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Chapter 1

Introduction

In this first chapter, we give an introduction to random graphs and complex networks. The
advent of the computer age has incited an increasing interest in the fundamental properties
of real networks. Due to the increased computational power, large data sets can now easily
be stored and investigated, and this has had a profound impact in the empirical studies on
large networks. A striking conclusion from this empirical work is that many real networks
share fascinating features. Many are small worlds, in the sense that most vertices are
separated by relatively short chains of edges. From an efficiency point of view, this general
property could perhaps be expected. More surprisingly, many networks are scale free,
which means that their degrees are size independent, in the sense that the empirical degree
distribution is almost independent of the size of the graph, and the proportion of vertices
with degree k is close to proportional to k−τ for some τ > 1, i.e., many real networks
appear to have power-law degree sequences. These realisations have had fundamental
implications for scientific research on networks. This research is aimed to both understand
why many networks share these fascinating features, and also what the properties of these
networks are.

The study of complex networks plays an increasingly important role in science. Exam-
ples of such networks are electrical power grids and telephony networks, social relations,
the World-Wide Web and Internet, collaboration and citation networks of scientists, etc.
The structure of such networks affects their performance. For instance, the topology of
social networks affects the spread of information and disease (see e.g., [170]). The rapid
evolution in, and the success of, the Internet have incited fundamental research on the
topology of networks. See [19] and [175] for expository accounts of the discovery of net-
work properties by Barabási, Watts and co-authors. In [151], you can find some of the
original papers on network modeling, as well as on the empirical findings on them.

One main feature of complex networks is that they are large. As a result, their complete
description is utterly impossible, and researchers, both in the applications and in math-
ematics, have turned to their local description: how many vertices do they have, and by
which local rules are vertices connected to one another? These local rules are probabilistic,
which leads us to consider random graphs. The simplest imaginable random graph is the
Erdős-Rényi random graph, which arises by taking n vertices, and placing an edge between
any pair of distinct vertices with some fixed probability p. We give an introduction to the
classical Erdős-Rényi random graph and informally describe the scaling behavior when the
size of the graph is large in Section 1.5. As it turns out, the Erdős-Rényi random graph
is not a good model for a complex network, and in these notes, we shall also study exten-
sions that take the above two key features of real networks into account. These will be
introduced and discussed informally in Section 1.6.

1.1 Complex networks

Complex networks have received a tremendous amount of attention in the past decade.
In this section, we use the Internet as an example of a real network, and illustrate the
properties of real networks using the Internet as a key example. For an artist’s impression
of the Internet, see Figure 1.1.

Measurements have shown that many real networks share two fundamental properties.
The first fundamental network property is the fact that typical distances between vertices
are small. This is called the ‘small-world’ phenomenon (see [174]). For example, in Internet,
IP-packets cannot use more than a threshold of physical links, and if distances in the
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2 Introduction

Figure 1.1: The Internet topology in 2001 taken from
http://www.fractalus.com/steve/stuff/ipmap/.

Internet would be larger than this threshold, e-mail service would simply break down.
Thus, the graph of the Internet has evolved in such a way that typical distances are
relatively small, even though the Internet is rather large. For example, as seen in Figure
1.2, the AS count, which is the number of Autonomous Systems (AS) which are traversed
by an e-mail data set, is most often bounded by 7. In Figure 1.3, the hopcount, which
is the number of routers traversed by an e-mail message between two uniformly chosen
routers, is depicted.

The second, maybe more surprising, fundamental property of many real networks is
that the number of vertices with degree k falls off as an inverse power of k. This is called
a ‘power-law degree sequence’, and resulting graphs often go under the name ‘scale-free
graphs’, which refers to the fact that the asymptotics of the degree sequence is independent
of its size. We refer to [7, 73, 149] and the references therein for an introduction to
complex networks and many examples where the above two properties hold. The second
fundamental property is visualized in Figure 1.4, where the degree distribution is plotted
on log-log scale. Thus, we see a plot of log k 7→ logNk, where Nk is the number of vertices
with degree k. When Nk is proportional to an inverse power of k, i.e., when, for some
normalizing constant cn and some exponent τ ,

Nk ∼ cnk−τ , (1.1.1)

then
logNk ∼ log cn − τ log k, (1.1.2)

so that the plot of log k 7→ logNk is close to a straight line. Here, and in the remainder
of this section, we write ∼ to denote an uncontrolled approximation. Also, the power
exponent τ can be estimated by the slope of the line, and, for the AS-data, this given as
estimate of τ ≈ 2.15− 2.20. Naturally, we must have that∑

k

Nk = n, (1.1.3)

so that it is reasonable to assume that τ > 1.
Interestingly, in the AS-count, various different data sets (which focus on different parts

of the Internet) show roughly the same picture for the AS-count. This shows that the
AS-count is somewhat robust, and it hints at the fact that the AS graph is relatively
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Figure 1.2: Number of AS traversed in hopcount data. Data courtesy of Hongsuda Tang-
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Figure 1.3: Internet hopcount data. Data courtesy of H. Tangmunarunkit.
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Figure 1.4: Degree sequences AS domains on 11-97 and 12-98 on log-log scale [88]: Power-
law degrees with exponent ≈ 2.15− 2.20.
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dqdo|vlv ri wkh ghjuhh judsk prgho +vhf1 LLL,1 Wkh duw ri
prgholqj frqvlvwv lq sursrvlqj d prgho dv vlpsoh dqg sdu0
vlprqlrxv lq lwv sdudphwhuv dv srvvleoh wkdw pdwfkhv uhdolw|
dv forvh dv srvvleoh1 Wr �uvw rughu/ wkh sorwv lq Fkhq hw do1

^9` vwloo ghprqvwudwh d srzhu0olnh ehkdylru lq wkh ghjuhh glv0
wulexwlrq/ dowkrxjk qrw d shuihfw rqh1 Wkhuhiruh/ zh kdyh
frqvlghuhg khuh wkh prvw jhqhudo ghvfulswlrq ri srzhu0olnh
glvwulexwlrq ixqfwlrqv/ vshfl�hg lq +5,/ zklfk doorzv ghyl0
dwlrqv ri wkh srzhu0odz lq uhjlphv ri vpdoohu ghjuhh1 Wkh
ehdxw| ri dq dv|pswrwlf dqdo|vlv lv wkdw wkhvh vpdoo gh0
yldwlrqv iurp dq h{dfw sro|qrpldo odz rqo| sod| d vhfrqg
rughu uroh1 Khqfh/ zh eholhyh wkhuh lv vwloo ydoxh lq vwxg|lqj
wkh ghjuhh judsk1

Lq wklv sdshu/ zh irfxv sulpdulo| rq wkh prgholqj ri wkh
DV0krsfrxqw kDV 1 Zh sursrvh wzr gl�huhqw prghov= wkh
ghjuhh judsk +vhf1 LLL, iru prgholqj wkh DV0krsfrxqw dqg
wkh udqgrp judsk zlwk sro|qrpldo olqn zhljkwv +vhf1 YL,
dv d prgho iru wkh LS0krsfrxqw lq dq DV1 Hduolhu zrun
+^48` wr ^4<`, zdv pruh eldvhg wr prgho wkh LS krsfrxqw
kLS 1 Vhfwlrq Y sorwv vlpxodwlrq uhvxowv ri wkh DV krs0
frxqw glvwulexwlrq ghulyhg iurp wkh ghjuhh judsk dqg frp0
sduhv wkhvh zlwk wkh suhvhqwhg Lqwhuqhw phdvxuhphqwv ri
vhfwlrq LL1 Wkh qryhow| ri wkh sdshu olhv lq wkh glvfxvvlrq
ri wzr ixqgdphqwdoo| gl�huhqw prghov wkdw kdyh erwk wkh
srwhqwldo wr pdwfk wkh �uvw rughu fkdudfwhulvwlfv +H ^kQ `
dqg ydu ^kQ `, ri wkh DV dqg LS krsfrxqw/ uhvshfwlyho|1 Lq
dgglwlrq/ zh suhvhqw qhz dqg pruh suhflvh uhvxowv rq wkh
ghjuhh judsk wkdq suhylrxvo| rewdlqhg e| Qhzpdq hw do1

^46` ru Uhlwwx dqg Qruurv ^47`/ exw suhvhqw wkh lqyroyhg
pdwkhpdwlfdo surriv hovhzkhuh ^53`1 Rxu frqvwuxfwlrq ri
wkh ghjuhh judsk doprvw dozd|v dyrlgv +xquhdolwlvwlf, vhoi0
orrsv/ zklfk duh wrohudwhg lq ^46` dqg ^47`1 Ilqdoo|/ zh sur0
srvh dq lqwhjudwhg prgho iru wkh hqg0wr0hqg LS0krsfrxqw
zklfk lv edvhg rq wkh wzr0ohyho urxwlqj klhudufk| lq Lqwhu0
qhw1
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Wkh Urxwlqj Lqirupdwlrq Vhuylfh +ULV, surylghv lqiru0
pdwlrq derxw EJS urxwlqj lq wkh Lqwhuqhw1 Wkh ULV lv d
surmhfw ri ULSH +vhh iru pruh ghwdlov ^54`, dqg wkh ULV fro0
ohfwv urxwlqj lqirupdwlrq dw gl�huhqw orfdwlrqv lq wkh Lqwhu0
qhw1 Wkh froohfwlrq rffxuv dw wkh Uhprwh Urxwh Froohfwruv1
Lq wkh Iljxuh 4/ gdwd vhwv ri wkuhh Uhprwh Urxwh Froohfwruv
+ULSH/ DPVL[4 dqg OLQ[5, duh xvhg iru wkh frpsxwdwlrq
ri wkh suredelolw| ghqvlw| ri wkh DV krsfrxqw kDV 1 Wkh
uhvxowv vkrzq lq Iljxuh 4 djuhh zhoo zlwk rwkhu uhsruwhg
phdvxuhphqwv rq wkh DV krsfrxqw/ vhh h1j1 e| Eurlgr hw

do1 ^6/ Ilj1 7`1 Zh irxqg wkdw wkh DV krsfrxqw lv hyhq pruh
vwdeoh dqg pruh dolnh ryhu gl�huhqw phdvxuhphqw vlwhv wkdq
wkh LS krsfrxqw1 Wkh lqwhuhvwlqj glvwlqjxlvklqj idfwru eh0

wzhhq kDV dqg kLS olhv lq wkh udwlr � @ H^k`
ydu^k` 1 Iru kLS /

zh irxqg dssur{lpdwho| �LS � 4 +zlwk yduldwlrqv ri derxw
316 ehwzhhq gl�huhqw phdvxuhphqw vlwhv,1 Iru kDV / rq wkh
rwkhu kdqg/ zh irxqg �DV � 6= Wkhvh revhuydwlrqv vxj0
jhvw wkdw/ wr �uvw rughu/ wkh LS krsfrxqw kLS lv forvh wr
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d Srlvvrq udqgrp yduldeoh dv h{sodlqhg lq ^48` dqg ixuwkhu
hoderudwhg lq vhf1 YL dqg YLL/ zkloh wkh DV krsfrxqw kDV
ehkdyhv gl�huhqwo|1
Lqvsluhg e| wkhvh revhuydwlrqv/ wzr edvlfdoo| gl�huhqw

prghov zloo eh glvfxvvhg= wkh ghjuhh judsk lq vhf1 LLL dv d
prgho iru wkh DV judsk dqg wkh udqgrp judsk zlwk sro|0
qrpldo olqn zhljkwv lq vhf1 YL dv prgho iru wkh LS0krsfrxqw
lq dq DV1
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Wkh �uvw dssurdfk wr prgho wkh DV krsfrxqw vwduwv e|
frqvlghulqj d judsk zlwk Q qrghv frqvwuxfwhg iurp d jlyhq
ghjuhh vhtxhqfh/

G4> G5> = = = > GQ

Kdyho dqg Kdnlpl ^8/ ss1 49` kdyh sursrvhg dq dojrulwkp wr
frqvwuxfw iurp d jlyhq ghjuhh vhtxhqfh d frqqhfwhg judsk
zlwkrxw vhoi0orrsv1 Pruhryhu/ wkh| ghprqvwudwh wkdw/ li
wkh ghjuhh vhtxhqfh vdwlv�hv fhuwdlq frqvwudlqwv vxfk dvSQ

m@4Gm @ 5H zkhuh H lv wkh qxpehu ri hgjhv/ wkhq wkhlu
dojrulwkp dozd|v �qgv wkdw judsk1 Khqfh/ e| vwudljkwiru0
zdug surjudpplqj/ wkh krsfrxqw glvwulexwlrq fdq eh vlp0
xodwhg lq d fodvv ri judskv zlwk dq l1l1g ghjuhh vhtxhqfh
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Figure 1.5: Number of AS traversed in various data sets. Data courtesy of Piet Van
Mieghem.

homogenous. See also Figure 1.5. For example, the AS-count between AS’s in North-
America on the one hand, and between AS’s in Europe, are quite close to the one of the
entire AS. This implies that the dependence on geometry of the AS-count is rather weak,
even though one would expect geometry to play a role. As a result, most of the models for
the Internet, as well as for the AS graph, ignore geometry altogether.

The observation that many real networks have the above properties have incited a burst
of activity in network modeling. Most of the models use random graphs as a way to model
the uncertainty and the lack of regularity in real networks. In these notes, we survey some
of the proposals for network models. These models can be divided into two distinct types:
‘static’ models, where we model a graph of a given size as a time snap of a real network,
and ‘dynamic’ models, where we model the growth of the network. Static models aim to
describe real networks and their topology at a given time instant, and to share properties
with the networks under consideration. Dynamic models aim to explain how the networks
came to be as they are. Such explanations often focus on the growth of the network as
a way to explain the power law degree sequences by means of ‘preferential attachment’
growth rules, where added vertices and links are more likely to be attached to vertices that
already have large degrees.

When we would like to model a power-law relationship between the number of vertices
with degree k and k, the question is how to appropriately do so. In Chapters 6, 7 and 8,
we discuss a number of models which have been proposed for graphs with a given degree
sequence. For this, we let FX be the distribution function of an integer random variable
X, and we denote its probability mass function by {fk}∞k=1, so that

FX(x) = P(X ≤ x) =
∑
k≤x

fk. (1.1.4)

We wish to obtain a random graph model where Nk, the number of vertices with degree k,
is roughly equal to nfk, where we recall that n is the size of the network. For a power-law
relationship as in (1.1.1), we should have that

Nk ∼ nfk, (1.1.5)

so that
fk ∝ k−τ , (1.1.6)

where, to make f = {fk}∞k=1 a probability measure, we take τ > 1, and ∝ in (1.1.6)
denotes that the left-hand side is proportional to the right-hand side. Now, often (1.1.6)
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is too restrictive, and we wish to formulate a power-law relationship in a weaker sense. A
different formulation could be to require that

1− FX(x) =
∑
k>x

fk ∝ x1−τ , (1.1.7)

for some power-law exponent τ > 1. Indeed, (1.1.7) is strictly weaker than (1.1.6), as
indicated in the following exercise:

Exercise 1.1. Show that when (1.1.6) holds with equality, then (1.1.7) holds. Find an
example where (1.1.7) holds in the form that there exists a constant C such that

1− FX(x) = Cx1−τ (1 + o(1)), (1.1.8)

but that (1.1.6) fails.

An even weaker form of a power-law relation is to require that

1− FX(x) = LX(x)x1−τ , (1.1.9)

where the function x 7→ LX(x) is a so-called slowly varying function. Here, a function
x 7→ `(x) is called slowly varying when, for all constants c > 0,

lim
x→∞

`(cx)

`(x)
= 1. (1.1.10)

Exercise 1.2. Show that x 7→ log x and, for γ ∈ (0, 1), x 7→ e(log x)γ are slowly varying,

but that when γ = 1, x 7→ e(log x)γ is not slowly varying.

The above discussion on real networks has been illustrated by using the Internet as
a prime example. We close the discussion by giving references to the literature on the
empirical properties of the Internet:

1. Siganos, Faloutsos, Faloutsos and Faloutsos [165] take up where [88] have left, and
further study power laws arising in Internet.

2. In [111], Jin and Bestavros summarize various Internet measurements and study
how the small-world properties of the AS graph can be obtained from the degree
properties and a suitable way of connecting vertices.

3. In [182], Yook, Jeong and Barabási find that the Internet topology depends on
geometry, and find that the fractal dimension is equal to Df = 1.5. They continue to
propose a model for the Internet growth that predicts this behavior using preferential
attachment including geometry. We shall discuss this in more detail in Chapter 8.

4. A critical look at the proposed models for the Internet, and particularly the sugges-
tion of preferential attachment in Internet was given by Willinger, Govindan, Paxson
and Shenker in [179]. Preferential attachment models shall be described informally
in Section 1.1, and are investigated in more detail in Chapters 8 and ??. The
authors conclude that the Barabási-Albert model does not model the growth of the
AS graph appropriately, particularly since the degrees of the receiving vertices in the
AS graph is even larger than for the Barabási-Albert model. This might also explain
why the power-law exponent, which is around 2.2 for the AS-graph, is smaller than
the power-law exponent in the Barabási-Albert model, which is 3 (see Chapter 8 for
this result).
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5. An interesting topic of research receiving substantial attention is how the Internet
behaves under malicious attacks or random breakdown [66, 67]. The conclusion is
that the topology is critical for the vulnerability under intentional attacks. When
vertices with high degrees are taken out, then the connectivity properties of random
graph models for the Internet cease to have the necessary connectivity properties.

In the remainder of this section, we shall describe a number of other examples of real net-
works where the small-world phenomenon and the power-law degree sequence phenomenon
are observed:

1. ‘Six Degrees of Separation’ and social networks.

2. Kevin Bacon Game and the movie actor network.

3. Erdős numbers and collaboration networks.

4. The World-Wide Web.

In this section, we shall discuss some of the empirical findings in the above applications,
and discuss the key publications on their empirical properties. Needless to say, one could
easily write a whole book on each of these examples separately, so we cannot dive into the
details too much.

1.1.1 Six degrees of separation and social networks

In 1967, Stanley Milgram performed an interesting experiment. See

http://www.stanleymilgram.com/milgram.php

for more background on the psychologist Milgram, whose main topic of study was the
obedience of people, for which he used a very controversial ‘shock machine’.

In his experiment, Milgram sent 60 letters to various recruits in Wichita, Kansas, U.S.A.,
who were asked to forward the letter to the wife of a divinity student living at a specified
location in Cambridge, Massachusetts. The participants could only pass the letters (by
hand) to personal acquaintances who they thought might be able to reach the target, either
directly, or via a “friend of a friend”. While fifty people responded to the challenge, only
three letters (or roughly 5%) eventually reached their destination. In later experiments,
Milgram managed to increase the success rate to 35% and even 95%, by pretending that
the value of the package was high, and by adding more clues about the recipient, such as
his/her occupation. See [139, 173] for more details.

The main conclusion from the work of Milgram was that most people in the world are
connected by a chain of at most 6 “friends of friends”, and this phrase was dubbed “Six
Degrees of Separation”. The idea was first proposed in 1929 by the Hungarian writer
Frigyes Karinthy in a short story called ‘Chains’ [113], see also [151] where a translation
of the story is reproduced. Playwright John Guare popularized the phrase when he chose
it as the title for his 1990 play. In it, Ousa, one of the main characters says:

“Everybody on this planet is separated only by six other people. Six degrees of
separation. Between us and everybody else on this planet. The president of
the United states. A gondolier in Venice... It’s not just the big names. It’s
anyone. A native in the rain forest. (...) An Eskimo. I am bound to everyone
on this planet by a trail of six people. It is a profound thought.”.

The fact that any number of people can be reached by a chain of at most 6 intermediaries
is rather striking. It would imply that two people in as remote areas as Greenland and the
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Amazone could be linked by a sequence of at most 6 “friends of friends”. This makes the
phrase “It’s a small world!” very appropriate indeed! Another key reference in the small-
world work in social sciences is the paper by Pool and Kochen [161], which was written in
1958, and has been circulating around the social sciences ever since, before it was finally
published in 1978.

The idea of Milgram was taken up afresh in 2001, with the added possibilities of the
computer era. In 2001, Duncan Watts, a professor at Columbia University, recreated Mil-
gram’s experiment using an e-mail message as the“package” that needed to be delivered.
Surprisingly, after reviewing the data collected by 48,000 senders and 19 targets in 157
different countries, Watts found that again the average number of intermediaries was six.
Watts’ research, and the advent of the computer age, has opened up new areas of inquiry
related to six degrees of separation in diverse areas of network theory such as power grid
analysis, disease transmission, graph theory, corporate communication, and computer cir-
cuitry. See the web site

http://smallworld.columbia.edu/project.html

for more information on the Small-World Project conducted by Watts. See [174] for
a popular account of the small-world phenomenon. Related examples of the small-world
phenomenon can be found in [7] and [149].

To put the idea of a small-world into a network language, we define the vertices of the
social graph to be the inhabitants of the world (so that n ≈ 6 billion), and we draw an
edge between two people when they know each other. Needless to say, we should make it
more precise what it means to “know each other”. Possibilities here are various. We could
mean that the two people involved have shaken hands at some point, or that they know
each other on a first name basis.

One of the main difficulties of social networks is that they are notoriously hard to
measure. Indeed, questionaires can not be trusted easily, since people have a different idea
what a certain social relation is. Also, questionaires are quite physical, and they take time
to collect. As a result, researchers are quite interested in examples of social networks that
can be measured, for example due to the fact that they are electronic. Examples are e-mail
networks or social networks such as Hyves. Below, I shall give a number of references to
the literature for studies of social networks.

1. Amaral, Scala, Bartélémy and Stanley [14] calculated degree distributions of several
networks, among others a friendship network of 417 junior high school students and a
social network of friendships between Mormons in Provo, Utah. For these examples,
the degree distributions turn out to be closer to a normal distribution than to a
power law.

2. In [79], Ebel, Mielsch and Bornholdt investigate the topology of an e-mail network
of an e-mail server at the University of Kiel over a period of 112 days. The authors
conclude that the degree sequence obeys a power law, with an exponential cut-off
for degrees larger than 200. The estimated degree exponent is 1.81. The authors
note that since this data set is gathered at a server, the observed degree of the
external vertices is an underestimation of their true degree. When only the internal
vertices are taken into account, the estimate for the power-law exponent decreases
to 1.32. When taking into account that the network is in fact directed, the power-
law exponent of the in-degree is estimated at 1.49, while the out-degrees have an
exponent of 2.03. The reported errors in the estimation of the exponents are between
0.10 and 0.18.

3. There are many references to the social science literature on social networks in the
book by Watts [175], who now has a position in social sciences. In [150], Newman,
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Kevin Bacon Number # of actors
0 1
1 1902
2 160463
3 457231
4 111310
5 8168
6 810
7 81
8 14

Table 1.1: Kevin Bacon Numbers.

Watts and Strogatz survey various models for social networks that have appeared in
their papers. Many of the original references can also be found in the collection in
[151], along with an introduction explaining their relevance.

4. Liljeros, Edling, Amaral and Stanley [130] investigated sexual networks in Sweden,
where two people are connected when they have had a sexual relation in the previous
year, finding that the degree distributions of males and females obey power laws, with
estimated exponents of τfem ≈ 2.5 and τmal ≈ 2.3. When extending to the entire
lifetime of the Swedish population, the estimated exponents decrease to τfem ≈ 2.1
and τmal ≈ 1.6. The latter only holds in the range between 20 and 400 contacts, after
which it is truncated. Clearly, this has important implications for the transmittal of
sexual diseases.

1.1.2 Kevin Bacon Game and movie actor network

A second example of a large network in the movie actor network. In this example, the
vertices are movie actors, and two actors share an edge when they have played in the same
movie. This network has attracted some attention in connection to Kevin Bacon, who
appears to be reasonably central in this network. The Computer Science Department at
Virginia University has an interesting web site on this example, see The Oracle of Bacon
at Virginia web site on

http://www.cs.virginia.edu/oracle/.

See Table 1.1 for a table of the Kevin Bacon Numbers of all the actors in this network.
Thus, there is one actor at distance 0 from Kevin Bacon (namely, Kevin Bacon himself),
1902 actors have played in a movie starring Kevin Bacon, and 160463 actors have played
in a movie in which another movie star played who had played in a movie starring Kevin
Bacon. In total, the number of linkable actors is equal to 739980, and the Average Kevin
Bacon number is 2.954. In search for “Six Degrees of Separation”, one could say that most
pairs of actors are related by a chain of co-actors of length at most 6.

It turns out that Kevin Bacon is not the most central vertex in the graph. A more
central actor is Sean Connery. See See Table 1.2 for a table of the Sean Connery Numbers.
By computing the average of these numbers we see that the average Connery Number is
about 2.731, so that Connery a better center than Bacon. Mr. Bacon himself is the 1049th
best center out of nearly 800,000 movie actors, which makes Bacon a better center than
99% of the people who have ever appeared in a feature film.

On the web site http://www.cs.virginia.edu/oracle/, one can also try out one’s own
favorite actors to see what Bacon number they have, or what the distance is between them.

We now list further studies of the movie actor network.
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Sean Connery Number # of actors
0 1
1 2272
2 218560
3 380721
4 40263
5 3537
6 535
7 66
8 2

Table 1.2: Sean Connery Numbers

1. Watts and Strogatz [176] investigate the small-world nature of the movie-actor net-
work, finding that it has more clustering and shorter distances than a random graph
with equal edge density. Amaral et al. looked closer at the degree distribution to
conclude that the power-law in fact has an exponential cut-off.

2. Albert and Barabási [20] use the movie actor network as a prime example of a
network showing power-law degrees. The estimated power-law exponent is 2.3.

1.1.3 Erdős numbers and collaboration networks

A further example of a complex network that has drawn substantial attention is the
collaboration graph in mathematics. This is popularized under the name “Erdős number
project”. In this network, the vertices are mathematicians, and there is an edge between
two mathematicians when they have co-authored a paper. See

http://www.ams.org/msnmain/cgd/index.html

for more information. The Erdős number of a mathematician is how many papers that
mathematician is away from the legendary mathematician Paul Erdős, who was extremely
prolific with around 1500 papers and 509 collaborators. Of those that are connected by a
trail of collaborators to Erdős, the maximal Erdős number is claimed to be 15.

On the above web site, one can see how far one’s own professors are from Erdős. Also,
it is possible to see the distance between any two mathematicians.

The Erdős numbers has also attracted attention in the literature. In [70, 71], the authors
investigate the Erdős numbers of Nobel prize laureates, as well as Fields medal winners,
to come to the conclusion that Nobel prize laureates have Erdős numbers of at most 8 and
averaging 4-5, while Fields medal winners have Erdős numbers of at most 5 and averaging
3-4. See also

http://www.oakland.edu/enp

for more information on the web, where we also found the following summary of the collab-
oration graph. This summary dates back to July, 2004. An update is expected somewhere
in 2006.

In July, 2004, the collaboration graph consisted of about 1.9 million authored papers in
the Math Reviews database, by a total of about 401,000 different authors. Approximately
62.4% of these items are by a single author, 27.4% by two authors, 8.0% by three authors,
1.7% by four authors, 0.4% by five authors, and 0.1% by six or more authors. The largest
number of authors shown for a single item is in the 20s. Sometimes the author list includes
“et al.” so that in fact, the number of co-authors is not always precisely known.
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Erdős Number # of Mathematicians
0 1
1 504
2 6593
3 33605
4 83642
5 87760
6 40014
7 11591
8 3146
9 819
10 244
11 68
12 23
13 5

Table 1.3: Erdős Numbers

The fraction of items authored by just one person has steadily decreased over time,
starting out above 90% in the 1940s and currently standing at under 50%. The entire
graph has about 676,000 edges, so that the average number of collaborators per person is
3.36. In the collaboration graph, there is one large component consisting of about 268,000
vertices. Of the remaining 133,000 authors, 84,000 of them have written no joint papers,
and these authors correspond to isolated vertices. The average number of collaborators for
people who have collaborated is 4.25. The average number of collaborators for people in the
large component is 4.73. Finally, the average number of collaborators for people who have
collaborated but are not in the large component is 1.65. There are only 5 mathematicians
with degree at least 200, the largest degree is for Erdős, who has 509 co-authors. The
diameter of the largest connected component is 23.

The clustering coefficient of a graph is equal to the fraction of ordered triples of ver-
tices a, b, c in which edges ab and bc are present that have edge ac present. In other
words, the clustering coefficient describes how often are two neighbors of a vertex adjacent
to each other. The clustering coefficient of the collaboration graph of the first kind is
1308045/9125801 = 0.14. The high value of this figure, together with the fact that average
path lengths are small, indicates that this graph is a small world graph.

For the Erdős numbers, we refer to Table 1.3. The median Erdős number is 5, the mean
is 4.65, and the standard deviation is 1.21. We note that the Erdős number is finite if
and only if the corresponding mathematician is in the largest connected component of the
collaboration graph.

See Figure 1.6 for an artistic impression of the collaboration graph in mathematics taken
from

http://www.orgnet.com/Erdos.html

and Figure 1.7 for the degree sequence in the collaboration graph.
We close this section by listing interesting papers on collaboration graphs.

1. In [25], Batagelj and Mrvar use techniques for the analysis of large networks, such as
techniques to identify interesting subgroups and hierarchical clustering techniques,
to visualize further aspects of the Erdős collaboration graph.

2. Newman has studied several collaboration graphs in a sequence of papers that we
shall discuss now. In [148], he finds that several of these data bases are such that
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Figure 1.6: An artist impression of the collaboration graph in mathematics.
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Figure 1.7: The degree sequence in the collaboration graph.
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the degrees have power-laws with exponential cut-offs. The data bases are various
arXiv data bases in mathematics and theoretical physics, the MEDLINE data base
in medicine, and the ones in high-energy physics and theoretical computer science.
Also, the average distance between scientists is shown to be rather small, which is
a sign of the small-world nature of these networks. Finally, the average distance is
compared to logn/ log z, where n is the size of the collaboration graph and z is the
average degree. The fit shows that these are quite close. Further results are given
in [147].

3. In Barabási et al. [22], the evolution of scientific collaboration graphs is investigated.
The main conclusion is that scientists are more likely to write papers with other
scientists who have written many papers, i.e., there is a tendency to write papers
with others who have already written many. This preferential attachment is shown
to be a possible explanation for the existence of power laws in collaboration networks
(see Chapter 8).

1.1.4 The World-Wide Web

A final example of a complex network that has attracted enormous attention is the
World-Wide Web (WWW). The elements of the WWW are web pages, and there is a
directed connection between two web pages when the first links to the second. Thus, while
the WWW is virtual, the Internet is physical. With the world becoming ever more virtual,
and the WWW growing at tremendous speed, the study of properties of the WWW has
grown as well. It is of great practical importance to know what the structure of the WWW
is, for example, in order for search engines to be able to explore it. A notorious, but rather
interesting, problem is the Page-Rank problem, which is the problem to rank web pages
on related topics such that the most important pages come first. Page-Rank is claimed to
be the main reason of the success of Google, and the inventors of Page-Rank were also the
founders of Google (see [51] for the original reference).

In [8], the authors Albert, Jeong and Barabási study the degree distribution to find that
the in-degrees obey a power law with exponent τin ≈ 2.1 and the out-degrees obey a power
law with exponent τout ≈ 2.45, on the basis of several Web domains, such as nd.edu,
mit.edu and whitehouse.gov, respectively the Web domain of the home university of
Barabási at Notre Dame, the Web domain of MIT and of the White House. Further,
they investigated the distances between vertices in these domains, to find that distances
within domains grown linearly with the log of the size of the domains, with an estimated
dependence of d = 0.35 + 2.06 logn, where d is the average distance between elements in
the part of the WWW under consideration, and n is the size of the subset of the WWW.
Extrapolating this relation to the estimated size of the WWW at the time, n = 8 · 108,

Albert, Jeong and Barabási [8] concluded that the diameter of the WWW was 19 at the
time, which prompted the authors to the following quote:

“Fortunately, the surprisingly small diameter of the web means that all infor-
mation is just a few clicks away.”

In [127], it was first observed that the WWW also has power-law degree sequences. In
fact, the WWW is a directed graph, and in [127] it was shown that the in-degree follows a
power-law with power-law exponent quite close to 2. See also Figure 1.8.

The most substantial analysis of the WWW was performed by Broder et al. [53],
following up on earlier work in [127, 126] in which the authors divide the WWW into
several distinct parts. See Figure 1.9 for the details. The division is roughly into four
parts:

(a) The central core or Strongly Connected Component (SCC), consisting of those web
pages that can reach each other along the directed links (28% of the pages);
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Figure 1.8: The in-degree sequence in the WWW taken from [127].

(b) The IN part, consisting of pages that can reach the SCC, but cannot be reached
from it (21% of the pages);

(c) The OUT part, consisting of pages that can be reached from the SCC, but do not
link back into it (21% of the pages);

(d) The TENDRILS and other components, consisting of pages that can neither reach
the SCC, nor be reached from it (30% of the pages).

Broder et al. [53] also investigate the diameter of the WWW, finding that the SCC
has diameter at least 28, but the WWW as a whole has diameter at least 500. This is
partly due to the fact that the graph is directed. When the WWW is considered to be an
undirected graph, the average distance between vertices decreases to around 7. Further,
it was shown that both the in- and out-degrees in the WWW follow a power-law, with
power-law exponents estimated as τin ≈ 2.1, τout ≈ 2.5.

In [2], distances in the WWW are discussed even further. When considering the WWW
as a directed graph, it is seen that the distances between most pairs of vertices within the
SCC is quite small. See Figure 1.10 for a histogram of pairwise distances in the sample.
Distances between pairs of vertices in the SCC tend to be at most 7: Six Degrees of
Separation.

We close this section by discussing further literature on the WWW:

1. In [20], it is argued that new web pages are more likely to attach to web pages
that already have a high degree, giving a bias towards popular web pages. This is
proposed as an explanation for the occurrences of power laws. We shall expand this
explanation in Section 1.6, and make the discussion rigorous in Chapter 8.
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Figure 1.9: The WWW according to Broder et al [53].

2. In [126], models for the WWW are introduced, by adding vertices which copy the
links of older vertices in the graph. This is called an evolving copying model. In some
cases, depending on the precise copying rules, the model is shown to lead to power-
law degree sequences. The paper [122] is a nice survey of measurements, models and
methods for obtaining information on the WWW, by analyzing how Web crawling
works.

3. Barábasi, Albert and Jeong [21] investigate the scale-free nature of the WWW, and
propose a preferential attachment model for it. In the proposed model for the WWW
in [20, 21], older vertices tend to have the highest degrees. On the WWW this is
not necessarily the case, as Adamic and Huberman [3] demonstrate. For example,
Google is a late arrival on the WWW, but has yet managed to become one of the
most popular web sites. A possible fix for this problem is given in [35] through a
notion of fitness of vertices, which enhance or decrease their preferential power.

4. The works by Kleinberg [119, 120, 121] investigate the WWW and other networks
from a computer science point of view. In [119, 120], the problem is addressed how
hard it is to find short paths in small-world networks on the d-dimensional lattice,
finding that navigation sensitively depends upon how likely it is for large edges to
be present. Indeed, the delivery time of any local algorithm can be bounded below
by a positive power of the width of the box, except for one special value of the
parameters, in which case it is of the order of the square of the log of the width
of the box. Naturally, this has important implications for the WWW, even though
the WWW may depend less sensitively on geometry. In Milgram’s work discussed
in Section 1.1.1, on the one hand, it is striking that there exist short paths between
most pairs of individuals, but, on the other hand, it may be even more striking
that people actually succeed in finding them. In [119], the problem is addressed
how “authoritative sources” for the search on the WWW can be quantified. These
authoritative sources can be found in an algorithmic way by relating them to the
hubs in the network. Clearly, this problem is intimately connected to the Page-Rank
problem.
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Figure 1.10: Average distances in the Strongly Connected Component of the WWW taken
from [2].

1.2 Scale-free, small-world and highly-clustered random graph
processes

As described in Section 1.1, many real-world complex networks are large. They share
similar features, in the sense that they have a relatively low degree compared to the max-
imal degree n− 1 in a graph of size n, i.e., they are ‘sparse’. Further, many real networks
are ‘small worlds’, ‘scale free’ and ‘highly clustered’. These notions are empirical, and,
hence, inherently not very mathematically precise. In this section, we describe what it
means for a model of a real network to satisfy these properties.

Many of real-world networks as considered in Section 1.1, such as the World-Wide Web
and collaboration networks, grow in size as time proceeds. Therefore, it is reasonable to
consider graphs of growing size, and to define the notions of scale-free, small-world and
highly-clustered random graphs as a limiting statement when the size of the random graphs
tend to infinity. This naturally leads us to study graph sequences. In this section, we shall
denote a graph sequence by {Gn}∞n=1, where n denotes the size of the graph Gn, i.e., the
number of vertices in Gn.

Denote the proportion of vertices with degree k in Gn by P (n)

k , i.e.,

P (n)

k =
1

n

n∑
i=1

1l{D(n)
i =k}, (1.2.1)

where D(n)

i denotes the degree of vertex i ∈ {1, . . . , n} in the graph Gn, and recall that

the degree sequence of Gn is given by {P (n)

k }
∞
k=0. We use capital letters in our notation to

indicate that we are dealing with random variables, due to the fact that Gn is a random
graph. Now we are ready to define what it means for a random graph process {Gn}∞n=1 to
be scale free.

We first call a random graph process {Gn}∞n=1 sparse when

lim
n→∞

P (n)

k = pk, (1.2.2)
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for some deterministic limiting probability distribution {pk}∞k=0. Since the limit pk in
(1.2.2) is deterministic, the convergence in (1.2.2) can be taken as convergence in probabil-
ity or in distribution. Also, since {pk}∞k=0 sums up to one, for large n, most of the vertices
have a bounded degree, which explains the phrase sparse random graphs.

We further call a random graph process {Gn}∞n=1 scale free with exponent τ when it is
sparse and when

lim
k→∞

log pk
log (1/k)

= τ (1.2.3)

exists. Thus, for a scale-free random graph process its degree sequence converges to a
limiting probability distribution as in (1.2.2), and the limiting distribution has asymptotic
power-law tails described in (1.2.3). This gives a precise mathematical meaning to a
random graph process being scale free. In some cases, the definition in (1.2.3) is a bit too
restrictive, particularly when the probability mass function k 7→ pk is not very smooth.
Instead, we can also replace it by

lim
k→∞

log [1− F (k)]

log (1/k)
= τ − 1, (1.2.4)

where F (x) =
∑
y≤x py denotes the distribution function corresponding to the probability

mass function {pk}∞k=0. In particular models below, we shall use the version that is most
appropriate in the setting under consideration. See Section 1.3 below for a more extensive
discussion of power laws.

We say that a graph process {Gn}∞n=1 is highly clustered when

lim
n→∞

CGn = CG∞ > 0. (1.2.5)

We finally define what it means for a graph process {Gn}∞n=1 to be a small world.
Intuitively, a small world should have distances that are much smaller than those in a
lattice or torus. When we consider the nearest-neighbor torus Tr,d, then, and when we
draw two uniform vertices at random, their distance will be of the order r. Denote the size
of the torus by n = (2r+ 1)d, then the typical distance between two uniform vertices is of

the order n1/d, so that it grows as a positive power of n.
Let Hn denote the distance between two uniformly chosen connected vertices, i.e., we

pick a pair of vertices uniformly at random from all pairs of connected vertices, and we
let Hn denote the graph distance between these two vertices. Here we use the term graph
distance between the vertices v1, v2 to denote the minimal number of edges in the graph
on a path connecting v1 and v2. Below, we shall be dealing with random graph processes
{Gn}∞n=1 for which Gn is not necessarily connected, which explains why we condition on
the two vertices being connected.

We shall call Hn the typical distance of Gn. Then, we say that a random graph process
{Gn}∞n=1 is a small world when there exists a constant K such that

lim
n→∞

P(Hn ≤ K logn) = 1. (1.2.6)

Note that, for a graph with a bounded degree dmax, the typical distance is at least (1 −
ε) logn/ log dmax with high probability, so that a random graph process with bounded
degree is a small world precisely when the order of the typical distance is optimal.

For a graph Gn, let diam(Gn) denote the diameter of Gn, i.e., the maximal graph
distance between any pair of connected vertices. Then, we could also have chosen to
replace Hn in (1.2.6) by diam(Gn). However, the diameter of a graph is a rather sensitive
object which can easily be changed by making small changes to a graph in such a way that
the scale-free nature and the typical distance Hn do not change. For example, by adding a
sequence of m vertices in a line, which are not connected to any other vertex, the diameter
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of the graph becomes at least m, whereas, if m is much smaller than n, Hn is not changed
very much. This explain why we have a preference to work with the typical distance Hn
rather than with the diameter diam(Gn).

In some models, we shall see that typical distances can be even much smaller than logn,
and this is sometimes called an ultra-small world. More precisely, we say that a random
graph process {Gn}∞n=1 is an ultra-small world when there exists a constant K such that

lim
n→∞

P(Hn ≤ K log log n) = 1. (1.2.7)

There are many models for which (1.2.7) is satisfied, but diam(Gn)/ logn converges in
probability to a positive limit. This once more explain our preference for the typical graph
distance Hn.

We have given precise mathematical definitions for the notions of random graphs being
highly clustered, small worlds and scale free. This has not been done in the literature
so far, and our definitions are based upon a summary of the relevant results proved for
random graph models. We believe it to be a good step forward to make the connection
between the theory of random graphs and the empirical findings on real-life networks.

