites non lin�eares,Dunod-Gauthier Villars (1969).[17℄ Rosier C., Probleme de Cauhy pour une �equation parabolique mod�elisant la relaxationdes syst�emes stellaires auto-gravitans, C. R. Aad. Si. Paris, S�erie I 332 (2001) 903-908.[18℄ Wolansky, G., Comparison between two models of self-gravitating lusters: onditionsfor gravitational ollapse, Nonlinear Analysis, (7) 24 (1995), 1119-1129.[19℄ Wolansky, G., On steady distributions of self-attrating lusters under frition and u-tuations, Arh. Rational Meh. Anal. 119 (1992), 355-391.[20℄ Temam, R. Navier-Stokes Equations. North Holland (1979).[21℄ Zeidler, E. Nonlinear funtional analysis and its appliations, Part I-IV, Springer Verslag,(1986)-(1988).

28


