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THE H−1-NORM OF TUBULAR NEIGHBOURHOODS OF CURVES

Yves van Gennip
1

and Mark A. Peletier
2

Abstract. We study the H−1-norm of the function 1 on tubular neighbourhoods of curves in R
2.

We take the limit of small thickness ε, and we prove two different asymptotic results. The first is an
asymptotic development for a fixed curve in the limit ε → 0, containing contributions from the length
of the curve (at order ε3), the ends (ε4), and the curvature (ε5). The second result is a Γ-convergence
result, in which the central curve may vary along the sequence ε → 0. We prove that a rescaled version
of the H−1-norm, which focuses on the ε5 curvature term, Γ-converges to the L2-norm of curvature. In
addition, sequences along which the rescaled norm is bounded are compact in the W 1,2-topology. Our
main tools are the maximum principle for elliptic equations and the use of appropriate trial functions
in the variational characterisation of the H−1-norm. For the Γ-convergence result we use the theory of
systems of curves without transverse crossings to handle potential intersections in the limit.
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1. Introduction

In this paper we study the set function F : 2R
2 → R,

F (Ω) := ‖1‖2
H−1(Ω) := sup

{∫
Ω

[
2u− |∇u|2] dx : u ∈ C∞

c (Ω)
}
.

More specifically, we are interested in the value of F on ε-tubular neighbourhoods Tεγ of a curve γ, i.e. on the
set of points strictly within a distance ε of γ.

The aim of this paper is to explore the connection between the geometry of a curve γ and the values of F
on the ε-tubular neighbourhood Tεγ. Our first main result is the following asymptotic development. If γ is a
smooth open curve, then

‖1‖2
H−1(Tεγ) =

2
3
ε3�(γ) + 2αε4 +

2
45
ε5
∫

γ

κ2 +O(ε6) as ε→ 0. (1.1)
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Here �(γ) is the length of γ, α > 0 is a constant independent of γ, and κ is the curvature of γ. The ‘2’ that
multiplies α in the formula above is actually the number of end points of γ; for a closed curve the formula holds
without this term. Under some technical restrictions (1.1) is proved in Theorem 6.1.

The expansion (1.1) suggests that for closed curves the rescaled functional

Gε(γ) := ε−5

(
‖1‖2

H−1(Tεγ) −
2
3
ε3�(γ)

)

resembles the elastica functional

G0(γ) :=
2
45

∫
γ

κ2.

With our second main result we convert this suggestion into a Γ-convergence result, and supplement it with a
statement of compactness. Before we describe this second result in more detail, we first explain the origin and
relevance of this problem.

1.1. Motivation

The H−1-norm of a set or a function appears naturally in a number of applications, such as electrostatic
interaction or gravitational collapse. The case of tubular neighbourhoods and the relationship with geometry
are more specific. We mention two different origins.

The discussion of the connection between the geometry of a domain and the eigenvalues of the Laplacian
goes back at least to Lorentz’ Wolfskehl lecture in 1910, and has been popularized by Kac’s and Bers’ famous
question ‘can one hear the shape of a drum?’ [9]. The first eigenvalue of the Laplacian with Dirichlet boundary
conditions is actually strongly connected to the H−1-norm. This relation can be best appreciated when writing
the definition of the first eigenvalue under Dirichlet boundary conditions as

λ0(Ω) = inf

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

|∇u|2∫
Ω

u2
: u ∈ C∞

c (Ω)

⎫⎪⎪⎬
⎪⎪⎭ , (1.2)

and the H−1-norm as

‖1‖2
H−1(Ω) = sup

⎧⎪⎪⎨
⎪⎪⎩
(∫

Ω

u
)2

∫
Ω

|∇u|2
: u ∈ C∞

c (Ω)

⎫⎪⎪⎬
⎪⎪⎭ . (1.3)

Sidorova and Wittich [11] investigate the ε- and γ-dependence of λ0(Tεγ). As in the case of the H−1-norm, the
highest-order behaviour of λ0(Tεγ) is dominated by the short length scale ε alone; the correction, at an order ε2

higher, depends on the square curvature. The signs of the two correction terms are different, however: while
the curvature correction in ‖1‖2

H−1 (the third term on the right-hand side of (1.1)) comes with a positive sign,
this correction carries a negative sign in the development of λ0.

This sign difference can also be understood from the difference between (1.2) and (1.3). Assume that for
a closed curve the supremum in (1.3) is attained by û. The development in (1.1) states that for small ε,(∫

Tεγ
û
)2
/
∫
Tεγ

|∇û|2 ≈ ε3C1(1 + ε2C2), for two positive constants C1 and C2 that depend only on the curve.

Inverting the ratio, we find that
∫

Tεγ
|∇û|2/(∫

Tεγ
û
)2 ≈ ε−3C−1

1 (1 − ε2C2). If we disregard the distinction
between

∫
u2 and (

∫
u)2, then this argument explains why the curvature correction enters with different signs.

The question that originally sparked this investigation was that of partial localisation. Partial localisation
is a property of certain pattern-forming systems. The term ‘localisation’ refers to structures – e.g. local or
global energy minimisers – with limited spatial extent. ‘Partial localisation’ refers to a specific subclass of
structures, which are localised in some directions and extended in others. Most systems tend to either localise
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in all directions, such as in gravitational collapse, or to delocalise and spread in all directions, as in diffusion.
Stable partial localisation is therefore a relatively rare phenomenon, and only a few systems are known to exhibit
it [4,5,10,12,13]

In two dimensions, partially localised structures appear as fattened curves, or when their boundaries are sharp,
as tubular neighbourhoods. Previous work of the authors suggests that various energy functionals all involving
the H−1-norm might exhibit such partial localisation, and some existence and stability results are already
available [12,13]. On the other hand the partially localising property of these functionals without restrictions on
geometry is currently only conjectured, not proven. The work of this paper can be read as an intermediate step,
in which the geometry is partially fixed, by imposing the structure of a tubular neighbourhood, and partially
free, by allowing the curve γ to vary.

The freedom of variation in γ gives rise to questions that go further than a simple asymptotic development
in ε for fixed γ. A common choice in this situation is the concept of Γ-convergence; this concept of convergence
of functionals implies convergence of minimisers to minimisers, and is well suited for asymptotic analysis of
variational problems. For this reason our second main result is on the Γ-convergence of the functional Gε.

Before we state this result in full, we first comment on curvature and regularity, and we then introduce the
concept of systems of curves.

1.2. Curvature and regularity

In this paper we only consider the case in which the tubular neighbourhoods are regular, in the following
sense, at least for sufficiently small ε: for each x ∈ Tεγ there exists a unique point x̃ ∈ (γ) of minimal distance
to x, where (γ) ⊂ R

2 is the trace or image of the curve γ. An equivalent formulation of this property is given
in terms of an upper bound on the global radius of curvature of γ:

Definition 1.1 [7]. If x, y, z ∈ (γ) are pairwise disjoint and not collinear, let r(x, y, z) be the radius of the
unique circle in R

2 through x, y, and z (and let r(x, y, z) = ∞ otherwise). The global radius of curvature of γ
is defined as

ρ(γ) := inf
x,y,z∈(γ)

r(x, y, z).

Since the ‘local’ curvature κ is bounded by 1/ρ(γ), finiteness of the global curvature implies W 2,∞-regularity
of the curve. More specifically, regularity of the ε-tubular neighbourhood Tεγ is equivalent to the statement
ρ(γ) ≥ ε.

1.3. Systems of curves

Neither compactness nor Γ-convergence of Gε is expected to hold for simple, smooth closed curves, where
‘simple’ means ‘non-self-intersecting’. One reason is that a perfectly reasonable sequence of simple smooth
closed curves may converge to a non-simple curve, as shown in Figure 1a. Nothing in the energy Gε will prevent
this; therefore we need to consider a generalisation of the concept of a simple closed curve.