1.3 Tales of tails

In this section, we discuss the occurrence of power laws. In Section 1.3.1, we discuss
the literature on this topic, which dates back to the twenties of the last century. In Section
1.3.2, we describe the new view points on power laws in real networks.

1.3.1 Old tales of tails

Mathematicians are always drawn to simple relations, believing that they explain the
rules that gave rise to them. Thus, finding such relations uncovers the hidden structure
behind the often chaotic appearance. A power-law relationship is such a simple relation.
We say that there is a power-law relationship between two variables when one is propor-
tional to a power of the other. Or, in more mathematical language, the variable k and the
characteristic f(k) are in a power-law relation when f(k) is proportional to a power of k,
that is, for some number τ ,

f(k) = Ck−τ . (1.3.1)

Power laws are intimately connected to so-called 80/20 rules. For example, when
studying the wealth in populations, already Pareto observed a huge variability [157]. Most
individuals do not earn so much, but there are these rare individuals that earn a substantial
part of the total income. Pareto’s principle was best known under the name ‘80/20 rule’,
indicating, for example, that 20 percent of the people earn 80 percent of the total income.
This law appears to be true much more generally. For example, 20 percent of the people
own 80 percent of the land, 20 percent of the employees earn 80 percent of the profit
of large companies, and maybe even 20 percent of the scientists write 80 percent of the
papers. In each of these cases, no typical size exists due to the high variability present,
which explains why these properties are called ‘scale-free’.

Intuitively, when a 80/20 rule holds, a power law must be hidden in the background!
Power laws play a crucial role in mathematics, as well as in many applications. Power laws
have a long history. Zipf [184] was one of the first to find one in the study of the frequencies
of occurrence of words in large pieces of text. He found that the relative frequency of words
is roughly inversely proportional to its rank in the frequency table of all words. Thus, the
most frequent word is about twice as frequent as the second most frequent word, and about
three times as frequent as the third most frequent word, etc. In short, with k the rank of
the word and f(k) the relative frequency of kth most frequent word, f(k) ∝ k−τ where τ
is close to 1. This is called Zipf’s law.
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Already in the twenties, several other examples of power laws were found. Lotka [132]
investigated papers that were referred to in the Chemical Abstracts in the period from
1901-1916, and found that the number of scientists appearing with 2 entries is close to
1/22 = 1/4 of the number of scientists with just one entry. The number of scientists
appearing with 3 entries is close to 1/32 = 1/9 times the number of scientists appearing
with 1 entry, etc. Again, with f(k) denoting the number of scientists appearing in k entries,
f(k) ∝ k−τ , where τ now is close to 2. This is dubbed Lotka’s Law. Recently, effort has
been put into explaining power-laws using ‘self-organization’. Per Bak, one of the central
figures in this area, called his book on the topic “How nature works” [18].

Power-law relations are one-step extensions of linear relations. Conveniently, even when
one does not understand the mathematical definition of a power law too well, one can still
observe them in a simple way: in a log-log plot, power laws are turned into straight lines!
Indeed, taking the log of the power-law relationship (1.3.1) yields

log f(k) = logC − τ log k, (1.3.2)

so that log f(k) is in a linear relationship with log k, with coefficient equal to −τ . Thus,
not only does this allow us to visually inspect whether f(k) is in a power-law relationship
to k, it also allows us to estimate the exponent τ ! Naturally, this is precisely what has
been done in order to obtain the power-law exponents in the examples in Section 1.1.
An interesting account of the history of power-laws can be found in [140], where possible
explanations why power laws arise so frequently are also discussed.

1.3.2 New tales of tails

In this section, we discuss the occurrence of power-law degree sequences in real networks.
We start by giving a heuristic explanation for the occurrence of power law degree sequences,
in the setting of exponentially growing graphs. This heuristic is based on some assumptions
that we formulate now.

We assume that

(1) the number of vertices V (t) is growing exponentially at some rate ρ > 0, i.e.,
V (t) ≈ eρt;

(2) the number N(t) of links into a vertex at some time t after its creation is N(t) ≈ eβt.
(Note that we then must have that β ≤ ρ, since the number of links into a vertex
must be bounded above by the number of vertices.) Thus, also the number of links
into a vertex grows exponentially with time.

We note that assumption (1) is equivalent to the assumption that

(1’) the lifetime T since its creation of a random vertex has law

P(T > t) = e−ρt, (1.3.3)

so that the density of the lifetime of a random vertex is equal to

fT (t) = ρe−ρt. (1.3.4)

Then, using the above assumptions, the number of links into a random vertex X equals

P(X > i) ≈ i−ρ/β , (1.3.5)
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since it is equal to

P(X > i) =

∫ ∞
0

fT (t)P(X > i|T = t)dt

=

∫ ∞
0

ρe−tρP(X > i|T = t)dt

= ρ

∫ ∞
0

e−tρ1l{eβt>i}dt

∼ ρ

∫ ∞
(log i)/β

e−tρdt ∼ e−(log i)ρ/β ∼ i−ρ/β ,

where 1lE denotes the indicator of the event E . Stretching the above heuristic a bit further
yields

P(X = i) = P(X > i− 1)− P(X > i) ∼ i−(ρ/β+1). (1.3.6)

This heuristic suggests a power law for the in-degrees of the graph, with power-law exponent
τ = ρ/β + 1 ≥ 2. Peculiarly, this heuristic does not only explain the occurrence of power
laws, but even of power laws with exponents that are at least 2.

The above heuristic only explains why the in-degree of a vertex has a power law. An
alternative reason why power laws occur so generally will be given in Chapter 8. Interest-
ingly, so far, also in this explanation only power laws that are at least 2 are obtained.

While power-law degree sequences are claimed to occur quite generally in real networks,
there are also some critical observations, particularly about he measurements that produce
power laws in Internet. In [128], it is argued that traceroute-measurements, by which the
Internet-topology is uncovered, could be partially responsible for the fact that power-law
degree sequences are observed in Internet. Indeed, it was shown that applying similar
methods as traceroute-measurements to certain subgraphs of the Erdős-Rényi random
graph exhibit power-law degree sequences. Clearly, the Erdős-Rényi random graph does
not have power-law degree sequences, so that this observation is an artefact of the way
the measurements are performed. The point is that in Internet measurements, subgraphs
are typically obtained by exploring the paths between sets of pairs of vertices. Indeed,
we obtain a subgraph of the Internet by only taking that part of the network that appear
along a path between the various starting points and destinations, and this is the way how
traceroute is used in Internet. Assuming that paths are all shortest-paths, i.e., there is
shortest-path routing, vertices with a high degree are far more likely to appear in one of the
shortest paths between our initial set of pairs of vertices. Therefore, such data sets tend
to overestimate the degrees in the complete network. This bias in traceroute data was
further studied in [1, 65], in which both for Erdős-Rényi random graphs and for random
regular graphs, it was shown that subgraphs appear to obey a power-law.

While the above criticism may be serious for the Internet, and possibly for the World-
Wide Web, where degree distributions are investigated using web-crawling, there are many
networks which are completely available that also show power-law degree sequences. When
the network is completely described, the observed power-laws can not be so easily dismissed.
However, one needs to be careful in using and analyzing data confirming power-law degree
sequences. Particularly, it could be that many estimates of the power-law degree exponent
τ are biased, and that the true values of τ are substantially larger. Possibly, this criticism
may give an argument why so often power laws are observed with exponents in the interval
(2, 3).

1.4 Notation

In these notes, we frequently make use of certain notation, and we strive to be as
consistent as possible. We shall denote events by calligraphic letters, such as A,B, C and
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E . We shall use 1lE to denote the indicator function of the event E . We shall use capital
letters, such as X,Y, Z, U, V,W , to denote random variables. There are some exceptions,
for example, FX and MX denote the distribution function and moment generating function
of a random variable X, and we emphasize this by writing the subscript X explicitly. We
say that a sequence of events {En}∞n=0 occurs with high probability when limn→∞ P(En) = 1.
We often abbreviate this as whp. We call a sequence of random variables {Xi}ni=1 i.i.d.
when they are independent, and Xi has the same distribution as X1 for every i = 2, . . . , n.

We shall use special notion for certain random variables, and write X ∼ BE(p) when X
has a Bernoulli distribution with success probability p, i.e., P(X = 1) = 1−P(X = 0) = p.
We write X ∼ BIN(n, p) when the random variable X has a binomial distribution with
parameters n and p, and we write X ∼ Poi(λ) when X has a Poisson distribution with
parameter λ.

Furthermore, we write f(n) = o(g(n)) as n→∞ when g(n) > 0 and limn→∞ |f(n)|/g(n) =
0. We write f(n) = O(g(n)) as n → ∞ when g(n) > 0 and lim supn→∞ |f(n)|/g(n) < ∞.
Finally, we write f(n) = Θ(g(n)) as n→∞ if f(n) = O(g(n)) and g(n) = O(f(n)).

1.5 The Erdős-Rényi random graph: introduction of the model

In the previous sections, we have described properties of real networks. These networks
are quite large, and in most cases, it is utterly impossible to describe them explicitly. To
circumvent this problem, random graph models have been considered as network models.
These random graphs describe by which local and probabilistic rules vertices are connected
to one another. The use of probabilistic rules is to be able to describe the complexity of the
networks. In deterministic models, often too much structure is present, making the arising
networks unsuitable to describe real networks. This approach introduces randomness in
network theory, and leads us to consider random graphs as network models. However, it
does not tell us what these random graph models should look like.

The field of random graphs was established in the late fifties and early sixties of the last
century. While there were a few papers appearing around (and even before) that time, one
paper is generally considered to have founded the field [84]. The authors Erdős and Rényi
studied the simplest imaginable random graph, which is now named after them. Their
graph has n elements, and each pair of elements is independently connected with a fixed
probability. When we think of this graph as describing a social network, then the elements
denote the individuals, while two individuals are connected when they know one another.
The probability for elements to be connected is sometimes called the edge probability. Let
ERn(p) denote the resulting random graph. This random graph is named after its inventors
Erdős and Rényi who introduced a version of it in [84] in 1960. Note that the precise model
above is introduced by Gilbert in [91], and in [84] a model was formulated with a fixed
number of edges (rather than a binomial number of edges). It is not hard to see that the
two models are intimately related (see e.g., Section 4.6, where the history is explained in a
bit more detail). The Erdős-Rényi random graph was named after Erdős and Rényi due to
the deep and striking results proved in [84], which opened up an entirely new field. Earlier
papers investigating random graphs are [81], using the probabilistic method to prove graph
properties, and [167], where the model is introduced as a model for neurons.

Despite the fact that ERn(p) is the simplest imaginable model of a random network,
it has a fascinating phase transition when p varies. Phase transitions are well known
in physics. The paradigm example is the solid-fluid transition of water, which occurs
when we move the temperature from below 0◦ to above 0◦. Similar phase transitions
occur in various real phenomena, such as magnetism or the conductance properties of
porous materials. Many models have been invented that describe and explain such phase
transitions, and we shall see some examples in these notes. As we will see, the Erdős-Rényi
random graph exhibits a phase transition in the size of the maximal component, as well as
in the connectivity of the arising random graph.
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Indeed, if p = λ/n with λ < 1, then ERn(p) consists of many small components having
at most size Θ(logn). If, otherwise, λ > 1 the graph consists of one giant component of
Θ(n) and some small components which have size Θ(logn). (Recall the notation in Section
1.4.) These properties shall be explained and proved in full detail in Chapter 4. In Chapter
5, we shall also investigate the size for the largest connected component when λ = 1, and
for which λ the Erdős-Rényi random graph is connected.

A rough outline of the ideas behind the proof in Chapters 4–5 is given below. The
necessary probabilistic ingredients are described in Chapter 2, for example, stochastic
orderings, convergence of random variables, and couplings. In Chapter 3, we describe
branching processes, which prove to be extremely useful in the analysis of the Erdős-Rényi
random graph and many other related random graph models.

To describe these preliminaries, let us investigate the cluster of a vertex in an Erdős-
Rényi random graph. We say that u, v ∈ {1, . . . , n} are connected when there exists a path
of occupied bonds connecting the two vertices u and v, and we write this as u←→ v. We
let the cluster of v, i.e., the connected component containing v, be equal to

C(v) = {y : v ←→ y}, (1.5.1)

where, by convention, v is connected to v, so that v ∈ C(v). Let |C(v)| denote the number
of vertices in C(v). Then, the size of the largest connected component of ERn(p) is equal
to

|Cmax| = max
v∈{1,...,n}

|C(v)|. (1.5.2)

Naturally, the law of C(x), and, therefore also of |Cmax|, depends sensitively on the value
of p.

To describe the largest connected component, we explore the different clusters one by
one. We start with vertex 1, and explore all the edges that are incident to 1. The endpoints
of these edges are clearly elements of the cluster C(1). Therefore, the exploration of the
edges starting from 1 gives rise to a subset of vertices that are in C(1), namely, precisely
the vertices that are at distance 1 in the random graph ERn(p) from the vertex 1, i.e.,
the direct neighbors. Denote the number of different neighbors by X1. Note that the
distribution of the number of direct neighbors X1 is equal to a binomial random variable
with parameters n− 1 and p, i.e., X1 ∼ BIN(n− 1, p).

When X1 = 0, then C(1) = {1}, and we have explored the entire cluster of vertex 1.
However, when X1 ≥ 1, then there is at least one direct neighbor of 1, and we next explore
its direct neighbors. We denote i1, . . . , iX1

the vertices that are direct neighbors of 1, where
we order these such that i1 < i2 < . . . < iX1 .

We now explore the neighbors of i1. Naturally, when we wish to explore the elements
of C(1), we are only interested in those neighbors of 1 for which we do not yet know that
they are part of C(1). When we fix the number of direct neighbors X1, then this number
of neighbors of i1 again has a binomial distribution, now with parameters n− 1−X1 and
probability of success p. Denote the number of vertices by X2. We emphasize here that the
conditional distribution of X2 given X1 is BIN(n−1−X1, p), but the marginal distribution
of X2 is not binomial.

When X1 ≥ 2, we can also explore the direct neighbors of i2 that are not yet part of C(1),
and this number, which we denote by X3, has, conditionally on X1 and X2,distribution
BIN(n − 1 −X1 −X2, p). This is called breadth-first search. In general, when we explore
the (i+ 1)st vertex of the cluster of vertex 1, we obtain a random number of newly added
vertices, denoted by Xi+1, which are part of C(1), and of which the law is BIN(Ni, p),
where

Ni = n− 1−X1 − · · · −Xi, i = 1, 2, . . . . (1.5.3)

Before exploring the ith vertex, the number of vertices whose neighbors we have not yet
investigated is equal to

1 +X1 + . . .+Xi − i, (1.5.4)
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that is, the number of vertices of which we have decided that they are part of the cluster
of vertex 1 minus the number of vertices which have been fully explored. This process
continues as long as there are unexplored or active vertices, i.e., it continues as long as

1 +X1 + . . .+Xi − i ≥ 1. (1.5.5)

Since finally we explore all vertices in the cluster, we obtain that

|C(1)| = min{i : X1 + . . .+Xi = i− 1}. (1.5.6)

Similarly, we can explore the clusters of the other vertices that are not elements of C(1).
Say that j ∈ {1, . . . , n} is the smallest element that does not belong to C(1). Then, in
a similar way as above, we can explore C(j), the cluster of j. Note, however, that, since
j 6∈ C(1), the vertices in C(1) should now be removed from the procedure. Therefore, the
number of available vertices decreases. This phenomenon is sometimes called the depletion
of points effect.

It is well known that when n is large, then the binomial distribution with parameters
n and p = λ/n is close to the Poisson distribution with parameter λ. More precisely, we
have that

P
(

BIN(n, λ/n) = k
)

= e−λ
λk

k!
+ o(1), k = 0, 1, . . . . (1.5.7)

The probability mass function fk = e−λ λ
k

k!
is the probability mass function of the Poisson

distribution with parameter λ. In fact, this result can be strengthened to saying that the
proportion of vertices with degree k converges in probability to the Poisson probability
mass function fk, i.e., ER(n, λ/n) is a sparse random graph process. In particular, for
every fixed i, if we were to know that X1, . . . , Xi are not too large (which is true if Xj
were Poisson random variables with parameter λ), then

Ni = n− 1−X1 − · · · −Xi ≈ n. (1.5.8)

Thus, we have that a binomial random variable with parameters Ni and success probability
p = λ/n is approximately Poisson distributed with parameter λ. With this approximation,
the random variables {Xj}∞j=1 are independent and identically distributed, which is often
abbreviated by i.i.d. in these notes. In this approximation, we see that the number of
unexplored vertices satisfies a recurrence relation given by

S∗i ∼ 1 +X∗1 + . . .+X∗i − i, (1.5.9)

up to the point where S∗i = 0, and where {X∗i }∞i=1 are i.i.d. Poisson random variables with
parameter λ. We write

T ∗ = min{i : S∗i = 0} = min{i : X∗1 + . . .+X∗i = i− 1} (1.5.10)

for the first time at which Si = 0. In the above simplified model, the random variable T ∗

could be infinite, while in (1.5.6) this is clearly impossible. In (1.5.10), we explore vertices
in a tree, and the ith explored individual gives rise to X∗i children, where {X∗j }∞j=1 are
i.i.d. Poisson random variables with parameter λ. The above process is called a branching
process with a Poisson offspring distribution with parameter or mean λ.

Branching processes are simple models for the evolution of a population, and have
received considerable attention in the mathematical literature. See [16, 97, 102] for intro-
ductions to the subject. Branching processes have a phase transition when the expected
offspring varies. When the expected offspring exceeds 1, then there is a positive probability
of survival forever, while if the expected offspring is at most 1, then the population dies out
with probability one. This phase transition for branching processes is intimately connected
to the phase transition on the random graph.
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We describe the phase transition on the random graph in Chapter 4. In that chapter, the
exploration description of connected components described above will be crucial. In order
to make the above steps rigorous, we need some preliminaries. In Chapter 2, we describe the
probabilistic preliminaries, such as stochastic ordering, convergence of random variables,
coupling theory and martingales. For example, stochastic domination allows us to make
the intuition that Xi+1 ∼ BIN(Ni, p) when Ni ≤ n is smaller than a binomial random
variable with parameters n and p precise. Convergence of random variables is the right
notion to show that a binomial distribution with parameters n and p = λ/n is close to the
Poisson distribution with parameter λ. A coupling of these two random variables allows
us to give a bound on their difference. In Chapter 3, we describe branching processes.
We prove the phase transition, and relate super critical branching processes conditioned
to die out with subcritical branching processes. We pay particular attention to branching
processes with a Poisson offspring distribution.

While the Erdős-Rényi random graph is a beautiful model displaying fascinating scaling
behavior for large graphs and varying edge probabilities, its degrees are not scale-free,
rendering it unrealistic as a network model. Indeed, its typical degree size is the average
degree, and there is little variability in it. In particular, no hubs exist. More precisely, the
degree of any vertex in an Erdős-Rényi random graph with edge probability p = λ/n is
precisely equal to a binomial random variable with parameters n−1 and success probability
p = λ/n. As a result, the limiting degree of any vertex is equal to a Poisson random variable
with mean λ. It is well known that Poisson random variables have thinner tails than power
laws. In fact, Poisson random variables have exponential tails. See the discussion below
(1.5.7), and see Section 5.3 for a proof of the fact that the Erdős-Rényi random graph with
edge probability p = λ/n is sparse.

Therefore, to model networks more appropriately, we are on the hunt for scale-free
random graph models! Remarkably, the fact that the Erdős-Rényi random graph is not a
suitable network model was already foreseen by the masters themselves [84]:

“Of course, if one aims at describing such a real situation, one should re-
place the hypothesis of equiprobability of all connections by some more realistic
hypothesis.”.

How do power laws arise then in networks, and what can we learn from that? In the next
section, we shall describe three models for scale-free networks.

1.6 Random graph models for complex networks

As explained in Section 1.5, Erdős-Rényi random graphs are not scale free, whereas, as
explained in Section 1.1, many real networks are scale free. In Chapters 6, 7 and 8, we
describe three scale-free random graph models. In Chapter 6, we describe the generalized
random graph. The philosophy of this model is simple: we adapt the random graph in such
a way that it becomes scale free. For this, we note that the degrees of the Erdős-Rényi
random graph with edge probability p = λ/n are close to to a Poisson random variable
with mean λ. As mentioned before, these are not scale free. However, we can make these
degrees scale free by taking the parameter λ to be a random variable with a power law.
Thus, to each vertex i, we associate a random variable Wi, and, conditionally on Wi, the
edges emanating from i will be occupied with a probability depending on i. There are
many ways in which this can be done. For example, in the generalized random graph [52],
the probability that edge between vertices s and t, which we denote by st, is occupied,
conditionally on the weights {Wi}ni=1, is equal to

pst =
WsWt

WsWt + Ln
, (1.6.1)
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where Ln =
∑n
i=1 Wi is the total weight of the graph, and different edges are conditionally

independent given {Wi}ni=1. In Chapter 6, we shall prove that this further randomization
of the Erdős-Rényi random graph does, in the case when the Wi are i.i.d. and satisfy a
power law, lead to scale-free graphs. There are various other possibilities to generalize the
Erdős-Rényi random graph, some of which will also be discussed. See [60, 152] for two
specific examples, and [44] for the most general set-up of generalized random graphs.

In the second scale-free random graph model, the idea is that we should take the degrees
as a start for the model. Thus, to each vertex i, we associate a degree Di, and in some way
connect up the different edges. Clearly, we need that the sum of the degrees Ln =

∑n
i=1 Di

is even, and we shall assume this from now on. Then we think of placing Di half-edges
or stubs incident to vertex i, and connecting all the stubs in a certain way to yield a
graph. One way to do this is to attach all the stub uniformly, and this leads to the
configuration model. Naturally, it is possible that the above procedure does not lead to
a simple graph, since self-loops and multiple edges can occur. As it turns out, when the
degrees are not too large, more precisely, when they have finite variance, then the graph
is with positive probability simple. By conditioning on the graph being simple, we end
up with a uniform graph with the specified degrees. Sometimes this is also referred to as
the repeated configuration model, since we can think of conditioning as repeatedly forming
the graph until it is simple, which happens with strictly positive probability. A second
approach to dealing with self-loops and multiple edges is simply to remove them, leading
to the so-called erased configuration model. In Chapter 7, we investigate these two models,
and show that the degrees are given by the degree distribution, when the graph size tends
to infinity. Thus, the erasing and the conditioning do not alter the degrees too much.

The generalized random graph and configuration models describe networks, in some
sense, quite satisfactorily. Indeed, they give rise to models with degrees that can be
matched to degree distributions found in real networks. However, they do not explain how
the networks came to be as they are. A possible explanation for the occurrence of scale-free
behavior was given by Albert and Barabási [20], by a feature called preferential attachment.
Most real networks grow. For example, the WWW has increased from a few web pages
in 1990 to an estimated size of a few billion now. Growth is an aspect that is not taken
into account in Erdős-Rényi random graphs, but it would not be hard to reformulate them
as a growth process where elements are successively added, and connections are added
and removed. Thus, growth by itself is not enough to explain the occurrence of power
laws. However, viewing real networks as evolving in time does give us the possibility to
investigate just how they grow.

So, how do real networks grow? Think of a social network describing a certain pop-
ulation in which a newcomer arrives, increasing it by one element. He/She will start to
socialize with people in the population, and this process is responsible for the connections
to the newly arrived person. In an Erdős-Rényi random graph, the connections to the
newcomer will be spread uniformly over the population. Is this realistic? Is the newcomer
not more likely to get to know people who are socially active, and, therefore, already have a
larger degree? Probably so! We do not live in a perfectly egalitarian world. Rather, we live
in a self-reinforcing world, where people who are successful are more likely to become even
more successful! Therefore, rather than equal probabilities for our newcomer to acquaint
him-/herself to other individuals in the population, there is a bias towards individuals who
already know many people. When we think of the degree of elements as describing the
wealth of the individuals in the population, we live in a world where the rich get richer!

Phrased in a more mathematical way, preferential attachment models are such that new
elements are more likely to attach to elements with high degree compared to elements with
small degree. For example, suppose that new elements are born with a fixed amount of
edges to the older elements. Each edge is connected to a specific older element with a
probability which is proportional to the degree of that older element. This phenomenon
is now mostly called preferential attachment, and was first described informally by Albert
and Barabási [20]. See also the book [19] for a highly readable and enthusiastic personal
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account by Barabási. Albert and Barabási have been two of the major players in the
investigation of the similarities of real networks, and their papers have proved to be very
influential. See [7, 8, 9, 20]. The notion of preferential attachment in networks has lead the
theoretical physics and the mathematics communities to study the structure of preferential
attachment models in numerous papers. For some of the references, see Chapter 8.

While the above explanation is for social networks, also in other examples some form
of preferential attachment is likely to be present. For example, in the WWW, when a new
web page is created, it is more likely to link to an already popular site, such as Google,
than to my personal web page. For the Internet, it may be profitable for new routers to
be connected to highly connected routers, since these give rise to short distances. Even in
biological networks, a more subtle form of preferential attachment exists.

In Chapter 8, we shall introduce and study preferential attachment models, and show
that preferential attachment leads to scale-free random graphs. The power-law exponent of
the degrees depends sensitively on the precise parameters of the model, such as the number
of added edges and how dominant the preferential attachment effect is, in a similar way
as the suggested power law exponent in the heuristic derivation in (1.3.6) depends on the
parameters of that model.

In Chapters 6, 7 and 8, we investigate the degrees of the proposed random graph models.
This explains the scale-free nature of the models. In Chapters ??, ?? and ??, we investigate
further properties of these models, focussing on the connected components and the distances
in the graphs. As observed in Section 1.1, most real networks are small worlds. As a
result, one would hope that random graph models for real networks are such that distances
between their elements are small. In Chapters ??, ?? and ??, we shall quantify this,
and relate graph distances to the properties of the degrees. A further property we shall
investigate is the phase transition of the largest connected component, as described in
detail for the Erdős-Rényi random graph in Chapter 4.

1.7 Notes and discussion





Chapter 2

Probabilistic methods

In this chapter, we describe basic results in probability theory that we shall rely on in these
notes. We describe convergence of random variables in Section 2.1, coupling in Section 2.2
and stochastic domination in Section 2.3. In Section 2.4 we describe bounds on random
variables, namely the Markov inequality, the Chebychev inequality and the Chernoff bound.
Particular attention will be given to binomial random variables, as they play a crucial role
throughout these notes. In Section 2.5, we describe a few results on martingales. Finally,
in Section 2.6, we describe some extreme value theory of random variables. In this chapter,
not all proofs are given.

2.1 Convergence of random variables

In the random graph with p = λ/n, for some λ > 0, we note that the degree of a vertex
is distributed as a BIN(n − 1, p) random variable. When n is large, and np = λ is fixed,
then it is well known that a BIN(n− 1, p) is close to a Poisson random variable with mean
λ. In Chapter 4, we make heavy use of this convergence result, and a version of it is stated
in Theorem 2.9 below.

In order to formalize that
BIN(n, p) ≈ Poi(np), (2.1.1)

we need to introduce the notions of convergence of random variables. For this, we note
that random variables are defined to be functions on a sample space. It is well known
that there are several possible notions for convergence of functions on function spaces. In
a similar fashion, there are several notions of convergence of random variables, three of
which we state in the following definition. For more background on the convergence of
random variables, we refer the reader to [36].

Definition 2.1 (Convergence of random variables).

(a) A sequence Xn of random variables converges in distribution to a limiting random
variable X when

lim
n→∞

P(Xn ≤ x) = P(X ≤ x), (2.1.2)

for every x for which F (x) = P(X ≤ x) is continuous. We write this as Xn
d−→ X.

(b) A sequence Xn of random variables converges in probability to a limiting random
variable X when, for every ε > 0

lim
n→∞

P(|Xn −X| > ε) = 0. (2.1.3)

We write this as Xn
P−→ X.

(c) A sequence Xn of random variables converges almost surely to a limiting random
variable X when

P( lim
n→∞

Xn = X) = 1. (2.1.4)

We write this as Xn
a.s.−→ X.

27
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It is not hard to see that convergence in probability implies convergence in distribution.
The notion of convergence almost surely is clearly the most difficult to grasp. It turns out
that convergence almost surely implies convergence in probability, making it the strongest
version of convergence to be discussed in these notes. We shall mainly work with conver-
gence in distribution and convergence in probability.

There are also further forms of convergence that we do not discuss, such as convergence
in L1 or L2. We again refer to [36], or to introductory books in probability, such as
[37, 89, 90, 94].

There are examples where convergence in distribution holds, but convergence in prob-
ability fails:

Exercise 2.1. Find an example of a sequence of random variables where convergence in
distribution occurs, but convergence in probability does not.

Exercise 2.2. Show that the sequence of random variables {Xn}∞n=1, where Xn takes the
value n with probability 1

n
and 0 with probability 1 − 1

n
converges both in distribution and

in probability to 0.

We next state some theorems that give convenient criterions by which we can conclude that
random variables converge in distribution. In their statement, we make use of a number
of functions of random variables that we introduce now.

Definition 2.2 (Generating functions of random variables). Let X be a random variable.
Then

(a) The characteristic function of X is the function

φX(t) = E[eitX ], t ∈ R. (2.1.5)

(b) The probability generating function of X is the function

GX(t) = E[tX ], t ∈ R. (2.1.6)

(c) The moment generating function of X is the function

MX(t) = E[etX ], t ∈ R. (2.1.7)

We note that the characteristic function exists for every random variable X, since |eitX | = 1
for every t. The moment generating function, however, does not always exist.

Exercise 2.3. Find a random variable for which the moment generating function is equal
to +∞ for every t 6= 0.

Theorem 2.3 (Criteria for convergence in distribution). The sequence of random variables
{Xn}∞n=1 converges in distribution to a random variable X

(a) if and only if the characteristic functions φn(t) of Xn converge to the characteristic
function φX(t) of X for all t ∈ R.

(b) when, for some ε > 0, the moment generating functions Mn(t) of Xn converge to
the moment generating function MX(t) of X for all |t| < ε.
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(c) when, for some ε > 0, the probability generating functions Gn(t) of Xn converge to
the probability generating function GX(t) of X for all |t| < 1 + ε for some ε > 0.

(d) when the Xn are non-negative and integer-valued, and the moments E[Xr
n] converge

to the moments E[Xr] of X for each r = 1, 2, . . ., provided the moments of X satisfy

lim
r→∞

E[Xr]rm

r!
= 0 ∀m = 0, 1, . . . (2.1.8)

(e) when the moments E[Xr
n] converge to the moments E[Xr] of X for each r = 1, 2, . . .,

and MX(t), the moment generating function of X, is finite for t in some neighborhood
of the origin.

Exercise 2.4. Show that a Poisson random variable satisfies the moment condition in
(2.1.8).

Exercise 2.5. Prove that when X is a Poisson random variable with mean λ, then

E[(X)r] = λr. (2.1.9)

Exercise 2.6. Show that the moments of a Poisson random variable X with mean λ satisfy
the recursion

E[Xm] = λE[(X + 1)m−1]. (2.1.10)

We finally discuss a special case of convergence in distribution, namely, when we deal
with a sum of indicators, and the limit is a Poisson random variable. We write (X)r =
X(X − 1) · · · (X − r + 1), so that E[(X)r] is the rth factorial moment of X.

For a random variable X taking values in {0, 1, . . . , n}, the factorial moments of X
uniquely determine the probability mass function, since

P(X = k) =

n∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
, (2.1.11)

see e.g. [42, Corollary 1.11]. To see (2.1.11), we write

1l{X=k} =

(
X

k

)(
1 − 1

)X−k
, (2.1.12)

using the convention that 00 = 1. Then, by Newton’s binomial, we obtain

1l{X=k} =

(
X

k

)
X−k∑
i=0

(−1)i
(
X − k
i

)
=

∞∑
i=0

(−1)i
(
X

k

)(
X − k
i

)
, (2.1.13)

where, by convention, we take that
(
n
k

)
= 0 when k < 0 or k > n. Rearranging the

binomials, we arrive at

1l{X=k} =

∞∑
r=k

(−1)k+r (X)r
(r − k)!k!

, (2.1.14)

where r = k + i, and taking expectations yields

P(X = k) =

∞∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
, (2.1.15)
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which is (2.1.11). Similar results also hold for unbounded random variables, since the sum

n∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
(2.1.16)

is alternatingly smaller than P(X = k) (for n even) and larger than P(X = k) (for n odd).
This implies the following result:

Theorem 2.4 (Convergence to a Poisson random variable). A sequence of integer-valued
random variables {Xn}∞n=1 converges in distribution to a Poisson random variable with
parameter λ when, for all r = 1, 2, . . . ,

lim
n→∞

E[(Xn)r] = λr. (2.1.17)

Exercise 2.7. Show that if

lim
n→∞

∑
r≥n

E[(X)r]

(r − k)!
= 0, (2.1.18)

then also

P(X = k) =

∞∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
, (2.1.19)

and use this to conclude that when limn→∞ E[(Xn)r] = E[(X)r] for all r ≥ 1, where Xn

and X are all integer-valued non-negative random variables, then also Xn
d−→ X.

Theorem 2.4 is particularly convenient when dealing with sums of indicators, i.e., when

Xn =
∑
i∈In

Ii,n, (2.1.20)

where Ii,n takes the values 0 and 1 only, as the following result shows:

Theorem 2.5 (Factorial moments of sums of indicators). When X =
∑
i∈I Ii is a sum of

indicators, then

E[(X)r] =
∑∗

i1,...,ir∈I

E[

r∏
l=1

Iil ] =
∑∗

i1,...,ir∈I

P
(
Ii1 = · · · = Iir = 1

)
, (2.1.21)

where
∑∗
i1,...,ir∈I denotes a sum over distinct indices.

Exercise 2.8. Prove (2.1.21) for r = 2.

Exercise 2.9. Compute the factorial moments of a binomial random variable with param-
eters n and p = λ/n and the ones of a Poisson random variable with mean λ, and use this
to conclude that a binomial random variable with parameters n and p = λ/n converges in
distribution to a Poisson random variable with mean λ.
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Proof of Theorem 2.5. We prove (2.1.21) by induction on r ≥ 1 and for all probability
measures P and corresponding expectations E. For r = 1, we have that (X)1 = X, and
(2.1.21) follows from the fact that the expectation of a sum of random variables is the sum
of expectations. This initializes the induction hypothesis.

In order to advance the induction hypothesis, we first note that it suffices to prove the
statement for indicators Ii for which P(Ii = 1) > 0. Then, for r ≥ 2, we write out

E[(X)r] =
∑
i1∈I

E
[
Ii1(X − 1) · · · (X − r + 1)

]
. (2.1.22)

Denote by Pi1 the conditional distribution given that Ii1 = 1, i.e., for any event E, we
have

Pi1(E) =
P(E ∩ {Ii1 = 1})

P(Ii1 = 1)
. (2.1.23)

Then we can rewrite

E
[
Ii1(X − 1) · · · (X − r + 1)

]
= P(Ii1 = 1)Ei1

[
(X − 1) · · · (X − r + 1)

]
. (2.1.24)

We define
Y = X − Ii1 =

∑
j∈I\{i1}

Ij , (2.1.25)

and note that, conditionally on Ii1 = 1, we have that X = Y + 1. As a result, we obtain
that

Ei1
[
(X − 1) · · · (X − r + 1)

]
= Ei1

[
Y · · · (Y − r + 2)

]
= Ei1

[
(Y )r−1

]
. (2.1.26)

We now apply the induction hypothesis to Ei1
[
(Y )r−1

]
, to obtain

Ei1
[
(Y )r−1

]
=

∑∗

i2,...,ir∈I\{i1}

Pi1
(
Ii2 = · · · = Iir = 1

)
. (2.1.27)

As a result, we arrive at

E[(X)r] =
∑
i1∈I

P(Ii1 = 1)
∑∗

i2,...,ir∈I\{i1}

Pi1
(
Ii2 = · · · = Iir = 1

)
. (2.1.28)

We complete the proof by noting that

P(Ii1 = 1)Pi1
(
Ii2 = · · · = Iir = 1

)
= P

(
Ii1 = Ii2 = · · · = Iir = 1

)
, (2.1.29)

and that ∑
i1∈I

∑∗

i2,...,ir∈I\{i1}

=
∑∗

i1,...,ir∈I

. (2.1.30)

There also exist multidimensional versions of Theorems 2.4 and 2.5:

Theorem 2.6 (Convergence to independent Poisson random variables). A vector of integer-
valued random variables {(X1,n, . . . , Xd,n)}∞n=1 converges in distribution to a vector of in-
dependent Poisson random variable with parameters λ1, . . . , λd when, for all r1, . . . , rd ∈ N,

lim
n→∞

E[(X1,n)r1 · · · (Xd,n)rd ] = λr11 · · ·λ
rd
d . (2.1.31)
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Theorem 2.7 (Factorial moments of sums of indicators). When Xl =
∑
i∈Il

Ii,l for all

l = 1, . . . , d are sums of indicators, then

E[(X1,n)r1 · · · (Xd,n)rd ] =
∑∗

i
(1)
1 ,...,i

(1)
r1
∈I1

· · ·
∑∗

i
(d)
1 ,...,i

(d)
rd
∈Id

P
(
I(l)

is
= 1∀l = 1, . . . , d&s = 1, . . . , rl

)
.

(2.1.32)

Exercise 2.10. Prove Theorem 2.7 using Theorem 2.5.

The fact that the convergence of moments as in Theorems 2.3, 2.4 and 2.6 yields conver-
gence in distribution is sometimes called the method of moments, and is a good way of
proving convergence results.

2.2 Coupling

For any λ fixed, it is well known that, when n→∞,

BIN(n, λ/n)
P−→ Poi(λ). (2.2.1)

In general, convergence in probability implies convergence in distribution, so that also
convergence in distribution follows. To prove this convergence, we will use a coupling
proof. Couplings will be quite useful in what follows, so we will discuss couplings, as well
as the related topic of stochastic orderings, in detail. An excellent treatment of coupling
theory is given in [172], to which we refer for more details.

In general, two random variables X and Y are coupled when they are defined on the
same probability space. This means that there is one probability law P such that P(X ∈
E, Y ∈ F ) are defined for all events E and F . This is formalized in the following definition,
where it is also generalized to more than one random variable:

Definition 2.8 (Coupling of random variables). The random variables (X̂1, . . . , X̂n) are

a coupling of the random variables X1, . . . , Xn when (X̂1, . . . , X̂n) are defined on the same

probability space, and are such that the marginal distribution of X̂i is the same as the
distribution of Xi for all i = 1, . . . , n, i.e., for all measurable subsets E of R, we have

P(X̂i ∈ E) = P(Xi ∈ E). (2.2.2)

The key point of Definition 2.8 is that while the random variables X1, . . . , Xn may be de-

fined on different probability spaces, the coupled random variables (X̂1, . . . , X̂n) are defined

on the same probability space. The coupled random variables (X̂1, . . . , X̂n) are related to
the original random variables X1, . . . , Xn by the fact that the marginal distributions of

(X̂1, . . . , X̂n) are equal to the random variables X1, . . . , Xn. Note that one coupling arises

by taking (X̂1, . . . , X̂n) to be independent, with X̂i having the same distribution as Xi.
However, in our proofs, we shall often make use of more elaborate couplings, which give
rise to stronger results.

Couplings are very useful to prove that random variables are somehow related. We
now describe a general coupling between two random variables which makes two random
variables be with high probability equal. We let X and Y be two random variables with

P(X = x) = px, P(Y = y) = qy, x ∈ X , y ∈ Y (2.2.3)
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where {px}x∈X and {qy}y∈Y are any two probability mass functions on two subsets X and

Y of the same space. Then, we define the random vector (X̂, Ŷ ) by

P(X̂ = Ŷ = x) = min{px, qx}, (2.2.4)

P(X̂ = x, Ŷ = y) =
(px −min{px, qx})(qy −min{py, qy})

1
2

∑
z |pz − qz|

, x 6= y. (2.2.5)

First of all, this is a probability distribution, since∑
x

(px −min{px, qx}) =
∑
x

(qx −min{px, qx}) =
1

2

∑
x

|px − qx|. (2.2.6)

Exercise 2.11 (Coupling and total variation distance). Prove (2.2.6).

The distance between discrete probability distributions {px}x∈X and {qx}x∈X in (2.2.6) is
called the total variation distance between the discrete probability mass functions {px}x∈X
and {qx}x∈X . In general, for two probability measures µ and ν, the total variation distance
is given by

dTV(µ, ν) = max
A
|µ(A)− ν(A)|, (2.2.7)

where µ(A) and ν(A) are the probabilities of the event A under the measures µ and ν.
When µ and ν are the distribution functions corresponding to two discrete probability

mass functions p = {px}x∈X and q = {qx}x∈X , so that, for every measurable A with
A ⊂ X , we have

µ(A) =
∑
x∈A

px, ν(A) =
∑
x∈A

qx, (2.2.8)

then it is not hard to see that

dTV(p, q) =
1

2

∑
x

|px − qx|. (2.2.9)

When F and G are the distribution functions corresponding to two continuous densities
f = {f(x)}x∈R and g = {g(x)}x∈R, so that for every measurable A ⊆ R,

µ(A) =

∫
A

f(x)dx, ν(A) =

∫
A

g(x)dx, (2.2.10)

then we obtain

dTV(f, g) =
1

2

∫ ∞
−∞
|f(x)− g(x)|dx. (2.2.11)

Exercise 2.12 (Total variation and L1-distances). Prove (2.2.9) and (2.2.11).

We now continue investigating the coupling in (2.2.4) for two discrete random variables.
By construction,

P(X̂ = x) = px, P(Ŷ = y) = qy, (2.2.12)

so that X̂ and Ŷ have the right marginal distributions as required in Definition 2.8. More-
over, we have that, by (2.2.6),

P(X̂ 6= Ŷ ) =
∑
x,y

(px −min{px, qx})(qy −min{py, qy})
1
2

∑
z |pz − qz|

=
1

2

∑
x

|px − qx| = dTV(p, q). (2.2.13)
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It turns out that this is an optimal or maximal coupling. See [172] for details. Indeed,
we have that for all x,

P(X̂ = Ŷ = x) ≤ P(X̂ = x) = P(X = x) = px, (2.2.14)

and also
P(X̂ = Ŷ = x) ≤ P(Ŷ = x) = P(Y = x) = qx, (2.2.15)

so that for any coupling we must have that

P(X̂ = Ŷ = x) ≤ min{px, qx}. (2.2.16)

Therefore, any coupling must be such that

P(X̂ = Ŷ ) =
∑
x

P(X̂ = Ŷ = x) ≤
∑
x

min{px, qx}. (2.2.17)

As a result, we have that, for any coupling,

P(X̂ 6= Ŷ ) ≥ 1−
∑
x

min{px, qx} =
1

2

∑
x

|px − qx|. (2.2.18)

The coupling in (2.2.4) attains this equality, which makes it the best coupling possible, in

the sense that it maximizes P(X̂ = Ŷ ).
In these notes, we will often work with binomial random variables which we wish to

compare to Poisson random variables. We will make use of the following theorem, which
will be proved using a coupling argument:

Theorem 2.9 (Poisson limit for binomial random variables). let {Ii}ni=1 be independent
with Ii ∼ BE(pi), and let λ =

∑n
i=1 pi. Let X =

∑n
i=1 Ii and let Y be a Poisson random

variable with parameter λ. Then, there exists a coupling (X̂, Ŷ ) of (X,Y ) such that

P(X̂ 6= Ŷ ) ≤
n∑
i=1

p2
i . (2.2.19)

Consequently, for every λ ≥ 0 and n ∈ N, there exists a coupling (X̂, Ŷ ), where X̂ ∼
BIN(n, λ/n) and Ŷ ∼ Poi(λ) such that

P(X̂ 6= Ŷ ) ≤ λ2

n
. (2.2.20)

Exercise 2.13. Let X ∼ BIN(n, λ/n) and Y ∼ Poi(λ). Write fi = P(X = i) and
gi = P(Y = i). Prove that Theorem 2.9 implies that dTV(f, g) ≤ λ2/n. Conclude also that,
for every i ∈ N, ∣∣P(X = i)− P(Y = i)

∣∣ ≤ λ2/n. (2.2.21)

Proof of Theorem 2.9. Throughout the proof, we let Ii ∼ BE(pi) and assume that {Ii}ni=1

are independent, and we let Ji ∼ Poi(pi) and assume that {Ji}ni=1 are independent. In the
proof, we write

pi,x = P(Ii = x) = pi1l{x=1} + (1− pi)1l{x=0}, qi,x = P(Ji = x) = e−pi
pxi
x!

(2.2.22)
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for the Bernoulli and Poisson probability mass functions.

For each pair Ii, Ji, the maximal coupling (Îi, Ĵi) described above satisfies

P(Îi = Ĵi = x) = min{p1,x, q1,x} =


1− pi for x = 0,

pie
−pi for x = 1,

0 for x ≥ 2,

(2.2.23)

where we have used the inequality 1−pi ≤ e−pi for x = 0. Thus, now using that 1−e−pi ≤
pi,

P(Îi 6= Ĵi) = 1− P(Îi = Ĵi) = 1− (1− pi)− pie−pi = pi(1− e−pi) ≤ p2
i . (2.2.24)

Next, let X̂ =
∑n
i=1 Îi and Ŷ =

∑n
i=1 Ĵi. Then, X̂ has the same distribution as X =∑n

i=1 Ii, and Ŷ has the same distribution as Y =
∑n
i=1 Ji ∼ Poi(p1 + · · · + pn). Finally,

by Boole’s inequality and (2.2.24),

P(X̂ 6= Ŷ ) ≤ P
( n⋃
i=1

{Îi 6= Ĵi}
)
≤

n∑
i=1

P(Îi 6= Ĵi) ≤
n∑
i=1

p2
i . (2.2.25)

This completes the proof of Theorem 2.9.

For p = {px} and q = {qx}, the total variation distance dTV(p, q) is obviously larger
than 1

2
|px − gx|, so that convergence in total variation distance of p(n) = {px(n)} to a

probability mass function p = {px} implies pointwise convergence of the probability mass
functions limn→∞ px(n) = px for every x. Interestingly, it turns out that these notions are
equivalent:

Exercise 2.14. Show that if limn→∞ px(n) = px for every x, and p = {px} is a probability
mass function, then also limn→∞ dTV(p(n), p) = 0.

2.3 Stochastic ordering

To compare random variables, we will rely on the notion of stochastic ordering, which
is defined as follows:

Definition 2.10 (Stochastic domination). Let X and Y be two random variables, not
necessarily living on the same probability space. The random variable X is stochastically
smaller than the random variable Y when, for every x ∈ R, the inequality

P(X ≤ x) ≥ P(Y ≤ x) (2.3.1)

holds. We denote this by X � Y .

A nice coupling reformulation of stochastic ordering is presented in the following lemma:

Lemma 2.11 (Coupling definition of stochastic domination). The random variable X is
stochastically smaller than the random variable Y if and only if there exists a coupling

(X̂, Ŷ ) of X,Y such that

P(X̂ ≤ Ŷ ) = 1. (2.3.2)
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Proof. When P(X̂ ≤ Ŷ ) = 1, then

P(Y ≤ x) = P(Ŷ ≤ x) = P(X̂ ≤ Ŷ ≤ x)

≤ P(X̂ ≤ x) = P(X ≤ x), (2.3.3)

so that X is stochastically smaller than Y .

For the other direction, suppose that X is stochastically smaller than Y . We define the
generalized inverse of a distribution function F by

F−1(u) = inf{x ∈ R : F (x) ≥ u}, (2.3.4)

where u ∈ [0, 1]. If U is a uniform random variable on [0, 1], then it is well-known that the
random variable F−1(U) has distribution function F . This follows since the function F−1

is such that

F−1(u) > x precisely when u > F (x). (2.3.5)

Denote by FX and FY the marginal distribution functions of X and Y . Then (2.3.1) is
equivalent to

FX(x) ≥ FY (x) (2.3.6)

for all x. It follows that, for all u ∈ [0, 1],

F−1
X (u) ≤ F−1

Y (u). (2.3.7)

Therefore, since X̂ = F−1
X (U) and Ŷ = F−1

Y (U) have the same marginal distributions as
X and Y , respectively, it follows that

P(X̂ ≤ Ŷ ) = P(F−1
X (U) ≤ F−1

Y (U)) = 1. (2.3.8)

There are many examples of pairs of random variables which are stochastically ordered,
and we will now describe a few.

Binomial random variables. A simple example of random variables which are stochas-
tically ordered is as follows. Let m,n ∈ N be integers such that m ≤ n. Let X ∼ BIN(m, p)

and Y ∼ BIN(n, p). Then, we claim that X � Y . To see this, let X̂ =
∑m
i=1 Ii and

Ŷ =
∑n
i=1 Ii, where {Ii}∞i=1 is an i.i.d. sequence of Bernoulli random variables, i.e.,

P(Ii = 1) = 1− P(Ii = 0) = p, i = 1, . . . , n, (2.3.9)

and I1, I2, . . . , In are mutually independent. Then, since Ii ≥ 0 for each i, we have that

P(X̂ ≤ Ŷ ) = 1. (2.3.10)

Therefore, X � Y .

The stochastic domination above also holds when X = BIN(n−Z, p) and Y = BIN(n, p),
when Z is any random variable that takes non-negative integer values. This domination
result will prove to be useful in the investigation of the Erdős-Rényi random graph.
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Poisson random variables. Another example of random variables which are stochas-
tically ordered is as follows. Let λ, µ ∈ R be such that λ ≤ µ. Let X ∼ Poi(λ) and

Y ∼ Poi(µ). Then, X � Y . To see this, let X̂ ∼ Poi(λ), Ẑ ∼ Poi(µ − λ), where X̂ and Ẑ

are independent, and let Ŷ = X̂ + Ẑ. Then, Ŷ ∼ Poi(µ). Moreover, since Ẑ ≥ 0 for each
i, we have that

P(X̂ ≤ Ŷ ) = 1. (2.3.11)

Therefore, X � Y .

Exercise 2.15. Let X and Y be normal distributions with equal variances σ2 and means
µX ≤ µY . Is X � Y ?

Exercise 2.16. Let X and Y be normal distributions with variances σ2
X < σ2

Y and equal
means µ. Is X � Y ?

2.3.1 Consequences of stochastic domination

In this section, we discuss a number of consequences of stochastic domination, such as
the fact that the means of a stochastically ordered pair of random variables is ordered as
well.

Theorem 2.12 (Ordering of means for stochastically ordered random variables). Suppose
X � Y . Then

E[X] ≤ E[Y ]. (2.3.12)

Proof. We apply Lemma 2.11. Let X̂ and Ŷ have the same law as X and Y , and be such

that X̂ ≤ Ŷ with probability 1. Then

E[X] = E[X̂] ≤ E[Ŷ ] = E[Y ]. (2.3.13)

Theorem 2.13 (Preservation of ordering under monotone functions). Suppose X � Y ,
and g : R→ R is non-decreasing. Then g(X) � g(Y ).

Proof. Let X̂ and Ŷ have the same laws as X and Y and be such that X̂ ≤ Ŷ (see

Lemma 2.11). Then, g(X̂) and g(Ŷ ) have the same distributions as g(X) and g(Y ), and

g(X̂) ≤ g(Ŷ ) with probability one, by the fact that g is non-decreasing. Therefore, by
Lemma 2.11, the claim follows.

2.4 Probabilistic bounds

We will often make use of a number of probabilistic bounds, which we will summarise
and prove in this section.

Theorem 2.14 (Markov inequality). Let X be a non-negative random variable with E[X] <
∞. Then,

P(X ≥ a) ≤ E[X]

a
. (2.4.1)

In particular, when X is integer valued with E[X] ≤ m, then

P(X = 0) ≥ 1−m. (2.4.2)
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By (2.4.2), if the integer random variable has a small mean, then it must be equal to
0 with high probability. This is called the first moment method, and is a powerful tool to
prove results.

Proof. Equation (2.4.1) follows by

aP(X ≥ a) ≤ E[X1l{X≥a}] ≤ E[X]. (2.4.3)

Theorem 2.15 (Chebychev inequality). Assume that X is integer valued with Var(X) =
σ2. Then,

P
(∣∣X − E[X]

∣∣ ≥ a) ≤ σ2

a2
. (2.4.4)

In particular, when X is integer valued with E[X] ≥ m and Var(X) = σ2, then

P(X = 0) ≤ σ2

m2
. (2.4.5)

By (2.4.5), if the integer random variable has a large mean, and a variance which is
small compared to the square of the mean, then it must be positive with high probability.
This is called the second moment method.

Proof. For (2.4.4), we note that

P
(∣∣X − E[X]

∣∣ ≥ a) = P
(

(X − E[X])2 ≥ a2
)
, (2.4.6)

and apply the Markov inequality. For (2.4.5), we note that

P(X = 0) ≤ P
(
|X − E[X]| ≥ E[X]

)
≤ Var(X)

E[X]2
≤ σ2

m2
. (2.4.7)

We will often rely on bounds on the probability that a sum of independent random variables
is larger than its expectation. For such probabilities, large deviation theory gives good
bounds. We will describe these bounds here. For more background on large deviations, we
refer the reader to [72, 101, 155].

Theorem 2.16 (Cramér’s upper bound, Chernoff bound). Let {Xi}∞i=1 be a sequence of
i.i.d. random variables. Then, for all a ≥ E[X1],

P
( n∑
i=1

Xi ≥ na
)
≤ e−nI(a), (2.4.8)

while, for all a ≤ E[X1],

P
( n∑
i=1

Xi ≤ na
)
≤ e−nI(a), (2.4.9)

where, for a ≥ E[X1],

I(a) = sup
t≥0

(
ta− logE[etX1 ]

)
, (2.4.10)

while, for a ≤ E[X1],

I(a) = sup
t≤0

(
ta− logE[etX1 ]

)
. (2.4.11)
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Note that the function t 7→ ta − logE[etX1 ] is concave, and the derivative in 0 is a −
E[X1] ≥ 0 for a ≥ E[X1]. Therefore, for a ≥ E[X1], the supremum of t 7→ (ta− logE[etX1 ])
will be attained for a t ≥ 0 when E[etX1 ] exists in a neighborhood of t = 0. As a result,
(2.4.10)–(2.4.11) can be combined as

I(a) = sup
t

(
ta− logE[etX1 ]

)
. (2.4.12)

Proof. We only prove (2.4.8), the proof of (2.4.9) is identical when we replace Xi by −Xi.
We rewrite, for every t ≥ 0,

P
( n∑
i=1

Xi ≥ na
)

= P
(
et

∑n
i=1Xi ≥ etna

)
≤ e−ntaE

[
et

∑n
i=1Xi

]
, (2.4.13)

where we have used Markov’s inequality in Theorem 2.14. Since {Xi}∞i=1 is a sequence of
i.i.d. random variables, we have

E
[
et

∑n
i=1Xi

]
= E[etX1 ]n, (2.4.14)

so that, for every t ≥ 0,

P
( n∑
i=1

Xi ≥ na
)
≤
(
e−taE[etX1 ]

)n
. (2.4.15)

Minimizing the right-hand side over t ≥ 0 gives that

P
( n∑
i=1

Xi ≥ na
)
≤ e−n supt≥0

(
ta−log E[etX1 ]

)
. (2.4.16)

This proves (2.4.8).

Exercise 2.17. Compute I(a) for {Xi}∞i=1 being independent Poisson random variables
with mean λ. Show that, for a > λ,

P
( n∑
i=1

Xi ≥ na
)
≤ e−nIλ(a), (2.4.17)

where Iλ(a) = a(log (a/λ)− 1) + λ. Show also that, for a < λ

P
( n∑
i=1

Xi ≤ na
)
≤ e−nIλ(a). (2.4.18)

Prove that Iλ(a) > 0 for all a 6= λ.

2.4.1 Bounds on binomial random variables

In this section, we investigate the tails of the binomial distribution. We start by a
corollary of Theorem 2.16:
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Corollary 2.17 (Large deviations for binomial distribution). Let Xn be a binomial random
variable with parameters p and n. Then, for all a ∈ (p, 1],

P
(
Xn ≥ na

)
≤ e−nI(a), (2.4.19)

where

I(a) = a log
(a
p

)
+ (1− a) log

(1− a
1− p

)
. (2.4.20)

Moreover,
I(a) ≥ Ip(a) (2.4.21)

where
Iλ(a) = λ− a− a log (λ/a) (2.4.22)

is the rate function of a Poisson random variable with mean λ.

We can recognize (2.4.22) as the rate function of a Poisson random variable with mean
λ (recall Exercise 2.17). Thus, Corollary 2.17 suggests that the upper tail of a binomial
random variable is thinner than the one of a Poisson random variable.

Proof. We start by proving (2.4.19), using (2.4.8). We note that, by (2.4.10), we obtain a
bound with I(a) instead of Ip, where, with X1 ∼ BE(p),

I(a) = sup
t≥0

(
ta−logE[etX1 ]

)
= sup

t

(
ta−log

(
pet+(1−p)

))
= a log

(a
p

)
+(1−a) log

(1− a
1− p

)
.

(2.4.23)
We note that, for t ≥ 0,

pet + (1− p) = 1 + p(et − 1) ≤ ep(e
t−1), (2.4.24)

so that
I(a) ≥ sup

t

(
ta− p(et − 1)

)
= p− a− a log

(
p/a
)

= Ip(a). (2.4.25)

We continue to study tails of the binomial distribution, following [109]. The main bound
is the following:

Theorem 2.18. Let Xi ∼ BE(pi), i = 1, 2, . . . , n, be independent Bernoulli distributed
random variables, and write X =

∑n
i=1 Xi and λ = E[X] =

∑n
i=1 pi. Then

P(X ≥ E[X] + t) ≤ exp

(
− t2

2(λ+ t/3)

)
, t ≥ 0; (2.4.26)

P(X ≤ E[X]− t) ≤ exp

(
− t

2

2λ

)
, t ≥ 0. (2.4.27)

Further similar bounds under the same conditions and, even more generally, for indepen-
dent random variables Xi such that 0 ≤ Xi ≤ 1, are given, for example, in [27, 98] and
[13, Appendix A].

Exercise 2.18. Prove that Theorem 2.18 also holds for the Poisson distribution by a
suitable limiting argument.
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Proof. Let Y ∼ BIN(n, λ/n) where we recall that λ =
∑n
i=1 pi. Since x 7→ log x is concave,

we have that for every x1, . . . , xn ∈ R,

n∑
i=1

1

n
log(xi) ≤ log

( 1

n

n∑
i=1

xi
)
. (2.4.28)

As a result, for every real u, upon taking the logarithm,

E[euX ] =

n∏
i=1

(1 + (eu − 1)pi) = en
∑n
i=1

1
n

log(1+(eu−1)pi) (2.4.29)

≤ en log(1+(eu−1)λ/n) =
(

1 + (eu − 1)λ/n
)n

= E[euY ].

Then we compute that, for all u ≥ 0, by the Markov inequality,

P(X ≥ E[X] + t) ≤ e−u(E[X]+t)E[euX ] ≤ e−u(E[X]+t)E[euY ] = e−u(λ+t)(1− p+ peu)n,
(2.4.30)

where p = λ/n and using that E[X] = λ.
When t > n− λ, the left-hand side of (2.4.30) equals 0, and there is nothing to prove.

For λ + t < n, the right-hand side of (2.4.30) attains its minimum for the u satisfying
eu = (λ+ t)(1− p)/(n− λ− t)p. This yields, for 0 ≤ t ≤ n− λ,

P(X ≥ λ+ t) ≤
(

λ

λ+ t

)λ+t(
n− λ

n− λ− t

)n−λ−t
. (2.4.31)

The bound is implicit in [57] and is often called the Chernoff bound, appearing for the first
time explicitly in [153].

For 0 ≤ t ≤ n− λ,, we can rewrite (2.4.31) as

P(X ≥ λ+ t) ≤ exp

(
−λϕ

(
t

λ

)
− (n− λ)ϕ

(
−t
n− λ

))
, (2.4.32)

where ϕ(x) = (1 + x) log(1 + x)− x for x ≥ −1 (and ϕ(x) =∞ for x < −1). Replacing X
by n−X, we also obtain, again for 0 ≤ t ≤ n− λ,

P(X ≤ λ− t) ≤ exp

(
−λϕ

(
t

λ

)
− (n− λ)ϕ

(
t

n− λ

))
. (2.4.33)

Since ϕ(x) ≥ 0 for every x we can ignore the second term in the exponent. Furthermore,
ϕ(0) = 0 and ϕ′(x) = log(1 + x) ≤ x, so that ϕ(x) ≥ x2/2 for x ∈ [−1, 0], which proves
(2.4.27). Similarly, ϕ(0) = ϕ′(0) = 0 and, for x ∈ [0, 1],

ϕ′′(x) =
1

1 + x
≥ 1

(1 + x/3)3
=

(
x2

2(1 + x/3)

)′′
, (2.4.34)

so that ϕ(x) ≥ x2/(2(1 + x/3)), which proves (2.4.26).

2.5 Martingales

In this section, we state and prove some results concerning martingales. These results
will be used in the remainder of the text. For more details on martingales, we refer the
reader to [94, 178].

We assume some familiarity with conditional expectations. For the readers who are
unfamiliar with filtrations and conditional expectations given a σ-algebra, we start by
giving the simplest case of a martingale:
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Definition 2.19 (Martingale). A stochastic process {Mn}∞n=0 is a martingale process if

E[|Mn|] <∞ for all n ≥ 0, (2.5.1)

and
E[Mn+1|M0,M1, . . . ,Mn] = Mn for all n ≥ 0. (2.5.2)

As can be seen from (2.5.2), a martingale can be interpreted as a fair game. Indeed, when
Mn denotes the profit after the nth game has been played, then (2.5.2) tells us that the
expected profit at time n+ 1 given the profits up to time n is equal to the profit at time n.

Exercise 2.19. Show that when {Mn}∞n=0 is a martingale process, then µ = E[Mn] is
independent of n.

We now give a second definition, which we will need in Chapter 8, where a martingale
is defined with respect to a more general filtration.

Definition 2.20 (Martingale definition general). A stochastic process {Mn}∞n=0 is a mar-
tingale process with respect to {Xn}∞n=0 if

E[|Mn|] <∞ for all n ≥ 0, (2.5.3)

Mn is measurable with respect to the σ-algebra generated by (X0, . . . , Xn), and

E[Mn+1|X0, . . . , Xn] = Mn for all n ≥ 0. (2.5.4)

For Xn = Mn, the definitions in (2.5.2) and (2.5.4) coincide.

Exercise 2.20. Let {Xi}∞0=1 be an independent sequence of random variables with E[|Xi|] <
∞ and E[Xi] = 1. Show that, for n ≥ 0,

Mn =

n∏
i=0

Xi (2.5.5)

is a martingale.

Exercise 2.21. Let {Xi}∞i=0 be an independent sequence of random variables with E[|Xi|] <
∞ and E[Xi] = 0. Show that, for n ≥ 0,

Mn =

n∑
i=0

Xi (2.5.6)

is a martingale.

Exercise 2.22. Let Mn = E[Y |X0, . . . , Xn] for some random variables {Xi}∞i=0 and Y
with E[|Y |] < ∞ and {Xn}∞n=0. Show that {Mn}∞n=0 is a martingale process with respect
to {Xn}∞n=0. {Mn}∞n=0 is called a Doob martingale.

In the following two sections, we state and prove two key results for martingales, the
martingale convergence theorem and the Azuma-Hoeffding inequality. These results are
a sign of the power of martingales. Martingale techniques play a central role in modern
probability theory, partly due to these results.
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2.5.1 Martingale convergence theorem

We start with the martingale convergence theorem:

Theorem 2.21 (Martingale convergence theorem). Let {Mn}∞n=0 be a martingale process
with respect to {Xn}∞n=0 satisfying

E[|Mn|] ≤ B for all n ≥ 0. (2.5.7)

Then, Mn
a.s.−→M∞, for some limiting random variable M∞ which is finite with probability

1.

The martingale convergence theorem comes in various forms. There also is an L2-
version, for which it is assumed that E[M2

n] ≤ M uniformly for all n ≥ 1. In this case,
one also obtains the convergence limn→∞ E[M2

n] = E[M2
∞]. Theorem 2.21 is an adaptation

of the L1-martingale convergence theorem, for which one only needs that {Mn}∞n=0 is a
submartingale, i.e., when we assume (2.5.7), but (2.5.4) is replaced with

E[Mn+1|X0, . . . , Xn] ≥Mn for all n ≥ 0. (2.5.8)

See e.g., [94, Section 12.3].

Exercise 2.23. Prove that when the martingale {Mn}∞n=0 is non-negative, i.e., when Mn ≥
0 with probability 1 for all n ≥ 1, then Mn

a.s.−→M∞ to some limiting random variable M∞
which is finite with probability 1.

Exercise 2.24. Let {Xi}∞i=0 be an independent sequence of random variables with E[Xi] =
1 and for which Xi ≥ 0 with probability 1. Show that the martingale

Mn =

n∏
i=0

Xi (2.5.9)

converges in probability to a random variable which is finite with probability 1. Hint: Prove
that E[|Mn|] = E[Mn] = 1, and apply Exercise 2.23.

Exercise 2.25. For i = 1, . . . ,m, let {M (i)
n }∞n=0 be a sequence of martingales with respect

to {Xn}∞n=0. Show that

Mn =
m

max
i=0

M (i)
n (2.5.10)

is a submartingale with respect to {Xn}∞n=0.

Proof of Theorem 2.21. We shall prove Theorem 2.21 in the case where Mn is a submartin-
gale.

We follow the proof of the martingale convergence theorem in [94, Section 12.3]. The
key step in this classical probabilistic proof is ‘Snell’s up-crossings inequality’. Suppose
that {mn : n ≥ 0} is a real sequence, and [a, b] is a real interval. An up-crossing of [a, b]
is defined to be a crossing by m of [a, b] in the upwards direction. More precisely, let
T1 = min{n : mn ≤ a}, the first time m hits the interval (−∞, a], and T2 = min{n >
T1 : mn ≥ b}, the first subsequent time when m hits [b,∞); we call the interval [T1, T2] an
up-crossing of [a, b]. In addition, for k > 1, define the stopping times Tn by

T2k−1 = min{n > T2k−2 : mn ≤ a}, T2k = min{n > T2k−1 : mn ≥ b}, (2.5.11)

so that the number of up-crossings of [a, b] is equal to the number of intervals [T2k−1, T2k]
for k ≥ 1. Let Un(a, b;m) be the number of up-crossings of [a, b] by the subsequence
m0,m1, . . . ,mn, and let U(a, b;m) = limn→∞ Un(a, b;m) be the total number of up-
crossings of m.
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a

b

Figure 2.1: Up-crossings

Let {Mn}∞n=0 be a submartingale, and let Un(a, b;M) be the number of up-crossings of
[a, b] by M up to time n. Then the up-crossing inequality gives a bound on the expected
number of up-crossings of an interval [a, b]:

Proposition 2.22 (Up-crossing inequality). If a < b then

E[Un(a, b;M)] ≤ E[(Mn − a)+]

b− a ,

where (Mn − a)+ = max{0,Mn − a}.

Proof. Setting Zn = (Mn− a)+, we have that Zn is a non-negative submartingale because
E[|Mn|] ≤ E[|Mn|] + |a| <∞. Furthermore, for every random variable X and a ∈ R,

E[(X − a)+] ≥ E[X − a]+, (2.5.12)

so that

Zn ≤
(
E[Mn+1|X0, . . . , Xn]− a

)
+
≤ E[(Mn+1 − a)+|X0, . . . , Xn] = E[Zn+1|X0, . . . , Xn],

(2.5.13)
where we first used the submartingale property E[Mn+1|X0, . . . , Xn] ≥ Mn, followed by
(2.5.12). Up-crossings of [a, b] by M correspond to up-crossings of [0, b− a] by Z, so that
Un(a, b;M) = Un(0, b− a;Z).
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Let [T2k−1, T2k], for k ≥ 1, be the up-crossings of Z of [0, b−a], and define the indicator
functions

Ii =

{
1 if i ∈ (T2k−1, T2k] for some k,
0 otherwise

(2.5.14)

Note that the event {Ii = 1} depends on M0,M1, . . . ,Mi−1 only. Since M0,M1, . . . ,Mi−1

are measurable with respect to the the σ-algebra generated by (X0, . . . , Xi−1), also Ii is
measurable with respect to the σ-algebra generated by (X0, . . . , Xi−1). Now

(b− a)Un(0, b− a;Z) ≤
n∑
i=1

(Zi − Zi−1)Ii (2.5.15)

since each up-crossing of [0, b − a] by Z contributes an amount of at least b − a to the
summation. The expectation of the summands on the right-hand side of (2.5.15) is equal
to

E[(Zi − Zi−1)Ii] =E
[
E
[
(Zi − Zi−1)Ii|X0, . . . , Xi−1

]]
= E[Ii(E[Zi|X0, . . . , Xi−1]− Zi−1)]

≤E[E[Zi|X0, . . . , Xi−1]− Zi−1] = E[Zi]− E[Zi−1],

where we use that Ii is measurable with respect to the σ-algebra generated by (X0, . . . , Xi−1)
for the second equality, and we use that Z is a submartingale and 0 ≤ Ii ≤ 1 to obtain the
inequality. Summing over i and take expectations on both sides of (2.5.15), we obtain

(b− a)E[Un(0, b− a;Z)] ≤ E[Zn]− E[Z0] ≤ E[Zn], (2.5.16)

which completes the proof of Proposition 2.22.

Now we have the tools to give the proof of Theorem 2.21:

Proof of Theorem 2.21. Suppose {Mn}∞n=0 is a submartingale and E[|Mn|] ≤ B for all n.
Let Λ be defined as follows

Λ = {ω : Mn(ω) does not converge to a limit in [−∞,∞]}.
The claim that Mn converges is proved if we show that P(Λ) = 0. The set Λ has an
equivalent definition

Λ = {ω : lim inf Mn(ω) < lim supMn(ω)}

=
⋃

a,b∈Q:a<b

{ω : lim inf Mn(ω) < a < b < lim supMn(ω)}

=
⋃

a,b∈Q:a<b

Λa,b.

However,
Λa,b ⊆ {ω : U(a, b;M) =∞},

so that, by Proposition 2.22, P(Λa,b) = 0. Since Λ is a countable union of sets Λa,b, it
follows that P(Λ) = 0. This concludes the first part of the proof that Mn converges almost
surely to a limit M∞.

To show that the limit is bounded, we use Fatou’s lemma (see Theorem A.13 in the
appendix) to conclude

E[|M∞|] = E[lim inf
n→∞

|Mn|] ≤ lim inf
n→∞

E[|Mn|] ≤ sup
n≥0

E[|Mn|] <∞,

so that, by Markov’s inequality (recall Theorem 2.14),

P(M∞ <∞) = 1.

This completes the proof of Theorem 2.21.
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2.5.2 Azuma-Hoeffding inequality

We continue with the Azuma-Hoeffding inequality, which provides exponential bounds
for the tails of a special class of martingales:

Theorem 2.23 (Azuma-Hoeffding inequality). Let {Mn}∞n=0 be a martingale process with
the property that, with probability 1, there exists Kn ≥ 0 such that

|Mn −Mn−1| ≤ Kn for all n ≥ 0, (2.5.17)

where, by convention, we define M−1 = µ = E[Mn] (recall also Exercise 2.19). Then, for
every a ≥ 0,

P(|Mn − µ| ≥ a) ≤ 2 exp
{
− a2

2
∑n
i=0 K

2
i

}
. (2.5.18)

Theorem 2.23 is very powerful, as it provides tails on the distribution of Mn. In many
cases, the bounds are close to optimal. The particular strength of Theorem 2.23 is that
the bound is valid for all n ≥ 1.

Proof. For ψ > 0, the function g(d) = eψd is convex, so that, for all d with |d| ≤ 1,

eψd ≤ 1

2
(1− d)e−ψ +

1

2
(1 + d)eψ. (2.5.19)

Applying this with d = D to a random variable D having mean 0 and satisfying P(|D| ≤
1) = 1, we obtain

E[eψD] ≤ E[
1

2
(1−D)e−ψ +

1

2
(1 +D)eψ] =

1

2
(e−ψ + eψ). (2.5.20)

We can use that (2n)! ≥ 2nn! for all n ≥ 0 to obtain that

1

2
(e−ψ + eψ) =

∑
n≥0

ψ2n

(2n)!
≤
∑
n≥0

ψ2n

2nn!
= eψ

2/2. (2.5.21)

By Markov’s inequality in Theorem 2.14, for any θ > 0,

P(Mn − µ ≥ x) = P(eθ(Mn−µ) ≥ eθx) ≤ e−θxE[eθ(Mn−µ)]. (2.5.22)

Writing Dn = Mn −Mn−1, we obtain

E[eθ(Mn−µ)] = E[eθ(Mn−1−µ)eθDn ].

Conditioning on X0, . . . , Xn−1 yields

E[eθ(Mn−µ) |X0, . . . , Xn−1] = eθ(Mn−1−µ)E[eθDn |X0, . . . , Xn−1] ≤ eθ(Mn−1−µ) exp(
1

2
θ2K2

n),

(2.5.23)
where (2.5.20) and (2.5.21) are applied to the random variable Dn/Kn which satisfies

E[Dn|X0, . . . , Xn−1] = E[Mn|X0, . . . , Xn−1]−E[Mn−1|X0, . . . , Xn−1] = Mn−1−Mn−1 = 0.
(2.5.24)

Taking expectations on both sides of (2.5.23) and iterate to find

E[eθ(Mn−µ)] ≤ E[eθ(Mn−1−µ)] exp(
1

2
θ2K2

n) ≤ exp

(
1

2
θ2

n∑
i=0

K2
i

)
. (2.5.25)
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Therefore, by (2.5.22), for all θ > 0,

P(Mn − µ ≥ x) ≤ exp

(
−θx+

1

2
θ2

n∑
i=0

K2
i

)
. (2.5.26)

The exponential is minimized, with respect to θ, by setting θ = x/
∑n
i=0 K

2
i . Hence,

P(Mn − µ ≥ x) ≤ exp

(
− x2∑n

i=0 K
2
i

)
. (2.5.27)

Using that also −Mn is a martingale, we obtain by symmetry that

P(Mn − µ ≤ −x) ≤ exp

(
− x2∑n

i=0 K
2
i

)
. (2.5.28)

Adding the two bounds completes the proof.

Exercise 2.26. Show that Theorem 2.23 implies that for X ∼ BIN(n, p) with p ≤ 1/2

P(|X − np| ≥ a) ≤ 2 exp
{
− a2

2n(1− p)2

}
. (2.5.29)

Exercise 2.27. Let {Xi}∞i=0 be an independent identically distributed sequence of random
variables with E[Xi] = 0 and |Xi| ≤ 1, and define the martingale {Mn}∞n=0 by

Mn =

n∑
i=0

Xi. (2.5.30)

Show that

P(|Mn| ≥ a) ≤ 2 exp
(
− a2

2n

)
. (2.5.31)

Take a = x
√
n, and prove by using the central limit theorem that P(|Mn| ≥ a) converges.

Compare the limit to the bound in (2.5.31).

2.6 Order statistics and extreme value theory

In this section, we study the largest values of a sequence of i.i.d. random variables. For
more background on order statistics, we refer the reader to [80]. We will be particularly
interested in the case where the random variables in question have heavy tails. We let
{Xi}ni=1 be an i.i.d. sequence, and introduce the order statistics of {Xi}ni=1 by

X(1) ≤ X(2) ≤ · · · ≤ X(n), (2.6.1)

so that X(1) = min{X1, . . . , Xn}, X(2) is the second smallest of {Xi}ni=1, etc. In the
notation in (2.6.1), we ignore the fact that the distribution of X(i) depends on n. Sometimes
the notation X(1:n) ≤ X(2:n) ≤ · · · ≤ X(n:n) is used instead to make the dependence on n
explicit. In this section, we shall mainly investigate X(n), i.e., the maximum of X1, . . . , Xn.
We note that the results immediately translate to X(1), by changing to −Xi.

We denote the distribution function of the random variables {Xi}ni=1 by

FX(x) = P(X1 ≤ x). (2.6.2)
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Before stating the results, we introduce a number of special distributions. We say that
the random variable Y has a Fréchet distribution if there exists an α > 0 such that

P(Y ≤ y) =

{
0, y ≤ 0,

exp{−y−α} y > 0.
(2.6.3)

We say that the random variable Y has a Weibull distribution if there exists an α > 0 such
that

P(Y ≤ y) =

{
exp{−(−y)α}, y ≤ 0,

1 y > 0.
(2.6.4)

We say that the random variable Y has a Gumbel distribution if

P(Y ≤ y) = exp{− exp{−y}}, y ∈ R. (2.6.5)

One of the fundamental results in extreme value theory is the following characterization
of possible limit distributions of X(n):

Theorem 2.24 (Fisher-Tippett theorem, limit laws for maxima). Let {Xn}∞n=0 be a se-
quence of i.i.d. random variables. If there exists norming constants cn > 0 and dn ∈ R and
some non-degenerate distribution function H such that

X(n) − cn
dn

d−→ Y, (2.6.6)

where Y has distribution function H, then H is the distribution function of a Fréchet,
Weibull or Gumbel distribution.

A fundamental role in extreme value statistics is played by approximate solutions un of
[1− FX(un)] = 1/n. More precisely, we define un by

un = inf{u : 1− FX(u) ≥ 1/n}. (2.6.7)

We shall often deal with random variables which have a power-law distribution. For such
random variables, the following theorem identifies the Fréchet distribution as the only
possible extreme value limit:

Theorem 2.25 (Maxima of heavy-tailed random variables). Let {Xn}∞n=0 be a sequence
of i.i.d. unbounded random variables satisfying

1− FX(x) = x1−τLX(x), (2.6.8)

where x 7→ LX(x) is a slowly varying function, and where τ > 1. Then

X(n)

un

d−→ Y, (2.6.9)

where Y has a Fréchet distribution with parameter α = τ − 1 and un is defined in (2.6.7).

Exercise 2.28. Show that when (2.6.8) holds, then un is regularly varying with exponent
1

τ−1
.

For completeness, we also state two theorems identifying when the Weibull distribution
or Gumbel distribution occur as the limiting distribution in extreme value theory:
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Theorem 2.26 (Maxima of bounded random variables). Let {Xn}∞n=0 be a sequence of
i.i.d. random variables satisfying that FX(xX) = 1 for some xX ∈ R and

1− FX(xX − x−1) = x−αLX(x), (2.6.10)

where x 7→ LX(x) is a slowly varying function, and where α > 1. Then

X(n) − xX
dn

d−→ Y, (2.6.11)

where Y has a Weibull distribution with parameter α, and dn = xX−un where un is defined
in (2.6.7).

Theorem 2.27 (Maxima of random variables with thin tails). Let {Xn}∞n=0 be a sequence
of i.i.d. bounded random variables satisfying that F (xF ) = 1 for some xF ∈ [0,∞], and

lim
x↑xF

1− F (x+ ta(x))

1− F (x)
= e−t, t ∈ R, (2.6.12)

where x 7→ a(x) is given by

a(x) =

∫ xF

x

1− F (t)

1− F (x)
dt. (2.6.13)

Then
X(n) − un

dn

d−→ Y, (2.6.14)

where Y has a Gumbel distribution, and dn = a(un) where un is defined in (2.6.7).

We next assume that the random variables {Xi}ni=1 have infinite mean. It is well known
that the order statistics of the random variables, as well as their sum, are governed by un
in the case that τ ∈ (1, 2). The following theorem shows this in detail. In the theorem
below, E1, E2, . . . is an i.i.d. sequence of exponential random variables with unit mean and
Γj = E1 +E2 + . . .+Ej , so that Γj has a Gamma distribution with parameters j and 1.

It is well known that when the distribution function F of {Xi}ni=1 satisfies (2.6.8), then∑n
i=1 Xi has size approximately n1/(τ−1), just as holds for the maximum, and the rescaled

sum n−1/(τ−1)∑n
i=1 Xi converges to a stable distribution. The next result generalizes this

statement to convergence of the sum together with the first order statistics:

Theorem 2.28 (Convergence in distribution of order statistics and sum). {Xn}∞n=0 be a
sequence of i.i.d. random variables satisfying (2.6.8) for some τ ∈ (1, 2). Then, for any
k ∈ N, (

Ln
un

,
{X(n+1−i)

un

}n
i=1

)
d−→ (η, {ξi}∞i=1) , as n→∞, (2.6.15)

where (η, {ξi}∞i=1) is a random vector which can be represented by

η =

∞∑
j=1

Γ
−1/(τ−1)
j , ξi = Γ

−1/(τ−1)
i , (2.6.16)

and where un is slowly varying with exponent 1/(τ − 1) (recall Exercise 2.28). Moreover,

ξkk
1/(τ−1) P−→ 1 as k →∞. (2.6.17)
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Proof. Because τ − 1 ∈ (0, 1), the proof is a direct consequence of [129, Theorem 1’], and
the continuous mapping theorem [36, Theorem 5.1], which together yield that on R×R∞,
equipped with the product topology, we have

(S#
n , Z

(n))
d−→ (S#, Z), (2.6.18)

where S#
n = u−1

n Ln, Z(n) = u−1
n (D(n:n), . . . , D(1:n), 0, 0, . . .), and Zj = Γ

−1/(τ−1)
j , j ≥ 1.

Finally, (2.6.17) follows because by the weak law of large numbers,

Γk
k

P−→ 1, (2.6.19)

and ξk = Γ
−1/(τ−1)
k .

Interestingly, much can be said about the random probability distribution Pi = ξi/η,
which is called the Poisson-Dirichlet distribution (see e.g., [158]). For example, [158, Eqn.
(10)] proves that for any f : [0, 1]→ R, and with α = τ − 1 ∈ (0, 1),

E
[ ∞∑
i=1

f(Pi)
]

=
1

Γ(α)Γ(1− α)

∫ 1

0

f(u)u−α−1(1− u)α−1du. (2.6.20)

2.7 Notes and discussion

Notes on Section 2.1. For a through discussion on convergence issues of integer random
variables including Theorems 2.4–2.6 and much more, see [42, Section 1.4].

Notes on Section 2.4. Theorem 2.16 has a long history. See e.g., [72, Theorem 2.2.3]
for a more precise version of Cramér’s Theorem, which states that (2.4.8)–(2.4.9) are sharp,
in the sense that − 1

n
log P( 1

n

∑n
i=1 Xi ≤ a) converges to I(a). See [155, Theorem 1.1] for

a version of Cramér’s Theorem that includes also the Chernoff bound.