The work of Bellettini and Mugnai [2,3] provides the appropriate concept. Leaving aside issues of regularity
for the moment (the full definition is given in Sect. 3), a system of curves without transverse crossings Γ is a
finite collection of curves, Γ = {γi}m

i=1, with the restriction that

γi(s) = γj(t) for some i, j, s, t =⇒ γ′i(s) ‖ γ′j(t).

In words: intersections are allowed, but only if they are tangent. Continuing the convention for curves, we
write (Γ ) for the trace of Γ , i.e. (Γ ) :=

⋃m
i=1(γi) ⊂ R

2. The multiplicity θ of any point x ∈ (Γ ) is given by

θ(x) := #{(i, s) : γi(s) = x}.

Figure 1a is covered by this definition, by letting Γ consist of a single curve γ, and where θ equals 2 on the
intersection region and 1 on the rest of the curve.
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(a) Curve with locally multiplicity 2,
limit of a sequence of single smooth
simple curves.

(b) This curve is
not a limit of sin-
gle simple curves,
but can be ob-
tained as the limit
of a sequence of
pairs of simple
curves.

Figure 1. Two curves with locally multiplicity 2.

Figure 1b is an example of a system of curves without transverse crossings which can be represented by either
one or two curves γ. This example motivates the introduction of an equivalence relationship on the collection
of such systems. Two systems of curves Γ 1 and Γ 2 are called equivalent if (Γ 1) = (Γ 2) and θ1 ≡ θ2; this
relationship gives rise to equivalence classes of such systems of curves without transverse crossings.

This leads to the definition of the sets SC1,2 and SC2,2, whose elements are equivalence classes of systems
of curves, for which each curve is of regularity W 1,2 or W 2,2. All admissible objects will actually be elements
of SC2,2; the main use of SC1,2 is to provide the right concept of convergence in which to formulate the
compactness and Γ-convergence below. Where necessary, we write [Γ ] for the equivalence class (the element of
SCk,2) containing Γ ; where possible, we simply write Γ to alleviate notation.

1.4. Compactness and Γ-convergence

With this preparation we can state the second main result of this paper. The discussion above motivates
changing the definition of the functionals Gε and G0 defined earlier to incorporate conditions on global curvature
and to allow for systems of curves. Note that in this section we only consider systems of closed curves.

Define the functional Gε : SC1,2 → R ∪ {∞} by

Gε(Γ ) :=
{
ε−5‖1‖2

H−1(TεΓ) − 2
3ε

−2�(Γ ) if Γ ∈ SC2,2 and ρ(Γ ) ≥ ε

+∞ otherwise,

and let G0 : SC1,2 → [0,∞] be defined by

G0(Γ ) :=

⎧⎪⎨
⎪⎩

2
45

m∑
i=1

�(γi)
∫

γi

κ2
i if Γ ∈ S0,

+∞ otherwise,
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where Γ = {γi}m
i=1 and κi is the curvature of γi, and where the admissible set S0 is given by

S0 :=
{
Γ ∈ SC2,2 : �(Γ ) <∞ and Γ has no transverse crossings

}
.

The values of Gε(Γ ) and G0(Γ ) are independent of the choice of representative (see Rem. 3.1), so that Gε and
G0 are well-defined on equivalence classes.

We have compactness of energy-bounded sequences, provided they have bounded length and remain inside a
fixed bounded set:

Theorem 1.2. Let εn ↓ 0, and let {Γn}n≥1 ⊂ SC2,2 be a sequence such that:
– There exists R > 0 such that (Γn) ⊂ B(0, R) for all n;
– supn �(Γ

n) <∞;
– supn Gεn(Γn) <∞.

Then Γn converges along a subsequence to a limit Γ ∈ S0 in the convergence of SC1,2.

The concept of convergence in SC1,2 is defined in Section 3. In addition to this compactness result, the
functional G0 is the Γ-limit of Gε:

Theorem 1.3. Let εn ↓ 0.
(1) If Γn ∈ SC1,2 converges to Γ ∈ SC1,2 in the convergence of SC1,2, then G0(Γ ) ≤ lim inf

n→∞ Gεn(Γn).

(2) If Γ ∈ SC1,2, then there is a sequence {Γn}n≥1 ⊂ SC1,2 converging to Γ in the convergence of SC1,2

for which G0(Γ ) ≥ lim sup
n→∞

Gεn(Γn).

1.5. Discussion

1.5.1. Hutchinson varifolds

There is a close relationship between the systems of curves of Bellettini and Mugnai and a class of varifolds.
To a system of curves Γ := {γi}m

i=1 we can associate a measure μΓ via

∫
R2
ϕdμΓ =

m∑
i=1

∫
γ

ϕ(γi(s))|γ′i(s)| ds,

for all ϕ ∈ Cc(R2). By [3] (Rem. 3.9, Prop. 4.7, Cor. 4.10) Γ is a W 2,2-system of curves without transverse
crossings if and only if μΓ is a Hutchinson varifold (also called curvature varifold) with weak mean curvature
H ∈ L2(μΓ ), such that a unique tangent line exists in every x ∈ (Γ ). Two systems of curves are mapped to
the same varifold if and only if they are equivalent, a property which underlines that the appropriate object of
study is the equivalence class rather than the system itself.

The compactness result for integral varifolds [1] (Thm. 6.4), [8] (Thm. 3.1) can be extended to a result for
Hutchinson varifolds under stricter conditions which imply a uniform control on the second fundamental form
along the sequence [8] (Thm. 5.3.2). In our case we do not have such a control on the curvature, since the bound
on the global radius of curvature, ρ(Γ ) ≥ ε vanishes in the limit ε → 0. Therefore the compactness result of
Theorem 1.2 covers a situation not treated by Hutchinson’s result.

1.5.2. Extensions

The current work opens the way for many extensions that can serve as the subject of future inquiries. One
such is the proof of a Γ-convergence result that also takes open curves into account. Expansion (1.1) suggests
two possible functionals for study:

ε−4

(
‖1‖2

H−1(TεΓ) −
2
3
ε3�(Γ )

)
,
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which is expected to approximate
2n(Γ )α,

where n(Γ ) is the number of open curves in Γ ; the second functional is

ε−5

(
‖1‖2

H−1(TεΓ) −
2
3
ε3�(Γ ) − 2n(Γ )αε4

)
,

which we again expect to approximate
2
45

∑
i

�(γi)
∫

γi

κ2
i .

The theory used in this paper to prove Γ-convergence is not adequately equipped to deal with open curves. For
example, the notion of systems of curves includes only closed curves. An extension is needed to deal with the
open curves.

Another, perhaps more approachable, question concerns the relation between ‖1‖2
H−1(Tεγ) and ‖χTεγ‖2

H−1(R2),
where χTεγ is the characteristic function of the set Tεγ. The latter expression is closer to what one can find in
many applications, like the previously mentioned systems that exhibit partial localisation (Sect. 1.1).

Other extensions that bridge the gap between the current results and those applications a bit further are the
study of ‖1‖2

H−1(Ω) on neighbourhoods of curves that have a variable thickness or research into the H−1-norm
of more general functions, ‖f‖2

H−1(Tεγ).

1.6. Structure of the paper

We start out in Section 2 with a formal calculation for closed curves which serves as a motivation for the
results in Theorems 1.2 and 1.3. In Section 3 we give the definitions of system of curves and various related
concepts. In our computations we use a parametrisation of Tεγ which is specified in Section 4. Section 5 is then
devoted to the proof of the compactness and Γ-convergence results (Thms. 1.2 and 1.3). In Section 6 we state
and prove the asymptotic development (1.1) for open curves (Thm. 6.1).

2. A formal calculation

We now give some formal arguments to motivate the statements of our main results for closed curves, and
also to illustrate some of the technical difficulties. In this description we restrict ourselves to a single, simple,
smooth, closed curve γ.