Notes on Section 2.5. This discussion is adapted after [94]. For interesting examples of
martingale argument, as well as adaptations of the Azuma-Hoeffding inequality in Theorem
2.23, see [63].

Notes on Section 2.6. Theorem 2.24 is [80, Theorem 3.2.3]. Theorem 2.25 is [80,
Theorem 3.3.7]. Theorem 2.26 is [80, Theorem 3.3.12]. Theorem 2.27 is [80, Theorem
3.3.27]. For a thorough discussion of extreme value results, as well as many examples, we
refer to the standard work on the topic [80].



Chapter 3

Branching processes

Branching processes will be used in an essential way throughout these notes to describe
the connected components of various random graphs. To prepare for this, we describe
branching processes in quite some detail here. Special attention will be given to branching
processes with a Poisson offspring distribution, as well as to branching processes with a
binomial offspring distribution and their relation (see Sections 3.5 and 3.6 below). We start
by describing the survival versus extinction transition in Section 3.1, and provide a useful
random walk perspective on branching processes in Section 3.3. For more information
about branching processes, we refer to the books [16, 97, 102].

3.1 Survival versus extinction

A branching process is the simplest possible model for a population evolving in time.
Suppose each organism independently gives birth to a number of children with the same
distribution. We denote the offspring distribution by {pi}∞i=0, where

pi = P(individual has i children). (3.1.1)

We denote by Zn the number of individuals in the nth generation, where, by convention,
we let Z0 = 1. Then Zn satisfies the recursion relation

Zn =

Zn−1∑
i=1

Xn,i, (3.1.2)

where {Xn,i}n,i≥1 is a doubly infinite array of i.i.d. random variables. We will often write
X for the offspring distribution, so that {Xn,i}n,i≥1 is a doubly infinite array of i.i.d.
random variables with Xn,i ∼ X for all n, i.

One of the major results of branching processes is that when E[X] ≤ 1, the population
dies out with probability one (unless X1,1 = 1 with probability one), while if E[X] > 1,
there is a non-zero probability that the population will not become extinct. In order to
state the result, we denote the extinction probability by

η = P(∃n : Zn = 0). (3.1.3)

Theorem 3.1 (Survival v.s. extinction for branching processes). For a branching process
with i.i.d. offspring X, η = 1 when E[X] < 1, while η < 1 when E[X] > 1. When E[X] = 1,
and P(X = 1) < 1, then η = 1. Moreover, with GX the probability generating function of
the offspring distribution X, i.e.,

GX(s) = E[sX ], (3.1.4)

the extinction probability η is the smallest solution in [0, 1] of

η = GX(η). (3.1.5)
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0 1

1

0 1

1

0 1

1

Figure 3.1: The solution of s = GX(s) when E[X] < 1,E[X] = 1,E[X] > 1 respectively.
Note that E[X] = G′X(1), and G′X(1) > 1 precisely when there is a solution η < 1 to
η = GX(η).

Proof. We write
ηn = P(Zn = 0). (3.1.6)

Because {Zn = 0} ⊆ {Zn+1 = 0}, we have that ηn ↑ η. Let

Gn(s) = E[sZn ] (3.1.7)

denote the generating function of the nth generation. Then, since for an integer-valued
random variable X, P(X = 0) = GX(0), we have that

ηn = Gn(0). (3.1.8)

By conditioning on the first generation, we obtain that

Gn(s) = E[sZn ] =

∞∑
i=0

piE[sZn |Z1 = i] =

∞∑
i=0

piGn−1(s)i. (3.1.9)

Therefore, writing GX = G1 for the generating function of X1,1, we have that

Gn(s) = GX(Gn−1(s)). (3.1.10)

When we substitute s = 0, we obtain that ηn satisfies the recurrence relation

ηn = GX(ηn−1). (3.1.11)

See Figure 3.2 for the evolution of n 7→ ηn.
When n→∞, we have that ηn ↑ η, so that, by continuity of s 7→ GX(s), we have

η = GX(η). (3.1.12)

When P(X = 1) = 1, then Zn = 1 a.s., and there is nothing to prove. When, further,
P(X ≤ 1) = 1, but p = P(X = 0) > 0, then P(Zn = 0) = 1 − (1 − p)n → 1, so again
there is nothing to prove. Therefore, for the remainder of this proof, we shall assume that
P(X ≤ 1) < 1.
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0
1

1

Figure 3.2: The iteration for n 7→ ηn in (3.1.11).

Suppose that ψ ∈ [0, 1] satisfies ψ = GX(ψ). We claim that η ≤ ψ. We use induction to
prove that ηn ≤ ψ for all n. Indeed, η0 = 0 ≤ ψ, which initializes the induction hypothesis.
To advance the induction, we use (3.1.11), the induction hypothesis, as well as the fact
that s 7→ GX(s) is increasing on [0, 1], to see that

ηn = GX(ηn−1) ≤ GX(ψ) = ψ, (3.1.13)

where the final conclusion comes from the fact that ψ is a solution of ψ = GX(ψ). Therefore,
ηn ≤ ψ, which advances the induction. Since ηn ↑ η, we conclude that η ≤ ψ for all
solutions ψ of ψ = GX(ψ). Therefore, η is the smallest such solution.

We note that s 7→ GX(s) is increasing and convex for s ≥ 0, since

G′′X(s) = E[X(X − 1)sX−2] ≥ 0. (3.1.14)

When P(X ≤ 1) < 1, then E[X(X − 1)sX−2] > 0, so that s 7→ GX(s) is strictly increasing
and strictly convex for s > 0. Therefore, there can be at most two solutions of s = GX(s) in
[0, 1]. Note that s = 1 is always a solution of s = GX(s), since G is a probability generating
function. Since GX(0) > 0, there is precisely one solution when G′X(1) < 1, while there
are two solutions when G′X(1) > 1. The former implies that η = 1 when G′X(1) > 1,
while the latter implies that η < 1 when G′X(1) < 1. When G′X(1) = 1, again there is
precisely one solution, except when GX(s) = s, which is equivalent to P(X = 1) = 1. Since
G′X(1) = E[X], this proves the claim.
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Figure 3.3: The survival probability ζ = ζλ for a Poisson branching process with mean
offspring equal to λ. The survival probability equals ζ = 1 − η, where η is the extinction
probability.

In many cases, we shall be interested in the survival probability, denoted by ζ = 1−η, which
is the probability that the branching process survives forever, i.e., ζ = P(Zn > 0 ∀n ≥ 0).
See Figure 3.3 for the survival probability of a Poisson branching process with parameter
λ, as a function of λ.

Exercise 3.1. Show that η = 0 precisely when p0 = 0.

Exercise 3.2. When the offspring distribution is given by

px = (1− p)1l{x=0} + p1l{x=2}, (3.1.15)

we speak of binary branching. Prove that η = 1 when p ≤ 1/2 and, for p > 1/2,

η =
1− p
p

. (3.1.16)

Exercise 3.3 ([16], Pages 6-7.). Let the probability distribution {pk}∞k=0 be given by{
pk = b(1− p)k−1 for k = 1, 2, . . . ;

p0 = 1− b/p for k = 0,
(3.1.17)

so that, for b = p, the offspring distribution has a geometric distribution with success
probability p. Show that the extinction probability η is given by η = 1 if µ = E[X] = b/p2 ≤
1, while, with the abbreviation q = 1− p,

η =
1− µp
q

. (3.1.18)

Exercise 3.4 (Exercise 3.3 cont.). Let the probability distribution {pk}∞k=0 be given by
(3.1.17). Show that Gn(s), the generating function of Zn is given by

Gn(s) =


1− µn 1−η

µn−η +
µn
(

1−η
µn−η

)2

s

1−
(
µn−1
µn−η

) when b 6= p2;

nq−(nq−p)s
p+nq−nps when b = p2.

(3.1.19)
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Exercise 3.5 (Exercise 3.4 cont.). Conclude from Exercise 3.4 that, for {pk}∞k=0 in
(3.1.17),

P(Zn > 0, ∃m > n such that Zm = 0) =


µn 1−η

µn−η when b < p2;
p

p+nq
when b = p2;

(1−η)η
µn−η when b > p2.

(3.1.20)

We continue by studying the total progeny T of the branching process, which is defined as

T =
∞∑
n=0

Zn. (3.1.21)

We denote by GT (s) the probability generating function of T , i.e.,

GT (s) = E[sT ]. (3.1.22)

The main result is the following:

Theorem 3.2 (Total progeny probability generating function). For a branching process
with i.i.d. offspring X having probability generating function GX(s) = E[sX ], the probability
generating function of the total progeny T satisfies the relation

GT (s) = sGX(GT (s)). (3.1.23)

Proof. We again condition on the size of the first generation, and use that when Z1 = i,
for j = 1, . . . , i, the total progeny Tj of the jth child of the initial individual satisfies that
{Tj}ij=1 is an i.i.d. sequence of random variables with law equal to the one of T . Therefore,
using also that

T = 1 +

i∑
j=1

Tj , (3.1.24)

where, by convention, the empty sum, arising when i = 0, is equal to zero, we obtain

GT (s) =

∞∑
i=0

piE[sT |Z1 = i] = s

∞∑
i=0

piE[sT1+···+Ti ] = s
∞∑
i=0

piGT (s)i = sGX(GT (s)).

(3.1.25)
This completes the proof.

Exercise 3.6 (Exercise 3.2 cont.). In the case of binary branching, i.e., when p is given
by (3.1.15), show that

GT (s) =
1−

√
1− 4s2pq

2sp
. (3.1.26)

Exercise 3.7 (Exercise 3.5 cont.). Show, using Theorem 3.2, that, for {pk}∞k=0 in (3.1.17),

GT (s) =

√
(p+ s(b− pq))2 − 4pqs(p− b)− (p+ sbq)

2pq
(3.1.27)
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3.2 Family moments

In this section, we compute the mean generation size of a branching process, and use
this to compute the mean family size or the mean total progeny. The main result is the
following theorem:

Theorem 3.3 (Moments of generation sizes). For all n ≥ 0, and with µ = E[Z1] = E[X]
the expected offspring of a given individual,

E[Zn] = µn. (3.2.1)

Proof. Recall that

Zn =

Zn−1∑
i=1

Xn,i, (3.2.2)

where {Xn,i}n,i≥1 is a doubly infinite array of i.i.d. random variables. In particular,
{Xn,i}i≥1 is independent of Zn−1.

Exercise 3.8. Complete the proof of Theorem 3.3 by conditioning on Zn−1 and showing
that

E
[ Zn−1∑
i=1

Xn,i|Zn−1 = m
]

= mµ, (3.2.3)

so that
E[Zn] = µE[Zn−1]. (3.2.4)

Exercise 3.9. Prove that {µ−nZn}n≥1 is a martingale.

Exercise 3.10. When the branching process is critical, note that Zn
P−→ 0. On the other

hand, conclude that E[Zn] = 1 for all n ≥ 1.

Theorem 3.4. Fix n ≥ 0. Let µ = E[Z1] = E[X] be the expected offspring of a given
individual, and assume that µ < 1. Then

P(Zn > 0) ≤ µn. (3.2.5)

Exercise 3.11. Prove Theorem 3.4 by using Theorem 3.3, together with the Markov in-
equality (2.4.1).

Theorem 3.4 implies that in the subcritical regime, i.e., when the expected offspring µ < 1,
the probability that the population survives up to time n is exponentially small in n.

Theorem 3.5 (Expected total progeny). For a branching process with i.i.d. offspring X
having mean offspring µ < 1,

E[T ] =
1

1− µ. (3.2.6)

Exercise 3.12. Prove (3.2.6).
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3.3 Random-walk perspective to branching processes

In branching processes, it is common to study the number of descendants of each gener-
ation. For random graph purposes, it is often convenient to use a different construction of
a branching process by sequentially investigating the number of children of each member
of the population. This picture leads to a random walk formulation of branching processes.
For more background on random walks, we refer the reader to [169] or [94, Section 5.3].

We now give the random walk representation of a branching process. Let X1, X2, . . .
be independent random variables with the same distribution as X1,1 in (3.1.2). Define
S0, S1, . . . by the recursion

S0 = 1,

Si = Si−1 +Xi − 1 = X1 + . . .+Xi − (i− 1).
(3.3.1)

Let T be the smallest t for which St = 0, i.e., (recall (1.5.10))

T = min{t : St = 0} = min{t : X1 + . . .+Xt = t− 1}. (3.3.2)

If such a t does not exist, then we define T = +∞.
The above description is equivalent to the normal definition of a branching process, but

records the branching process tree in a different manner. For example, in the random walk
picture, it is slightly more difficult to extract the distribution of the generation sizes. To
see that the two pictures agree, we shall show that the distribution of the random variable
T is equal to the total progeny of the branching process as defined in (3.1.21), and it is
equal to the total number of individuals in the family tree of the initial individual.

To see this, we note that we can explore the branching process family tree as follows.
We let X1 denote the children of the original individual, and set S1 as in (3.3.1). Then,
there are S1 = X1 − 1 unexplored individuals, i.e., individuals of whom we have not yet
explored how many children they have. We claim that after exploring i individuals, and
on the event that there are at least i individuals in the family tree, the random variable
Si denotes the number of individuals of whom the children have not yet been explored:

Lemma 3.6 (The interpretation of {Si}∞i=0). The random process {Si}∞i=0 in (3.3.1) has
the same distribution as the random process {S′i}∞i=0, where S′i denotes the number of
unexplored individuals in the exploration of a branching process population after exploring
i individuals successively.

Proof. We shall prove this by induction on i. Clearly, it is correct when i = 0. We next
advance the induction hypothesis. For this, suppose this is true for Si−1. We are done when
Si−1 = 0, since then all individuals have been explored, and the total number of explored
individuals is clearly equal to the size of the family tree, which is T by definition. Thus,
assume that Si−1 > 0. Then we pick an arbitrary unexplored individual and denote the
number of its children by Xi. By the independence property of the offspring of different
individuals in a branching process, we have that the distribution of Xi is equal to the
distribution of Z1, say. Also, after exploring the children of the ith individual, we have
added Xi individuals that still need to be explored, and have explored a single individual,
so that now the total number of unexplored individuals is equal to Si−1 + Xi − 1, which,
by (3.3.1) is equal to Si. This completes the proof using induction.

Lemma 3.6 gives a nice interpretation of the random process {Si}∞i=0 in (3.3.1). Finally,
since the branching process total progeny is explored precisely at the moment that all of
its individuals have been explored, it follows that T in (3.3.2) has the same distribution as
the total progeny of the branching process.

Exercise 3.13. Compute P(T = k) for T in (3.3.2) and P(T = k) for T in (3.1.21)
explicitly, for k = 1, 2 and 3.
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The branching process belonging to the recursion in (3.3.1) is the following. The population
starts with one active individual. At time i, we select one of the active individuals in the
population, and give it Xi children. The children (if any) are set to active, and the
individual becomes inactive.

This process is continued as long as there are active individuals in the population. Then,
the process Si describes the number of active individuals after the first i individuals have
been explored. The process stops when St = 0, but the recursion can be defined for all t
since this leaves the value of T unaffected. Note that, for a branching process, (3.3.1) only
makes sense as long as i ≤ T , since only then Si ≥ 0 for all i ≤ T . However, (3.3.1) in
itself can be defined for all i ≥ 0, also when Si < 0. This fact will be useful in the sequel.

Exercise 3.14 (Exercise 3.2 cont.). In the case of binary branching, i.e., when the offspring
distribution is given by (3.1.15), show that

P(T = k) =
1

p
P
(
S0 = Sk+1 = 0, Si > 0 ∀1 ≤ i ≤ k

)
, (3.3.3)

where {Si}∞i=1 is a simple random walk, i.e.,

Si = Y1 + · · ·+ Yi, (3.3.4)

where {Yi}∞i=1 are i.i.d. random variables with distribution

P(Y1 = 1) = 1− P(Y1 = −1) = p. (3.3.5)

This gives a one-to-one relation between random walks excursions and the total progeny of
a binary branching process.

Denote by H = (X1, . . . , XT ) the history of the process up to time T . We include
the case where T = ∞, in which case the vector H has infinite length. A sequence
(x1, . . . , xt) is a possible history if and only if the sequence xi satisfies (3.3.1), i.e., when
si > 0 for all i < t, while st = 0, where si = x1 + · · ·+ xi − (i− 1). Then, for any t <∞,

P(H = (x1, . . . , xt)) =

t∏
i=1

pxi . (3.3.6)

Note that (3.3.6) determines the law of the branching process when conditioned on extinc-
tion.

We will use the random walk perspective in order to describe the distribution of a
branching process conditioned on extinction. Call the distributions p and p′ a conjugate
pair if

p′x = ηx−1px, (3.3.7)

where η is the extinction probability belonging to the offspring distribution {px}∞x=0, so
that η = GX(η).

Exercise 3.15. Prove that p′ = {p′x}∞x=0 defined in (3.3.7) is a probability distribution.

The relation between a supercritical branching process conditioned on extinction and its
conjugate branching process is as follows:

Theorem 3.7 (Duality principle for branching processes). Let p and p′ be conjugate off-
spring distributions. The branching process with distribution p, conditional on extinction,
has the same distribution as the branching process with offspring distribution p′.
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The duality principle takes a particularly appealing form for Poisson branching pro-
cesses, see Theorem 3.13 below.

Proof. It suffices to show that for every finite history H = (x1, . . . , xt), the probability
(3.3.6) is the same for the branching process with offspring distribution p, when conditioned
on extinction, and the branching process with offspring distribution p′. Fix a t <∞. First
observe that

P(H = (x1, . . . , xt)|extinction) =
P({H = (x1, . . . , xt)} ∩ extinction)

P(extinction)

= η−1P(H = (x1, . . . , xt)), (3.3.8)

since a finite history implies that the population becomes extinct. Then, we use (3.3.6),
together with the fact that

t∏
i=1

pxi =

t∏
i=1

p′xiη
−(xi−1) = ηt−

∑t
i=1 xi

t∏
i=1

p′xi = η

t∏
i=1

p′xi , (3.3.9)

since x1 + . . .+ xt = t− 1. Substitution into (3.3.8) yields that

P(H = (x1, . . . , xt)|extinction) = P′(H = (x1, . . . , xt)), (3.3.10)

where P′ is the distribution of the branching process with offspring distribution p′.

Exercise 3.16. Let Gd(s) = E′[sX1 ] be the probability generating function of the offspring
of the dual branching process. Show that

Gd(s) =
1

η
GX(ηs). (3.3.11)

Exercise 3.17. Let X ′ have probability mass function p′ = {p′x}∞x=0 defined in (3.3.7).
Show that when η < 1, then

E[X ′] < 1. (3.3.12)

Thus, the branching process with offspring distribution p′ is subcritical.

Another convenient feature of the random walk perspective for branching processes is that
it allows one to study what the probability is of extinction when the family tree has at
least a given size. The main result in this respect is given below:

Theorem 3.8 (Extinction probability with large total progeny). For a branching process
with i.i.d. offspring X having mean µ = E[X] > 1,

P(k ≤ T <∞) ≤ e−Ik

1− e−I , (3.3.13)

where the exponential rate I is given by

I = sup
t≤0

(
t− logE[etX ]

)
> 0. (3.3.14)
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Theorem 3.8 can be reformulated by saying that when the total progeny is large, then
the branching process will survive with high probability.

Note that when µ = E[X] > 1 and when E[etX ] < ∞ for all t ∈ R, then we can also
write

I = sup
t

(
t− logE[etX ]

)
, (3.3.15)

(see also (2.4.12)). However, in Theorem 3.8, it is not assumed that E[etX ] < ∞ for all
t ∈ R! Since X ≥ 0, we clearly do have that E[etX ] < ∞ for all t ≤ 0. Therefore, since
also the derivative of t 7→ t − logE[etX ] in t = 0 is equal to 1 − E[X] < 0, the supremum
is attained at a t < 0, and, therefore, we obtain that I > 0 under no assumptions on the
existence of the moment generating function of the offspring distribution. We now give the
full proof:

Proof. We use the fact that T = s implies that Ss = 0, which in turn implies that X1 +
. . .+Xs = s− 1 ≤ s. Therefore,

P(k ≤ T <∞) ≤
∞∑
s=k

P(Ss = 0) ≤
∞∑
s=k

P(X1 + . . .+Xs ≤ s). (3.3.16)

For the latter probability, we use (2.4.9) and (2.4.11) in Theorem 2.16 with a = 1 < E[X].
Then, we arrive at

P(k ≤ T <∞) ≤
∞∑
s=k

e−sI =
e−Ik

1− e−I . (3.3.17)

3.4 Supercritical branching processes

In this section, we prove a convergence result for the population in the nth generation.
Clearly, in the (sub)critical case, the limit of Zn is equal to 0, and there is nothing to
prove. In the supercritical case, when the expected offspring is equal to µ > 1, it is also
known that (see e.g., [16, Theorem 2, p. 8]) limn→∞ P(Zn = k) = 0 unless k = 0, and
P(limn→∞ Zn = 0) = 1 − P(limn→∞ Zn = ∞) = η, where η is the extinction probability
of the branching process. In particular, the branching process population cannot stabilize.
It remains to investigate what happens when η < 1, in which case limn→∞ Zn =∞ occurs
with positive probability. We prove the following convergence result:

Theorem 3.9 (Convergence for supercritical branching processes). For a branching pro-

cess with i.i.d. offspring X having mean µ = E[X] > 1, µ−nZn
a.s.−→ W∞ for some random

variable W∞ which is finite with probability 1.

Proof. We use the martingale convergence theorem (Theorem 2.21), and, in particular, its
consequence formulated in Exercise 2.23. Denote Mn = µ−nZn, and recall that by Exercise
3.9, {Mn}∞n=1 is a martingale. By Theorem 3.3, we have that E[|Mn|] = E[Mn] = 1, so
that Theorem 2.21 gives the result.

Unfortunately, not much is known about the limiting distribution W∞. Its probability
generating function GW (s) = E[sW∞ ] satisfies the implicit relation, for s ∈ [0, 1],

GW (s) = GX
(
GW (s1/µ)

)
. (3.4.1)

Exercise 3.18. Prove (3.4.1).
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We next investigate when P(W∞ > 0) = 1− η = ζ:

Theorem 3.10 (Kesten-Stigum Theorem). For a branching process with i.i.d. offspring
X having mean µ = E[X] > 1, P(W∞ = 0) = η precisely when E[X logX] < ∞. When
E[X logX] <∞, also E[W∞] = 1, while, when E[X logX] =∞, P(W∞ = 0) = 1.

Theorem 3.10 implies that P(W∞ > 0) = 1 − η, where η is the extinction probability
of the branching process, so that conditionally on survival, the probability that W∞ > 0
is equal to one. Theorem 3.10 was first proved by Kesten and Stigum in [116, 117, 118].
It is remarkable that the precise condition when W∞ = 0 a.s. can be so easily expressed
in terms of a moment condition on the offspring distribution. A proof of Theorem 3.10
is given in [16, Pages 24-26], while in [137] a conceptual proof is given. See [75, Proof
of Theorem 2.16] for a simple proof of the statement under the stronger condition that
E[X2] <∞, using the L2-martingale convergence theorem (see also below Theorem 2.21).

Theorem 3.10 leaves us with the question what happens when E[X logX] = ∞. In
this case, Seneta [163] has shown that there always exists a proper renormalization, i.e.,

there exists a sequence {cn}∞n=1 with limn→∞ c
1/n
n = µ such that Zn/cn converges to a

non-degenerate limit. However, cn = o(µn), so that P(W∞ = 0) = 1.

Exercise 3.19. Prove that P(W∞ > 0) = 1− η implies that P(W∞ > 0| survival) = 1.

Exercise 3.20. Prove, using Fatou’s lemma (Theorem A.13), that E[W∞] ≤ 1 always
holds.

We continue by studying the number of particles with an infinite line of descent, i.e., the
particles of whom the family tree survives forever. Interestingly, these particles form a
branching process again, as we describe now. In order to state the result, we start with
some definitions. We let Z(1)

n denote those particles from the nth generation of {Zk}∞k=0

that survive forever. Then, the main result is as follows:

Theorem 3.11 (Individuals with an infinite line of descent). Conditionally on survival,
the process {Z(∞)

n }∞n=0 is again a branching process with offspring distribution p(∞) =

{p(∞)

k }
∞
k=0 given by p(∞)

0 = 0 and, for k ≥ 1,

p(∞)

k =
1

ζ

∞∑
j=k

(
j

k

)
ηj−k(1− η)jpj . (3.4.2)

Moreover, since
µ(∞) = E[Z(∞)

1 ] = µ = E[Z1], (3.4.3)

this branching process is supercritical with the same expected offspring as {Zn}∞n=0 itself.

Comparing Theorem 3.11 to Theorem 3.7, we see that in the supercritical regime, the
branching process conditioned on extinction is a branching process with the dual (subcrit-
ical) offspring distribution, while, conditional on survival, the individuals with an infinite
line of descent for a (supercritical) branching process.

Exercise 3.21. Prove that p(∞) is a probability distribution.

Proof of Theorem 3.11. We let A∞ be the event that Zn → ∞. We shall prove, by
induction on n ≥ 0, that the distribution of {Z(∞)

k }nk=0 conditionally on A∞ is equal to

that of a {Ẑk}nk=0, where {Ẑk}∞k=0 is a branching process with offspring distribution p(∞)

given in (3.4.2). We start by initializing the induction hypothesis. For this, we note that,

on A∞, we have that Z(∞)

0 = 1, whereas, by convention, Ẑ0 = 1. This initializes the
induction hypothesis.



62 Branching processes

To advance the induction hypothesis, we argue as follows. Suppose that the distribution

of {Z(∞)

k }nk=0, conditionally on A∞, is equal to that of {Ẑk}nk=0. Then, we shall show that

also the distribution of {Z(∞)

k }n+1
k=0 , conditionally on A∞, is equal to that of {Ẑk}n+1

k=0 . By

the induction hypothesis, this immediately follows if the conditional distributions of Z(∞)

n+1

given {Z(∞)

k }nk=0 is equal to the conditional distribution of Ẑn+1 given {Ẑk}nk=0.

The law of Ẑn+1 given {Ẑk}nk=0 is that of an independent sum of Ẑn i.i.d. random

variables with law p(∞). Now, the law of Z(∞)

n+1 given {Z(∞)

k }nk=0 is equal to the law of Z(∞)

n+1

given Z(∞)
n , and each individual with infinite line of descent in the nth generation gives rise

to a random and i.i.d. number of individuals with infinite line of descent in the (n + 1)st

generation with the same law as Z(∞)

1 conditionally on A∞. As a result, to complete the
proof of (3.4.2), we must show that

P
(
Z(∞)

1 = k
∣∣A∞) = p(∞)

k . (3.4.4)

For k = 0, this is trivial, since, conditionally on A∞, we have that Z(∞)

1 ≥ 1, so that
both sides are equal to 0 for k = 0. For k ≥ 1, on the other hand, the proof follows by
conditioning on Z1. We have that, for k ≥ 1, Z(∞)

1 = k implies that Z1 ≥ k and that A∞
occurs, so that

P
(
Z(∞)

1 = k
∣∣A∞) = ζ−1P

(
Z(∞)

1 = k
)

= ζ−1
∑
j≥k

P
(
Z(∞)

1 = k
∣∣Z1 = j

)
P(Z1 = j)

= ζ−1
∑
j≥k

(
j

k

)
ηj−k(1− η)jpj , (3.4.5)

since each of the j particles has infinite line of descent with probability ζ = 1− η, so that
P
(
Z(∞)

1 = k
∣∣Z1 = j

)
= P(BIN(j, 1− η) = k).

We complete the proof of Theorem 3.11 by proving (3.4.3). We start by proving (3.4.2)
when µ < ∞. For this, we write, using that for k = 0, we may substitute the right-hand
side of (3.4.2) instead of p(∞)

0 = 0, to obtain

µ(∞) =

∞∑
k=0

kp(∞)

k =

∞∑
k=0

k
1

ζ

∞∑
j=k

(
j

k

)
ηj−k(1− η)jpj

=
1

ζ

∞∑
j=0

pj

j∑
k=0

k

(
j

k

)
ηj−k(1− η)j =

1

ζ

∞∑
j=0

pj(ζj) =

∞∑
j=0

jpj = µ. (3.4.6)

This proves (3.4.2) when µ <∞. When µ =∞, on the other hand, we only need to show
that µ(∞) = ∞ as well. This can easily be seen by an appropriate truncation argument,
and is left to the reader.

Exercise 3.22. Prove (3.4.2) when µ =∞.

With Theorems 3.11 and 3.9 at hand, we see an interesting picture emerging. Indeed, by

Theorem 3.9, we have that Znµ
−n a.s.−→ W∞, where, if the X logX-condition in Theorem

3.10 is satisfied, P(W∞ > 0) = ζ, the branching process survival probability. On the other
hand, by Theorem 3.11 and conditionally on A∞, {Z(∞)

n }∞n=0 is also a branching process

with expected offspring µ, which survives with probability 1. As a result, Z(∞)
n µ−n

a.s.−→
W (∞)
∞ , where, conditionally on A∞, P(W (∞)

∞ > 0) = 1, while, yet, Z(∞)
n ≤ Zn for all
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n ≥ 0, by definition. This raises the question what the relative size is of Z(∞)
n and Zn,

conditionally on A∞. This question is answered in the following theorem:

Theorem 3.12 (Proportion of particles with infinite line of descent). Conditionally on
survival,

Z(∞)
n

Zn

a.s.−→ ζ. (3.4.7)

Theorem 3.12 will prove to be quite useful, since it allows us sometimes to transfer results
on branching processes which survive with probability 1, such as {Z(∞)

n }∞n=0 conditionally
on survival, to branching processes which have a non-zero extinction probability, such as
{Zn}∞n=0.

Proof of Theorem 3.12. We first give the proof in the case where the mean offspring µ is
finite. Applying Theorem 3.11 together with Theorem 3.9 and the fact that, condition-
ally on survival, E[Z(∞)

1 ] = µ (see (3.4.3)), we obtain that there exists W (∞) such that
Z(∞)
n µ−n → W (∞). Moreover, by Theorem 3.10 and the fact that the survival proba-

bility of the branching process in {Z(∞)
n }∞n=0 equals 0 (recall Exercise 3.1), we have that

P(W (∞) > 0) = 1. Further, again by Theorem 3.9 now applied to {Zn}∞n=0, conditionally
on survival, Zn/µ

n converges in distribution to the conditional distribution of W∞ condi-
tionally on W∞ > 0. Thus, we obtain that Z(∞)

n /Zn converges a.s. to a finite and positive
limit R.

In order to see that this limit in fact equals ζ, we use that the distribution of Z(∞)
n

given that Zn = k is binomial with parameters k probability of success ζ. As a result,
since as n → ∞ and conditionally on survival Zn → ∞, we have that Z(∞)

n /Zn converges
in probability to ζ. This implies that R = ζ a.s.

Add proof when µ =∞!

3.5 Properties of Poisson branching processes

In this section, we specialize the discussion of branching processes to branching processes
with Poisson offspring distributions. We will denote the distribution of a Poisson branching
process by P∗λ. We also write T ∗ for the total progeny of the Poisson branching process,
and X∗ for a Poisson random variable.

For a Poisson random variable X∗ with mean λ, we have that the probability generating
function of the offspring distribution is equal to

G∗λ(s) = E∗λ[sX
∗
] =

∞∑
i=0

sie−λ
λi

i!
= eλ(s−1). (3.5.1)

Therefore, the relation for the extinction probability η in (3.1.5) becomes

ηλ = eλ(ηλ−1), (3.5.2)

where we add the subscript λ to make the dependence on λ explicit.
For λ ≤ 1, the equation (3.5.2) has the unique solution ηλ = 1, which corresponds

to certain extinction. For λ > 1 there are two solutions, of which the smallest satisfies
ηλ ∈ (0, 1). As P∗λ(T ∗ <∞) < 1, we know

P∗λ(T ∗ <∞) = ηλ. (3.5.3)
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We recall that H = (X∗1 , . . . , X
∗
T ) is the history of the branching process, where again

we have added superscripts ∗ to indicate that we mean a Poisson branching process. Then,
conditionally on extinction, a Poisson branching process has law p′ given by

p′i = ηi−1
λ pi = e−ληλ

(ληλ)i

i!
, (3.5.4)

where we have used (3.5.2). Note that this offspring distribution is again Poisson with
mean

µλ = ληλ, (3.5.5)

and, again by (3.5.2),

µλe
−µλ = ληλe

−ληλ = λe−λ. (3.5.6)

Therefore, we call µ < 1 < λ a conjugate pair if

µe−µ = λe−λ. (3.5.7)

Since x 7→ xe−x is first increasing and then decreasing, with a maximum of e−1 at x = 1,
the equation µe−µ = λe−λ has precisely two solutions, a solution µ < 1 and a solution
λ > 1. Therefore, for Poisson offspring distributions, the duality principle in Theorem 3.7
can be reformulated as follows:

Theorem 3.13 (Poisson duality principle). Let µ < 1 < λ be conjugates. The Poisson
branching process with mean λ, conditional on extinction, has the same distribution as a
Poisson branching process with mean µ.

We further describe the law of the total progeny of a Poisson branching process:

Theorem 3.14 (Total progeny for Poisson BP). For a branching process with i.i.d. off-
spring X, where X has a Poisson distribution with mean λ,

P∗λ(T ∗ = n) =
(λn)n−1

n!
e−λn, (n ≥ 1). (3.5.8)

In the proof below, we make heavy use of combinatorial results, more in particular, of
Cayley’s Theorem. In Section 3.7 below, we give a more general version of Theorem 3.14
valid for any offspring distribution, using the random-walk Hitting-time theorem.

Exercise 3.23. Use Theorem 3.14 to show that, for any λ, and for k sufficiently large,

P∗λ(k ≤ T ∗ <∞) ≤ e−Iλk, (3.5.9)

where Iλ = λ− 1− log λ.

Proof of Theorem 3.14. The proof of Theorem 3.14 relies on Cayley’s Theorem on the
number of labeled trees [55]. In its statement, we define a labeled tree on {1, . . . , n} to be
a tree of size n where all vertices have a label in {1, . . . , n} and each label occurs precisely
once. We now make this definition precise. An edge of a labeled tree is a pair {v1, v2},
where v1 and v2 are the labels of two connected vertices in the tree. The edge set of a tree
of size n is the collection of its n− 1 edges. Two labeled trees are equal if and only if they
consist of the same edge sets. A labeled tree of n vertices is equivalent to a spanning tree
of the complete graph Kn on the vertices {1, . . . , n}. Cayley’s Theorem reads as follows:
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Theorem 3.15 (Cayley’s Theorem). The number of labeled trees of size n is equal to
nn−2. Equivalently, the number of spanning trees of the complete graph of size n equals
nn−2.

Proof. We need to prove that the number of spanning trees in a complete graph on n points
is equal to nn−2. We first show that any spanning tree has at least one vertex of degree 1.
Suppose, on the contrary, that all vertices in the spanning tree T have degree at least 2.
Fix an initial vertex, and perform a walk by traversing one of its edges. Then again choose
an edge that we have not yet chosen from the current position, and repeat. Since the graph
is finite, there must be a moment that, from the current position, we cannot choose an
edge we have not chosen before. Since each vertex has at least two edges, this means that
the final vertex has been visited at least twice, which, in turn, means that there exists a
cycle contradicting the statement that T is a tree.

We now complete the proof. Let r1, r2, . . . , rk be non-negative integers with sum n.
Then the multinomial coefficient

(
n

r1,r2,...,rk

)
is defined by the relation

(x1 + x2 + . . .+ xk)n =
∑(

n

r1, r2, . . . , rk

)
xr11 x

r2
2 · · ·x

rk
k , (3.5.10)

where the sum is over all k-tuples (r1, r2, . . . , rk) which sum to n.

Since (x1 + x2 + . . .+ xk)n = (x1 + x2 + . . .+ xk)n−1(x1 + x2 + . . .+ xk), it follows that

(
n

r1, r2, . . . , rk

)
=

k∑
i=1

(
n− 1

r1, . . . , ri − 1, . . . , rk

)
. (3.5.11)

Denote the number of spanning trees on the complete graph of size n for which the degrees
are d1, d2, . . . , dn, i.e., the degree of vertex i equals di, by t(n; d1, d2, . . . , dn). Then, the
total number of spanning trees equals

∑
d1,...,dn

t(n; d1, d2, . . . , dn).

Clearly, t(n; d1, d2, . . . , dn) is 0 if one of the di is zero. The value of t(n; d1, d2, . . . , dn)
depends only on the multiset of numbers di and not on their order. Therefore, we may
assume without loss of generality that d1 ≥ d2 ≥ . . . ≥ dn, so dn = 1 since there is at
least one vertex with degree equal to one. Take the vertex vn corresponding to dn. This
vertex is joined to some vertex vi of degree di ≥ 2, and any of the remaining vertices is a
candidate. Therefore,

t(n; d1, d2, . . . , dn) =

n−1∑
i=1

t(n− 1; d1, . . . , di − 1, . . . , dn−1) (3.5.12)

It is trivial to check by hand that

t(n; d1, d2, . . . , dn) =

(
n− 2

d1 − 1, . . . , dn − 1

)
(3.5.13)

for n = 3. Since the numbers of the left-hand side, respectively on the right-hand side, of
(3.5.13) satisfy the recurrence relation (3.5.12), respectively (3.5.11) it follows by induction
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that (3.5.13) is true for all n, that is,

t(n; d1, d2, . . . , dn) =

n−1∑
i=1

t(n− 1; d1, . . . , di − 1, . . . , dn−1)

=

n−1∑
i=1

(
n− 3

d1 − 1, . . . , di − 2, . . . , dn−1 − 1

)

=

(
n− 2

d1 − 1, . . . , di − 1, . . . , dn−1 − 1, dn − 1

)
. (3.5.14)

We have added an extra argument dn − 1 to the multinomial coefficient, which does not
alter its value since dn−1 = 0. In (3.5.10), replace n by n−2, take ri = di−1 and xi = 1,
to find

nn−2 =
∑

d1,...,dn

t(n; d1, d2, . . . , dn). (3.5.15)

This completes the proof.

Exercise 3.24. Use the above proof to show that the number of labeled trees with degrees
d1, . . . , dn, where di is the degree of vertex i, equals

t(n; d1, d2, . . . , dn) =

(
n− 2

d1 − 1, . . . , di − 1, . . . , dn−1 − 1, dn − 1

)
.

We show that Cayley’s Theorem is equivalent to the following equality:

Lemma 3.16. For every n ≥ 2, the following equality holds:

n−1∑
i=1

1

i!

∑
n1+...+ni=n−1

i∏
j=1

n
nj−1

j

nj !
=
nn−1

n!
. (3.5.16)

Proof. We use the fact that a tree of size n is in one-to-one correspondence with the degree
of vertex 1, which we denote by i, and with the labeled subtrees that hang off the i direct
neighbors of vertex 1, where we distinguish the vertices which are direct neighbors of 1.
See Figure 3.4.

Denote the size of the subtrees by n1, . . . , ni, so that n1 + . . .+ ni = n− 1. There are

(n− 1)!

n1! · · ·ni!
(3.5.17)

ways of dividing the labels 2, . . . , n into i groups. There are n
nj−2

j trees of size nj , so that

there are n
nj−1

j possible trees of size nj with a distinguished vertex. Since the tree of size
n does not change by permuting the i trees located at the neighbors of 1 and since there
are i! of such permutations, in total, we have

1

i!

(n− 1)!

n1! · · ·ni!

i∏
j=1

n
nj−1

j (3.5.18)

ways of choosing the i trees located at the direct neighbors of 1 together with their distin-
guished neighbors of 1.
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the root of the tree

distinguished subtree vertices

normal subtree vertices

n = 11

i = 3

n1 = 4

n2 = 4

n3 = 2

Figure 3.4: One-to-one correspondence of a labeled tree and (i, T1, . . . , Ti).

By summing over i, we obtain the total number of trees of size n is equal to

n−1∑
i=1

1

i!

∑
n1+...+ni=n−1

(n− 1)!

i∏
j=1

n
nj−1

j

nj !
. (3.5.19)

By Cayley’s Theorem, Theorem 3.15, we therefore obtain that

nn−2 =

n−1∑
i=1

1

i!

∑
n1+...+ni=n−1

(n− 1)!

i∏
j=1

n
nj−1

j

nj !
. (3.5.20)

Dividing by (n− 1)! and using that nn−2

(n−1)!
= nn−1

n!
, we arrive at the claim.

We now complete the proof of Theorem 3.14. We use induction. For n = 1, the first
individual of the branching process must die immediately, which has probability e−λ. Since
(3.5.8) is also equal to e−λ for n = 1, this initializes the induction hypotheses (3.5.8).

To advance the induction, we condition on the number i of children of the initial indi-
vidual at time 0. We denote the size of the total progenies of the i children by n1, . . . , ni,
respectively, so that T ∗ = n is equivalent to n1 + . . .+ ni = n− 1. Therefore,

P∗λ(T ∗ = n) =

n−1∑
i=1

e−λ
λi

i!

∑
n1+...+ni=n−1

i∏
j=1

P∗λ(T ∗ = nj). (3.5.21)

By the induction hypothesis, and since nj ≤ n− 1, we obtain that

P∗λ(T ∗ = nj) =
(λnj)

nj−1

nj !
e−λnj . (3.5.22)
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Therefore, using that
∑i
j=1(nj − 1) = n− i− 1,

P∗λ(T ∗ = n) =

n−1∑
i=1

e−λ
λi

i!

∑
n1+...+ni=n−1

i∏
j=1

(λnj)
nj−1

nj !
e−λnj

= e−λnλn−1
n−1∑
i=1

1

i!

∑
n1+...+ni=n−1

i∏
j=1

n
nj−1

j

nj !
. (3.5.23)

Lemma 3.16 now completes the first proof of Theorem 3.14.

Exercise 3.25. Verify (3.5.8) for n = 1, 2 and n = 3.

When the Poisson branching process is critical, i.e., when λ = 1, then we can use Stirling’s
Formula to see that

P∗λ(T ∗ = n) = (2π)−1/2n−3/2[1 +O(n−1)]. (3.5.24)

This is an example of a power-law relationship that often holds at criticality. The above
n−3/2 behavior is associated more generally with the distribution of the total progeny
whose offspring distribution has finite variance (see e.g., [11, Proposition 24]).

In Chapter 4, we will investigate the behavior of the Erdős-Rényi random graph by
making use of couplings to branching processes. There, we also need the fact that, for
λ > 1, the extinction probability is sufficiently smooth (see Section 4.4):

Corollary 3.17 (Differentiability of the extinction probability). Let ηλ denote the extinc-
tion probability of a branching process with a mean λ Poisson offspring distribution. Then,
for all λ > 1,

| d
dλ
ηλ| =

ηλ(λ− µλ)

λ(1− µλ)
<∞, (3.5.25)

where µλ is the dual of λ.

Proof. The function ηλ, which we denote in this proof by η(λ), is decreasing and satisfies

η(λ) = P∗λ(T ∗ <∞) =

∞∑
n=1

e−λn
(λn)n−1

n!
, (3.5.26)

and thus

0 ≤ − d

dλ
η(λ) =

∞∑
n=1

e−nλ
[

(λn)n−1

(n− 1)!

]
−
∞∑
n=2

e−nλ
[

(λn)n−2

(n− 2)!

]
. (3.5.27)

On the other hand,

E∗λ[T ∗|T ∗ <∞] =
1

P∗λ(T ∗ <∞)

∞∑
n=1

n · e−λn (λn)n−1

n!
=

1

η(λ)

∞∑
n=1

e−λn
(λn)n−1

(n− 1)!
, (3.5.28)

so that

− d

dλ
η(λ) = η(λ)E∗λ[T ∗|T ∗ <∞]− η(λ)

λ
E∗λ[T ∗|T ∗ <∞] +

η(λ)

λ
, (3.5.29)
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where we have made use of the fact that

∞∑
n=2

e−λn
(λn)n−2

(n− 2)!
=

∞∑
n=1

e−λn(n− 1)
(λn)n−2

(n− 1)!
=

∞∑
n=1

e−λn
1

λ

(λn)n−1

(n− 1)!
−
∞∑
n=1

e−λn
(λn)n−2

(n− 1)!

=
η(λ)

λ
E∗λ[T ∗|T ∗ <∞]−

∞∑
n=1

e−λn
1

λ

(λn)n−1

n!

=
η(λ)

λ
E∗λ[T ∗|T ∗ <∞]− 1

λ
P∗λ(T ∗ <∞). (3.5.30)

By the duality principle and Theorem 3.5,

E[T ∗|T ∗ <∞] =
1

1− µλ
where µλ = λη(λ), by (3.5.5). Hence,

0 ≤ − d

dλ
η(λ) =

η(λ)

1− µλ

(
1− 1

λ

)
+
η(λ)

λ

=
η(λ)(λ− µ(λ))

λ(1− µλ)
. (3.5.31)

3.6 Binomial and Poisson branching processes

When dealing with random graphs where the probability of keeping an edge is λ/n,
the total number of vertices incident to a given vertex has a binomial distribution with
parameters n and success probability λ/n. By Theorem 2.9, this distribution is close
to a Poisson distribution with parameter λ. This suggests that also the corresponding
branching processes, the one with a binomial offspring distribution with parameters n
and λ/n, and the one with Poisson offspring distribution with mean λ, are close. In the
following theorem, we make this statement more precise. In its statement, we write Pn,p
for the law of a Binomial branching process with parameters n and success probability p.

Theorem 3.18 (Poisson and binomial branching processes). For a branching process with
binomial offspring distribution with parameters n and p, and the branching process with
Poisson offspring distribution with parameter λ = np, for each k ≥ 1,

Pn,p(T ≥ k) = P∗λ(T ∗ ≥ k) + ek(n), (3.6.1)

where T and T ∗ are the total progenies of the binomial and Poisson branching processes,
respectively, and where

|ek(n)| ≤ 2λ2

n

k−1∑
s=1

P∗λ(T ∗ ≥ s). (3.6.2)

In particular, |ek(n)| ≤ 2kλ2

n
.

Proof. We use a coupling proof. The branching processes are described by their offspring
distributions, which are binomial and Poisson random variables respectively. We use the
coupling in Theorem 2.9 for each of the random variables Xi and X∗i determining the
branching processes, where Xi ∼ BIN(n, λ/n), X∗i ∼ Poi(λ), and where

P(Xi 6= X∗i ) ≤ λ2

n
. (3.6.3)
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We use P to denote the joint probability distributions of the binomial and Poisson branching
processes, where the offspring is coupled in the above way.

We start by noting that

Pn,p(T ≥ k) = P(T ≥ k, T ∗ ≥ k) + P(T ≥ k, T ∗ < k), (3.6.4)

and
P∗λ(T ∗ ≥ k) = P(T ≥ k, T ∗ ≥ k) + P(T ∗ ≥ k, T < k). (3.6.5)

Subtracting the two probabilities yields

|Pn,p(T ≥ k)− P∗λ(T ∗ ≥ k)| ≤ P(T ≥ k, T ∗ < k) + P(T ∗ ≥ k, T < k). (3.6.6)

We then use Theorem 2.9, as well as the fact that the event {T ≥ k} is determined by
the values of X1, . . . , Xk−1 only. Indeed, by (3.3.1), by investigating X1, . . . , Xk−1, we can
verify whether there exists a t < k such that X1 + · · ·+Xt = t− 1, implying that T < k.
When there is no such t, then T ≥ k. Similarly, by investigating X∗1 , . . . , X

∗
k−1, we can

verify whether there exists a t < k such that X∗1 + · · ·+X∗t = t− 1, implying that T < k.
When T ≥ k and T ∗ < k, or when T ∗ ≥ k and T < k, there must be a value of s < k

for which Xs 6= X∗s . Therefore, we can bound, by splitting depending on the first value
s < k where Xs 6= X∗s ,

P(T ≥ k, T ∗ < k) ≤
k−1∑
s=1

P(Xi = X∗i ∀i ≤ s− 1, Xs 6= X∗s , T ≥ k), (3.6.7)

where {X∗i }∞i=1 are i.i.d. Poisson random variables with mean λ and {Xi}∞i=1 are i.i.d.
binomial random variables with parameters n and p. Now we note that when Xi = X∗i
for all i ≤ s − 1 and T ≥ k, this implies in particular that X∗1 + . . . + X∗i ≥ i for all
i ≤ s− 1, which in turn implies that T ∗ ≥ s. Moreover, the event {T ∗ ≥ s} depends only
on X∗1 , . . . , X

∗
s−1, and, therefore, is independent of the event that Xs 6= X∗s . Thus, we

arrive at the fact that

P(T ≥ k, T ∗ < k) ≤
k−1∑
s=1

P(T ∗ ≥ s,Xs 6= X∗s )

=

k−1∑
s=1

P(T ∗ ≥ s)P(Xs 6= X∗s ). (3.6.8)

By Theorem 2.9,

P(Xs 6= X∗s ) ≤ λ2

n
, (3.6.9)

so that

P(T ≥ k, T ∗ < k) ≤ λ2

n

k−1∑
s=1

P(T ∗ ≥ s). (3.6.10)

An identical argument yields that

P(T ∗ ≥ k, T < k) ≤
k−1∑
s=1

P(T ∗ ≥ s)P(Xs 6= X∗s )

≤ λ2

n

k−1∑
s=1

P(T ∗ ≥ s). (3.6.11)
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We conclude from (3.6.6) that

|Pn,p(T ≥ k)− P∗λ(T ∗ ≥ k)| ≤ 2λ2

n

k−1∑
s=1

P∗λ(T ∗ ≥ s). (3.6.12)

This completes the proof of Theorem 3.18.

3.7 Hitting-time theorem and the total progeny

In this section, we derive a general result for the law of the total progeny for branching
processes, by making use of the Hitting-time theorem for random walks. The main result
is the following:

Theorem 3.19 (Law of total progeny). For a branching process with i.i.d. offspring dis-
tribution Z1 = X,

P(T = n) =
1

n
P(X1 + · · ·+Xn = n− 1), (3.7.1)

where {Xi}ni=1 are i.i.d. copies of X.

Exercise 3.26. Prove Theorem 3.14 using Theorem 3.19.

Exercise 3.27. Compute the probability mass function of a branching process with a bi-
nomial offspring distribution using Theorem 3.19.

Exercise 3.28. Compute the probability mass function of a branching process with a geo-
metric offspring distribution using Theorem 3.19. Hint: note that when {Xi}ni=1 are i.i.d.
geometric, then X1 + · · ·+Xn has a negative binomial distribution.

We shall prove Theorem 3.19 below. In fact, we shall prove a more general version of
Theorem 3.19, which states that

P(T1 + · · ·+ Tk = n) =
k

n
P(X1 + · · ·+Xn = n− k), (3.7.2)

where T1, . . . , Tk are k independent random variables with the same distribution as T .
Alternatively, we can think of T1 + · · · + Tk as being the total progeny of a branching
process starting with k individuals, i.e., when Z0 = k.

The proof is based on the random walk representation of a branching process, together
with the random-walk hitting time theorem. In its statement, we write Pk for the law of
a random walk starting in k, we let {Yi}∞i=1 be the i.i.d. steps of the random walk, and we
let Sn = k + Y1 + · · · + Yn be the position of the walk, starting in k, after n steps. We
finally let

T0 = inf{n : Sn = 0} (3.7.3)

denote the first hitting time of the origin of the walk. Then, the hitting-time theorem is
the following result:

Theorem 3.20 (Hitting-time theorem). For a random walk with i.i.d. steps {Yi}∞i=1 sat-
isfying that

P(Yi ≥ −1) = 1, (3.7.4)

the distribution of T0 is given by

Pk(T0 = n) =
k

n
Pk(Sn = 0). (3.7.5)
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Theorem 3.20 is a remarkable result, since it states that, conditionally on the event {Sn =
0}, and regardless of the precise distribution of the steps of the walk {Yi}∞i=1 satisfying
(3.7.4), the probability of the walk to be at 0 for the first time at time n is equal to k

n
.

Equation (3.7.2) follows from Theorem 3.20 since the law of T1 + · · ·+ Tk is that of a the
hitting time of a random walk starting in k with step distribution Yi = Xi − 1, where
{Xi}∞i=1 are the offsprings of the vertices. Since Xi ≥ 0, we have that Yi ≥ −1, which
completes the proof of (3.7.2) and hence of Theorem 3.19. The details are left as an
exercise:

Exercise 3.29. Prove that Theorem 3.20 implies (3.7.2).

Exercise 3.30. Is Theorem 3.20 still true when the restriction that P(Yi ≥ −1) = 1 is
dropped?

Proof of Theorem 3.20. We prove (3.7.5) for all k ≥ 0 by induction on n ≥ 1. When n = 1,
then both sides are equal to 0 when k > 1 and k = 0, and are equal to P(Y1 = −1) when
k = 1. This initializes the induction.

To advance the induction, we take n ≥ 2, and note that both sides are equal to 0 when
k = 0. Thus, we may assume that k ≥ 1. We condition on the first step to obtain

Pk(T0 = n) =

∞∑
s=−1

Pk(T0 = n
∣∣Y1 = s)P(Y1 = s). (3.7.6)

By the random-walk Markov property,

Pk(T0 = n
∣∣Y1 = s) = Pk+s(T0 = n− 1) =

k + s

n− 1
Pk+s(Sn−1 = 0), (3.7.7)

where in the last equality we used the induction hypothesis, which is allowed since k ≥ 1
and s ≥ −1, so that k + s ≥ 0. This leads to

Pk(T0 = n) =

∞∑
s=−1

k + s

n− 1
Pk+s(Sn−1 = 0)P(Y1 = s). (3.7.8)

We undo the law of total probability, using that Pk+s(Sn−1 = 0) = Pk(Sn = 0
∣∣Y1 = s), to

arrive at

Pk(T0 = n) =

∞∑
s=−1

(k + s)Pk(Sn = 0
∣∣Y1 = s)P(Y1 = s) = Pk(Sn = 0)

(
k + Ek[Y1|Sn = 0]

)
,

(3.7.9)

where Ek[Y1|Sn = 0] is the conditional expectation of Y1 given that Sn = 0 occurs. We
next note that the conditional expectation of Ek[Yi|Sn = 0] is independent of i, so that

Ek[Y1|Sn = 0] =
1

n

n∑
i=1

Ek[Yi|Sn = 0] =
1

n
Ek
[ n∑
i=1

Yi
∣∣Sn = 0

]
= − k

n
, (3.7.10)

since
∑n
i=1 Yi = Sn − k = −k when Sn = 0. Therefore, we arrive at

Pk(T0 = n) =
1

n− 1

[
k − k

n

]
Pk(Sn = 0) =

k

n
Pk(Sn = 0). (3.7.11)

This advances the induction, and completes the proof of Theorem 3.20.

Exercise 3.31. Extend the hitting-time theorem, Theorem 3.20, to the case where {Yi}ni=1

is an exchangeable sequence rather than an i.i.d. sequence, where a sequence {Yi}ni=1 is
called exchangeable when its distribution is the same as the distribution of any permuta-
tion of the sequence. Hint: if {Yi}ni=1 is exchangeable, then so is {Yi}ni=1 conditioned on∑n
i=1 Yi = −k.
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3.8 Notes and discussion

Notes on Section 3.5. The proof of Theorem 3.15 is taken from [131]. Theorem 3.14,
together with (3.5.2), can also be proved making use of Lambert’s W function. Indeed,
we use that the generating function of the total progeny in (3.1.23), for Poisson branching
process, reduces to

GT (s) = seλ(GT (s)−1). (3.8.1)

Equation (3.8.1) actually defines a function analytic in C\[1,∞), and we are taking the
principal branch. Equation (3.8.1) can be written in terms of the Lambert W function,

which is defined by W (x)eW (x) = x, as GT (s) = −W (−sλe−λ)/λ. The branches of W are
described in [69], where also the fact that

W (x) = −
∞∑
n=1

nn−1

n!
(−x)n. (3.8.2)

is derived. Theorem 3.15 follows immediately from this equation upon substituting x =
λe−λ and using that the coefficient of sn in GT (s) equals P(T = n). Also, since ηλ =
lims↑1 GT (s) = −W (−λe−λ)/λ. This also allows for a more direct proof of Corollary 3.17,
since

d

dλ
ηλ = − d

dλ

[W (−λe−λ)

λ

]
, (3.8.3)

and where, since W (x)eW (x) = x,

W ′(x) =
1

x

W (x)

1 +W (x)
. (3.8.4)

We omit the details of this proof, taking a more combinatorial approach instead.

Notes on Section 3.7. The current proof is taken from [99], where also an extension
is proved by conditioning on the numbers of steps of various sizes. The first proof of the
special case of Theorem 3.20 for k = 1 can be found in [156]. The extension to k ≥ 2 is
in [115], or in [78] using a result in [77]. Most of these proofs make unnecessary use of
generating functions, in particular, the Lagrange inversion formula, which the simple proof
given here does not employ. See also [94, Page 165-167] for a more recent version of the
generating function proof. In [177], various proofs of the hitting-time theorem are given,
including a combinatorial proof making use of a relation in [76]. A proof for random walks
making only steps of size ±1 using the reflection principle can for example be found in [94,
Page 79].

The hitting-time theorem is closely related to the ballot theorem, which has a long
history dating back to Bertrand in 1887 (see [123] for an excellent overview of the history
and literature). The version of the ballot theorem in [123] states that, for a random walk
{Sn}∞n=0 starting at 0, with exchangeable, nonnegative steps, the probability that Sm < m
for all m = 1, . . . , n, conditionally on Sn = k, equals k/n. This proof borrows upon
queueing theory methodology, and is related to, yet slightly different from, our proof.

The ballot theorem for random walks with independent steps is the following result:

Theorem 3.21 (Ballot theorem). Consider a random walk with i.i.d. steps {Xi}∞i=1 taking
non-negative integer values. Then, with Sm = X1 + · · ·+Xm the position of the walk after
m steps,

P0(Sm < m for all 1 ≤ m ≤ n|Sn = n− k) =
k

n
. (3.8.5)
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Exercise 3.32. Prove the ballot theorem using the hitting-time theorem. Hint: Let S′m =
k + (Sn − n)− (Sn−m − n+m), and note that Sm < m for all 1 ≤ m ≤ n precisely when
S′m > 0 for all 0 ≤ m < n, and {S′m}nm=0 is a random walk taking steps Ym = S′m−S′m−1 =
Xn−m − 1.



Chapter 4

Phase transition for the Erdős-Rényi

random graph

In this chapter, we study the connected components of the Erdős-Rényi random graph.
In the introduction in Section 4.1, we will argue that these connected components can
be described in a similar way as for branching processes. As we have seen in Chapter
3, branching processes have a phase transition: when the mean offspring is below 1, the
branching process dies out almost surely, while when the expected offspring exceeds 1,
then it will survive with positive probability. The Erdős-Rényi random graph has a related
phase transition. Indeed, when the expected degree is smaller than 1, the components are
small, the largest one being of order logn. On the other hand, when the expected degree
exceeds 1, the there is a giant connected component which contains a positive proportion
of all vertices. This phase transition can already be observed for relatively small graphs.
For example, Figure 4.1 shows two realizations of Erdős-Rényi random graphs with 100
elements and expected degree close to 1/2, respectively, 3/2. The left picture is in the
subcritical regime, and the connected components are tiny, while the right picture is in the
supercritical regime, and the largest connected component is already substantial. The aim
of this chapter is to quantify these facts.

The link between the Erdős-Rényi random graph and branching processes is described
in more detail in Section 4.2, where we prove upper and lower bounds for the tails of
the cluster size (or connected component size) distribution. The connected component
containing v is denoted by C(v), and consists of all vertices that can be reached from
v using occupied edges. We sometimes also call C(v) the cluster of v. The connection
between branching processes and clusters is used extensively in the later sections, Section
4.3–4.5. In Section 4.3, we study the subcritical regime of the Erdős-Rényi random graph.
In Sections 4.4 and 4.5 we study the supercritical regime of the Erdős-Rényi random graph,
by proving a law of large numbers for the largest connected component in Section 4.4 and
a central limit theorem in Section 4.5.

In Chapter 5, we shall investigate several more properties of the Erdős-Rényi random
graph. In particular, in Section 5.1, we study the bounds on the component sizes of
the critical Erdős-Rényi random graph, in Section 5.1.3 we describe the weak limits of the
connected components ordered in size at criticality, in Section 5.2 we study the connectivity
threshold of the Erdős-Rényi random graph, while in Section 5.3 we prove that the Erdős-
Rényi random graph is sparse and identify its asymptotic degree sequence.

4.1 Introduction

In this section, we introduce some notation for the Erdős-Rényi random graph, and prove
some elementary properties. We recall from Section 1.5 that the Erdős-Rényi random graph
has vertex set [n] = {1, . . . , n}, and, denoting the edge between vertices s, t ∈ [n] by st, st
is occupied or present with probability p, and absent or vacant otherwise, independently
of all the other edges. The parameter p is called the edge probability. The above random
graph is denoted by ERn(p).

Exercise 4.1 (Number of edges in ERn(p)). What is the distribution of the number of
edges in the Erdős-Rényi random graph ERn(p)?
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Figure 4.1: Two realizations of Erdős-Rényi random graphs with 100 elements and edge
probabilities 1/200, respectively, 3/200. The three largest connected components are or-
dered by the darkness of their edge colors, the remaining connected components have edges
with the lightest shade.

Exercise 4.2 (CLT for number of edges in ERn(p)). Prove that the number of edges in
ERn(p) satisfies a central limit theorem and compute its asymptotic mean and variance.

We now introduce some notation. For two vertices s, t ∈ [n], we write s ←→ t when
there exists a path of occupied edges connecting s and t. By convention, we always assume
that v ←→ v. For v ∈ [n], we denote the connected component containing v or cluster of v
by

C(v) =
{
x ∈ [n] : v ←→ x

}
. (4.1.1)

We denote the size of C(v) by |C(v)|. The largest connected component is equal to any
cluster C(v) for which |C(v)| is maximal, so that

|Cmax| = max{|C(v)| : v = 1, . . . , n}. (4.1.2)

Note that the above definition does identify |Cmax| uniquely, but it may not identify Cmax

uniquely. We can make this definition unique, by requiring that Cmax is the cluster of
maximal size containing the vertex with the smallest label. As we will see, the typical size
of Cmax will depend sensitively on the value λ.

We first define a procedure to find the connected component C(v) containing a given
vertex v in a given graph G. This procedure is closely related to the random walk per-
spective for branching processes described in Section 3.3, and works as follows. In the
course of the exploration, vertices can have three different statuses: vertices are active,
neutral or inactive. The status of vertices is changed in the course of the exploration of
the connected component of v, as follows. At time t = 0, only v is active and all other
vertices are neutral, and we set S0 = 1. At each time t, we choose an active vertex w in an
arbitrary way (for example, by taking the smallest active vertex) and explore all the edges
ww′, where w′ runs over all the neutral vertices. If there is an edge in G connecting the
active vertex w and some neutral vertex w′, then we set w′ active, otherwise it remains
neutral. After searching the entire set of neutral vertices, we set w inactive and we let St
equal the new number of active vertices at time t. When there are no more active vertices,
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i.e., when St = 0 for the first time, the process terminates and C(v) is the set of all inactive
vertices, i.e., |C(v)| = t. Note that at any stage of the process, the size of C(v) is bounded
from below by the sum of the number of active and inactive vertices.

Let wt be the tth active vertex of which all edges to neutral vertices are explored. Let
Xt denote the number of neutral vertices w′ with wtw

′ ∈ G. Let St be the total number of
active vertices at time t. Similarly as for the branching process in (3.3.1), we can represent
this procedure with the recursive relation

S0 = 1, St = St−1 +Xt − 1. (4.1.3)

The variable Xt is the number of vertices that become active due to the exploration of
the tth vertex, and after its exploration, the tth explored vertex becomes inactive. Thus,
if St−1 denotes the number of active vertices after the exploration of (t− 1) vertices, then
St = St−1 +Xt−1 denotes the number of active vertices after the exploration of t vertices.
This explains (4.1.3).

The above description is true for any graph G. We now specialize to the random
graph ERn(p), where each edge can be independently occupied or vacant. As a result, the
distribution of Xt depends on the number of active vertices at time t−1, i.e., on St−1, and
not in any other way on which vertices are active, inactive or neutral. More precisely, each
neutral w′ in the random graph has probability p to become active. The edges ww′ are
examined precisely once, so that the conditional probability for ww′ ∈ ERn(p) is always
equal to p. After t − 1 explorations of active vertices, we have t − 1 inactive vertices and
St−1 active vertices. This leaves n−(t−1)−St−1 neutral vertices. Therefore, conditionally
on St−1,

Xt ∼ BIN
(
n− (t− 1)− St−1, p

)
. (4.1.4)

We note that the recursion in (4.1.3) is identical to the recursive relation (3.3.1). The
only difference is the distribution of the process {Xi}ni=1, as described in (4.1.4). For
branching processes, {Xi}ni=1 is an i.i.d. sequence, but for the exploration of connected
components, we see that this is not quite true. However, by (4.1.4), it is ‘almost’ true as
long as the number of active vertices is not too large. We see in (4.1.4) that the parameter
of the binomial distribution decreases. This is due to the fact that after more explorations,
fewer neutral vertices remain, and is sometimes called the depletion of points effect.

Let T be the least t for which St = 0, i.e.,

T = inf{t : St = 0}, (4.1.5)

then |C(v)| = T , see also (1.5.10) for a similar result in the branching process setting. This
describes the exploration of a single connected component. While of course the recursion
in (4.1.3) and (4.1.4) only makes sense when St−1 ≥ 1, that is, when t ≤ T , there is no
harm in continuing it formally for t > T . This will be prove to be extremely useful later
on.

Exercise 4.3 (Verification of cluster size description). Verify that T = |C(v)| by computing
the probabilities of the events that {|C(v)| = 1}, {|C(v)| = 2} and {|C(v)| = 3} directly, and
by using (4.1.4), (4.1.3) and (4.1.5).

We end this section by introducing some notation. For the Erdős-Rényi random graph,
the status of all edges {st : 1 ≤ s < t ≤ n} are i.i.d. random variables taking the value
1 with probability p and the value 0 with probability 1 − p, 1 denoting that the edge
is occupied and 0 that it is vacant. We will sometimes call the edge probability p, and
sometimes λ/n. We will always use the convention that

p =
λ

n
. (4.1.6)

We shall write Pλ for the distribution of ERn(p) = ERn(λ/n).
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Exercise 4.4 (CLT for number of edges in ERn(λ/n)). Prove that the number of edges
in ERn(λ/n) satisfies a central limit theorem with asymptotic mean and variance equal to
λn/2.

Exercise 4.5 (Mean number of triangles in ERn(λ/n)). We say that the distinct vertices
(i, j, k) form an occupied triangle when the edges ij, jk and ki are all occupied. Note that
(i, j, k) is the same triangle as (i, k, j) and as any other permutation. Compute the expected
number of occupied triangles in ERn(λ/n).

Exercise 4.6 (Mean number of squares in ERn(λ/n)). We say that the distinct vertices
(i, j, k, l) form an occupied square when the edges ij, jk, kl and li are all occupied. Note
that the squares (i, j, k, l) and (i, k, j, l) are different. Compute the expected number of
occupied squares in ERn(λ/n).

Exercise 4.7 (Poisson limits for number of triangles and squares in ERn(λ/n)). Show
that the number of occupied triangles in an Erdős-Rényi random graph with edge probability
p = λ/n has an asymptotic Poisson distribution. Do the same for the number of occupied
squares. Hint: use the method of moments in Theorem 2.4.

Exercise 4.8 (Clustering of ERn(λ/n)). Define the clustering coefficient of a random
graph G to be

CCG =
E[∆G]

E[WG]
, (4.1.7)

where
∆G =

∑
i,j,k∈G

1l{ij,ik,jk occupied}, WG =
∑

i,j,k∈G

1l{ij,ik occupied}. (4.1.8)

Thus, ∆G is six times the number of triangles in G, and WG is two times the number of
open wedges in G, and CCG is the ratio of the number of expected closed triangles to the
expected number of open wedges. Compute CCG for ERn(λ/n).

Exercise 4.9 (Asymptotic clustering of ERn(λ/n)). Show that WG/n
P−→ λ2 by using the

second moment method. Use Exercise 4.7 to conclude that

n∆G

WG

d−→ 3

λ2
Y, (4.1.9)

where Y ∼ Poi(λ3/6).

4.1.1 Monotonicity of Erdős-Rényi random graphs in the edge probability

In this section, we investigate Erdős-Rényi random graphs with different values of p, and
show that the Erdős-Rényi random graph is monotonically increasing in p, using a coupling
argument. The material in this section makes it clear that components of the Erdős-Rényi
random graph are growing with the edge probability p, as one would intuitively expect.
This material shall also play a crucial role in determining the critical behavior of the
Erdős-Rényi random graph in Section 5.1 below.

We use a coupling of all random graphs ERn(p) for all p ∈ [0, 1]. For this, we draw
independent uniform random variables for each edge st, and, for fixed p, we declare an
edge to be p-occupied if and only if Ust ≤ p. The above coupling shows that the number
of occupied bonds increases when p increases. Therefore, the Erdős-Rényi random graph
ERn(p) is monotonically increasing in p. Because of the monotone nature of ERn(p) one
expects that certain events and random variables grow larger when p increases. This is
formalized in the following definition:
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Definition 4.1 (Increasing events and random variables). We say that an event is in-
creasing when, if the event occurs for a given set of occupied edges, it remains to hold when
we make some more edges occupied.
We say that a random variable X is increasing when the events {X ≥ x} are increasing
for each x ∈ R.

An example of an increasing event is {s ←→ t}. An example of a monotone random
variable is |C(v)| and the maximal cluster |Cmax|, where

|Cmax| =
n

max
v=1
|C(v)|. (4.1.10)

Exercise 4.10. Show that |Cmax| is an increasing random variable.

Exercise 4.11. Is the event {v ∈ Cmax} an increasing event?

4.1.2 Informal link to Poisson branching processes

We now describe the link to Poisson branching processes in an informal manner. The
results in this section will not be used in the remainder of the chapter, even though the
philosophy forms the core of the argument. Fix λ > 0. Let S∗0 , S

∗
1 , . . . , X

∗
1 , X

∗
2 , . . . , H

∗

refer to the history of a branching process with Poisson offspring distribution with mean
λ and S0, S1, . . . , X1, X2, . . . , H refer to the history of the random graph, where S0, S1, . . .
are defined in (4.1.3) above. The event {H∗ = (x1, . . . , xt)} is the event that the total
progeny T ∗ of the Poisson branching process is equal to t, and the values of X∗1 , . . . , X

∗
t

are given by x1, . . . , xt. Recall that P∗λ denotes the law of a Poisson branching process with
mean offspring distribution λ. Naturally, by (3.3.2), we have that

t = min{i : si = 0} = min{i : x1 + . . .+ xi = i− 1}, (4.1.11)

where
s0 = 1, si = si−1 + xi − 1. (4.1.12)

For any possible history (x1, . . . , xt), we have that (recall (3.3.6))

P∗λ(H∗ = (x1, . . . , xt)) =

t∏
i=1

P∗λ(X∗i = xi), (4.1.13)

where {X∗i }∞i=1 are i.i.d. Poisson random variables with mean λ, while

Pλ(H = (x1, . . . , xt)) =

t∏
i=1

Pλ(Xi = xi|X1 = x1, . . . , Xi−1 = xi−1),

where, conditionally on X1 = x1, . . . , Xi−1 = xi−1, the random variable Xi is binomially
distributed BIN(n− (i− 1)− si−1, λ/n), recall (4.1.4) and (4.1.12).

As shown in Theorem 2.9, the Poisson distribution is the limiting distribution of bino-
mials when n is large and p = λ/n. When m(n) = n(1 + o(1)) and λ, i are fixed, then we
can extend this to

lim
n→∞

P
(

BIN
(
m(n), λ/n

)
= i
)

= e−λ
λi

i!
. (4.1.14)

Therefore, for every t <∞,

lim
n→∞

Pλ
(
H = (x1, . . . , xt)

)
= P∗λ

(
H∗ = (x1, . . . , xt)

)
. (4.1.15)

Thus, the distribution of finite connected components in the random graph ERn(λ/n) is
closely related to a Poisson branching process with mean λ. This relation shall be explored
further in the remainder of this chapter.
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Figure 4.2: A picture of the inclusion {|C(1)| ≥ k} ⊆ {T≥ ≥ k}.

4.2 Comparisons to branching processes

In this section, we investigate the relation between connected components and binomial
branching processes. We start by proving two stochastic domination results for connected
components in the Erdős-Rényi random graph. In Theorem 4.2, we give a stochastic upper
bound on |C(v)|, and in Theorem 4.3 a lower bound on the cluster tails. These bounds will
be used in the following sections to prove results concerning |Cmax|.

4.2.1 Stochastic domination of connected components

We prove the following upper bound, which shows that each connected component is
bounded from above by the total progeny of a branching process with binomial offspring
distribution:

Theorem 4.2 (Stochastic domination of the cluster size). For each k ≥ 1,

Pnp(|C(1)| ≥ k) ≤ Pn,p(T≥ ≥ k), i.e., |C(1)| � T≥, (4.2.1)

where T≥ is the total progeny of a binomial branching process with parameters n and p.

Proof. We note that the only distinction between the recursions (4.1.3) and (3.3.1), where
Xi has a binomial distribution with parameters n and p, is that the parameter of the
binomial distribution decreases in (4.1.3), see in particular (4.1.4), while it remains fixed in
(3.3.1). The conditional distribution of Xi given X1, . . . , Xi−1 is stochastically dominated
byX≥i ∼ BIN(n, p), which is independent ofX1, . . . , Xi−1. In formulae, we let {Iij}1≤i<j≤n
and {Jij}1≤i<j≤n be two i.i.d. sequences of BE(p) random variables, and we write vi for

the ith explored vertex, then (recall (4.1.4))

Xi =
∑

j∈Ai−1

Ivij , X≥i = Xi +

Si−1+(i−1)∑
j=1

Jij , (4.2.2)

where Ai−1 is the set of inactive or neutral vertices at time i− 1, which has size |Ai−1| =
n− Si−1 − (i− 1). Then {X≥i }

∞
i=1 is an i.i.d. sequence of BIN(n, p) random variables.

Further, the event {|C(1)| ≥ k} is increasing in the variables (X1, . . . , Xk), i.e., when
{|C(1)| ≥ k} occurs, and we make any of the random variables Xi larger, then {|C(1)| ≥ k}
continues to occur. As a result, {|C(1)| ≥ k} ⊆ {T≥ ≥ k}, where T≥ = min{i : S≥i = 0},
and

S≥i = X≥1 + . . .+X≥i − (i− 1), (4.2.3)

and where {X≥i }
∞
i=1 is an i.i.d. sequence of BIN(n, p) random variables. See Figure 4.2 for

a depiction of the fact that {|C(1)| ≥ k} ⊆ {T≥ ≥ k}. Finally, by (3.3.1), T≥ is the total
progeny of a branching process with binomial offspring distribution with parameters n and
p.

Exercise 4.12 (Upper bound for mean cluster size). Show that, for λ < 1, Eλ[|C(v)|] ≤
1/(1− λ).
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4.2.2 Lower bound on the cluster tail

We prove the following lower bound, which shows that the probability that a connected
component has size at least k is bounded from below by the probability that the total
progeny of a branching process with binomial offspring distribution exceeds k, where now
the parameters of the binomial distribution are n− k and p:

Theorem 4.3 (Lower bound on cluster tail). For every k ∈ [n],

Pnp(|C(1)| ≥ k) ≥ Pn−k,p(T≤ ≥ k), (4.2.4)

where T≤ is the total progeny of a branching process with binomial distribution with pa-
rameters n− k and success probability p = λ/n.

Note that, since the parameter n−k on the right-hand side of (4.2.4) depends explicitly
on k, Theorem 4.3 does not imply a stochastic lower bound on |C(1)|.

Proof. We again use a coupling approach. We explore the component of 1, and initially
classify the vertices n− k+ 2, . . . , n as forbidden, which means that we do not explore any
edges that are incident to them. Thus, the possible statuses of the vertices are now active,
neutral, inactive and forbidden.

During the exploration process, we will adjust this pool of forbidden vertices in such a
way that the total number of forbidden, active and inactive vertices is fixed to k. Note
that, initially, the vertex 1 is the only active vertex, there are no inactive vertices and the
initial pool of forbidden vertices {n− k+ 2, . . . , n} has size k− 1. Thus, initially, the total
number of forbidden, active and inactive vertices is fixed to k. We can only keep the total
number of forbidden, active and inactive vertices fixed to k as long as the total number of
active and inactive vertices is at most k. This poses no problems to us, because, in order
to determine whether the event {|C(1)| ≥ k} occurs, we may stop the exploration at the
first moment that the number of active and inactive vertices together is at least k, since
|C(v)| is at least as large as the number of active and inactive vertices at any moment in
the exploration process.

We only explore edges to vertices that are not forbidden, active or inactive. We call
these vertices the allowed vertices, so that the allowed vertices consist of the neutral vertices
with the forbidden vertices removed. When an edge to an allowed vertex is explored and
found to be occupied, then the vertex becomes active, and we make the forbidden vertex
with the largest index neutral. As a result, for each vertex that turns active, we move
one vertex from the forbidden vertices to the neutral vertices, thus keeping the number of
allowed vertices fixed at n− k.

In formulae, we let {Iij}1≤i<j≤n be an i.i.d. sequences of BE(p) random variables, and
we write (recall (4.1.4))

Xi =
∑

j∈Ai−1

Ivij , X≤i =
∑

j∈Ai−1,k

Ivij , (4.2.5)

where Ai−1,k is the set of inactive vertices which are not forbidden at time i − 1, which
has size |Ai−1,k| = n − k. Then {X≤i }

∞
i=1 is an i.i.d. sequence of BIN(n − k, p) random

variables.
As long as the number of vertices that are active or inactive is at most k, we have that

the total number of forbidden, active and inactive vertices is precisely equal to k. We
arrive at a binomial branching process with the specified parameters n − k and success
probability p. Since the connected component C(1) contains all the vertices that are found
to be active or inactive in this process, we arrive at the claim.

The general strategy for the investigation of the largest connected component |Cmax| is as
follows. We make use of the stochastic bounds in Theorems 4.2–4.3 in order to compare the
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cluster sizes to binomial branching processes. Then, using Theorem 3.18, we can make the
comparison to a Poisson branching process with a parameter that is close to the parameter
λ in ERn(λ/n). Using the results on branching processes in Chapter 3 then allows us to
complete the proofs.

By Theorems 4.2–4.3, the connected components of the Erdős-Rényi random graph are
closely related to binomial branching processes with a binomial offspring with parameters
n and p = λ/n. By Theorem 3.1, the behavior of branching processes is rather different
when the expected offspring is larger than 1 or smaller than or equal to 1. In Theorems
4.2–4.3, when k = o(n), the expected offspring is close to np ≈ λ. Therefore, for the
Erdős-Rényi random graph, we expect different behavior in the subcritical regime λ < 1,
in the supercritical regime λ > 1 and in the critical regime λ = 1.

The proof of the behavior of the largest connected component |Cmax| is substantially
different in the subcritical regime where λ < 1, which is treated in Section 4.3, compared
to the supercritical regime λ > 1, which is treated in Section 4.4. In Section 4.5, we prove
a central limit theorem for the giant supercritical component. The critical regime λ = 1
requires some new ideas, and is treated in Section 5.1.

4.3 The subcritical regime

In this section, we derive bounds for the size of the largest connected component for the
Erdős-Rényi random graph in the subcritical regime, i.e., when λ = np < 1. Let Iλ denote
the large deviation rate function for Poisson random variables with mean λ, given by

Iλ = λ− 1− log(λ). (4.3.1)

Recall Exercise 2.17 to see an upper bound on Poisson random variables involving Iλ, as
well as the fact that Iλ > 0 for all λ 6= 1.

The main results when λ < 1 are Theorem 4.4, which proves that |Cmax| ≤ a logn with
high probability, for any a > I−1

λ , and Theorem 4.5, where a matching lower bound on

|Cmax| is provided by proving that |Cmax| ≥ a logn with high probability, for any a < I−1
λ .

These results are stated now:

Theorem 4.4 (Upper bound on largest subcritical component). Fix λ < 1. Then, for
every a > I−1

λ , there exists a δ = δ(a, λ) > 0 such that

Pλ(|Cmax| ≥ a logn) = O(n−δ). (4.3.2)

Theorem 4.5 (Lower bound on largest subcritical component). Fix λ < 1. Then, for
every a < I−1

λ , there exists a δ = δ(a, λ) > 0 such that

Pλ(|Cmax| ≤ a logn) = O(n−δ). (4.3.3)

Theorems 4.4 and 4.5 will be proved in Sections 4.3.2 and 4.3.3 below. Together, they

prove that |Cmax|/ logn
P−→ I−1

λ :

Exercise 4.13 (Convergence in probability of largest subcritical cluster). Prove that The-

orems 4.4 and 4.5 imply |Cmax|/ logn
P−→ I−1

λ .

4.3.1 Largest subcritical cluster: strategy of proof of Theorems 4.4 and 4.5

We start by describing the strategy of proof. We denote by

Z≥k =

n∑
v=1

1l{|C(v)|≥k} (4.3.4)
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the number of vertices that are contained in connected components of size at least k. We
can identify |Cmax| as

|Cmax| = max{k : Z≥k ≥ k}, (4.3.5)

which allows us to prove bounds on |Cmax| by investigating Z≥k for an appropriately chosen
k. In particular, (4.3.5) implies that {|Cmax| ≥ k} = {Z≥k ≥ k}:

Exercise 4.14 (Relation |Cmax| and Z≥k). Prove (4.3.5) and conclude that {|Cmax| ≥ k} =
{Z≥k ≥ k}.

To prove Theorem 4.4, we use the first moment method or Markov inequality (Theorem
2.14). We compute that

Eλ[Z≥k] = nPλ(|C(1)| ≥ k), (4.3.6)

and we use Theorem 4.2 to bound Pλ(|C(1)| ≥ kn) for kn = a logn for any a > I−1
λ .

Therefore, with high probability, Z≥kn = 0, so that, again with high probability, |Cmax| ≤
kn. This proves Theorem 4.4. For the details we refer to the formal argument in Section
4.3.2.