Since the definition of Gε implies that the global radius of curvature ρ(γ) is bounded from below by ε, we can
parametrise Tεγ in the obvious manner. We choose one coordinate, s ∈ [0, 1], along the curve and the other,
t ∈ (−1, 1), in the direction of the normal to the curve. As we show in Lemma 4.1, this parametrisation leads
to the following characterisation of the H−1-norm:

‖1‖2
H−1(Tεγ) = sup

{∫ 1

0

∫ 1

−1

(
2f(s, t)ε�(γ)

(
1 − εtκ(s)

)− ε(f,s)2(s, t)
(1 − εtκ(s))�(γ)

− (f,t)2(s, t)
(

1
ε
− tκ(s)

)
�(γ)

)
dt ds

}
, (2.1)

where the supremum is taken over functions f ∈W 1,2 that satisfy f(s,±1) = 0, and subscripts , s and , t denote
differentiation with respect to s and t.

The corresponding Euler-Lagrange equation is

ε�(γ)
(
1 − εtκ(s)

)
+ ε

(
f,s(s, t)(

1 − εtκ(s)
)
�(γ)

)
,s

+
(
f,t(s, t)

(
ε−1 − tκ(s)

)
�(γ)

)
,t

= 0. (2.2)
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Formally we solve this equation by using an asymptotic expansion

f(s, t) = f0(s, t) + εf1(s, t) + ε2f2(s, t) + ε3f3(s, t) + ε4f4(s, t) + . . .

as Ansatz. The boundary condition f(s,±1) = 0 should be satisfied for each order of ε separately. Substituting
this into (2.2) and collecting terms of the same order in ε we find for the first five orders

f0,tt(s, t) = 0 =⇒ f0(s, t) = 0,

f1,tt(s, t) = 0 =⇒ f1(s, t) = 0,

f2,tt(s, t) = −1 =⇒ f2(s, t) =
1
2
(1 − t2),

f3,tt(s, t) = −tκ(s) =⇒ f3(s, t) =
1
6
tκ(s)(1 − t2),

f4,tt(s, t) = −1
6
κ2(s)(9t2 − 1) =⇒ f4(s, t) =

1
24
κ2(s)(−3t4 + 2t2 + 1). (2.3)

Note that this Ansatz is reasonable only for closed curves, since the ends of a tubular neighbourhood have
different behaviour. These orders suffice to compute the H−1-norm up to order ε5:

‖1‖2
H−1(Ωε) =

2
3
�(γ)ε3 +

2
45
ε5�(γ)

∫
γ

κ2 + O(ε6) as ε→ 0. (2.4)

For a fixed curve γ ∈ W 2,2, this expansion can be made rigorous. Theorem 6.1 proves an extended ver-
sion (1.1) of this development, in which ends are taken into account.

For a sequence of varying curves γn, on the other hand, the explicit dependence of f3 on κ in this calculation is
a complicating factor. Even if a sequence γn converges strongly in W 2,2 – and that is a very strong requirement –
then the associated curvatures κn converge in L2. There is no reason for the derivatives κ′n(s) to remain bounded
in L2, and the same is true for the derivatives fn3,s. Therefore the second term under the integral in (2.1),
which is formally of order O(ε6), may turn out to be larger, and therefore interfere with the other orders. In
Theorems 1.2 and 1.3 this problem is addressed by introducing a regularized version of κ in the definition of f3.

The formal calculation we did in this section suggests that we need information about the optimal function f
in (2.1) up to a level ε4. However, as we will see, for the proof of the lower bound part of Theorem 1.3 (part 1)
it suffices to use information up to order ε3, (5.3). The reason why becomes apparent if we look in more detail
at the calculation that led to the formal expansion in (2.4). The contributions to this expansion involving f4
are given by

2�(γ)
∫ 1

0

∫ 1

−1

(
f4(s, t) − f2,t(s, t)f4,t(s, t)

)
dt ds =

1
12
�(γ)κ2

∫ 1

0

∫ 1

−1

(
−15t4 + 6t2 + 1

)
dt ds = 0.

This means that replacing f4 by f̂4 ≡ 0 does not change the expansion up to order ε5 given in (2.4). It is
an interesting question to ponder whether this is a peculiarity of the specific function under investigation or a
symptom of a more generally valid property.

Note that for the proof of the upper bound statement of Theorem 1.3 (part 2) we do need a trial function
that has terms up to order ε4, (6.5).

3. Systems of closed curves

From now on we aim for rigour. The first task is to carefully define systems of curves, their equivalence
classes, and notions of convergence. We only consider closed curves, and systems of closed curves, and therefore
we use the unit torus T = R/Z as the common domain of parametrisation.
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Let T(i) be disjoint copies of T and let

∐
i

T(i) :=
⋃
i

{
(s, i) : s ∈ T(i)

}

denote their disjoint union. A W 1,2-system of curves is a map Γ :
m∐

i=1

T(i) → R
2 given by

Γ (s, i) = γi(s),

where m ∈ N and, for all 1 ≤ i ≤ m, γi ∈ W 1,2(T; R2) is a closed curve parametrised proportional to arc length
(i.e. |γ′i| is constant). The number of curves in Γ is defined as #Γ := m. We denote such a system by

Γ = {γi}m
i=1.

Analogously we define a W 2,2-system of curves.
A system Γ is called disjoint if for all i �= j, (γi) ∩ (γj) = ∅. A W 2,2-system of curves is said to be without

transverse crossings if for all i, j ∈ {1, . . . ,m} and all s1, s2 ∈ T,

γi(s1) = γj(s2) ⇒ γ′i(s1) = ±γ′j(s2). (3.1)

The length of a curve γ and of a system of curves Γ is

�(γ) :=
∫

T

|γ′| and �(Γ ) :=
m∑

i=1

�(γi).

The global radius of curvature of a system of curves Γ is

ρ(Γ ) := inf
x,y,z∈(Γ)

r(x, y, z),

where r(x, y, z) is the radius of the unique circle in R
2 through x, y, and z if x, y, z ∈ (Γ ) are pairwise disjoint

and not collinear and r(x, y, z) = ∞ otherwise, analogous to Definition 1.1. The ε-tubular neighbourhood of Γ
is the set TεΓ ,

TεΓ :=
⋃

x∈(Γ)

B(x, ε),

where B(x, ε) denotes the open ball with center x and radius ε.
Let {Γn}∞n=1 be a sequence of W k,2-systems of curves, k = 1, 2. We write Γn = {γn

i }m
i=1 and say Γn converges

to Γ in W k,2 for a W k,2-system of curves Γ = {γi}m
i=1 if for n large enough #Γn = #Γ and for all 1 ≤ i ≤ m,

γn
i → γi in W k,2(T; R2) as n→ ∞ (after reordering). We write Γn → Γ in W k,2.

The density function θΓ : (Γ ) → N ∪ {+∞} of a system of curves Γ is defined as

θΓ (z) := H0({Γ−1(z)}).

Let Γ and Γ̃ be two W 2,2-systems of curves. We say that Γ and Γ̃ are equivalent, denoted by Γ ∼ Γ̃ ,
if (Γ ) = (Γ̃ ) and θΓ = θΓ̃ everywhere. We denote the set of equivalence classes of W k,2-systems of curves,
k ∈ {1, 2}, by SCk,2. Where necessary we explicitly write [Γ ] for the equivalence class that contains Γ ; where
possible we will simply write Γ for both the system of curves and for its equivalence class.

Let {[Γn]}∞n=1, [Γ ] ⊂ SCk,2, k ∈ {1, 2}. We say that [Γn] converges to [Γ ] in SCk,2 if there exist Γn ∈ [Γn]
and Γ ∈ [Γ ] such that Γn → Γ in W k,2 in the sense defined above. We denote this convergence by [Γn] → [Γ ]
in SCk,2.
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Remark 3.1. Note that if Γ̃ ∈ [Γ ], then (Γ ) = (Γ̃ ), so that the definition ([Γ ]) := (Γ ) is independent of
the choice of representative. Similarly, the length �(Γ ), the curvature κ, the global radius of curvature ρ(Γ ),
the tubular neighbourhood TεΓ , the functional Gε, and the property of having no transverse crossings are all
well-defined on equivalence classes. The same is also true for the functional G0; this is proved in [2], Lemma 3.9.

Remark 3.2. If γ ∈ W k,2(T; R2), k = 1, 2, is a curve parametrised proportional to arc length, then it follows
that

|γ′| = �(γ) (a.e. if k = 1).

We also introduce some elementary geometric notation. Let γ ∈ W 2,2
(
T; R2

)
be a curve parametrised

proportional to arc length. We choose the normal to the curve at γ(s) to be

ν(s) := |Rγ′(s)|−1Rγ′(s) = �(γ)−1Rγ′(s),

where R is the anticlockwise rotation matrix given by

R :=
(

0 −1
1 0

)
.

The curvature κ : T → R satisfies
γ′′(s) = κ(s)�(γ)2ν(s). (3.2)

We have

|ν| = 1, ν′ = κ�(γ)Rν,

γ′ × ν = �(γ), ν′ × ν = −κ�(γ),

where × denotes the cross product in R
2:

x× y := x1y2 − x2y1 = (Rx) · y, for x, y ∈ R
2.

It is well known that integrating the curvature of a closed curve gives

�(γ)
∫

T

κ = −
∫

T

ν′ × ν = ±2π, (3.3)

depending on the direction of parametrisation. Without loss of generality we adopt a parametrisation convention
which gives the +-sign in the integration above, and which could be described as ‘counterclockwise’. The integral
of the squared curvature can be expressed as∫

γ

κ2 = �(γ)
∫

T

κ(s)2 ds = �(γ)−3

∫
T

|γ′′(s)|2 ds.

4. Parametrising the tubular neighbourhood

By density we have

‖1‖2
H−1(Tεγ) = sup

{∫
Tεγ

(
2φ(x) − |∇φ(x)|2) dx : φ ∈W 1,2

0 (Tεγ)
}
,

and the supremum is achieved when φ equals ϕ ∈ C∞(Tεγ) ∩ C(Tεγ), the solution of{ −Δϕ = 1 in Tεγ,
ϕ = 0 on ∂Tεγ.

(4.1)
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Figure 2. A closed curve with an ε-tubular neighbourhood. Explicitly shown are normal ν(s)
and tangent γ′(s) at γ(s) and the points γ(s) ± εν(s).

In that case we also have

‖1‖2
H−1(Tεγ) =

∫
Tεγ

|∇ϕ(x)|2 dx.

In the proof of our main result, Theorem 1.3, we use a reparametrisation of the ε-tubular neighbourhood of
a simple W 2,2-closed curve. For easy reference we introduce it here in a separate lemma.

Lemma 4.1. Let ε > 0 and let γ ∈W 2,2(T; R2) be a closed curve parametrised proportional to arc length, and
such that ρ(γ) ≥ ε. If we define Ψε ∈W 1,2 (T × (−1, 1);Tεγ) by

Ψε(s, t) := γ(s) + εtν(s), (4.2)

then Ψε is a bijection.
Let g ∈W 1,2 (Tεγ) and define f := g ◦ Ψε. Then

∫
Tεγ

(
2g(x) − |∇g(x)|2) dx = Xε(f),

where

Xε(f) :=
∫ 1

0

∫ 1

−1

(
2f(s, t)ε�(γ)

(
1 − εtκ(s)

)− ε(f,s)2(s, t)(
1 − εtκ(s)

)
�(γ)

− (f,t)2(s, t)
(

1
ε
− tκ(s)

)
�(γ)

)
dt ds.

The parametrisation of Tεγ from Lemma 4.1 is illustrated in Figure 2.

Proof of Lemma 4.1. We first show that Ψε : T × (−1, 1) → Tεγ is a bijection. Starting with surjectivity, we
fix x ∈ Tεγ; by the discussion in Section 1.2 there exists a unique s ∈ T such that γ(s) is the point of minimal
distance to x among all points in (γ). The line segment connecting x and γ(s) necessarily intersects (γ)
perpendicularly and thus there exists a t ∈ (−1, 1) such that x = Ψε(s, t).

We prove injectivity by contradiction. Assume there exist (s, t), (s̃, t̃) ∈ T × (−1, 1) and x ∈ Tεγ, such that
(s, t) �= (s̃, t̃) and Ψε(s, t) = Ψε(s̃, t̃) = x. If s = s̃, then t �= t̃, which contradicts Ψε(s, t) = Ψε(s̃, t̃), so we
assume now that s �= s̃. Also without loss of generality we take t̃ ≤ t < 1. We compute

γ(s̃) − γ(s) = ε
(
tν(s) − t̃ν(s̃)

)
. (4.3)
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Let r(γ(s̃), γ(s), z) be as in Definition 1.1 and let θ be the angle between γ(s̃)−γ(s) and γ′(s̃). By [7], Equation 3,
if we take the limit z → γ(s) along the curve we find

r(γ(s̃), γ(s), γ(s)) =
|γ(s) − γ(s̃)|

2| sin θ| =
�(γ)|γ(s̃) − γ(s)|2

2|γ′(s) × (γ(s̃) − γ(s))|
=

ε2�(γ)|t̃ν(s̃) − tν(s)|2
2ε|γ′(s) × (t̃ν(s̃) − tν(s))| = ε

t2 + t̃2 − 2tt̃ν(s) · ν(s̃)
2|t̃ν(s) · ν(s̃) − t| ·

Note that t̃ν(s) · ν(s̃) ≤ t̃ ≤ t and

t2 + t̃2 − 2tt̃ν(s) · ν(s̃) − 2
(
t− t̃ν(s) · ν(s̃)) = 2

(
t− t̃ν(s) · ν(s̃))(t− 1) + t̃2 − t2 < 0,

from which we conclude that r(γ(s̃), γ(s), γ(s)) < ε which contradicts ρ(γ) ≥ ε. Therefore, Ψε is injective and
thus a bijection.

We compute

∇fT = (∇g ◦ Ψε)
T DΨε,

where DΨε is the derivative matrix of Ψε in the (s, t)-coordinates. It follows that

|∇g|2 ◦ Ψε = ∇fTDΨ−1
ε DΨ−T

ε ∇f,

where ·−T denotes the inverse of the transpose of a matrix. Direct computation yields

DΨε(s, t) =
(
γ′1(s) − ε�(γ)tκ(s)ν2(s) εν1(s)
γ′2(s) + ε�(γ)tκ(s)ν1(s) εν2(s)

)

and detDΨε(s, t) = ε�(γ) (1 − εtκ(s)). Since ‖κ‖L∞(T) ≤ ε−1 we have detDΨε(s, t) �= 0 almost everywhere.
Then

(DΨε)−1(s, t)(DΨε)−T (s, t) =
(
�(γ)−2 (1 − εtκ(s))−2 0
0 ε−2

)
,

and we compute

∫
Tεγ

(
2g(x) − |∇g(x)|2) dx =

∫ 1

0

∫ 1

−1

(
2f(s, t) − (f,s)2(s, t)

�(γ)2
(
1 − εtκ(s)

)2 − (f,t)2(s, t)
ε2

)
| detDΨε(s, t)| dt ds,

which gives the desired result. �

The previous lemma gives us all the information to compute the H−1-norm of 1 on a tubular neighbourhood:

Corollary 4.2. Let γ ∈ W 2,2(T; R2) be a closed curve parametrised proportional to arc length with ρ(γ) ≥ ε.
Furthermore let Ψε,Xε be as in Lemma 4.1. Define

Aε :=
{
f ∈W 1,2 (T × (−1, 1)) : f ◦ Ψ−1

ε ∈W 1,2
0 (Tεγ)

}
. (4.4)

Then

‖1‖2
H−1(Tεγ) = sup {Xε(f) : f ∈ Aε} . (4.5)
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5. Proof of Theorem 1.2 and the lower bound part of Theorem 1.3