To prove Theorem 4.5, we use the second moment method or Chebychev inequality
(Theorem 2.15). In order to be able to apply this result, we first prove an upper bound
on the variance of Z≥k, see Proposition 4.7 below. We further use Theorem 4.3 to prove a
lower bound on Eλ[Z≥kn ], now for kn = a logn for any a < I−1

λ . Then, (2.4.5) in Theorem
2.15 proves that with high probability, Z≥kn > 0, so that, again with high probability,
|Cmax| ≥ kn. We now present the details of the proofs.

4.3.2 Upper bound on the largest subcritical cluster: proof of Theorem 4.4

By Theorem 4.2,
Pλ(|C(v)| > t) ≤ Pn,p(T > t), (4.3.7)

where T is the total progeny of a branching process with a binomial offspring distribution

with parameters n and p = λ/n. To study Pn,p(T > t), we let {X̂i}∞i=1 be an i.i.d. sequence
of binomial random variables with parameters n and success probability p, and let

Ŝt = X̂1 + . . .+ X̂t − (t− 1). (4.3.8)

Then, by (3.3.2) and (3.3.1), we have that

Pn,p(T > t) ≤ Pn,p(Ŝt > 0) = Pn,p(X̂1 + . . .+ X̂t ≥ t) ≤ e−tIλ, (4.3.9)

by Corollary 2.17 and using the fact that X̂1 + . . .+ X̂t ∼ BIN(nt, λ/n). We conclude that

Pλ(|C(v)| > t) ≤ e−tIλ . (4.3.10)

Therefore, using Exercise 4.14, the Markov inequality (Theorem 2.14) and again with
kn = a logn,

Pλ(|Cmax| > a logn) ≤ Pλ(Z≥kn ≥ 1) ≤ Eλ[Z≥kn ]

= nPλ(|C(1)| ≥ a logn) ≤ n1−aIλeIλ = O(n−δ), (4.3.11)

whenever a > 1/Iλ and with δ = aIλ − 1. This proves that with high probability the
largest connected component is bounded by a logn for every a > I−1

λ .

We now give a second proof of (4.3.10), which is based on a distributional equality of St,
and which turns out to be useful in the analysis of the Erdős-Rényi random graph with
λ > 1 as well. The result states that St is also binomially distributed, but with a different
success probability. In the statement of Proposition 4.6 below, we make essential use of
the formal continuation of the recursions in (4.1.3) and (4.1.4) for the breadth-first search,
defined right below (4.1.4). Note that, in particular, St need not be non-negative.
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Proposition 4.6 (The law of St). For all t ∈ [n],

St + (t− 1) ∼ BIN
(
n− 1, 1− (1− p)t

)
. (4.3.12)

We shall only make use of Proposition 4.6 when |C(v)| ≥ t, in which case St ≥ 0 does
hold.

Proof. Let Nt represent the number of unexplored vertices, i.e.,

Nt = n− t− St. (4.3.13)

Note that X ∼ BIN(m, p) holds precisely when Y = m −X ∼ BIN(m, 1 − p). It is more
convenient to show the equivalent statement that for all t

Nt ∼ BIN
(
n− 1, (1− p)t

)
. (4.3.14)

Heuristically, (4.3.14) can be understood by noting that each of the vertices {2, . . . , n}
has, independently of all other vertices, probability (1 − p)t to stay neutral in the first t
explorations. More formally, conditionally on St, we have that Xt ∼ BIN

(
n − (t − 1) −

St−1, p
)

by (4.1.4). Thus, noting that N0 = n− 1 and

Nt = n− t− St = n− t− St−1 −Xt + 1

= n− (t− 1)− St−1 − BIN(n− (t− 1)− St−1, p)

= Nt−1 − BIN(Nt−1, p) = BIN(Nt−1, 1− p), (4.3.15)

the conclusion follows by recursion on t.

Exercise 4.15 (A binomial number of binomial trials). Show that if N ∼ BIN(n, p) and,
conditionally on N , M ∼ BIN(N, q), then M ∼ BIN(n, pq). Use this to complete the proof
that Nt ∼ BIN(n− 1, (1− p)t).

To complete the second proof of (4.3.10), we use Proposition 4.6 to see that

Pλ(|C(v)| > t) ≤ P(St > 0) ≤ Pλ
(
BIN(n− 1, 1− (1− p)t) ≥ t

)
. (4.3.16)

Using Bernoulli’s inequality 1− (1− p)t ≤ tp, we therefore arrive at

Pλ(|C(v)| > t) ≤ Pλ
(
BIN(n,

tλ

n
) ≥ t

)
≤ min

s≥0
e−stEλ[esBIN(n, tλ

n
)]

= min
s≥0

e−st
[
1 +

tλ

n
(es − 1)

]n ≤ min
s≥0

e−stetλ(es−1), (4.3.17)

where we have used the Markov inequality (Theorem 2.14) in the second inequality, and
1 + x ≤ ex in the last. We arrive at the bound

Pλ(|C(v)| > t) ≤ e−Iλt, (4.3.18)

which reproves (4.3.10).
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4.3.3 Lower bound on the largest subcritical cluster: proof of Theorem 4.5

The proof of Theorem 4.5 makes use of a variance estimate on Z≥k. We use the notation

χ≥k(λ) = Eλ
[
|C(v)|1l{|C(v)|≥k}

]
. (4.3.19)

Note that, by exchangeability of the vertices, χ≥k(λ) does not depend on v.

Proposition 4.7 (A variance estimate for Z≥k). For every n and k ∈ [n],

Varλ(Z≥k) ≤ nχ≥k(λ). (4.3.20)

Proof. We use that

Varλ(Z≥k) =

n∑
i,j=1

[
Pλ(|C(i)| ≥ k, |C(j)| ≥ k)− Pλ(|C(i)| ≥ k)Pλ(|C(j)| ≥ k)

]
. (4.3.21)

We split the probability Pλ(|C(i)| ≥ k, |C(j)| ≥ k), depending on whether i←→ j or not:

Pλ(|C(i)| ≥ k, |C(j)| ≥ k) = Pλ(|C(i)| ≥ k, i←→ j) + Pλ(|C(i)| ≥ k, |C(j)| ≥ k, i←→/ j).
(4.3.22)

Clearly,

Pλ(|C(i)| = l, |C(j)| ≥ k, i←→/ j)

= Pλ(|C(i)| = l, i←→/ j)Pλ
(
|C(j)| ≥ k

∣∣ |C(i)| = l, i←→/ j
)
. (4.3.23)

When |C(i)| = l and i←→/ j, then all vertices in the components different from the one of
i, which includes the components of j, form a random graph where the size n is replaced
by n− l. Since the probability that |C(j)| ≥ k in ERn(p) is increasing in n, we have that

Pλ(|C(j)| ≥ k
∣∣|C(i)| = l, i←→/ j) ≤ Pλ(|C(j)| ≥ k). (4.3.24)

We conclude that

Pλ(|C(i)| = l, |C(j)| ≥ k, i←→/ j)− Pλ(|C(i)| = l)Pλ(|C(j)| ≥ k) ≤ 0, (4.3.25)

which in turn implies that

Varλ(Z≥k) ≤
n∑

i,j=1

Pλ(|C(i)| ≥ k, i←→ j). (4.3.26)

Therefore, we arrive at the fact that, by the exchangeability of the vertices,

Varλ(Z≥k) ≤
n∑

i,j=1

Pλ(|C(i)| ≥ k, i←→ j)

=

n∑
i=1

n∑
j=1

Eλ
[
1l{|C(i)|≥k}1l{j∈C(i)}

]
=

n∑
i=1

Eλ
[
1l{|C(i)|≥k}

n∑
j=1

1l{j∈C(i)}

]
. (4.3.27)
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Since
∑n
j=1 1l{j∈C(i)} = |C(i)|, we arrive at

Varλ(Z≥k) ≤
∑
i

Eλ[|C(i)|1l{|C(i)|≥k}] = nEλ[|C(1)|1l{|C(1)|≥k}] = nχ≥k(λ). (4.3.28)

Proof of Theorem 4.5. To prove Theorem 4.5, it suffices to prove that Pλ(Z≥kn = 0) =
O(n−δ), where kn = a logn with a < I−1

λ . For this, we use the Chebychev inequality
(Theorem 2.15). In order to apply Theorem 2.15, we need to derive a lower bound on
Eλ[Z≥k] and an upper bound on Varλ(Z≥k).

We start by giving a lower bound on Eλ[Z≥k]. We use that

Eλ[Z≥k] = nP≥k(λ), where P≥k(λ) = Pλ(|C(v)| ≥ k). (4.3.29)

We take k = kn = a logn. We use Theorem 4.3 to see that, with T a binomial branching
process with parameters n− kn and p = λ/n,

P≥k(λ) ≥ Pn−kn,p(T ≥ a logn). (4.3.30)

By Theorem 3.18, with T ∗ the total progeny of a Poisson branching process with mean
λn = λn−kn

n
,

Pn−kn,p(T ≥ a logn) = P∗λn(T ∗ ≥ a logn) +O
(aλ2 logn

n

)
. (4.3.31)

Also, by Theorem 3.14, we have that

P∗λn(T ∗ ≥ a logn) =

∞∑
k=a logn

P∗λn(T ∗ = k) =

∞∑
k=a logn

(λnk)k−1

k!
e−λnk. (4.3.32)

By Stirling’s formula,

k! =
(k
e

)k√
2πk

(
1 + o(1)

)
, (4.3.33)

so that, recalling (4.3.1), and using that Iλn = Iλ + o(1),

P(T ∗ ≥ a logn) = λ−1
∞∑

k=a logn

1√
2πk3

e−Iλnk(1 + o(1)) = e−Iλa logn(1+o(1)). (4.3.34)

As a result, it follows that, with kn = a logn and any 0 < α < 1− Iλa,

Eλ[Z≥kn ] = nP≥kn(λ) ≥ n(1−Iλa)(1+o(1)) ≥ nα. (4.3.35)

We next bound the variance of Z≥kn using Proposition 4.7. By (4.3.10),

χ≥kn(λ) =

n∑
t=kn

P≥t(λ) ≤
n∑

t=kn

e−Iλ(t−1)

≤ e−(kn−1)Iλ

1− e−Iλ = O(n−aIλ). (4.3.36)

We conclude that, by Proposition 4.7,

Varλ(Z≥kn) ≤ nχ≥kn(λ) ≤ O(n1−aIλ), (4.3.37)
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while
Eλ[Z≥kn ] ≥ nα. (4.3.38)

Therefore, by the Chebychev inequality (Theorem 2.14),

Pλ(Z≥kn = 0) ≤ Varλ(Z≥kn)

Eλ[Z≥kn ]2
≤ O(n1−aI−2α) = O(n−δ), (4.3.39)

when we pick δ = 2α− (1− Iλa), and 0 < α < 1− Iλa such that δ = 2α− (1− Iλa) > 0.
Finally, we use that

Pλ(|Cmax| < kn) = Pλ(Z≥kn = 0), (4.3.40)

to complete the proof of Theorem 4.5.

4.4 The supercritical regime

In this section, we fix λ > 1. The main result proved in this section is the following
theorem. In its statement, we write ζλ = 1 − ηλ for the survival probability of a Poisson
branching process with mean offspring λ.

Theorem 4.8 (Law of large numbers for giant component). Fix λ > 1. Then, for every
ν ∈ ( 1

2
, 1), there exists a δ = δ(ν, λ) > 0 such that

Pλ
(∣∣∣|Cmax| − ζλn

∣∣∣ ≥ nν) = O(n−δ). (4.4.1)

Theorem 4.8 can be interpreted as follows. A vertex has a large connected component
with probability ζλ. Therefore, there are of the order ζλn vertices with large connected
components. Theorem 4.8 implies that all these vertices in large components are in fact
in the same connected component, which is called the giant component. We first give an
overview of the proof of Theorem 4.8.

4.4.1 Strategy of proof of law of large numbers for the giant component

In this section, we give an overview of the proof of Theorem 4.8. We again crucially
rely on an analysis of the number of vertices in connected components of size at least k,

Z≥k =

n∑
v=1

1l{|C(v)|≥k}. (4.4.2)

We first pick k = kn = K logn for some K > 0 sufficiently large. Note that

E[Z≥kn ] = nPλ(|C(v)| ≥ kn). (4.4.3)

We evaluate Pλ(|C(v)| ≥ kn) using the bound in Theorem 4.3. Indeed, we prove an estimate
on the cluster size distribution in Proposition 4.9 below, which states that for kn = K logn
and K sufficiently large

Pλ(|C(v)| ≥ kn) = ζλ(1 + o(1)). (4.4.4)

Then we show that, for k = kn = K logn, for some K > 0 sufficiently large, there is
with high probability no connected component with size in between kn and αn for any
α < ζλ. This is done by a first moment argument: the expected number of vertices in such
connected components is equal to Eλ[Z≥kn − Z≥αn], and we use the bound in Proposition
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4.9 described above, as well as Proposition 4.10, which states that, for any α < ζλ, there
exists J > 0 such that

Pλ
(
kn ≤ |C(v)| < αn

)
≤ e−knJ . (4.4.5)

Therefore, for K > 0 sufficiently large, there is, with high probability, no cluster with size
in between kn and αn.

We next use a variance estimate on Z≥k in Proposition 4.12, which implies that with
high probability, and for all ν ∈ ( 1

2
, 1),

|Z≥kn − Eλ[Z≥kn ]| ≤ nν . (4.4.6)

We finally use that for 2α > ζλ, and on the event that there are no clusters with size in
between kn and αn, and on the event in (4.4.6), we have

Z≥kn = |Cmax|. (4.4.7)

The proof of Theorem 4.8 follows by combining (4.4.3), (4.4.6) and (4.4.7). The details
of the proof of Theorem 4.8 are given in Section 4.4.4 below. We start by describing the
cluster size distribution in Section 4.4.2, and the variance estimate on Z≥k in Section 4.4.3.

4.4.2 The supercritical cluster size distribution

In this section, we prove two propositions that investigate the tails of the cluster size
distribution. In Proposition 4.9, we show that the probability that |C(v)| ≥ k is, for
kn ≥ a logn, close to the survival probability of a Poisson branching process with mean λ.
Proposition 4.9 implies (4.4.4).

Proposition 4.9 (Cluster tail is branching process survival probability). Fix λ > 1 and
let n→∞. Then, for kn ≥ a logn where a > I−1

λ and Iλ is defined in (4.3.1),

Pλ(|C(v)| ≥ kn) = ζλ +O
(kn
n

)
. (4.4.8)

Proof. For the upper bound on Pλ(|C(v)| ≥ k), we first use Theorem 4.2, followed by
Theorem 3.18, to deduce

Pλ(|C(v)| ≥ kn) ≤ Pn,λ/n(T ≥ kn) ≤ P∗λ(T ∗ ≥ kn) +O(
kn
n

), (4.4.9)

where T and T ∗, respectively, are the the total progeny of a binomial branching process
with parameters n and λ/n and a Poisson mean λ branching process, respectively. To
complete the upper bound, we use Theorem 3.8 to see that

P∗λ(T ∗ ≥ kn) = P∗λ(T ∗ =∞) + P∗λ(kn ≤ T ∗ <∞)

= ζλ +O(e−knIλ) = ζλ +O
(kn
n

)
, (4.4.10)

as required.
For the lower bound, we use Theorem 4.3 again followed by Theorem 3.18, so that, with

λn = λ(1− kn
n

),

Pλ(|C(v)| ≥ kn) ≥ Pn−kn,λ/n(T ≥ kn) ≥ P∗λn(T ∗ ≥ kn) +O
(kn
n

)
, (4.4.11)

where now T and T ∗, respectively, are the the total progeny of a binomial branching process
with parameters n− kn and λ/n and a Poisson mean λn branching process, respectively.
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By Exercise 3.23 for kn ≥ a logn with a > I−1
λ ,

P∗λn(T ∗ ≥ kn) = ζλn +O(e−knIλn ) = ζλn +O
(kn
n

)
. (4.4.12)

Now, furthermore, by the mean-value theorem,

ηλn = ηλ + (λn − λ)
d

dλ
ηλ
∣∣
λ=λ∗n

= ηλ +O
(kn
n

)
, (4.4.13)

for some λ∗n ∈ (λn, λ), where we use Corollary 3.17 for λ > 1 and λn − λ = kn
n

. Therefore,

also ζλn = ζλ+O
(
kn
n

)
. Putting these estimates together proves the lower bound. Together,

the upper and lower bound complete the proof of Proposition 4.9.
We next show that the probability that kn ≤ |C(v)| ≤ αn is exponentially small in kn:

Proposition 4.10 (Exponential bound for supercritical clusters smaller than ζλn). Fix
λ > 1 and let kn →∞. Then, for any α < ζλ, there exists a J = J(α, λ) > 0 such that

Pλ(kn ≤ |C(v)| ≤ αn) ≤ Ce−knJ . (4.4.14)

Proof. We start by bounding

Pλ(kn ≤ |C(v)| ≤ αn) =

αn∑
t=kn

Pλ(|C(v)| = t) ≤
αn∑
t=kn

Pλ(St = 0), (4.4.15)

where we recall (4.1.3). By Proposition 4.6, we have that St ∼ BIN(n−1, 1−(1−p)t)+1−t.
Therefore, with p = λ/n,

Pλ(St = 0) = Pλ
(

BIN
(
n− 1, 1− (1− p)t

)
= t− 1

)
. (4.4.16)

To explain the exponential decay, we note that, for p = λ/n and t = αn,

1− (1− p)t = 1−
(

1− λ

n

)αn
= (1− e−λα)(1 + o(1)) for large n. (4.4.17)

The unique solution to the equation 1− e−λα = α is α = ζλ:

Exercise 4.16 (Uniqueness solution of Poisson survival probability equation). Prove that
the unique solution to the equation 1 − e−λα = α is α = ζλ, where ζλ is the survival
probability of a Poisson branching process with parameter λ.

If α < ζλ, then α < 1− e−λα, and thus the probability in (4.4.16) drops exponentially.
We now fill in the details. First, by (4.4.16) and using that 1−p ≤ e−p, so that 1−(1−p)t ≥
1− e−pt,

Pλ(St = 0) = Pλ
(

BIN
(
n− 1, 1− (1− p)t

)
= t− 1

)
≤ Pλ

(
BIN

(
n− 1, 1− (1− p)t

)
≤ t− 1

)
≤ Pλ

(
BIN

(
n, 1− (1− p)t

)
≤ t
)
≤ Pλ

(
BIN

(
n, 1− e−pt

)
≤ t
)
. (4.4.18)

By Exercise 4.16, the solution α = nt to 1 − e−λα = α is given by α = ζλ. It is easy to
verify that if α < ζλ and λ > 1, then there exists δ = δ(α, λ) > 0 such that, for all β ≤ α,

1− λβ ≤ e−λβ ≤ 1− (1 + δ)β. (4.4.19)
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Write X ∼ BIN
(
n, 1− e−pt

)
and t = βn, where kn/n ≤ β ≤ α. Then, by (4.4.19),

β(1 + δ)n ≤ Eλ[X] ≤ λβn. (4.4.20)

Hence,

Pλ(St ≤ 0) ≤ Pλ
(

BIN
(
n, 1− e−pt

)
≤ t
)
≤ Pλ

(
X ≤ Eλ[X]− βδn

)
, (4.4.21)

and Theorem 2.18 gives that, for every t ≤ αn,

Pλ(St ≤ 0) ≤ e−βδ
2n/2λ = e−tδ

2/2λ. (4.4.22)

We conclude that, with J = J(α, λ) = δ2/2λ,

Pλ(kn ≤ |C(v)| ≤ αn) ≤
αn∑
t=kn

Pλ(St = 0) ≤
αn∑
t=kn

e−Jt ≤ [1− e−J ]−1e−Jkn . (4.4.23)

This completes the proof of Proposition 4.10.
We finally state a consequence of Proposition 4.10 that shows that there is, with high

probability, no cluster with intermediate size, i.e., size in between kn = K logn and αn.
Corollary 4.11 implies (4.4.5):

Corollary 4.11 (No intermediate clusters). Fix kn = K logn and α < ζλ. Then, for K
sufficiently large, and with probability at least 1 − n−δ, there is no connected component
with size in between kn and αn.

Proof. We use that the expected number of clusters with sizes in between kn and αn, for
any α < ζλ, is equal to

Eλ[Z≥kn − Z≥αn+1] = nPλ(kn ≤ |C(v)| ≤ αn) ≤ Cne−knJ , (4.4.24)

where we have used Proposition 4.10 for the last estimate. When kn = K logn, and K
is sufficiently large, the right-hand side is O(n−δ). By the Markov inequality (Theorem
2.14),

Pλ(∃v : kn ≤ |C(v)| ≤ αn) = Pλ(Z≥kn − Z≥αn+1 ≥ 1) ≤ Eλ[Z≥kn − Z≥αn+1] = O(n−δ).
(4.4.25)

This completes the proof of Corollary 4.11.

Exercise 4.17 (Connectivity and expected cluster size). Prove that the expected cluster
size of a given vertex

χ(λ) = Eλ[|C(1)|], (4.4.26)

satisfies
χ(λ) = 1 + (n− 1)Pλ(1←→ 2). (4.4.27)

Exercise 4.18 (Connectivity function). Prove that (4.4.1) and Corollary 4.11 imply that,
for λ > 1,

Pλ(1←→ 2) = ζ2
λ[1 + o(1)]. (4.4.28)

Exercise 4.19 (Supercritical expected cluster size). Prove that (4.4.1) implies that the
expected cluster size satisfies, for λ > 1,

χ(λ) = ζ2
λn(1 + o(1)). (4.4.29)
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4.4.3 Another variance estimate on the number of vertices in large clusters

The proof of Theorem 4.8 makes use of a variance estimate on Z≥k. In its statement,
we use the notation

χ<k(λ) = Eλ[|C(v)|1l{|C(v)|<k}]. (4.4.30)

Proposition 4.12 (A second variance estimate on Z≥k). For every n and k ∈ [n],

Varλ(Z≥k) ≤ (λk + 1)nχ<k(λ). (4.4.31)

Note that the variance estimate in Proposition 4.12 is, in the supercritical regime, much
better than the variance estimate in Proposition 4.7. Indeed, the bound in Proposition 4.7
reads

Varλ(Z≥k) ≤ nχ≥k(λ). (4.4.32)

However, when λ > 1, according to Theorem 4.8 (which is currently not yet proved),
|C(1)| = Θ(n) with positive probability. Therefore,

nχ≥k(λ) = Θ(n2), (4.4.33)

which is a trivial bound. The bound in Proposition 4.12 is at most Θ(k2n), which is much
smaller when k is not too large. We will pick k = kn = Θ(logn), for which the estimate
in Proposition 4.12 is much better. In Section 4.4.4, we shall see that Proposition 4.12
implies (4.4.6).

Proof. Define

Z<k =

n∑
v=1

1l{|C(v)|<k}. (4.4.34)

Then, since Z<k = n− Z≥k, we have

Varλ(Z≥k) = Varλ(Z<k). (4.4.35)

Therefore, it suffices to prove that Var(Z<k) ≤ (λk + 1)nχ<k(λ). For this, we compute

Varλ(Z<k) =

n∑
i,j=1

[
Pλ(|C(i)| < k, |C(j)| < k)− Pλ(|C(i)| < k)Pλ(|C(j)| < k)

]
. (4.4.36)

We again split, depending on whether i←→ j or not:

Varλ(Z<k) =

n∑
i,j=1

[
Pλ(|C(i)| < k, |C(j)| < k, i←→/ j)− Pλ(|C(i)| < k)Pλ(|C(j)| < k)

]
+

n∑
i,j=1

Pλ(|C(i)| < k, |C(j)| < k, i←→ j). (4.4.37)

We compute explicitly, using that |C(i)| = |C(j)| when i←→ j,

n∑
i,j=1

Pλ(|C(i)| < k, |C(j)| < k, i←→ j) =

n∑
i,j=1

Eλ
[
1l{|C(i)|<k}1l{i←→j}

]
=

n∑
i=1

Eλ
[
1l{|C(i)|<k}

n∑
j=1

1l{i←→j}
]

=
n∑
i=1

Eλ[|C(i)|1l{|C(i)|<k}] = nχ<k(λ). (4.4.38)
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To compute the first sum on the right hand-side of (4.4.37) we write that, for l < k,

Pλ(|C(i)| = l, |C(j)| < k, i←→/ j)

= Pλ(|C(i)| = l)Pλ
(
i←→/ j

∣∣|C(i)| = l
)
Pλ
(
|C(j)| < k

∣∣|C(i)| = l, i←→/ j
)
. (4.4.39)

See Exercise 4.20 below for an explicit formula for Pλ
(
i ←→/ j

∣∣|C(i)| = l
)
. We bound

Pλ
(
i←→/ j

∣∣|C(i)| = l
)
≤ 1, to obtain

Pλ(|C(i)| = l, |C(j)| < k, i←→/ j) ≤ Pλ(|C(i)| = l)Pλ
(
|C(j)| < k

∣∣|C(i)| = l, i←→/ j
)
.

(4.4.40)

Now we use that, when |C(i)| = l and when i ←→/ j, the law of |C(j)| is identical to the
law of |C(1)| in a random graph with n− l vertices and edge probability p = λ/n, i.e.,

Pn,λ(|C(j)| < k
∣∣|C(i)| = l, i←→/ j) = Pn−l,λ(|C(1)| < k), (4.4.41)

where we write Pm,λ for the distribution of ER(m,λ/n). Therefore,

Pλ(|C(j)| < k
∣∣|C(i)| = l, i←→/ j) (4.4.42)

= Pn−l,λ(|C(1)| < k) = Pn,λ(|C(1)| < k) + Pn−l,λ(|C(1)| < k)− Pn,λ(|C(1)| < k).

We can couple ER(n− l, p) and ERn(p) by adding the vertices {n− l + 1, . . . , n}, and by
letting st, for s ∈ {n− l+ 1, . . . , n} and t ∈ [n] be independently occupied with probability
p. In this coupling, we note that Pn−l,λ(|C(1)| < k) − Pn,λ(|C(1)| < k) is equal to the
probability of the event that |C(1)| < k in ER(n − l, p), but |C(1)| ≥ k in ERn(p). If
|C(1)| < k in ER(n − l, p), but |C(1)| ≥ k in ERn(p), it follows that at least one of the
vertices {n − l + 1, . . . , n} must be connected to one of the at most k vertices in the
connected component of vertex 1 in ER(n− l, p). This has probability at most lkp, so that,
by Boole’s inequality,

Pλ(|C(j)| < k, i←→/ j
∣∣|C(i)| = l)− Pλ(|C(j)| < k) ≤ lkλ

n
. (4.4.43)

Therefore,

n∑
i,j=1

[
Pλ(|C(i)| < k, |C(j)| < k, i←→/ j)− Pλ(|C(i)| < k)Pλ(|C(j)| < k)

]
≤
k−1∑
l=1

∑
i,j

λkl

n
Pλ(|C(i)| = l) =

λk

n

∑
i,j

Eλ[|C(i)|1l{|C(i)|<k}] = nkλχ<k(λ), (4.4.44)

which, together with (4.4.37)–(4.4.38), completes the proof.

Exercise 4.20 (Connectivity with given expected cluster size). Show that

Pλ
(
1←→/ 2

∣∣|C(1)| = l
)

= 1− l − 1

n− 1
. (4.4.45)

4.4.4 Proof of law of large numbers of the giant component in Theorem 4.8

We fix ν ∈ ( 1
2
, 1), α ∈ (ζλ/2, ζλ) and take kn = K logn with K sufficiently large. Let

En be the event that

(1) |Z≥kn − nζλ| ≤ nν ;



4.4 The supercritical regime 93

(2) there does not exist a v ∈ [n] such that kn ≤ |C(v)| ≤ αn.

Then, in the proof of Theorem 4.8 we use the following lemma:

Lemma 4.13 (|Cmax| equals Z≥kn with high probability). The event En occurs with high
probability, i.e., Pλ(Ecn) = O(n−δ), and, on the event En,

|Cmax| = Z≥kn . (4.4.46)

Proof. We start by proving that En occurs with high probability. For this, we note that
Ecn equals the union of complements of the events in (1) and (2) above, and we shall bound
these complements one by one.

We start by proving that Pλ(|Z≥kn−nζλ| > nν) = O(n−δ). For this, we use Proposition
4.9 to note that

Eλ[Z≥kn ] = nPλ(|C(v)| ≥ kn) = nζλ +O(kn), (4.4.47)

and therefore, for n sufficiently large and since kn = o(nν),

{|Z≥kn − Eλ[Z≥kn ]| ≤ nν/2} ⊆ {|Z≥kn − nζλ| ≤ n
ν}. (4.4.48)

By the Chebychev inequality (Theorem 2.15), and using Proposition 4.12 as well as χ<kn(λ) ≤
kn, we then obtain that

Pλ(|Z≥kn − nζλ| ≤ n
ν) ≥ Pλ(|Z≥kn − Eλ[Z≥kn ]| ≤ nν/2) ≥ 1− 4n−2νVar(Z≥kn)

≥ 1− 4n1−2ν(λk2
n + kn) ≥ 1− n−δ, (4.4.49)

for any δ < 2ν − 1 and n sufficiently large, since kn = K logn.
By Corollary 4.11,

Pλ(∃v ∈ [n] such that kn ≤ |C(v)| ≤ αn) ≤ n−δ. (4.4.50)

Together, (4.4.49)–(4.4.50) imply that Pλ(Ecn) = O(n−δ).
To prove (4.4.46), we start by noting that {|Z≥kn − ζλn| ≤ nν} ⊆ {Z≥kn ≥ 1}. Thus,

|Cmax| ≤ Z≥kn when the event En holds. In turn, |Cmax| < Z≥kn implies that there are
two connected components with size at least kn. Furthermore, since En occurs, there are
no connected components with sizes in between kn and αn. Therefore, there must be
two connected components with size at least αn, which in turn implies that Z≥kn ≥ 2αn.
When 2α > ζλ and n is sufficiently large, this is in contradiction with Z≥kn ≤ ζλn + nν .
We conclude that (4.4.46) holds.

Proof of Theorem 4.8. By (4.4.46), we have

Pλ
(∣∣|Cmax| − ζλn

∣∣ ≤ nν) ≥ Pλ
(
{
∣∣|Cmax| − ζλn

∣∣ ≤ nν} ∩ En) = Pλ(En) ≥ 1−O(n−δ),

(4.4.51)

since, by Lemma 4.13 and on the event En, |Cmax| = Z≥kn and |Z≥kn − nζλ| ≤ nν . This
completes the proof of the law of large number of the giant component in Theorem 4.8.

4.4.5 The discrete duality principle

Using the results we can construct a duality principle for Erdős-Rényi random graphs
similar to the duality principle for branching processes:

Theorem 4.14 (Discrete duality principle). Let µλ < 1 < λ be conjugates as in (3.5.7).
Conditionally, the graph ERn(λ/n) with the giant component removed is close in law to
the random graph ER(m, µλ

m
), where the variable m = dnηλe is the asymptotic number of

vertices outside the giant component.
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We will see that the proof follows from Theorem 4.8, since this implies that the giant
component has size n −m = ζλn(1 + o(1)). In the statement of Theorem 4.14 we make
use of the informal notion ‘close in law’. This notion can be made precise as follows. Let
ERn(λ/n)′ be ERn(λ/n) with the giant component removed. We write P′λ for the law of
ERn(λ/n)′, and we recall that Pm,µ denotes the law of ER(m,µ). Let E be an event which
is determined by the edges variables. Then, if limm→∞ Pm,µλ(E) exists, then

lim
n→∞

P′n,λ(E) = lim
m→∞

Pm,µλ(E). (4.4.52)

We shall sketch a proof of Theorem 4.14. First of all, all the edges in the complement of
the giant component in ERn(p) are independent. Furthermore, the conditional probability
that an edge st is occupied in ERn(p) with the giant component removed is, conditionally
on |Cmax| = n−m, equal to

λ

n
=

λ

m

m

n
. (4.4.53)

Now, m ≈ ηλn, so that the conditional probability that an edge st is occupied in ERn(p)
with the giant component removed, conditionally on |Cmax| ≈ ζλn, is equal to

λ

n
≈ ληλ

m
=
µλ
m
, (4.4.54)

where we have used (3.5.2) and (3.5.5), which implies that ληλ = µλ. Therefore, the
conditional probability that an edge st is occupied in ERn(p) with the giant component
removed, conditionally on |Cmax| ≈ ζλn, is equal to µλ

m
.

Exercise 4.21 (Second largest supercritical cluster). Use the duality principle to show that
the second largest component of a supercritical Erdős-Rényi random graph C(2) satisfies

|C(2)|
logn

P−→ I−1
µλ . (4.4.55)

4.5 The CLT for the giant component

In this section, we prove a central limit theorem for the giant component in the super-
critical regime, extending the law of large numbers for the giant component in Theorem
4.8. The main result is as follows:

Theorem 4.15 (Central limit theorem for giant component). Fix λ > 1. Then,

|Cmax| − ζλn√
n

d−→ Z, (4.5.1)

where Z is a normal random variable with mean 0 and variance σ2
λ = ζλ(1−ζλ)

(1−λ+λζλ)2
.

We shall make use of the exploration of connected components to prove Theorem 4.15. In
the proof, we shall make essential use of Theorem 4.8.

In order to present the proof, we start with some introductions. Fix k = kn, which
will be chosen later on. We shall explore the union of the connected components of the
vertices {1, . . . , k}. When k → ∞ and using Theorem 4.8, this union contains the largest
connected component Cmax, and it cannot be larger than |Cmax|+ kbn, where bn ≤ K logn
is an upper bound on the second largest component. As a result, when k is o(nν) with
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ν < 1
2
, this union of components is equal to |Cmax| + o(

√
n). As a result, a central limit

theorem for the union of components implies one for |Cmax|. We now describe the size of
the union of the components of {1, . . . , k}.

Let S1 be the total number of vertices in {k+1, . . . , n} that are connected to the vertices
{1, . . . , k}. Then, it is not hard to see that

S1 ∼ BIN
(
n− k, 1− (1− p)k

)
. (4.5.2)

Then, for m ≥ 1, let
Sm = Sm−1 +Xm − 1, (4.5.3)

where

Xm ∼ BIN
(
n− Sm−1 − (m+ k − 2), p

)
. (4.5.4)

Equations (4.5.3) and (4.5.4) are similar to the ones in (4.1.3) and (4.1.4), but they are
adapted to the case where we explore the connected component of more than one vertex.
We next derive the distribution of St in a similar way as in Proposition 4.6.

Proposition 4.16 (The law of St revisited). For all t ∈ [n],

St + (t− 1) ∼ BIN(n− k, 1− (1− p)t+k−1). (4.5.5)

Moreover, for all l,m ∈ [n] satisfying l ≥ m, and conditionally on Sm,

Sl + (l −m)− Sm ∼ BIN
(
n− (m+ k − 1)− Sm, 1− (1− p)l−m

)
. (4.5.6)

For k = 1, the equality in distribution (4.5.5) in Proposition 4.16 reduces to Proposition
4.6.

Proof. For t = 1, the claim in (4.5.5) follows from (4.5.2). For t ≥ 1, let Nt represent the
number of unexplored vertices, i.e.,

Nt = n− (t+ k − 1)− St. (4.5.7)

It is more convenient to show the equivalent statement that for all t ≥ 1

Nt ∼ BIN
(
n− k, (1− p)t+k−1). (4.5.8)

To see this, we note that each of the vertices {k+ 1, . . . , n} has, independently of all other
vertices, probability (1− p)t+k−1 to stay neutral in the first t explorations. More formally,
conditionally on St−1, and by (4.5.4), we have that Xt ∼ BIN

(
n− St−1 − (t+ k− 2), p) =

BIN
(
Nt−1, p) by (4.5.4). Thus, noting that N1 ∼ BIN(n− k, (1− p)k) and

Nt = n− (t+ k − 1)− St = n− (t+ k − 1)− St−1 −Xt + 1

= n− (t+ k − 2)− St−1 − BIN(Nt−1, p)

= Nt−1 − BIN(Nt−1, p) = BIN(Nt−1, 1− p), (4.5.9)

the conclusion follows by recursion on m ≥ 2 and Exercise 4.15. We note that (4.5.9) also
implies that for any l ≥ m,

Nl ∼ BIN(Nm, (1− p)l−m). (4.5.10)

Substituting Nm = n− (m+ k − 1)− Sm, this implies that

n− (l + k − 1)− Sl ∼ BIN
(
n− (m+ k − 1)− Sm, (1− p)l−m

)
(4.5.11)

= n− (m+ k − 1)− Sm − BIN
(
n− (m+ k − 1)− Sm, 1− (1− p)l−m

)
,
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which, in turn, is equivalent to the statement that, for all l ≥ m and, conditionally on Sm,

Sl + (l −m)− Sm ∼ BIN
(
n− (m+ k − 1)− Sm, 1− (1− p)l−m

)
, (4.5.12)

We now state a corollary of Proposition 4.16 which states that Sbntc satisfies a central limit
theorem. By convention, we let S0 = k. In its statement, we make use of the asymptotic
mean

µt = 1− t− e−λt (4.5.13)

and asymptotic variance
vt = e−λt(1− e−λt). (4.5.14)

The central limit theorem for Sm reads as follows:

Corollary 4.17 (CLT for Sm). Fix k = kn = o(
√
n). Then, for every t ∈ [0, 1], the random

variable
Sbntc−nµt√

nvt
converges in distribution to a standard normal random variable.

Proof. The statement follows immediately from the central limit theorem for the binomial
distribution when we can show that

E[Sbntc] = nµt + o(
√
n), Var(Sbntc) = nvt + o(n). (4.5.15)

Indeed, by the central limit theorem for the binomial distribution we have that

Sbntc − E[Sbntc]√
Var(Sbntc)

d−→ Z, (4.5.16)

where Z is a standard normal random variable.

Exercise 4.22. Prove that if Xn = BIN(an, pn), where Var(X) = anpn(1 − pn) → ∞,
then

Xn − anpn√
anpn(1− pn)

d−→ Z, (4.5.17)

where Z is a standard normal random variable. Use this to conclude that (4.5.15) implies
(4.5.16).

Now we can further write

Sbntc − nµt√
nvt

=

√
Var(Sbntc)

nvt

Sbntc − E[Sbntc]√
Var(Sbntc)

+
E[Sbntc]− nµt√

Var(Sbntc)
. (4.5.18)

By (4.5.15), we have that the last term converges to zero, and the factor
√

Var(Sbntc)

nvt

converges to one. Therefore, (4.5.15) implies the central limit theorem.
To see the asymptotics of the mean in (4.5.15), we note that

E[Sbntc] = (n− k)
(

1− (1− λ

n
)bntc+k−1

)
−
(
bntc − 1

)
= nµt + o(

√
n), (4.5.19)

as long as k = o(
√
n). For the asymptotics of the variance in (4.5.15), we note that

Var(Sbntc) = (n− k)(1− λ

n
)bntc+k−1(1− (1− λ

n
)bntc+k−1) = nvt + o(n), (4.5.20)
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as long as k = o(n).

Proof of Theorem 4.15. Let |C≤k| be the size of the union of the components of the vertices
1, . . . , k. Then we have that

|C≤k| ∼ min{m : Sm = 0}. (4.5.21)

Let k = kn = logn. Then, by Theorem 4.8, the probability that none of the first kn
vertices is in the largest connected component is bounded above by

Eλ
[(n− |Cmax|

n

)kn]
= o(1). (4.5.22)

Therefore, with high probability, |C≤k| ≥ |Cmax|. On the other hand, by Corollary 4.11
for 2α > ζλ and Theorem 4.8, with high probability, the second largest cluster has size at
most K logn. Hence, with high probability,

|C≤k| ≤ |Cmax|+ (k − 1)K logn. (4.5.23)

We conclude that a central limit theorem for |Cmax| follows from one for |C≤k| with k = logn.
The central limit theorem for |C≤k| is proved by upper and upper bounds on the prob-

abilities

Pλ
( |C≤k| − ζλn√

n
> x

)
.

For the upper bound, we use that (4.5.21) implies that, for every `,

Pλ(|C≤k| > `) = Pλ(∀m ≤ ` : Sm > 0). (4.5.24)

Applying (4.5.24) to ` = mx = bnζλ + x
√
nc, we obtain

Pλ
( |C≤k| − ζλn√

n
> x

)
= Pλ(∀m ≤ mx : Sm > 0) ≤ Pλ(Smx > 0). (4.5.25)

Now we use (4.5.13), (4.5.15) and µζλ = 0, and writing µ′t for the derivative of t 7→ µt, to
see that

E[Smx ] = nµζλ+
√
nxµ′ζλ+o(

√
n) =

√
nx(λe−λζλ−1)+o(

√
n) =

√
nx(λe−λζλ−1)+o(

√
n),

(4.5.26)
where we note that λe−λζλ − 1 < 0 for λ > 1.

Exercise 4.23. Prove that, for λ > 1, we have µζλ = 0 and µ′ζλ = λe−λζλ − 1 < 0.