5.1. Reduction to single curves

Let us first make a general remark. If Gε(Γ ) is finite, then ρ(Γ ) ≥ ε, and therefore the ε-tubular neighbour-
hoods of two distinct curves in Γ do not intersect. Therefore writing Γ = {γn}m

n=1, we can decompose Gε(Γ )
as

Gε(Γ ) =
m∑

n=1

Gε(γn). (5.1)

A similar property also holds for G0 if Γ ∈ S0, as follows directly from the definition:

G0(Γ ) =
m∑

n=1

G0(γn). (5.2)

5.2. Trial function

The central tool in the proof of compactness (Thm. 1.2) and the lower bound inequality (part 1 of Thm. 1.3)
is the use of a specific choice of f in Xε(f). For a given γ ∈ W 2,2(T,R2), this trial function is of the form

fε(s, t) =
ε2

2
(1 − t2) + ε3κ̄ε(s)ζ(t). (5.3)

Here κ̄ε is an ε-dependent approximation of κ which we specify in a moment, and ζ ∈ C1
c (−1, 1) is a fixed,

nonzero, odd function satisfying ∫ 1

−1

ζ′2(t) dt =
∫ 1

−1

tζ(t) dt. (5.4)

In the final stage of the proof ζ will be chosen to be an approximation of the function t(1− t2)/6. Note that this
choice for f can be seen as an approximation of the first two non-zero terms in the asymptotic development (2.3).
As explained at the end of Section 2 this suffices and we do not need a term of order ε4 in f .

When used in Xε, the even and odd symmetry properties in t of the two terms in fε cause various terms to
cancel. The result is

‖1‖2
H−1(Tεγ) ≥ Xε(fε) =

2
3
ε3�(γ) +Bε5�(γ)

∫
T

{
2κ(s)κ̄ε(s) − κ̄2

ε(s) − ε2C̃ε(s)κ̄′2ε (s)
}

ds,

where

B :=
∫ 1

−1

ζ′2(t) dt =
∫ 1

−1

tζ(t) dt, (5.5)

C̃ε(s) := B−1�(γ)−2

∫ 1

−1

ζ2(t)
(1 − εtκ(s))

dt.

The definition of C̃ε shows why ζ is chosen with compact support in (−1, 1). By the uniform bound ‖κ‖∞ ≤ ε−1,
the denominator 1−εtκ(s) is uniformly bounded away from zero, independently of the curve γ. Therefore �(γ)2C̃ε

is bounded from above and away from zero independently of γ.
It will be convenient to replace the s-dependent coefficient C̃ε by a constant coefficient. For that reason we

introduce
Cε := sup

s∈T

C̃ε(s),
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which is finite for fixed ε and γ. With this we have

‖1‖2
H−1(Tεγ) ≥

2
3
ε3�(γ) +Bε5�(γ)

∫
T

{
2κ(s)κ̄ε(s) − κ̄2

ε(s) − ε2Cεκ̄
′2
ε (s)

}
ds.

This expression suggests a specific choice for κ̄ε: choose κ̄ε such as to maximize the expression on the right-hand
side. The Euler-Lagrange equation for this maximization reads

− ε2Cεκ̄
′′
ε (s) + κ̄ε(s) = κ(s) for a.e. s ∈ T, (5.6)

from which the regularity κ̄ε ∈ W 2,2(T) can be directly deduced; this regularity is sufficient to guarantee
fε ◦ Ψ−1

ε ∈ W 1,2
0 (Tεγ), so that the resulting function fε is admissible in Aε (see (4.4)). The resulting maximal

value provides the inequality

‖1‖2
H−1(Tεγ) ≥

2
3
ε3�(γ) +Bε5�(γ)

∫
T

{
κ̄2

ε(s) + ε2Cεκ̄
′2
ε (s)

}
ds. (5.7)

5.3. Step 1: fixed number of curves

We now place ourselves in the context of Theorem 1.2. Let εn → 0 and {Γn}∞n=1 ⊂ SC1,2 be sequences such
that Gεn(Γn) and �(Γn) are bounded uniformly by a constant Λ > 0. We need to prove that there exists a
subsequence of the sequence {Γn} that converges in SC1,2 to a limit Γ ∈ S0.

The first step is to limit the analysis to a fixed number of curves, which is justified by the following lemma.

Lemma 5.1. There exists a constant C > 0 depending only on Λ such that

1
C

≤ �(γ) ≤ C for any n ∈ N and any γ ∈ Γn.

Consequently #Γn is bounded uniformly in n.

Proof of Lemma 5.1. For any n choose an arbitrary γ ∈ Γn; then Gεn(γ) ≤ Λ, and therefore by (5.7) the
associated κ̄εn satisfies ∫

T

κ̄2
εn

≤ Λ
B�(γ)

·

Integrating (5.6) over T and using periodicity we then find

2π = �(γ)
∫

T

κ = �(γ)
∫

T

κ̄εn ≤ �(γ)
(∫

T

κ̄2
εn

)1/2

≤ �(γ)
(

Λ
B�(γ)

)1/2

, (5.8)

which implies that �(γ) is bounded from below; therefore any curve in any Γn has its length bounded from
below. Since �(Γn) is bounded from above, the result holds. �

Because of this result, we can restrict ourselves to a subsequence along which #Γn is constant. We switch
to this subsequence without changing notation.

Moreover, by the discussion in Section 5.2 we find that Cεn is bounded uniformly in εn and γ. We can
therefore apply inequality (5.7) to any sequence of curves γn, corresponding to a sequence εn → 0, as in the
statements of Theorems 1.2 and 1.3. In the terminology of those theorems we find the inequality

lim inf
n→∞ Gεn(γn) ≥ lim inf

n→∞ B�(γn)
∫

T

{
κ̄2

εn
(s) + ε2nCεn κ̄

′2
εn

(s)
}

ds. (5.9)
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5.4. Step 2: single-curve analysis

For every n, we pick an arbitrary curve γ ∈ Γn, and for the rest of this section we label this curve γn.
The aim of this section is to prove appropriate compactness properties and the lower bound inequality for this
sequence of single curves.

In this section we associate with the sequence {γn} of curves the curvatures κn (see (3.2)) and the quantities
κ̄n := κ̄εn and Cn := Cεn that were introduced in Section 5.2. Note that by (5.9), the upper bound on Gεn(γn),
and the lower bound on �(γn) there exists an M > 0 such that∫

T

{
κ̄2

n(s) + ε2nCnκ̄
′2
n (s)

}
ds ≤M for all n ∈ N. (5.10)

Lemma 5.2. There exists a subsequence of {κ̄n}∞n=1 (which we again label by n), such that

κ̄n −⇀ κ̄ in L2(T), (5.11)

for some κ̄ ∈ L2(T), and
κn −⇀ κ̄ in H−1(T). (5.12)

In addition, defining

ϑn(s) := �(γn)
∫ s

0

κn(σ) dσ and ϑ0(s) := �(γ0)
∫ s

0

κ̄(σ) dσ, (5.13)

we have
ϑn −⇀ ϑ0 in L2(T).

Proof of Lemma 5.2. By (5.10), {κ̄n}∞n=1 is uniformly bounded in L2(T), and therefore there is a subsequence
(which we again index by n) such that κ̄n −⇀ κ̄ in L2(T) for some κ̄ in L2(T).

Next let f ∈ C1(T) and compute∫
T

κn(s)f(s) ds =
∫

T

(
κ̄n(s) − Cnε

2
nκ̄

′′
n(s)

)
f(s) ds

=
∫

T

(
κ̄n(s)f(s) + Cnε

2
nκ̄

′
n(s)f ′(s)

)
ds. (5.14)

By the uniform lower bound on �(γn) (Lem. 5.1) and (5.10) we have for some C ≥ 0∫
T

|κ̄′n(s)f ′(s)| ds ≤ ‖κ̄′n‖L2(T)‖f ′‖L2(T) ≤ Cε−1
n .