The variance of Smx is, by (4.5.14) and (4.5.15),

Var(Smx) = nvζλ + o(n). (4.5.27)

As a result, we have that

Pλ(Smx > 0) = Pλ
(Smx − E[Smx ]√

Var(Smx)
>
x(1− λe−λζλ)
√
vζλ

)
+ o(1). (4.5.28)

By Corollary 4.17, the right-hand side converges to

P
(
Z >

x(1− λe−λζλ)
√
vζλ

)
= P(Z′ > x), (4.5.29)
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where Z′ has a normal distribution with mean 0 and variance vζλ(1−λe−λζλ)−2. We finally

note that, by (3.5.2) and ζλ = 1− ηλ, we have that 1− ζλ = e−λζλ , so that

vζλ = e−λζλ(1− e−λζλ) = ζλ(1− ζλ). (4.5.30)

By (4.5.30), the variance of the normal distribution appearing in the lower bound can be
rewritten as

vζλ
(1− λe−λζλ)2

=
ζλ(1− ζλ)

(1− λ+ λζλ)2
. (4.5.31)

By (4.5.25), this completes the upper bound.
For the lower bound, we again use the fact that

Pλ
(
|C≤k| − ζλn > x

)
= Pλ(∀m ≤ mx : Sm > 0), (4.5.32)

where we recall that mx = bnζλ + x
√
nc. Then, for any ε > 0, we bound from below

Pλ(∀m ≤ mx : Sm > 0) ≥ Pλ(∀m < mx : Sm > 0, Smx > ε
√
n)

= Pλ(Smx > ε
√
n)− Pλ(Smx > ε

√
n,∃m < mx : Sm = 0).

(4.5.33)

The first term can be handled in a similar way as for the upper bound. Indeed, repeating
the steps in the upper bound, we obtain that, for every ε > 0,

Pλ(Smx > ε
√
n) = P

(
Z >

x(1− λe−λζλ) + ε
√
vζλ

)
+ o(1). (4.5.34)

The quantity in (4.5.34) converges to P(Z′ > x), where Z′ has a normal distribution with
mean 0 and variance σ2

λ, as ε ↓ 0.
We conclude that it suffices to prove that

Pλ(Smx > ε
√
n,∃m < mx : Sm = 0) = o(1). (4.5.35)

To bound the probability in (4.5.35), we first use Boole’s inequality to get

Pλ(Smx > ε
√
n,∃m < mx : Sm = 0) ≤

mx−1∑
m=1

Pλ(Sm = 0, Smx > ε
√
n). (4.5.36)

For m ≤ αn with α < ζλ, we can show that, when k = K logn and K sufficiently large,
and uniformly in m ≤ αn,

Pλ(Sm = 0) = o(n−1). (4.5.37)

Exercise 4.24. Prove that, uniformly in m ≤ αn with α < ζλ, and when k = K logn with
K sufficiently large, (4.5.37) holds. Hint: make use of (4.5.5) in Proposition 4.16.

We continue by proving a similar bound for m > αn, where α < ζλ can be chosen
arbitrarily close to ζλ. Here we shall make use of the fact that, for m close to ζλn,
Eλ[Xm] < 1, so that m 7→ Sm, for m ≥ αn is close to a random walk with negative drift.
As a result, the probability that Sm = 0, yet Smx > ε

√
n is exponentially small.

We now present the details of this argument. We bound

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ Pλ

(
Smx > ε

√
n | Sm = 0

)
(4.5.38)

= Pλ
(

BIN
(
n− (m+ k − 1), 1− (1− p)mx−m

)
> (mx −m) + ε

√
n
)
,
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since, by (4.5.6) in Proposition 4.16 and conditionally on Sm = 0,

Sl + (l −m) ∼ BIN
(
n− (m+ k − 1), 1− (1− p)l−m

)
.

We pick κ = ζλ− ε, for some ε > 0 which is very small. Then, using that 1− (1− a)b ≤ ab
for every a, b with 0 < a < 1, b ≥ 1, we arrive at

1− (1− p)mx−m = 1−
(
1− λ

n

)mx−m ≤ λ(mx −m)

n
. (4.5.39)

As a result, with X = BIN
(
n−(m+k−1), 1−(1−p)mx−m

)
, and using that n−(m+k−1) ≤

n−m ≤ n(1− ζλ + ε) and p = λ/n,

Eλ[X] = [n− (m+ k − 1)][1− (1− p)mx−m] ≤ (mx −m)λ(1− ζλ + ε). (4.5.40)

Since λ > 1, we can use that λ(1 − ζλ) = λe−λζλ < 1 by Exercise 4.23, so that, taking
ε > 0 so small that λ(1− ζλ + ε) < 1− ε, we have

E[X] ≤ (1− ε)(mx −m). (4.5.41)

Therefore,

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ Pλ

(
X − E[X] > ε

(
(mx −m) +

√
n
))
. (4.5.42)

By Theorem 2.18, with t = ε
(
(mx −m) +

√
n
)

and using (4.5.41), we obtain

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ exp

(
− t2

2
(
(1− ε)(mx −m) + t/3

))

≤ exp

(
− t2

2
(
(mx −m) + 2ε

√
n/3

)) . (4.5.43)

Thus, for mx −m ≥ ε
√
n, since t ≥ ε(mx −m), we have

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ exp

(
−3ε2(mx −m)/8

)
= o(n−1), (4.5.44)

while, for mx −m ≤ ε
√
n, since t ≥ ε

√
n, we have

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ exp

(
−3ε
√
n/8

)
= exp

(
−ε
√
n/2

)
= o(n−1). (4.5.45)

The bounds (4.5.37), (4.5.44) and (4.5.45) complete the proof of Theorem 4.15.

4.6 Notes and discussion

Notes on Section 4.1. There are several possible definitions of the Erdős-Rényi random
graph. Many of the classical results are proved for ER(n,M), which is the random graph
on the vertices [n] obtained by adding M edges uniformly at random. Since the number
of edges in the Erdős-Rényi random graph has a binomial distribution with parameters
n(n − 1)/2 and p, we should think of M corresponding roughly to pn(n − 1)/2. Also,
writing PM for the distribution of ER(n,M), we have that Pλ and PM are related as

Pλ(E) =

n(n−1)/2∑
M=1

PM(E)P
(
BIN(n(n− 1)/2, p) = M), (4.6.1)
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where E is any event. This allows one to deduce results for ER(n,M) from the ones for
ER(n, p) and vice versa. The model ER(n,M) was first studied in [83], the model ER(n, p)
was introduced in [91], and a model with possibly multiple edges between vertices in [17].

The random graph ER(n,M) has the advantage that we can think of the graph as
evolving as a process, by adding the edges one at a time, which also allows us to investigate
dynamical properties, such as when the first cycle appears. This is also possible for ER(n, p)
using the coupling in Section 4.1.1, but is slightly less appealing.

We refer to the books [13, 42, 109] for more detailed references of the early literature
on random graphs.

Notes on Section 4.2.

Notes on Section 4.3. The strategy in the proof of Theorems 4.4 and 4.5 is close in
spirit to the proof in [13], with ingredients taken from [47], which, in turn, was inspired by
[49, 50]. In particular, the use of the random variable Z≥k has appeared in these references.
The random variable Z≥k also plays a crucial role in the analysis of |Cmax| both when λ > 1
and when λ = 1.

Exercise 4.25 (Subcritical clusters for ER(n,M)). Use (4.6.1) and Theorems 4.4–4.5 to

show that |Cmax|/ logn
P−→ I−1

λ for ER(n,M) when M = nλ/2.

Notes on Section 4.4.

Exercise 4.26 (Supercritical clusters for ER(n,M)). Use (4.6.1) and Theorem 4.8 to show

that |Cmax|/n
P−→ ζλ for ER(n,M) when M = nλ/2.

Exercises 4.25 and 4.26 show that ER(n,M) has a phase transition when M = nλ/2 at
λ = 1.

Notes on Section 4.5. The central limit theorem for the largest supercritical cluster was
proved in [138],[159] and [23]. In [159], the result follows as a corollary of the main result,
involving central limit theorems for various random graph quantities, such as the number
tree components of various size. Martin-Löf [138] studies the giant component in the
context of epidemics. His proof makes clever use of a connection to asymptotic stochastic
differential equations, and is reproduced in [75]. Since we do not assume familiarity with
stochastic differential equations, we have produced an independent proof which only relies
on elementary techniques.



Chapter 5

The Erdős-Rényi random graph

revisited∗

In the previous chapter, we have proved that the largest connected component of the Erdős-
Rényi random graph exhibits a phase transition. In this chapter, we investigate several
more properties of the Erdős-Rényi random graph. We start by investigating the critical
behavior of the size of largest connected component in the Erdős-Rényi random graph
by studying p = 1/n in Section 5.1. After this, in Section 5.2, we investigate the phase
transition for the connectivity of ERn(p), and for p inside the critical window, compute
the asymptotic probability that the Erdős-Rényi random graph is connected. Finally, in
Section 5.3, we study the degree sequence of an Erdős-Rényi random graph.

5.1 The critical behavior

In this section, we study the behavior of the largest connected component for the critical
value p = 1/n. In this case, it turns out that there is interesting behavior, where the size
of the largest connected component is large, yet much smaller than the size of the volume.

Theorem 5.1 (Largest critical cluster). Fix λ = 1. There exists a constant b > 0 such
that for all ω > 1 and for n sufficiently large,

P1

(
ω−1n2/3 ≤ |Cmax| ≤ ωn2/3

)
≥ 1− b

ω
. (5.1.1)

Theorem 5.1 shows that the largest critical cluster obeys a non-trivial scaling result.
While |Cmax| is logarithmically small in the subcritical regime λ < 1 by Theorem 4.4, and
|Cmax| = Θ(n) in the supercritical regime λ > 1 by Theorem 4.8, at the critical value

λ = 1, we see that the largest cluster is Θ(n2/3). The result in Theorem 5.1 shows that

the random variable |Cmax|n−2/3 is tight, in the sense that with high probability, we have

|Cmax|n−2/3 ≤ ω for ω sufficiently large. Also, with high probability, |Cmax|n−2/3 ≥ ω−1,

so that with substantial probability, |Cmax| = Θ(n2/3).

5.1.1 Strategy of the proof

In the proof, we make essential use of bounds on the expected cluster size, as well as
on the tail of the cluster size distribution. We will formulate these results now. We define
the tail of the cluster size distribution by

P≥k(λ) = Pλ(|C(v)| ≥ k). (5.1.2)

We study the tail of the distribution of |C(v)| for the critical case λ = 1 in the following
theorem:

Proposition 5.2 (Critical cluster tails). Fix λ = 1. For k ≤ rn2/3, there exist constants
0 < c1 < c2 < ∞ with c1 = c1(r) such that minr≤κ c1(r) > 0 for some κ > 0, and c2
independent of r, such that for n sufficiently large

c1√
k
≤ P≥k(1) ≤ c2√

k
. (5.1.3)

101
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Proposition 5.2 implies that the tails of the critical cluster size distribution obey similar
asymptotics as the tails of the total progeny of a critical branching process. See (3.5.24),
from which it follows that

P∗1(T ∗ ≥ k) =
( 2

π

)1/2

k−1/2[1 +O(k−1)]. (5.1.4)

However, the tail in (5.1.3) is only valid for values of k that are not too large. Indeed, when
k > n, then P≥k(1) = 0. Therefore, there must be a cut-off above which the asymptotics

fails to hold. As it turns out, this cut-off is given by rn2/3. The upper bound in (5.1.3)
holds for a wider range of k, in fact, the proof yields that (5.1.3) is valid for all k.

Exercise 5.1 (Tail for critical branching process total progeny). Prove (5.1.4) using
(3.5.24).

We next study the critical expected cluster size

Eλ[|C(1)|] = χ(λ). (5.1.5)

Proposition 5.3 (Bound on critical expected cluster size). There exists a constant K > 0
such that for all λ ≤ 1 and n ≥ 1,

χ(λ) ≤ Kn1/3. (5.1.6)

Proposition 5.3 is intuitively consistent with Theorem 5.1. Indeed, in the critical regime,
the expected cluster size receives a substantial amount from the largest cluster. Therefore,
intuitively, for any v ∈ [n],

χ(1) ∼ E1[|C(v)|1l{v∈Cmax}] = E1[|Cmax|1l{v∈Cmax}], (5.1.7)

where ∼ denotes an equality with an uncontrolled error.
When |Cmax| = Θ(n2/3), then

E1[|Cmax|1l{v∈Cmax}] ∼ n
2/3P1(v ∈ Cmax). (5.1.8)

Furthermore, when |Cmax| = Θ(n2/3), then

P1

(
v ∈ Cmax

)
∼ n2/3

n
= n−1/3. (5.1.9)

Therefore, one is intuitively lead to the conclusion

χ(1) ∼ n1/3. (5.1.10)

Exercise 5.2 (Critical expected cluster size). Prove that Proposition 5.2 also implies that

χ(1) ≥ cn1/3 for some c > 0. Therefore, for λ = 1, the bound in Proposition 5.3 is
asymptotically sharp.

Propositions 5.2 and 5.3 are proved in Section 5.1.2 below. We will first prove Theorem
5.1 subject to them.

Proof of Theorem 5.1 subject to Propositions 5.2 and 5.3. We start with the upper bound
on |Cmax|. We again make use of the fundamental equality {|Cmax| ≥ k} = {Z≥k ≥ k},
where we recall that

Z≥k =

n∑
v=1

1l{|C(v)|≥k}. (5.1.11)
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By the Markov inequality (Theorem 2.14), we obtain

P1

(
|Cmax| ≥ ωn2/3) = P1

(
Z≥ωn2/3 ≥ ωn2/3) ≤ ω−1n−2/3E1[Z≥ωn2/3 ]. (5.1.12)

By Proposition 5.2,

E1[Z≥ωn2/3 ] = nP≥ωn2/3(1) ≤ n2/3 c2√
ω
, (5.1.13)

so that

P1

(
|Cmax| > ωn2/3) ≤ c2

ω3/2
. (5.1.14)

Equation (5.1.14) proves a stronger bound than the one in Theorem 5.1, particularly for
ω ≥ 1 large.

For the lower bound on |Cmax|, we first note that for ω < b, there is nothing to prove.
The constant b > 0 will be taken large, so that web shall assume that ω > κ−1, where
κ > 0 is the constant appearing in Proposition 5.2.

We use the Chebychev inequality (Theorem 2.15), as well as {|Cmax| < k} = {Z≥k = 0},
to obtain that

P1

(
|Cmax| < ω−1n2/3) = P1

(
Z≥ω−1n2/3 = 0

)
≤

Var1(Z≥ω−1n2/3)

E1[Z≥ω−1n2/3 ]2
. (5.1.15)

By (5.1.3), we have that

E1[Z≥ω−1n2/3 ] = nP≥ω−1n2/3(1) ≥ c1
√
ωn2/3, (5.1.16)

where we used that ω ≥ κ−1, and c1 = minr≤κ c1(r) > 0. Also, by Proposition 4.7, with

kn = ω−1n2/3,

Var1(Z≥ω−1n2/3) ≤ nχ≥ω−1n2/3(1) = nE1[|C(1)|1l{|C(1)|≥ω−1n2/3}]. (5.1.17)

By Proposition 5.3, we can further bound

Var1(Z≥ω−1n2/3) ≤ nχ≥ω−1n2/3(1) ≤ nχ(1) ≤ Kn4/3. (5.1.18)

Substituting (5.1.15)–(5.1.18), we obtain, for n sufficiently large,

P1

(
|Cmax| < ω−1n2/3) ≤ Kn4/3

c21ωn
4/3

=
K

c21ω
. (5.1.19)

We conclude that

P1

(
ω−1n2/3 ≤ |Cmax| ≤ ωn2/3

)
= 1− P1

(
|Cmax| < ω−1n2/3)− P1

(
|Cmax| > ωn2/3)

≥ 1− K

c21ω
− c2
ω3/2

≥ 1− b

ω
, (5.1.20)

when b = Kc−2
1 + c2. This completes the proof of Theorem 5.1 subject to Propositions 5.2

and 5.3.

5.1.2 Proofs of Propositions 5.2 and 5.3

We start by proving Proposition 5.2.
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Proof of Proposition 5.2. We fix λ ≤ 1. Theorem 4.2 gives

P≥k(λ) ≤ Pn,p(T ≥ k), (5.1.21)

where we recall that Pn,p is the law of a binomial branching process with parameters n
and p = λ/n, and T its total progeny. By Theorem 3.18, for λ = 1,

P≥k(λ) ≤ P∗λ(T ∗ ≥ k) + ek(n), (5.1.22)

where, by (3.6.2),

|ek(n)| ≤ 2

n

k∑
s=1

P∗λ(T ∗ ≥ s), (5.1.23)

and where we recall that P∗λ is the law of a (critical) Poisson branching process, i.e., a
branching process with Poisson offspring distribution with parameter λ, and T ∗ is its total
progeny.

By (3.5.24), it follows that there exists a C > 0 such that for all λ ≤ 1 and s ≥ 1,

P∗λ(T ∗ ≥ s) ≤ P∗1(T ∗ ≥ s) ≤ C√
s
. (5.1.24)

Therefore, we can also bound |ek(n)| for all λ ≤ 1 and k ≤ n by

|ek(n)| ≤ 4

n

k∑
s=1

C√
s
≤ 4C

√
k

n
≤ 4C√

k
, (5.1.25)

since k ≤ n. We conclude that, for all λ ≤ 1 and k ≤ n,

P≥k(λ) ≤ 5C√
k
. (5.1.26)

In particular, taking λ = 1 prove the upper bound in (5.1.3).
We proceed with the lower bound in (5.1.3), for which we make use of Theorem 4.3 with

k ≤ rn2/3. This gives that

P1(|C(1)| ≥ k) ≥ Pn−k,p(T ≥ k). (5.1.27)

where T is the total progeny of a binomial branching process with parameters n − k ≤
n− rn2/3 and p = 1/n. We again use Theorem 3.18 for λn = 1− rn−1/3 ≥ 1− k/n, as in
(5.1.22) and (5.1.23). We apply the one-but-last bound in (5.1.25), so that

P1(|C(1)| ≥ k) ≥ P∗λn(T ∗ ≥ k)− 4C
√
k

n
≥ P∗λn(T ∗ ≥ k)− 4C

√
r

n2/3
. (5.1.28)

We then use Theorem 3.14 to obtain, since λn ≤ 1,

Pλ(|C(1)| ≥ k) ≥
∞∑
t=k

P∗λn(T ∗ = t)− 4C
√
r

n2/3

=

∞∑
t=k

(λnt)
t−1

t!
e−λnt − 4C

√
r

n2/3

≥
∞∑
t=k

P∗1(T ∗ = t)e−Iλn t − 4C
√
r

n2/3
, (5.1.29)

where, for λn = 1− rn−1/3 and by (4.3.1),

Iλn = λn − 1− log λn =
1

2
(λn − 1)2 +O(|λn − 1|3). (5.1.30)



5.1 The critical behavior 105

Exercise 5.3 (Equality total progeny probabilities). Prove that

(λt)t−1

t!
e−λt =

1

λ
e−IλtP∗1(T ∗ = t). (5.1.31)

Therefore, for n sufficiently large,

Pλ(|C(1)| ≥ k) ≥
2k∑
t=k

P∗1(T ∗ = t)e−
1
2

(λn−1)2t(1+o(1)) − 4C
√
r

n2/3

≥
2k∑
t=k

C√
t3
e−

1
2

(λn−1)2t(1+o(1)) − 4C
√
r

n2/3

≥ 2−3/2C√
k

e−k(λn−1)2(1+o(1)) − 4C
√
r

n2/3
≥ c1(r)√

k
, (5.1.32)

since λn − 1 = −rn−1/3, and where c1(r) = C(2−3/2e−r
3

− 4
√
r) > 0 for r ≤ κ, for some

κ > 0 sufficiently small. This completes the proof of Proposition 5.2.

Exercise 5.4 (A first sign of the critical window). Adapt the proof of Proposition 5.2 to

the case where p = (1 + θn−1/3)/n, where θ ∈ R.

Proof of Proposition 5.3.∗ Define

τn(λ) = Pλ(1←→ 2), (5.1.33)

where we have added a subscript n to make the dependence on the graph size explicit. We
add a subscript n to χn(λ) = Eλ[|C(v)|] as well to make its dependence on the size of the
graph explicit. Note that, by exchangeability of the vertices, (see also Exercise 4.17)

χn(λ) = Eλ
[ n∑
v=1

1l{v←→1}
]

=

n∑
v=1

Pλ(v ←→ 1) = (n− 1)τn(λ) + 1. (5.1.34)

Therefore, Proposition 5.3 follows from the bound

τn(1) ≤ Kn−2/3. (5.1.35)

For this, we will use a bound on the derivative of λ 7→ τn(λ) with respect to λ. This
derivative exists, see also Exercise 5.5 below.

Exercise 5.5 (Differentiability of connectivity function). Show that λ 7→ τn(λ) is differ-
entiable. Hint: τn(λ) is a polynomial of bounded degree in λ.

Fix λ = 1− n−1/3, and note that

τn(1) = τn(λ) +

∫ 1

λ

τ ′n(α)dα, (5.1.36)

where τ ′n(λ) denotes the derivative of τn(λ) with respect to λ.
Since |C(v)| is stochastically smaller than the total progeny T of a binomial branching

process with parameters n and p = λ/n, we have that χn(λ) ≤ En,p[T ] by Theorem 2.12.
By Theorem 3.5 (see also Exercise 4.12),

χn(λ) ≤ En,p[T ] =
1

1− λ = n1/3. (5.1.37)
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Using (5.1.34), we conclude that

τn(λ) =
1

n− 1
(χn(λ)− 1) ≤ n1/3 − 1

n− 1
≤ n−2/3. (5.1.38)

This bounds the first term in (5.1.36). For the second term we will make use of a bound
on the derivative of λ 7→ τn(λ), which is formulated in the following lemma:

Lemma 5.4 (A bound on the derivative of the connectivity function). There exists a
constant Cτ > 0 independent of a, λ and n such that, or all λ ≤ 1, n ≥ 1 and a < 1,

τ ′n(λ) ≤ an−2/3χn(1) +
Cτ
a
n−1/3. (5.1.39)

Before proving Lemma 5.4, we complete the proof of Proposition 5.3 subject to Lemma
5.4:

Proof of Proposition 5.3 subject to Lemma 5.4. Substituting the bound in Lemma 5.4 into
(5.1.36) and using (5.1.38), we obtain

τn(1) ≤ n−2/3 +
a

n
χn(1) +

Cτ
a
n−2/3. (5.1.40)

For n sufficiently large and for a = 1
2
, and by (5.1.34), we have a

n
χn(1) ≤ 3τn(1)/4. Thus

we obtain, for n sufficiently large,

τn(1) ≤ 3

4
τn(1) + (2Cτ + 1)n−2/3, (5.1.41)

so that, again for n sufficiently large,

τn(1) ≤ (8Cτ + 4)n−2/3. (5.1.42)

This completes the proof of (5.1.35), with K = 8Cτ + 4, and (5.1.35) in turn implies
Proposition 5.3.

Proof of Lemma 5.4. We need to bound

τ ′n(λ) = lim
ε↓0

1

ε
[τn(λ+ ε)− τn(λ)]. (5.1.43)

We use the coupling of all random graphs ERn(p) for all p ∈ [0, 1] in Section 4.1.1, which
we briefly recall here. For this coupling, we take n(n− 1)/2 independent uniform random
variables Ust for each edge st. For fixed λ, we declare an edge st to be λ-occupied when
Ust ≤ λ/n.

The above coupling shows that the number of occupied bonds increases when λ increases.
We recall that an event is increasing when, if the event occurs for a given set of occupied
edges, it remains to hold when we make some more edges occupied. For example, the event
{1 ←→ 2} that there exists an occupied path from 1 to 2, is an increasing event. As a
consequence of the above coupling, we obtain that λ 7→ τn(λ) is increasing, and that

τn(λ+ ε)− τn(λ) = P(1←λ+ε−−→ 2, 1
λ←→/ 2), (5.1.44)

where we write 1←λ−→ 2 for the event that 1 is connected to 2 in the λ-occupied edges.
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Equation (5.1.44) implies that there must be at least one edge that is (λ+ ε)-occupied,
but not λ-occupied. When ε ↓ 0, this edge becomes unique with high probability, since the
probability that there are at least two of such edges is bounded by ε2.

The probability that a given edge is (λ + ε)-occupied, but not λ-occupied is equal to
ε/n, of which the factor ε is canceled by the factor 1

ε
in (5.1.43). Moreover, this edge,

which we denote by st, must be such that 1
λ←→/ 2, but if we turn st occupied, then 1←λ−→ 2

does occur. Thus, we must have that 1 ←λ−→ s and 2 ←λ−→ t, but 1
λ←→/ 2. Therefore, we

obtain the remarkable identity

τ ′n(λ) =
1

n

∑
st

Pλ(1←−→ s, 2←−→ t, 1←→/ 2). (5.1.45)

We can perform the sums over s and t to obtain

τ ′n(λ) =
1

n
Eλ
[∑
st

1l{1←−→s}1l{2←−→t}1l{1←→/ 2}

]
=

1

n
Eλ
[
|C(1)||C(2)|1l{1←→/ 2}

]
. (5.1.46)

We condition on |C(1)| = l and 1
2←→/ , and note that

Eλ
[
|C(2)|

∣∣ |C(1)| = l, 1←→/ 2
]

= χn−l(λn,l), (5.1.47)

where we write λn,l = λn−l
n

. Therefore, we arrive at

τ ′n(λ) =
1

n

n∑
l=1

lPλ(|C(1)| = l)χn−l(λn,l). (5.1.48)

We split the sum over l between l ≤ a2n2/3 and l > a2n2/3. For l ≤ a2n2/3, we use that

χn−l(λn,l) ≤ χn(λ) ≤ χn(1), (5.1.49)

since l 7→ χn−l(λn,l) is decreasing.

Exercise 5.6 (Monotonicity properties expected cluster size). Prove that l 7→ χn−l(λn,l)
is non-increasing and decreasing for λ > 0. Hint: χn−l(λ

n−l
n

) is equal to the expected
cluster size in the random graph ER(n− l, λ/n).

We conclude that

τ ′n(λ) ≤ 1

n
χn(1)

∑
l≤a2n2/3

lPλ(|C(1)| = l) +
1

n

n∑
l>a2n2/3

lPλ(|C(1)| = l)χn−l(λn,l). (5.1.50)

For l > a2n2/3, we use that χn(λ) ≤ (1 − λ)−1 (compare to the argument in (5.1.37)), so
that,

χn−l(λn,l) ≤
1

1− λn,l
=
n

l

1
n
l
(1− λ) + λ

≤ n

l
, (5.1.51)

since n/l ≥ 1. Therefore,

τ ′n(λ) ≤ 1

n
χn(1)

∑
l≤a2n2/3

lPλ(|C(1)| = l) +

n∑
l>a2n2/3

Pλ(|C(1)| = l). (5.1.52)
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We bound, using Proposition 5.2,

∑
l≤a2n2/3

lPλ(|C(1)| = l) =
∑

l≤a2n2/3

l∑
i=1

Pλ(|C(1)| = l) ≤
∑

i≤a2n2/3

∞∑
l=i

Pλ(|C(1)| = l)

=
∑

i≤a2n2/3

Pλ(|C(1)| ≥ i) ≤
∑

i≤a2n2/3

P1(|C(1)| ≥ i)

≤
∑

i≤a2n2/3

c2√
i
≤ Can1/3, (5.1.53)

where we use that c2 in Proposition 5.2 is independent of r. Furthermore, we again use
Proposition 5.2 to bound

n∑
l>a2n2/3

Pλ(|C(1)| = l) = P≥a2n2/3(λ) ≤ P≥a2n2/3(1) ≤ C

a
n−1/3. (5.1.54)

Substitution of (5.1.53)–(5.1.54) into (5.1.52) proves

τ ′n(λ) ≤ Can−2/3χn(1) +
C

a
n−1/3. (5.1.55)

Replacing Ca by a, this is equivalent to

τ ′n(λ) ≤ an−2/3χn(1) +
C2

a
n−1/3, (5.1.56)

which, in turn, is equivalent to (5.1.39).

Exercise 5.7 (A bound on the derivative of the expected cluster size). Use (5.1.48) and
(5.1.49) to prove that

∂

∂λ
χ(λ) ≤ χ(λ)2, (5.1.57)

and use this inequality to deduce that, for all λ ≤ 1,

χ(λ) ≥ 1

χ(1)−1 + (λ− 1)
. (5.1.58)

5.1.3 Connected components in the critical window revisited

In this section, we discuss the critical window of the Erdős-Rényi random graph. By
Theorem 5.1, we know that, for p = 1/n, the largest connected component has size roughly

equal to n2/3. As it turns out, such behavior is also seen for related values of p. Namely,
if we choose p = (1 + tn−1/3)/n, then we see similar behavior appearing for the largest

connected component size. Therefore, the values of p for which p = (1+tn−1/3)/n are called
the critical window. We start by discussing the most detailed work on this problem, which
is by Aldous [12], following previous work on the critical window in [40, 108, 134, 136].

The point in [12] is to prove simultaneous weak convergence of all connected components
at once. We start by introducing some notation. Let |C(j)(t)| denote the jth largest cluster

of ERn(p) for p = (1 + tn−1/3)/n. Then one of the main results in [12] is the following
theorem:

Theorem 5.5 (Weak convergence of largest clusters in critical window). For p = (1 +

tn−1/3)/n, and any t ∈ R, the vector C(t) ≡ (n−2/3|C(1)(t)|, n−2/3|C(2)(t)|, n−2/3|C(3)(t)|, . . .)
converges in distribution to a random vector γ ≡ (γi(t))i≥1.
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Thus, Theorem 5.5 is stronger than Theorem 5.1 in three ways: (1) Theorem 5.5 proves
weak convergence, rather than tightness only; (2) Theorem 5.5 considers all connected
components, ordered by size, rather than only the first one; (3) Theorem 5.5 investigates
all values inside the critical window at once.

While [12] is the first paper where a result as in Theorem 5.5 is stated explicitly, sim-
ilar results had been around before [12], which explains why Aldous calls Theorem 5.5 a
‘Folk Theorem’. The beauty of [12] is that Aldous gives two explicit descriptions of the
distribution of the limiting random variable (Ct(1)|, Ct(2), Ct(3)|, . . .), the first being in terms of
lengths of excursions of Brownian motion, the second in terms of the so-called multiplicative
coalescent process. We shall intuitively explain these constructions now.

We start by explaining the construction in terms of excursions of Brownian motion. Let
{W (s)}s≥0 be standard Brownian motion, and define

W t(s) = W (s) + ts− s2/2 (5.1.59)

be Brownian motion with an (inhomogeneous) drift t− s at time s. Let

Bt(s) = W t(s)− min
0≤s′≤s

W t(s′) (5.1.60)

correspond to the process {W t(s)}s≥0 reflected at 0. We now consider the excursions of
this process, ordered in their length. Here an excursion γ of {Bt(s)}s≥0 is a time interval
[l(γ), r(γ)] for which Bt(l(γ)) = Bt(r(γ)) = 0, but Bt(s) > 0 for all s ∈ (l(γ), r(γ)). Let
the length |γ| of the excursion γ be given by r(γ)− l(γ). As it turns out (see [12, Section
1] for details), the excursions of {Bt(s)}s≥0 can be ordered by decreasing length, so that
{γtj : j ≥ 1} are the excursions. Then, the limiting random vector Cn has the same

distribution as the ordered excursions {γtj : j ≥ 1}. The idea behind this is as follows. We
make use of the random walk representation of the various clusters, which connects the
cluster exploration to random walks. However, as for example (4.5.4) shows, the step size
distribution is decreasing as we explore more vertices, which means that we arrive at an
inhomogeneous and ever decreasing drift, as in (5.1.59). Since, in general, random walks
converge to Brownian motions, this way the connection between these precise processes
can be made.

To explain the connection to the multiplicative coalescent, we shall interpret the t-
variable in p = (1 + tn−1/3)/n as time. We note that when we have two clusters of

size xn2/3 and yn2/3 say, and we increase t to t + dt, then the probability that these
two clusters merge is roughly equal to the number of possible connecting edges, which is
xn2/3 × yn2/3 = xyn4/3 times the probability that an edge turns from vacant to occupied
when p increases from p = (1+ tn−1/3)/n to (1+(t+dt)n−1/3)/n, which is dtn−4/3. Thus,
this probability is, for small dt close to

xydt. (5.1.61)

Thus, distinct clusters meet at a rate proportional to the rescaled product of their sizes.
The continuous process which does this precisely is called the multiplicative coalescent,
and using the above ideas, Aldous is able to show that the limit of Ct,n equals such a
multiplicative coalescent process.

5.2 Connectivity threshold

In this section, we investigate the connectivity threshold for the Erdős-Rényi random
graph. As we can see in Theorem 4.8, for every 1 < λ < ∞, the largest cluster for the
Erdős-Rényi random graph when p = λ/n is ζλn(1 + o(1)), where ζλ > 0 is the survival
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probability of a Poisson branching process with parameter λ. Since extinction is certain
when the root has no offspring, we have

ζλ ≤ 1− P∗(Z∗1 = 0) = 1− e−λ < 1. (5.2.1)

Therefore, the Erdős-Rényi random graph with edge probability p = λ/n is with high
probability disconnected for each fixed λ < ∞. Here, we use the terminology “with high
probability” to denote an event of which the probability tends to 1. We now investigate
the threshold for connectivity for an appropriate choice λ = λn → ∞. Theorem 5.6 and
its extension, Theorem 5.9, were first proved in [83].

Theorem 5.6 (Connectivity threshold). For λ − logn → ∞, the Erdős-Rényi random
graph is with high probability connected, while for λ−logn→ −∞, the Erdős-Rényi random
graph is with high probability disconnected.

In the proof, we investigate the number of isolated vertices. Define

Y =

n∑
i=1

Ii, where Ii = 1l{|C(i)|=1} (5.2.2)

for the number of isolated vertices. Clearly, when Y ≥ 1, then there exists at least one
isolated vertex, so that the graph is disconnected. Remarkably, it turns out that when
there is no isolated vertex, i.e., when Y = 0, then the random graph is also with high
probability connected. See Proposition 5.8 below for the precise formulation of this result.
By Proposition 5.8, we need to investigate the probability that Y ≥ 1. In the case where
|λ − logn| → ∞, we make use of the Markov and Chebychev inequality (Theorems 2.14
and 2.15) combined with a first and second moment argument using a variance estimate
in Proposition 5.7. We will extend the result to the case that λ = logn+ t, in which case
we need a more precise result in Theorem 5.9 below. The main ingredient to the proof of
Theorem 5.9 is to show that, for λ = logn+ t, Y converges to a Poisson random variable
with parameter e−t when n→∞.

To prove that Y ≥ 1 with high probability when λ− logn→ −∞, and Y = 0 with high
probability when λ− logn→∞ we use the Markov inequality (Theorem 2.14). We make
use of an estimate on the mean and variance of Y :

Proposition 5.7 (Mean and variance of number of isolated vertices). For every λ ≤ n/2,

Eλ[Y ] = ne−λ(1 +O(e−
λ2

n )), (5.2.3)

and, for every λ ≤ n,

Varλ(Y ) ≤ Eλ[Y ] +
λ

n− λEλ[Y ]2. (5.2.4)

Proof. Since |C(i)| = 1 precisely when all edges emanating from i are vacant, we have,
using 1− x ≤ e−x,

Eλ[Y ] = nPλ(|C(1)| = 1) = n(1− λ

n
)n−1 ≤ ne−λe

λ
n . (5.2.5)

Also, using that 1− x ≥ e−x−x
2

for 0 ≤ x ≤ 1
2
, we obtain

Eλ[Y ] = nPλ(|C(1)| = 1) ≥ ne−(n−1) λ
n

(1+ λ
n

)

≥ ne−λ(1+ λ
n

) = ne−λe−
λ2

n . (5.2.6)
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This proves (5.2.3).
To prove (5.2.4), we use the exchangeability of the vertices to compute

Eλ[Y 2] = nPλ(|C(1)| = 1) + n(n− 1)Pλ(|C(1)| = 1, |C(2)| = 1). (5.2.7)

Therefore, we obtain

Varλ(Y ) = n
[
Pλ(|C(1)| = 1)− Pλ(|C(1)| = 1, |C(2)| = 1)]

+ n2[Pλ(|C(1)| = 1, |C(2)| = 1)− Pλ(|C(1)| = 1)2]. (5.2.8)

The first term is bounded above by Eλ[Y ]. The second term can be computed by using
(5.2.5), together with

Pλ(|C(1)| = 1, |C(2)| = 1) = (1− λ

n
)2n−3. (5.2.9)

Therefore, by (5.2.5) and (5.2.8), we obtain

Pλ(|C(1)| = 1, |C(2)| = 1)− Pλ(|C(1)| = 1)2 = Pλ(|C(1)| = 1)2[(1− λ

n
)−1 − 1

]
=

λ

n(1− λ
n

)
Pλ(|C(1)| = 1)2. (5.2.10)

We conclude that

Varλ(Y ) ≤ Eλ[Y ] +
λ

n− λEλ[Y ]2. (5.2.11)

Proposition 5.8 (Connectivity and isolated vertices). For all 0 ≤ λ ≤ n,

Pλ
(

ERn(λ/n) connected
)
≤ Pλ(Y = 0). (5.2.12)

Moreover, if there exists an a > 1/2 such that λ ≥ a logn, then, for n→∞,

Pλ
(

ERn(λ/n) connected
)

= Pλ(Y = 0) + o(1). (5.2.13)

Proof. We use that

Pλ
(

ERn(λ/n) disconnected
)

= Pλ(Y > 0) + Pλ
(

ERn(λ/n) disconnected, Y = 0
)
.

(5.2.14)
This immediately proves (5.2.12).

To prove (5.2.13), we make use of a computation involving trees. For k = 2, . . . , n, we
denote by Xk the number of occupied trees of size equal to k on the vertices 1, . . . , n that
cannot be extended to a tree of larger size. Thus, each tree which is counted in Xk has
size precisely equal to k, and when we denote it’s vertices by v1, . . . , vk, then all the edges
between vi and v /∈ {v1, . . . , vk} are vacant. Moreover, there are precisely k − 1 occupied
edges between the vi that are such that these occupied edges form a tree. Note that a
connected component of size k can contain more than one tree of size k, since the connected
component may contain cycles. Note furthermore that, when ERn(λ/n) is disconnected,
but Y = 0, there must be a k ∈ {2, . . . , n/2} for which Xk ≥ 1.
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We conclude from Boole’s inequality and the Markov inequality (Theorem 2.14) that

Pλ
(

ERn(λ/n) disconnected, Y = 0
)
≤ Pλ

(
∪n/2k=2 {Xk ≥ 1}

)
≤

n/2∑
k=2

Pλ(Xk ≥ 1) ≤
n/2∑
k=2

Eλ[Xk]. (5.2.15)

Therefore, we need to bound Eλ[Xk]. For this, we note that there are
(
n
k

)
ways of choosing k

vertices, and, by Cayley’s Theorem 3.15, there are kk−2 labeled trees containing k vertices.
Therefore,

Eλ[Xk] =

(
n

k

)
kk−2qk, (5.2.16)

where qk is the probability that any tree of size k is occupied and all the edges from the
tree to other vertices are vacant, which is equal to

qk =
(λ
n

)k−1(
1− λ

n

)k(n−k)

≤
(λ
n

)k−1

e−λk(n−k)/n. (5.2.17)

We conclude that

Eλ[Xk] ≤ nλk−1 k
k−2

k!
e−

λ
n
k(n−k). (5.2.18)

If we further use that k! ≥ kke−k, and also use that λ ≥ 1, then we arrive at

Eλ[Xk] ≤ n(eλ)k
1

k2
e−

λ
n
k(n−k). (5.2.19)

Since λ 7→ e−
λ
n
k(n−k) is decreasing in λ, it suffices to investigate λ = a logn for some

a > 1/2. For k ∈ {2, 3, 4}, for λ = a logn for some a > 1/2,

Eλ[Xk] ≤ n(eλ)4e−λkeo(1) = o(1). (5.2.20)

For all k ≤ n/2 with k ≥ 5, we bound k(n− k) ≥ kn/2, so that

Eλ[Xk] ≤ n(eλe−λ/2)k. (5.2.21)

As a result, for λ = a logn with a > 1/2, and all k ≥ 5, and using that λ 7→ λe−λ/2 is
decreasing for λ ≥ 2,

Eλ[Xk] ≤ n1−k/4. (5.2.22)

We conclude that

Pλ
(

ERn(λ/n) disconnected, Y = 0
)
≤

n/2∑
k=2

Eλ[Xk] ≤
n/2∑
k=2

n1−k/4 = o(1). (5.2.23)

Proof of Theorem 5.6. The proof makes essential use of Proposition 5.8. We start by
proving that for λ− logn→ −∞, the Erdős-Rényi random graph is with high probability
disconnected. We use (5.2.3) to note that

Eλ[Y ] = ne−λ(1 + o(1)) = e−λ+logn(1 + o(1))→∞. (5.2.24)



5.2 Connectivity threshold 113

By the Chebychev inequality (Theorem 2.15), and the fact that λ ≤ logn,

Pλ(Y = 0) ≤
Eλ[Y ] + λ

n−λEλ[Y ]2

Eλ[Y ]2
= Eλ[Y ]−1 +

λ

n− λ → 0. (5.2.25)

Proposition 5.8 completes the proof that for λ − logn → −∞, the Erdős-Rényi random
graph is with high probability disconnected.

When λ− logn→∞ with λ ≤ 2 logn, then, by the Markov inequality (Theorem 2.14)
and (5.2.5),

Pλ(Y = 0) = 1− Pλ(Y ≥ 1) ≥ 1− Eλ[Y ] ≥ 1− ne−λO(1)→ 1. (5.2.26)

Since the connectivity is an increasing property, this also prove the claim for λ− logn→∞
with λ ≥ 2 logn. Therefore, the claim again follows from Proposition 5.8.