Therefore the last term in (5.14) converges to zero and thus κn converges weakly to κ̄ in H−1(T). From the
definition (5.13) and the convergence �(γn) → �(γ0) it then follows that ϑn −⇀ ϑ0 in L2(T). �

We next bootstrap the weak L2-convergence of ϑn to strong L2-convergence.

Lemma 5.3. After extracting another subsequence (again without changing notation) we have

ϑn → ϑ0 in L2(T) and pointwise a.e.

Proof. For the length of this proof it is more convenient to think of all functions as defined on [0, 1] rather than
on T. Define K̄n ∈ W 1,2(0, 1) by

K̄n(s) := �(γn)
∫ s

0

κ̄n(t) dt.
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By the bound on �(γn) in Lemma 5.1 we can set for the duration of this proof �(γn) = 1 without loss of
generality. The boundedness of κ̄n = K̄ ′

n in L2(0, 1) (see (5.10)) implies that K̄n is compact in C0,α([0, 1]) for
all 0 < α < 1/2. By integrating (5.6) from 0 to s > 0 we find

ϑn(s) − Cnε
2
nκ̄

′
n(0) = K̄n(s) − Cnε

2
nκ̄

′
n(s).

Inequality (5.10) also gives

Cn

∫ 1

0

ε4nκ̄
′2
n (s) ds ≤ ε2nM,

by which
Cnε

2
nκ̄

′
n → 0 in L2(0, 1),

and combined with the compactness of K̄n in C0,α([0, 1]) this implies that
{
ϑn(s) − Cnε

2
nκ̄

′
n(0)

}∞
n=1

is compact
in L2(0, 1). Since we already know that ϑn converges weakly in L2(0, 1), it follows that (along a subsequence) the
sequence of constant functions Cnε

2
nκ̄

′
n(0) converges weakly, i.e. that the scalar sequence Cnε

2
nκ̄

′
n(0) converges

in R. Therefore ϑn converges strongly to ϑ0. �

Let us write

γ′n(s) = �(γn)
(

cos(ϑn(s) + ϕn)
sin(ϑn(s) + ϕn)

)
,

where ϕn ∈ [0, 2π) is an n-dependent phase.
We then use the uniform boundedness of γn(0) ∈ B(0, R) and of ϕn ∈ [0, 2π) to extract yet another sub-

sequence such that γn(0) converges to some x0 ∈ B(0, R) and ϕn converges to some ϕ ∈ [0, 2π]. Defining the
curve γ0 by

γ0(0) := x0 and γ′0(s) := �(γ0)
(

cos(ϑ0(s) + ϕ)
sin(ϑ0(s) + ϕ)

)
, (5.15)

it follows from the strong convergence of ϑn in L2(T) that γn → γ0 in the strong topology of W 1,2(T; R2).
We can now find an L2-bound on γ′′0 .

Lemma 5.4. We have
‖γ′′0 ‖L2(T;R2) = �(γ0)2‖κ̄‖L2(T).

Proof. Since ϑ′0 = �(γ0)κ̄ ∈ L2(T), upon differentiating (5.15) we find

γ′′0 (s) = �(γ0)ϑ′0(s)
( − sin(ϑ0(s) + ϕ)

cos(ϑ0(s) + ϕ)

)
, at a.e. s ∈ T,

so that
‖γ′′0 ‖L2(T;R2) = �(γ0)‖ϑ′0‖L2(T) = �(γ0)2‖κ̄‖L2(T). �

5.5. Step 3: returning to systems of curves

We have shown that the sequence of single curves {γn} satisfies γn → γ0 in W 1,2(T; R2) with �(γ0) <∞ and
‖γ′′0 ‖L2(T;R2) = �(γ0)2‖κ̄‖L2(T) <∞. For future reference we note that this implies that

G0(γ0) =
2
45
�(γ0)−3‖γ′′0 ‖2

L2(T;R2) =
2
45
�(γ0)‖κ̄‖2

L2(T) ≤
2

45B
lim inf
n→∞ Gεn(γn). (5.16)

The inequality follows from (5.9), (5.11), and the weak-lower semicontinuity of the L2-norm.
Now we return from the sequence of single curves to the sequence of systems of curves {Γn}∞n=1. Write

Γn := {γn
i }m

i=1, and repeat the above arguments for each sequence of curves {γn
i }∞n=1 for fixed i separately.



146 Y. VAN GENNIP AND M.A. PELETIER

In this way we find a limit system Γ 0 := {γ0
i }m

i=1 such that for all i, �(γ0
i ) <∞ and ‖(γ0

i )′′‖L2(T;R2) <∞. It is
left to prove that Γ 0 has no transverse crossings.

Lemma 5.5. Γ0 has no transverse crossings.

Proof of Lemma 5.5. We prove this by contradiction.
Assume that Γ 0 has transverse crossings. This can happen if either two different curves in Γ 0 intersect

transversally or if one curve self-intersects transversally. First assume the former, i.e. assume that there exist
γ0
1 , γ

0
2 ∈ Γ 0 and s1, s2 ∈ T such that γ0

1(s1) = γ0
2(s2) and γ0

1
′(s1) �= ±γ0

2
′(s2). Without loss of generality we

take s1 = s2 = 0 ∈ T and γ0
1(0) = 0. For ease of notation in this proof we will identify T with the interval

[−1/2, 1/2] with the endpoints identified.
Because γ0

1 , γ
0
2 ∈ C1(T; R2) and γ0

1
′(s1) �= ±γ0

2
′(s2) there exists a δ > 0 such that

if s, t ∈ [−δ, δ] satisfy γ0
1(s) = γ0

2(t), then s = t = 0.

Define
D := (−δ, δ) × (−δ, δ) ⊂ R

2

and the function f ∈ C1(D; R2) by
f(s, t) := γ0

1(s) − γ0
2(t).

We compute
detDf(s, t) = γ0

2
′
(t) × γ0

1
′
(t)

and find that
detDf(0, 0) �= 0,

since we assumed that γ0
1
′ and γ0

2
′ are not parallel. Since f(s, t) = 0 iff (s, t) = (0, 0) and furthermore 0 �∈ f(∂D)

we can use [6], Definition 1.2, to compute the topological degree of f with respect to D:

d(f,D, 0) :=
∑

(s,t)∈f−1(0)

sgn (detDf(s, t)) = sgn (detDf(0, 0)) = ±1,

where the sign depends on the direction of parametrisation of γ0
1 and γ0

2 .
We know that Γn → Γ 0 in W 1,2 as n→ ∞, so in particular for n large enough there are curves γn

1 , γ
n
2 ∈ Γn

such that
γn

i → γ0
i in C(T; R2) as n→ ∞, i ∈ {1, 2}.

If we now define fn ∈ C1(D; R2) by

fn(s, t) := γn
1 (s) − γn

2 (t),

then we conclude by [6], Theorem 2.3 (1), that for large enough n,

d(fn, D, 0) = d(f,D, 0) �= 0.

By [6], Theorem 2.1, d(fn, D, 0) �= 0 implies that there exists (s0, t0) ∈ D such that fn(s0, t0) = 0, i.e. that
γn
1 (s0) = γn

2 (t0). This contradicts the fact that (γn
1 ) ∩ (γn

2 ) = ∅ and therefore we deduce that Γ 0 does not
contain two different curves that cross transversally.

Now assume that a single curve γ0 ∈ Γ 0 has a transversal self-intersection. Then we can repeat the above
argument with γ0

1 = γ0
2 = γ0 and s1 �= s2 to deduce that there exist γn ∈ Γn such that γ0

n → γ0 in C(T; R2)
and γn(s0) = γn(t0), which contradicts the bound on the global curvature of Γn.

We conclude that Γ 0 has no transverse crossings. �

This concludes the proof of the compactness result from Theorem 1.3.
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5.6. Proof of the lower bound of Theorem 1.3

Let [Γn] → [Γ ] be a sequence as in part 1 of Theorem 1.3. Then by the definition of the convergence of
equivalence classes, we can choose representatives Γ̃n ∈ [Γn] and Γ̃ ∈ [Γ ] such that Γ̃n → Γ̃ . We drop the
tildes for notational convenience. By the definition of convergence of systems of curves, for n large enough
Γn = {γn

i }m
i=1, i.e. the number m of curves is fixed, and each Γn can be reordered such that γn

i → γi in
W 1,2(T; R2) for each i.

Without loss of generality we assume that lim infn→∞ Gεn(Γn) <∞, and that for all N ,

GεN
(ΓN ) ≤ lim inf

n→∞ Gεn(Γn) + 1.

Since W 1,2(T; R2) ⊂ L∞(T; R2) and γn
i → γi in W 1,2(T; R2), the traces (γn

i ) are all contained in some large
bounded set. Therefore Theorem 1.2 applies, and there exists a subsequence along which γn

i converges in
W 1,2(T; R2) to limit curves γ0

i . Since limits are unique, we have γ0
i = γi.

We then calculate by (5.16)

G0(Γ ) =
m∑

i=1

G0(γi) ≤ 2
45B

m∑
i=1

lim inf
n→∞ Gεn(γn

i ) =
2

45B
lim inf
n→∞ Gεn(Γn).

The required liminf bound follows by remarking that by choosing ζ ∈ C∞
c (−1, 1) odd, satisfying (5.4), and close

to the function ζ̃(t) := t(1 − t2)/6, the number B can be chosen arbitrarily close to 2/45.
This concludes the proof of part 1 of Theorem 1.3.

5.7. Proof of the lim sup inequality from Theorem 1.3

For a single, fixed, simple, smooth, closed curve γ, the formal calculation of Section 2 can be made rigorous.
This is done in the context of open curves in Lemma 6.3, and the argument there can immediately be transferred
to closed curves. For such a curve therefore

lim
n→∞Gεn(γ) = G0(γ).

The only remaining issue is therefore to show that any Γ can be approximated by a system Γ̃ consisting of
smooth, disjoint, simple closed curves. This is the content of the following lemma.

Lemma 5.6. Let Γ be a W 2,2-system of closed curves without transversal crossings. Then there exists a number
m > 0, a sequence of systems

{
Γ j

}∞
j=1

, and a system Γ̃ = {γ̃k}m
k=1 equivalent to Γ such that the following holds:

(1) For all j ∈ N the system of curves Γ j = {γj
k}m

k=1 is a pairwise disjoint family of smooth simple closed
curves;

(2) For all 1 ≤ k ≤ m we have

γj
k → γ̃k in W 2,2(0, 1) as j → ∞. (5.17)

In particular we have [Γ j ] → [Γ ] in SC2,2 and G0([Γ j ]) → G0([Γ ]) as j → ∞.

This lemma is proved in [10], Lemma 8.2. By taking a diagonal sequence the lim sup inequality follows.
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6. Open curves

The aim of this section is to prove the following theorem:

Theorem 6.1. Let γ ∈ C∞([0, 1]; R2) satisfy
– γ is parametrised proportional to arclength;
– γ is exactly straight (i.e. γ′′ ≡ 0) on a neighbourhood of each end.

Then there exists a constant α > 0 (see (6.7)), independent of γ, such that

‖1‖2
H−1(Tεγ) =

2
3
ε3�(γ) + 2αε4 +

2
45
ε5
∫

γ

κ2 +O(ε6) as ε→ 0. (6.1)

6.1. Overview of the proof

The proof of Theorem 6.1 hinges on a division of the domain into separate parts. To make this precise we
introduce some notation.

First we note that the squared H−1-norm in two dimensions scales as (length)4, i.e. if Ω ⊂ R
2, then

‖1‖2
H−1(λΩ) = λ4‖1‖2

H−1(Ω).

Therefore the development (6.1) is scale-invariant under a rescaling of both γ and ε by a common factor
(i.e. a rescaling of Tεγ by this same factor); by multiplying both by �(γ)−1 we can assume that the curve γ has
length 1.

Next we define the normal ν and the curvature κ as in Section 3. We also use the parametrisation

Ψε(s, t) := γ(s) + εtν(s),

although for an open curve Ψε only covers the tubular neighbourhood without the end caps.
We let 0 < 2η < 1 be a length of parametrisation corresponding to the straight end sections, i.e. we choose η

such that
γ′′(s) = 0 for s ∈ [0, 2η] ∪ [1 − 2η, 1].

We then define
Ω− := Ψε

(
(η, 1 − η) × (−1, 1)

)
.

Note that Ω− contains the bulk of the tubular neighbourhood, and half of each of the straight sections near
the ends. The remainder, corresponding to two end caps with the other half of the straight sections, is

Ωη := Tεγ \ Ω−.

We call Γ = Ω− ∩Ωη the interface separating Ω− from Ωη. See Figure 3. The statement of Theorem 6.1 follows
from the following three lemmas. The first implies that we may cut up the domain Tεγ into Ω− and Ωη and
consider the two domains separately.

Lemma 6.2. Define the boundary data function ubc : Γ → R by

ubc(Ψε(s, t)) =
ε2

2
(1 − t2) for s ∈ {η, 1 − η}, t ∈ (−1, 1).

Then

‖1‖2
H−1(Tεγ) =

∫
Ω−

u− +
∫

Ωη

uη +O(e−η/ε), as ε→ 0,
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This follows from remarking that all Tεγ are contained in a large ball B(0, R), and that the solution of

−Δv = 1 in B(0, R), v = 0 on ∂B(0, R)

is a supersolution for u, independent of ε. Without loss of generality we can assume that M ≥ 1.
We next turn to the content of the lemma. Below we show that

‖u− − u‖L∞(Ω−) + ‖uη − u‖L∞(Ωη) = O(e−η/ε), (6.3)

from which the assertion follows, since∣∣∣∣∣
∫

Tεγ

u−
∫

Ω−
u− −

∫
Ωη

uη

∣∣∣∣∣ ≤
∫

Ω−
|u− u−| +

∫
Ωη

|u− uη|

≤ |Ω−|‖u− u−‖L∞(Ω−) + |Ωη|‖uη − u‖L∞(Ωη).

To show (6.3) we first consider an auxiliary problem, that we formulate as a lemma for future reference.

Lemma 6.5. Define the rectangle R and its boundary parts,

R := (−a, a) × (−b, b),
∂R1 := {(x, y) ∈ ∂R : |y| = b} ,
∂R2 := {(x, y) ∈ ∂R : |x| = a}

and let g ∈ C∞(R) ∩ C(R) satisfy ⎧⎨
⎩

−Δg = 0 on R,
g = 0 on ∂R1,
|g| ≤ 1 on ∂R2.

Then
|g(0, y)| ≤ 4e−a/b for all y ∈ (−b, b).

The proof of this lemma follows from remarking that

χ(x, y) :=
cosh(x/b) cos(y/b)

cosh(a/b) cos 1

is a supersolution for this problem, and therefore

|g(0, y)| ≤ χ(0, y) ≤ 4e−a/b for all y ∈ (−b, b).

We now apply this estimate to the straight sections at each end of γ. Assume that one of the straight sections
coincides with the rectangle R with a = η and b = ε (this amounts to a translation and rotation of γ). Note
that then the line segment {0}× (−ε, ε) is part of Γ. The function g(x, y) := 1

2M
−1[u(x, y)− 1

2 (ε2−y2)] satisfies
the conditions above, and therefore

|u(0, y) − 1
2 (ε2 − y2)| = |u(0, y) − ubc(0, y)| = O(e−η/ε), uniformly in y ∈ (−ε, ε).

At the other end a similar estimate holds, implying that

‖u− ubc‖L∞(Γ) = O(e−η/ε).

We then deduce the estimate (6.3) by applying the maximum principle to u− u− in Ω− and to u− uη in Ωη.
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6.3. Proof of Lemma 6.3

As in Section 4 we can write∫
Ω−

u− = ε

∫ 1−η

η

∫ 1

−1

u−(Ψε(s, t)) (1 − εtκ(s)) dsdt.

For the length of this section we set ω := (η, 1 − η) × (−1, 1). Writing f−(s, t) := u−(Ψε(s, t)), we find∫
Ω−

(
2u− − |∇u−|2

)
=
∫

ω

(
2f−ε(1 − εtκ) −∇f− ·Bε∇f−

)
, (6.4)

where

Bε(t, s) :=
(
ε
(
1 − εtκ(s)

)−1 0
0 ε−1

(
1 − εtκ(s)

) )
.

By (6.2) u− satisfies the Euler-Lagrange equation corresponding to the left hand side of (6.4). Therefore f−
satisfies the Euler-Lagrange equation for the right hand side:⎧⎨

⎩
− divBε∇f− = ε(1 − εtκ) on ω,
f−(s,±1) = 0 for s ∈ (η, 1 − η),
f−(s, t) = ε2

2 (1 − t2) for (s, t) ∈ {η, 1 − η} × (−1, 1).

We now define the trial function

fε(s, t) :=
ε2

2
(1 − t2) +

ε3

6
κ(s)t(1 − t2) +

ε4

24
κ2(s)(−3t4 + 2t2 + 1) (6.5)

for which we calculate that

divBε∇(f− − fε) = hε in ω,

(f− − fε)(s,±1) = 0, on ∂ω,

where the defect hε satisfies
‖hε‖L∞(ω) = O(ε4).

Below we prove that this estimate on hε implies that

‖f− − fε‖L2(ω) = O(ε5). (6.6)

Assuming this estimate for the moment, we find the statement of the lemma by the same calculation as in
Section 2,

ε

∫ 1−η

η

∫ 1

−1

fε(s, t) (1 − εtκ(s)) dsdt =
2
3
ε3(1 − 2η) +

2
45
ε5
∫

γ

κ2 +O(ε6),

and the remark that∣∣∣∣ε
∫ 1−η

η

∫ 1

−1

(f− − fε)(s, t) (1 − εtκ(s)) dsdt
∣∣∣∣ ≤ 4(1 − 2η)ε‖f− − fε‖L2((η,1−η)×(−1,1)).

To prove (6.6) we set g = f− − fε and apply Poincaré’s inequality in the t-direction:

∫ 1

−1

g2(s, t) dt ≤ 4
π2

∫ 1

−1

(g,t)2(s, t) dt,
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where g,t again denotes the partial derivative of g with respect to t. Since

ε−1 (1 − εtκ(s)) (g,t(s, t))
2 ≤ ∇g(s, t) ·Bε(s, t)∇g(s, t),

we then calculate∫ 1−η

η

∫ 1

−1

g2(s, t) dtds ≤ 4
π2

∫ 1−η

η

∫ 1

−1

(g,t)2(s, t) dtds

≤ 4
π2

(1 +O(ε))
∫ 1−η

η

∫ 1

−1

(g,t)2(s, t) (1 − εtκ(s)) dtds

≤ 4ε
π2

(1 +O(ε))
∫ 1−η

η

∫ 1

−1

∇g(s, t) ·Bε(s, t)∇g(s, t) dtds

= − 4ε
π2

(1 + O(ε))
∫ 1−η

η

∫ 1

−1

g(s, t) divBε(s, t)∇g(s, t) dtds

≤ 4ε
π2

(1 +O(ε))‖g‖L2(ω)‖hε‖L2(Ω),

so that
‖g‖L2(ω) ≤ 4ε

π2
(1 +O(ε))‖hε‖L2(Ω) = O(ε5).

6.4. Proof of Lemma 6.4

The domain Ωη consists of two unconnected parts. We prove the result for just one of them, the part at the
end γ(1). We assume without loss of generality that

γ(1) = 0 and γ ([1 − 2η, 1]) =
{
(x, 0) ∈ R

2 : −2η ≤ x ≤ 0
}
.

Then the corresponding end of Ωη is a reduction by a factor ε of the domain

ωη := (−η/ε, 0)× (−1, 1) ∪B(0, 1)

which itself is a truncation of the set

ω := (−∞, 0) × (−1, 1) ∪B(0, 1).

The sets ωη and ω are depicted in Figure 4.
We also set vη(x, y) := ε−2uη(εx, εy), so that

∫
Ωη

uη = ε4
∫

ωη

vη.

Set
ϕ(x, y) :=

1
2
(1 − y2).

The function ψη := vη − ϕ then satisfies

⎧⎪⎨
⎪⎩

−Δψη = 0 in ωη,

ψη = −ϕ on ∂ωη \ {−η/ε} × (−1, 1),

ψη = 0 on ∂ωη ∩ {−η/ε} × (−1, 1),
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(a) The domain ω in Section 6.4.

(b) The domain ωη in Section 6.4.

Figure 4. The domains ω and ωη.

and we have

ε−4

∫
Ωη

uη =
∫

ωη

vη =
∫

ωη

ϕ+
∫

ωη

ψη.

The first integral on the right-hand side is easily calculated:∫
ωη

ϕ =
2
3
η

ε
+

3
16
π.

Since we are taking the limit ε → 0, in which the set ωη converges to the set ω, we also define ψ ∈
C∞ (ω) ∩ C (ω) to be the unique solution of⎧⎪⎨

⎪⎩
−Δψ = 0 in ω,
ψ = −ϕ on ∂ω,

‖ψ‖L∞(ω) <∞,

and the constant

α :=
∫

ω

ψ +
3
16
π. (6.7)

Note that by the maximum principle ‖ψ‖L∞(ω) ≤ ‖ψ‖L∞(∂ω) = 1/2.
Applying Lemma 6.5 to the rectangle (2x, 0) × (−1, 1) ⊂ ω (with x < 0) we find the decay estimate

|ψ(x, y)| ≤ 2e−x for all y ∈ (−1, 1) and all x < 0. (6.8)

This implies that ∫
ω\ωη

|ψ| ≤ 4e−η/ε.

This estimate also provides an estimate of ψ − ψη. Note that ψ = ψη = 0 on all of ∂ωη with the exception of
{−η/ε} × (−1, 1). Applying (6.8) to this latter set we find that

|ψ − ψη| ≤ 2e−η/ε on all of ∂ωη

and since ψ − ψη is harmonic on ωη we conclude by the maximum principle that

‖ψ − ψη‖L∞(ωη) ≤ 2e−η/ε.
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The statement of Lemma 6.4 then follows by remarking that∫
ωη

uη =
2
3
ηε3 +

3
16
πε4 + ε4

∫
ω

ψ +R,

where the rest term R satisfies

ε−4|R| =

∣∣∣∣∣
∫

ωη

ψη −
∫

ω

ψ

∣∣∣∣∣ ≤
∫

ωη

|ψη − ψ| +
∫

ω\ωη

|ψ| ≤ 2
(

2η
ε

+
π

2

)
e−η/ε + 2e−η/ε.

The only remaining assertion of the lemma is that α > 0. A finite-element calculation provides the estimate

α ≈ 0.139 917;

here we only prove that α > 0. Define the harmonic comparison function

ψ̃(x, y) = −0.112 · eπx/2 cos(πy/2) + 0.0019 · e3πx/2 cos(3πy/2)− 0.00008 · e5πx/2 cos(5πy/2)

− 0.056 · ex cos y,

for which we can calculate (partially by numerical approximation of the appropriate one-dimensional integral)∫
ω

ψ̃ ≈ −0.5875 >
−3
16
π.

We have ψ ≥ ψ̃ on ∂ω, implying that

α =
3
16
π +

∫
ω

ψ ≥ 3
16
π +

∫
ω

ψ̃ > 0.
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