5.2.1 Critical window for connectivity∗

In this section, we investigate the critical window for connectivity, by considering con-
nectivity of ERn(λ/n) when λ = log n + t for fixed t ∈ R. The main result in this section
is as follows:

Theorem 5.9 (Critical window for connectivity). For λ = log n+t→∞, the Erdős-Rényi

random graph is connected with probability e−e
−t

(1 + o(1)).

Proof. In the proof, we again rely on Proposition 5.8. We fix λ = log n+ t for some t ∈ R.

We prove a Poisson approximation for Y that reads that Y
d−→ Z, where Z is a Poisson

random variable with parameter

lim
n→∞

Eλ[Y ] = e−t, (5.2.27)

where we recall (5.2.3). Therefore, the convergence in distribution of Y to a Poisson random
variable with mean e−t implies that

Pλ(Y = 0) = e− limn→∞ Eλ[Y ] + o(1) = e−e
−t

+ o(1), (5.2.28)

and the result follows by Proposition 5.8.

In order to show that Y
d−→ Z, we use Theorem 2.4 and Theorem 2.5, so that it suffices

to prove, recalling that Ii = 1l{|C(i)|=1}, for all r ≥ 1,

lim
n→∞

E[(Y )r] = lim
n→∞

∑∗

i1,...,ir

Pλ
(
Ii1 = · · · = Iir = 1

)
= e−tr, (5.2.29)

where the sum ranges over all i1, . . . , ir ∈ [n] which are distinct. By exchangeability of
the vertices, Pλ

(
Ii1 = · · · = Iir = 1

)
is independent of the precise choice of the indices

i1, . . . , ir, so that

Pλ
(
Ii1 = · · · = Iir = 1

)
= Pλ

(
I1 = · · · = Ir = 1

)
. (5.2.30)

Using that there are n(n− 1) · · · (n− r+ 1) distinct choices of i1, . . . , ir ∈ [n], we arrive at

E[(Y )r] =
n!

(n− r)!Pλ
(
I1 = · · · = Ir = 1

)
. (5.2.31)
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The event {I1 = · · · = Ir = 1} occurs precisely when all edges st with s ∈ [r] and t ∈ [n]
are vacant. There are r(r−1)/2+ r(n− r) = r(2n− r−1)/2 of such edges, and since these
edges are all independent, we arrive at

Pλ
(
I1 = · · · = Ir = 1

)
= (1− λ

n
)r(2n−r−1)/2

= (1− λ

n
)nr(1− λ

n
)−r(r+1)/2 = n−rEλ[Y ]r(1 + o(1)), (5.2.32)

using that Eλ[Y ] = n(1− λ/n)n−1. Thus,

lim
n→∞

E[(Y )r] = lim
n→∞

n!

(n− r)!n
−rEλ[Y ]r = e−tr, (5.2.33)

where we use (5.2.27). This completes the proof of Theorem 5.9.

Exercise 5.8 (Second moment of the number of isolated vertices). Prove directly that the
second moment of Y converges to the second moment of Z, by using (5.2.10).

5.3 Degree sequence of the Erdős-Rényi random graph

As described in Chapter 1, the degree sequences of various real networks obey power
laws. Therefore, in this section, we investigate the degree sequence of the Erdős-Rényi
random graph for fixed λ > 0. In order to be able to state the result, we first introduce
some notation. We write

pk = e−λ
λk

k!
, k ≥ 0, (5.3.1)

for the Poisson distribution with parameter λ. Let Di denote the degree of vertex i and
write

P (n)

k =
1

n

n∑
i=1

1l{Di=k} (5.3.2)

for the empirical degree distribution of the degrees. The main result is as follows:

Theorem 5.10 (Degree sequence of the Erdős-Rényi random graph). Fix λ > 0. Then,
for every εn such that

√
nεn →∞,

Pλ
(

max
k
|p(n)

k − pk| ≥ εn
)
→ 0. (5.3.3)

Proof. We note that

Eλ[P (n)

k ] = Pλ(D1 = k) =

(
n− 1

k

)(λ
n

)k(
1− λ

n

)n−k−1

. (5.3.4)

Furthermore,

∞∑
k=0

∣∣∣pk −(n− 1

k

)(λ
n

)k(
1− λ

n

)n−k−1
∣∣∣ =

∞∑
k=0

∣∣P(X∗ = k)− P(Xn = k)
∣∣, (5.3.5)

where X∗ is a Poisson random variable with mean λ, and Xn is a binomial random variable
with parameters n − 1 and p = λ/n. We will use a coupling argument to bound this
difference. Indeed, we let X denote a binomial random variable with parameters n and
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p = λ/n. Since we can couple X and Xn such that the probability that they are different
is precisely equal to p = λ/n, we obtain

∞∑
k=0

∣∣P(Xn = k)− P(X = k)
∣∣ ≤ λ

n
. (5.3.6)

Therefore, for all k ≥ 0,

∞∑
k=0

∣∣P(X∗ = k)− P(Xn = k)
∣∣ ≤ λ

n
+ P(X∗ 6= X) ≤ λ+ λ2

n
, (5.3.7)

where we have also used Theorem 2.9. Since λ+λ2

n
≤ εn

2
, we have just shown that∑∞

k=0 |pk − Eλ[P (n)

k ]| ≤ εn/2 for n sufficiently large. Thus, it suffices to prove that

Pλ
(∑

k

|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
= o(1). (5.3.8)

For this, we use Boole’s inequality to bound

Pλ
(

max
k
|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
≤
∞∑
k=1

Pλ
(
|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
. (5.3.9)

By the Chebychev inequality (Theorem 2.15),

Pλ
(
|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
≤ 4ε−2

n Varλ(P (n)

k ). (5.3.10)

We then note that

Varλ(P (n)

k ) =
1

n

[
Pλ(D1 = k)− Pλ(D1 = k)2

]
+
n− 1

n

[
Pλ(D1 = D2 = k)− Pλ(D1 = k)2

]
. (5.3.11)

We now use a coupling argument. We let X1, X2 be two independent BIN(n − 2, λ/n)
random variables, and I1, I2 two independent Bernoulli random variables with success
probability λ/n. Then, the law of (D1, D2) is the same as the one of (X1 + I1, X2 + I1)
while (X1 + I1, X2 + I2) are two independent copies of the D1. Then,

Pλ(D1 = D2 = k) = Pλ
(

(X1 + I1, X2 + I1) = (k, k)
)
, (5.3.12)

Pλ(D1 = k)2 = Pλ
(

(X1 + I1, X2 + I2) = (k, k)
)
, (5.3.13)

so that
Not quite correct?

Pλ(D1 = D2 = k)−Pλ(D1 = k)2 ≤ Pλ
(

(X1+I1, X2+I1) = (k, k), (X1+I1, X2+I2) 6= (k, k)
)
.

(5.3.14)
When (X1 + I1, X2 + I1) = (k, k), but (X1 + I1, X2 + I2) 6= (k, k), we must have that
I1 6= I2. If I1 = 1, then I2 = 0 and X2 = k, while, if I1 = 0, then I2 = 1 and X1 = k.
Therefore, since X1 and X2 have the same distribution,

Pλ(D1 = D2 = k)− Pλ(D1 = k)2 ≤ 2λ

n
Pλ(X1 = k). (5.3.15)
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We conclude from (5.3.11) that

Varλ(P (n)

k ) ≤ (2λ+ 1)

n
Pλ(X1 = k), (5.3.16)

so that, by (5.3.9)–(5.3.10),

Pλ
(

max
k
|P (n)

k − Eλ[P (n)

k ]| ≥ εn/2
)
≤ 4(2λ+ 1)

ε2
nn

∞∑
k=0

Pλ(X1 = k)

=
4(2λ+ 1)

ε2
nn

→ 0. (5.3.17)

This completes the proof of Theorem 5.10.

In Chapter 6 below, we give an alternative proof of Theorem 5.10, allowing for weaker
bounds on εn. In that proof, we use that the Erdős-Rényi random graph is a special case
of the generalized random graph with equal weights. See Theorem 6.7 below.

5.4 Notes and discussion

Notes on Section 5.1. We list some more recent results. In [110], a point process de-

scription is given of the sizes and number of components of size εn2/3. In [160], an explicit,

yet involved, description is given for the distribution of the limit of |Cmax|n−2/3. The
proof makes use of generating functions, and the relation between the largest connected
component and the number of labeled graphs with a given complexity l. Here, the com-
plexity of a graph is its number of edges minus its number of vertices. Relations between
Erdős-Rényi random graphs and the problem of counting the number of labeled graphs
has received considerable attention, see e.g. [41, 100, 135, 168, 180, 181] and the references
therein. Consequences of the result by Pittel [160] are for example that the probability

that |Cmax|n−2/3 exceeds a for large a decays as e−a
3/8 (in fact, the asymptotics are much

stronger than this!), and for very small a > 0, the probability that |Cmax|n−2/3 is smaller

than a decays as e−ca
−3/2

for some explicit constant c > 0. The bound on the upper tails
of |Cmax|n−2/3 is also proved in [145], and is valid for all n and a, with the help of relatively
simple martingale arguments. In [145], the bound (5.1.14) is also explicitly proved.

The equality in (5.1.45) is a special example of Russo’s formula, see [93]. Russo’s
Formula has played a crucial role in the study of percolation on general graphs, and states
that for any increasing event E on ERn(p), we have that

∂P(E)

∂p
=
∑
st

P(st is pivotal for E), (5.4.1)

where we say that an edge st is pivotal for an increasing event E when the event E occurs in
the (possibly modified) configuration of edges where st is turned occupied, and the event E
does not occur in the (possibly modified) configuration of edges where st is turned vacant.
See [5, 6, 24] for examples where pivotal edges play a crucial role.

The relation between the Erdős-Rényi random graph and coalescing processes can also
be found in [31, Section 5.2] and the references therein. In fact, ERn(p) for the entire regime
of p ∈ [0, 1] can be understood using coalescent processes, for which the multiplicative
coalescent is most closely related to random graphs.

Notes on Section 5.2. Connectivity of the Erdős-Rényi random graph was investigated
in the early papers on the subject. In [83], versions of Theorems 5.6–5.9 were proved for
ER(n,M). Bollobás gives two separate proofs in [42, Pages 164-165].
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Notes on Section 5.3. The degrees of Erdős-Rényi random graphs have attracted con-
siderable attention. In particular, when ordering the degrees by size as d1 ≥ d2 ≥ · · · ≥ dn,
various properties have been shown, such as the fact that there is, with high probability,
a unique vertex with degree d1 [85]. See [39] or [42] for more details. The result on the
degree sequence proved here is a weak consequence of the result in [?, Theorem 4.1], where
even asymptotic normality was shown for the number of vertices with degree k, for all k
simultaneously.





Intermezzo: Back to real networks I...

Theorem 5.10 shows that the degree sequence of the Erdős-Rényi random graph is close to
a Poisson distribution with parameter λ. A Poisson distribution has thin tails, for example,
its moment generating function is always finite. As a result, the Erdős-Rényi random graph
cannot be used to model real networks where power law degree sequences are observed.
Therefore, several related models have been proposed. In this intermezzo, we shall discuss
three of them.

The first model is the so-called generalized random graph (GRG), and was first intro-
duced in [52]. In this model, each vertex i ∈ {1, . . . , n} receives a weight Wi. Given the
weights, edges are present independently, but the occupation probabilities for different
edges are not identical, but moderated by the weights of the vertices. Naturally, this can
be done in several different ways. The most general version is presented in [44], which we
explain in detail in Chapter ??. In the generalized random graph, the edge probability of
the edge between vertex i and j (conditionally on the weights {Wi}ni=1) is equal to

pij =
WiWj

Ln +WiWj
, (I.1)

where the random variables {Wi}ni=1 are the weights of the vertices, and Ln is the total
weight of all vertices given by

Ln =

n∑
i=1

Wi. (I.2)

We shall assume that the weights {Wi}ni=1 are independent and identically distributed.

The second model is the configuration model, in which the degrees of the vertices are
fixed. Indeed, we write Di for the degree of vertex i, and let, similarly to (I.2), Ln =∑n
i=1 Di denote the total degree. We assume that Ln is even. We will make a graph where

vertex i has degree Di. For this, we think of each vertex having Di stubs attached to it.
Two stubs can be connected to each other to form an edge. The configuration model is
the model where all stubs are connected in a uniform fashion, i.e., where the stubs are
uniformly matched.

The third model is the so-called preferential attachment model, in which the growth of
the random graph is modeled by adding edges to the already existing graph in such a way
that vertices with large degree are more likely to be connected to the newly added edges.
See Chapter 8 for details.

All these models have in common that the degree sequence converges to some limiting
distribution which can have various shapes, particularly including power laws. For the
generalized random graph and the configuration model, this is proved in Chapter 6 and
Chapter 7 respectively. For the preferential attachment models, we will defer this proof
to Chapter 8. In Chapters 6–8, we shall focus on properties of the degree sequence of
the random graphs involved. We shall study further properties, namely, the connected
components and distances in these models, in Chapters ??–??, respectively.

In Chapters 6–8 we shall be interested in the properties of the degree sequence of a
graph. A natural question is which sequences of numbers can occur as the degree sequence
of a simple graph. A sequence {d1, d2, . . . , dn} with d1 ≤ d2 ≤ · · · ≤ dn is called graphic if
it is the degree sequence of a simple graph. Thus, the question is which degree sequences
are graphic? Erdős and Gallai [82] proved that a degree sequence {d1, d2, . . . , dn} is graphic
if and only if

∑n
i=1 di is even and
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k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min(k, di), (I.3)

for each integer k ≤ n − 1. The fact that the total degree of a graph needs to be even
is fairly obvious:

Exercise 5.9 (Handshake lemma). Show that for every graph, and dj the degree of vertex
j we have that

∑n
j=1 dj is even.

The necessity of (I.3) is relatively easy to see. The left side of (I.3) is the degree
of the first k vertices. The first term on the right-hand side of (I.3) is the twice the
maximal number of edges between the vertices in {1, . . . , k}. The second term is a bound
on the total degree of the vertices {1, . . . , k} coming from edges that connect to vertices
in {k + 1, . . . , n}. The sufficiency is harder to see, see [58] for a simple proof of this fact,
and [164] for seven different proofs. Arratia and Liggett [15] investigate the asymptotic
probability that an i.i.d. sequence of n integer random variables is graphical, the result
being in many cases equal to 0 or 1/2, at least when P(D even) 6= 1. The limit is equal to
0 when limn→∞ nP(Di ≥ n) = ∞ and 1/2 when limn→∞ nP(Di ≥ n) = 0. Interestingly,
when limn→∞ nP(Di ≥ n) = c for some constant c > 0, then the set of limit points of the
probability that {D1, . . . , Dn} is graphical is a subset of (0, 1/2). The proof is by verifying
that (I.3) holds.



Chapter 6

Inhomogeneous random graphs

In this chapter, we discuss inhomogeneous random graphs, in which the equal edge proba-
bilities of the Erdős-Rényi random graph are replaced by edge occupation statuses that are
independent, and are moderated by certain vertex weights. These weights can be taken
to be deterministic or random, and both options have been considered in the literature.
An important example, on which we shall focus in this chapter, is the so-called generalized
random graph. We shall see that this model gives rise to random graphs having a power-law
degree sequence when the weights have a power law distribution. As such, this is one of the
simplest adaption of the Erdős-Rényi random graph having a power-law degree sequence.

This chapter is organised as follows. In Section 6.1, we introduce the model. In Section
6.2, we investigate the degree of a fixed vertex in the generalized random graph, and in
Section 6.3, we investigate the degree sequence of the generalized random graph. In Section
6.4, we study the generalized random graph with i.i.d. vertex weights. In Section 6.5 we
show that the generalized random graph, conditioned on its degrees, is a uniform random
graph with these degrees. In Section 6.6, we study when two inhomogeneous random graphs
are asymptotically equivalent, meaning that they have the same asymptotic probabilities.
Finally, in Section 6.7, we introduce several more models of inhomogeneous random graphs
similar to the generalized random graph that have been studied in the literature, such as
the so-called Chung-Lu or random graph with prescribed expected degrees and the Norros-
Reittu or Poisson graph process model. We close this chapter with notes and discussion in
Section 6.8.

6.1 Introduction of the model

In the generalized random graph, each vertex has a weight associated to it. Edges are
present independently given these weights, but the occupation probabilities for edges are
not identical, but are rather moderated by the vertex weights. These weights can be fixed or
deterministic. When the weights are themselves random variables, they introduce a double
randomness: firstly there is the randomness introduced by the weights, and secondly there
is the randomness introduced by the edge occupations, which are conditionally independent
given the weights.

In the generalized random graph model, the edge probability of the edge between vertices
i and j is equal to

pij = p(GRG)

ij =
wiwj

`n + wiwj
, (6.1.1)

where w = (wi)i∈[n] are the weights of the vertices, and `n is the total weight of all vertices
given by

`n =

n∑
i=1

wi. (6.1.2)

We denote the resulting graph by GRGn(w). Without loss of generality, we shall assume
that wi > 0. Note that when, for a particular i ∈ [n], wi = 0, then vertex i will be isolated
with probability 1, and, therefore, we can omit i from the graph. The vertex weights
moderate the inhomogeneity in the random graph, vertices with high weights have higher
edge occupation probabilities than vertices with low weights. Therefore, by choosing the
weights in an appropriate way, this suggests that we can create graphs with flexible degree
sequences. We shall investigate the degree structure in more detail in this chapter.
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A special case of the generalized random graph is when we take wi ≡ nλ
n−λ , in which case

pij = λ/n for all i, j ∈ [n], so that we retrieve the Erdős-Rényi random graph ERn(λ/n).

Exercise 6.1 (The Erdős-Rényi random graph). Prove that pij = λ/n when wi = nλ/(n−
λ) for all i ∈ [n].

Naturally, the topology of the generalized random graph sensitively depends upon the
choice of the vertex weights w = (wi)i∈[n]. These vertex weights can be rather general.
In order to describe the empirical proporties of the weights, we define their empirical
distribution function to be

Fn(x) =
1

n

n∑
i=1

1l{wi≤x}, x ≥ 0. (6.1.3)

We can interpret Fn as the distribution of the weight of a uniformly chosen vertex in [n]:

Exercise 6.2 (The weight of a uniformly chosen vertex). Let V be a uniformly chosen
vertex in [n]. Show that the weight wV of V has distribution function Fn.

We denote the weight of a uniformly chosen vertex in [n] by Wn = wV , so that, by
Exercise 6.2, Wn has distribution function Fn. We often assume that the vertex weights
satisfy the following regularity conditions:

Assumption 6.1 (Regularity conditions for vertex weights).
(a) Weak convergence of vertex weight.
There exists a distribution function F such that

Wn
d−→W, (6.1.4)

where Wn and W have distribution functions Fn and F , respectively.
Equivalently, for any x for which x 7→ F (x) is continuous,

lim
n→∞

Fn(x) = F (x). (6.1.5)

(b) Convergence of average vertex weight.

lim
n→∞

E[Wn] = E[W ], (6.1.6)

where Wn and W have distribution functions Fn and F , respectively. Further, we assume
that E[W ] > 0.
(c) Convergence of second moment vertex weight.

lim
n→∞

E[W 2
n ] = E[W 2]. (6.1.7)

Assumption 6.1(a) guarantees that the weight of a ‘typical’ vertex is close to a random
variable W . Assumption 6.1(b) implies that the average degree in GRGn(w) converges (see
Exercise 6.4 below), while Assumption 6.1(c) ensures also the convergence of the second
moment of the degree. In most of our results, we shall assume Assumptions 6.1(a)-(b), in
some we also need Assumption 6.1(c).

Exercise 6.3 (Bound on weights by Assumption 6.1). Prove that Assumptions 6.1(a) and
(b) imply that

max
i∈[n]

wi = o(n). (6.1.8)

Prove that Assumptions 6.1(a) and (c) imply that

max
i∈[n]

wi = o(
√
n). (6.1.9)
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Exercise 6.4 (Average degree in GRGn(w)). Let E(GRGn(w)) denote the number of
edges in the graph GRGn(w). Prove that Assumptions 6.1(a) and (b) imply that

1

n
E[E(GRGn(w))] =

1

n

∑
1≤i<j≤n

pij → E[W ]. (6.1.10)

Thus, Assumptions 6.1(a) and (b) guarantee that GRGn(w) is sparse.

We now discuss two key examples of choices of vertex weights.

Key example of generalized random graph with deterministic weights. Let F
be a distribution function for which F (0) = 0 and fix

wi = [1− F ]−1(i/n), (6.1.11)

where [1− F ]−1 is the generalized inverse function of 1− F defined, for u ∈ (0, 1), by

[1− F ]−1(u) = inf{s : [1− F ](s) ≤ u}. (6.1.12)

By convention, we set [1 − F ]−1(1) = 0. Here the definition of [1 − F ]−1 is chosen such
that

[1− F ]−1(1− u) = F−1(u) = inf{x : F (x) ≥ u}. (6.1.13)

We shall often make use of (6.1.13), in particular since it implies that [1 − F ]−1(U) has
distribution function F when U is uniform on (0, 1). For this choice,

Fn(x) =
1

n

n∑
i=1

1l{wi≤x} =
1

n

n∑
i=1

1l{[1−F ]−1(i/n)≤x} =
1

n

n−1∑
j=0

1l{[1−F ]−1(1− j
n

)≤x}

=
1

n

n−1∑
j=0

1l{F−1( j
n

)≤x} =
1

n

n−1∑
j=0

1l{ j
n
≤F (x)} =

1

n

(⌊
nF (x)

⌋
+ 1
)
∧ 1, (6.1.14)

where we write j = n− i in the third equality and use (6.1.13) in the fourth equality.

Exercise 6.5 (Assumption 6.1(a)). Prove that Assumption 6.1(a) holds for (wi)i∈[n] as
in (6.1.11).

Note that by (6.1.14), we obtain Fn(x) ≥ F (x) for every x ≥ 0, which shows that Wn

is stochastically dominated by W . In particular, this implies that for increasing functions
x 7→ h(x),

1

n

n∑
j=1

h(wj) ≤ E[h(W )]. (6.1.15)

We now study some properties of the weights in (6.1.11):

Exercise 6.6 (Moments of w and F [87]). Prove that u 7→ [1−F ]−1(u) is non-increasing,
and conclude that, for every non-decreasing function x 7→ h(x) and for wi as in (6.1.11),

1

n

n∑
i=1

h(wi) ≤ E[h(W )], (6.1.16)

where W is a random variable with distribution function F .
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Exercise 6.7 (Moments of w and F [87] (Cont.)). Set α > 0, assume that E[Wα] < ∞
where W is a random variable with distribution function F . Use Lebesgue’s dominated
convergence theorem (Theorem A.10) to prove that for wi as in (6.1.11),

1

n

n∑
i=1

wαi → E[Wα]. (6.1.17)

Conclude that Assumption 6.1(a) holds when E[W ] < ∞, and Assumption 6.1(b) when
E[W 2] <∞.

An example of the generalized random graph arises when we take, for some a ≥ 0 and
τ > 1,

F (x) =

{
0 for x ≤ a,
1− (a/x)τ−1 for x > a,

(6.1.18)

for which

[1− F ]−1(u) = au−1/(τ−1), (6.1.19)

so that

wi = a
(
i/n
)−1/(τ−1)

. (6.1.20)

Exercise 6.8 (Bounds on w). Fix (wi)i∈[n] as in (6.1.11). Prove that when

1− F (x) ≤ cx−(τ−1), (6.1.21)

then there exists a c′ > 0 such that wj ≤ w1 ≤ c′n
1

τ−1 for all j ∈ [n], and all large enough
n.

The generalized random graph with i.i.d. weights. GRG can be studied both
with deterministic weights as well as with independent and identically distributed (i.i.d.)
weights. The GRG with deterministic weights is denoted by GRGn(w), the GRG with i.i.d.
weights by GRGn(W ). Since we often deal with ratios of the form WiWj/(

∑
k∈[n] Wk),

we shall assume that P(W = 0) = 0 to avoid situations where all weights are zero.
Both models have their own merits (see Section 6.8 for more details). The great advan-

tage of independent and identically distributed weights is that the vertices in the resulting
graph are, in distribution, the same. More precisely, the vertices are completely exchange-
able, like in the Erdős-Rényi random graph ERn(p). Unfortunately, when we take the
weights to be i.i.d., then in the resulting graph the edges are no longer independent (de-
spite the fact that they are conditionally independent given the weights):

Exercise 6.9 (Dependence edges in GRGn(W )). Let (Wi)i∈[n] be an i.i.d. sequence of

weights for which E[W 2] < ∞. Assume further that there exists ε > 0 such that P(W ≤
ε) = 0. Prove that

nP(12 present) = nP(23 present)→ E[W ], (6.1.22)

while

n2P(12 and 23 present)→ E[W 2]. (6.1.23)

Conclude that the status of different edges that share a vertex are dependent whenever
Var(W ) > 0.
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When the weights are random, we need to specify the kind of convergence in Assumption
6.1, and we shall assume that the limits hold in probability. We now investigate the
conditions under which Assumption 6.1(a)-(c) hold. The empirical distribution function
Fn of the weights is given by

Fn(x) =
1

n

n∑
i=1

1l{Wi≤x}. (6.1.24)

When the weights are independently and identically distributed with distribution function
F , then it is well-known that this empirical distribution function is close to F (this is the
Glivenko-Cantelli Theorem). Therefore, Assumption 6.1(a) holds.

6.2 Degrees in the generalized random graph

In this section, we study the degrees of vertices in GRGn(w). In order to state the
main results, we start with some definitions. Given weights w = (wi)i∈[n], we let the
probability that the edge ij is occupied be equal to pij in (6.1.1), and where we recall that

`n =
∑
i∈[n] wi. We write Dk = D(n)

k for the degree of vertex k in GRGn(w). Thus, Dk is

given by

Dk =

n∑
j=1

Xkj , (6.2.1)

where Xkj is the indicator that the edge kj is occupied. By convention, we set Xij = Xji.
The main result concerning the degrees is as follows:

Theorem 6.2 (Degree of GRG with deterministic weights). Assume that Assumption
6.1(a)-(b) hold. Then,

(a) there exists a coupling (D̂k, Ẑk) of the degree Dk of vertex k and a Poisson random
variable Zk with parameter wk, such that it satisfies

P(D̂k 6= Ẑk) ≤ w2
k

`n

(
1 + 2

E[W 2
n ]

E[Wn]

)
. (6.2.2)

In particular, Dk can be coupled to a Poisson random variable with parameter wk.

(b) When pij given by (6.1.1) are all such that limn→∞ pij = 0, the degrees D1, . . . , Dm
of vertices 1, . . . ,m are asymptotically independent.

Before proving Theorem 6.2, we state a consequence for the degree sequence when the
weights are given by (6.1.11). To be able to state this consequence, we need the following
definition:

Definition 6.3 (Mixed Poisson distribution). A random variable X has a mixed Poisson
distribution with mixing distribution F when, for every k ∈ N,

P(X = k) = E[e−W
W k

k!
], (6.2.3)

where W is a random variable with distribution function F .

The next exercises investigate some properties of mixed Poisson random variables:
Not every random variable can be obtained as a mixed Poisson distribution (recall

Definition 6.3). In the following exercises, aspects of mixed Poisson distributions are further
investigated.
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Exercise 6.10 (Not every random variable is mixed Poisson). Give an example of a
random variable that cannot be represented as a mixed Poisson distribution.

Exercise 6.11 (Characteristic function of mixed Poisson distribution). Let X have a
mixed Poisson distribution with mixing distribution F and moment generating function
MW , i.e., for t ∈ C,

MW (t) = E[etW ], (6.2.4)

where W has distribution function F . Show that the characteristic function of X is given
by

φX(t) = E[eitX ] = MW (eit − 1). (6.2.5)

Exercise 6.12 (Mean and variance mixed Poisson distribution). Let X have a mixed
Poisson distribution with mixing distribution F . Express the mean and variance of X into
the moments of W , where W has distribution function F .

Exercise 6.13 (Tail behavior mixed Poisson). Suppose that there exist constants 0 < c1 <
c2 <∞ such that

c1x
1−τ ≤ 1− F (x) ≤ c2x1−τ . (6.2.6)

Show that there exist 0 < c′1 < c′2 < ∞ such that the distribution function G of a mixed
Poisson distribution with mixing distribution F satisfies

c′1x
1−τ ≤ 1−G(x) ≤ c′2x1−τ . (6.2.7)

By Theorem 6.2, the degree of vertex i is close to Poisson with parameter wi. Thus,
when we choose a vertex uniformly at random, and we denote the outcome by V , then the
degree of that vertex is close to a Poisson distribution with random parameter wV = Wn.

Since Wn
d−→W by Assumption 6.1, this suggests the following result:

Corollary 6.4 (Degree of uniformly chosen vertex in GRG). Assume that Assumption
6.1(a)-(b) hold. Then,

(a) the degree of a uniformly chosen vertex converges in distribution to a mixed Poisson
random variable with mixing distribution F ;

(b) the degrees of m uniformly chosen vertices in [n] are asymptotically independent.

We now prove Theorem 6.2 and Corollary 6.4:

Proof of Theorem 6.2. We make essential use of Theorem 2.9, in particular, the coupling of a
sum of Bernoulli random variables with a Poisson random variable in (2.2.19). Throughout

this proof, we shall omit the dependence on n of the weights, and abbreviate wi = w(n)

i .
We recall that

Dk =
n∑
i=1

Xkj , (6.2.8)

where Xkj are independent Bernoulli random variables with success probabilities pkj =
wkwj

`n+wkwj
. By Theorem 2.9, there exists a Poisson random variable Ŷk with parameter

λk =
∑
j 6=k

wkwj
`n + wkwj

, (6.2.9)

and a random variable D̂k where D̂k has the same distribution as Dk, such that

P(D̂k 6= Ŷk) ≤
∑
j 6=k

p2
kj =

∑
j 6=k

w2
kw

2
j

(`n + wkwj)2
≤ w2

k

n∑
j=1

w2
j

`2n
. (6.2.10)
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Thus, in order to prove the claim, it suffices to prove that we can, in turn, couple Ŷk to a

Poisson random variable Ẑk with parameter wk, such that

P(Ŷk 6= Ẑk) ≤ w2
k

n∑
j=1

w2
j

`2n
+
w2
k

`2n
. (6.2.11)

For this, we note that

λk ≤
∑
6=k

wkwj
`n

≤ wk
`n

k∑
j=1

wj = wk. (6.2.12)

Let εk = wk − λk ≥ 0. Then, we let V̂k ∼ Poi(εk) be independent of Ŷk, and write

Ẑk = Ŷk + V̂k, so that

P(Ŷk 6= Ẑk) = P(V̂k 6= 0) = P(V̂k ≥ 1) ≤ E[V̂k] = εk. (6.2.13)

To bound εk, we note that

εk = wk −
∑
j 6=k

wkwj
`n + wkwj

=

n∑
j=1

wkwj
( 1

`n
− 1

`n + wkwj

)
+

w2
k

`n + w2
k

=

n∑
j=1

w2
jw

2
k

`n(`n + wkwj)
+

w2
k

`n + w2
k

≤ w2
k

`n
+

n∑
j=1

w2
jw

2
k

`2n
= w2

k

( 1

`n
+

n∑
j=1

w2
j

`2n

)
. (6.2.14)

We conclude that

P(D̂k 6= Ẑk) ≤ P(D̂k 6= Ŷk) + P(Ŷk 6= Ẑk) ≤ 2w2
k

n∑
j=1

w2
j

`2n
+
w2
k

`n
, (6.2.15)

as required. This proves Theorem 6.2(a).
To prove Theorem 6.2(b), it suffices to prove that we can couple (Di)i∈[m] to an inde-

pendent vector (D̂i)i∈[m] such that

P
(

(Di)i∈[m] 6= (D̂i)i∈[m]

)
= o(1). (6.2.16)

To this end, we recall that Xij denotes the indicator that the edge ij is occupied. The
random variables (Xij)1≤i<j≤n are independent Bernoulli random variables with param-
eters (pij)1≤i<j≤n given in (6.1.1). We let (X ′ij)1≤i<j≤n denote an independent copy of
(Xij)1≤i<j≤n, and let, for i = 1, . . . , n,

D̂i =
∑
j<i

X ′ij +

n∑
j=i+1

Xij . (6.2.17)

Then, we observe the following: (1) Since (X ′ij)1≤i<j≤n is an independent copy of (Xij)1≤i<j≤n,

the distribution of D̂i is equal to the one of Di, for every i = 1, . . . , n. (2) Set i < j. While

Di and Dj are dependent since they both contain Xij = Xji, D̂i contains Xij , while D′j
contains X ′ji = X ′ij , which is an independent copy of Xij . We conclude that (D̂i)i∈[m] are
sums of independent Bernoulli random variables, and, therefore, are independent. (3) Fi-

nally, (Di)i∈[m] 6= (D̂i)i∈[m] precisely when there exists at least one edge ij with i, j ∈ [m]
such that Xij 6= X ′ij . Since Xij and X ′ij are Bernoulli random variables, Xij 6= X ′ij implies
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that either Xij = 0, X ′ij = 1 or Xij = 1, X ′ij = 0. Thus, by Boole’s inequality, we obtain
that

P
(

(Di)i∈[m] 6= (D̂i)i∈[m]

)
≤ 2

m∑
i,j=1

P(Xij = 1) = 2

m∑
i,j=1

pij . (6.2.18)

By assumption, limn→∞ pij = 0, so that (6.2.16) holds for every m ≥ 2 fixed. This proves
Theorem 6.2(b).

Exercise 6.14 (Independence of a growing number of degrees for bounded weights). As-
sume that the conditions in Corollary 6.4 hold, and further suppose that there exists a ε > 0
such that ε ≤ wi ≤ ε−1 for every i, so that the weights are uniformly bounded from above

and below. Then, prove that we can couple (Di)i∈[m] to an independent vector (D̂i)i∈[m]

such that (6.2.16) holds whenever m = o(
√
n). As a result, even the degrees of a growing

number of vertices can be coupled to independent degrees.

Proof of Corollary 6.4. By (6.2.2) together with the fact that maxi∈[n] wi = o(n) by
Exercise 6.3 we have that the degree of vertex k is close to a Poisson random variable with
parameter wk. Thus, the degree of a uniformly chosen vertex in [n] is close in distribution
to a Poisson random variable with parameter wV , where V is a uniform random variable
in [n]. This is a mixed Poisson distribution with mixing distribution equal to wV .

Since a mixed Poisson random variable converges to a limiting mixed Poisson random
variable whenever the mixing distribution converges in distribution, it suffices to show
that the weight Wn = wV of a uniform vertex has a limiting distribution given by F . This
follows from Assumption 6.1(a), whose validity follows by (6.1.14) (see also Exercise 6.4).

The proof of part (b) is a minor adaptation of the proof of Theorem 6.2(b). We shall
only discuss the asymptotic independence. Let (Vi)i∈[m] be independent uniform random
variables. Then, the dependence between the degrees of the vertices (Vi)i∈[m] arises only
through the edges between the vertices (Vi)i∈[m]. Now, the expected number of occupied
edges between the vertices (Vi)i∈[m], conditionally on (Vi)i∈[m], is bounded by

m∑
i,j=1

wViwVj
`n + wViwVj

≤
m∑

i,j=1

wViwVj
`n

=
1

`n

( m∑
i=1

wVi

)2

. (6.2.19)

The random variables (wVi)i∈[m] are i.i.d., so that the expected number of occupied edges
between m uniformly chosen vertices is equal to

1

`n
E
[( m∑

i=1

wVi

)2]
=
m

`n
Var(wV1) +

m(m− 1)

`n
E[wV1 ]2. (6.2.20)

We can bound

Var(wV1) ≤ E[w2
V1

] ≤ (max
i∈[n]

wi)E[wV1 ] = o(n), (6.2.21)

by Exercise 6.3. Therefore, the expected number of edges between the vertices (Vi)i∈[m]

is o(1), so that with high probability there are none. We conclude that we can couple
the degrees of m uniform vertices to m independent mixed Poisson random variables with
mixing distribution w(n)

V . Since these random variables converge in distribution to inde-
pendent mixed Poisson random variables with mixing distribution F , this completes the
argument.
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6.3 Degree sequence of generalized random graph

Theorem 6.2 investigates the degree of a single vertex in the generalized random graph.
In this section, we extend the result to the convergence of the empirical degree sequence.
For k ≥ 0, we let

P (n)

k =
1

n

n∑
i=1

1l{Di=k} (6.3.1)

denote the degree sequence of GRGn(w). Due to Theorem 6.2, one would expect that this
degree sequence is close to a mixed Poisson distribution. We denote the probability mass
function of such a mixed Poisson distribution by pk, i.e., for k ≥ 0,

pk = E
[
e−W

W k

k!

]
. (6.3.2)

Theorem 6.5 shows that indeed the degree sequence (P (n)

k )k≥0 is close to the mixed Poisson
distribution with probability mass function (pk)k≥0 in (6.3.2):

Theorem 6.5 (Degree sequence of GRGn(w)). Assume that Assumptions 6.1(a)-(b) hold.
Then, for every ε > 0,

P
( ∞∑
k=0

|P (n)

k − pk| ≥ ε
)
→ 0, (6.3.3)

where (pk)∞k=0 is given by (6.3.2).

Proof of Theorem 6.5. By Exercise 2.14 and the fact that (pk)∞k=0 is a probability mass

function, we have that
∑∞
k=0 |P

(n)

k − pk| = 2dTV(P (n), p)→ 0 if and only if max∞k=0 |P
(n)

k −
pk| → 0. Thus, we need to show that, for every ε > 0, P

(
max∞k=0 |P

(n)

k −pk| ≥ ε
)

converges
to 0. We use that

P
( ∞

max
k=0
|P (n)

k − pk| ≥ ε
)
≤
∞∑
k=0

P
(
|P (n)

k − pk| ≥ ε
)
. (6.3.4)

Note that
E[P (n)

k ] = P(DV = k), (6.3.5)

and, by Corollary 6.4(a), we have that

lim
n→∞

P(DV = k) = pk. (6.3.6)

Also, it is not hard to see that the convergence is uniform in k, that is, for every ε > 0,
and for n sufficiently large, we have

max
k
|E[P (n)

k ]− pk| ≤
ε

2
. (6.3.7)

Exercise 6.15 (Uniform convergence of mean degree sequence). Prove (6.3.7).

By (6.3.4) and (6.3.7), it follows that, for n sufficiently large,

P
(

max
k
|P (n)

k − pk| ≥ ε
)
≤
∞∑
k=0

P
(
|P (n)

k − E[P (n)

k ]| ≥ ε/2
)
. (6.3.8)
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Note that, by Chebychev inequality (Theorem 2.15),

P
(
|P (n)

k − E[P (n)

k ]| ≥ ε/2
)
≤ 4

ε2
Var(P (n)

k ), (6.3.9)

so that

P
(

max
k
|P (n)

k − pk| ≥ ε
)
≤ 4

ε2

∞∑
k=0

Var(P (n)

k ). (6.3.10)

We use the definition in (6.3.1) to see that

E[(P (n)

k )2] =
1

n2

∑
i,j∈[n]

P(Di = Dj = k) (6.3.11)

=
1

n2

∑
i∈[n]

P(Di = k) +
1

n2

∑
i,j∈[n] : i 6=j

P(Di = Dj = k)P(Di = Dj = k).

Therefore,

Var(P (n)

k ) ≤ 1

n2

∑
i∈[n]

[P(Di = k)− P(Di = k)2] (6.3.12)

+
1

n2

∑
i,j∈[n] : i 6=j

[P(Di = Dj = k)− P(Di = k)P(Dj = k)].

We let
Xi =

∑
k∈[n] : k 6=i,j

Iik, Xj =
∑

k∈[n] : k 6=i,j

Ijk, (6.3.13)

where (Iij)i,j∈[n] are independent BE(pij) random variables. Then, the law of (Di, Dj) is
the same as the one of (Xi+Iij , Xj+Iij) while (Xij+Iij , Xj+I

′
ij), where I ′ij is independent

of (Iij)i,j∈[n] has the same distribution as Iij , are two independent random variables with
the same marginals as Di and Dj . Then,

P(Di = Dj = k) = P
(

(Xi + Iij , Xj + Iij) = (k, k)
)
, (6.3.14)

P(Di = k)P(Dj = k) = P
(

(Xi + Iij , Xj + I ′ij) = (k, k)
)
, (6.3.15)

so that

P(Di = Dj = k)− P(Di = k)P(Dj = k) (6.3.16)

≤ P
(

(Xi + Iij , Xj + Iij) = (k, k), (Xi + Iij , Xj + I ′ij) 6= (k, k)
)
.

When (XI + IIJ , Xj + Iij) = (k, k), but (Xi + Iij , Xj + I ′ij) 6= (k, k), we must have that
Iij 6= I ′ij . If Iij = 1, then I ′ij = 0 and Xj = k, while, if Iij = 0, then I ′ij = 1 and Xi = k.
Therefore,

P(Di = Dj = k)− P(Di = k)P(Dj = k) ≤ 2pij [P(Di = k) + P(Dj = k)]. (6.3.17)

We conclude from (6.3.12) that∑
k≥0

Var(P (n)

k ) ≤ 1

n
+

2

n2

∑
i,j∈[n]

pij → 0, (6.3.18)

since
∑
i,j∈[n] pij = O(n) (recall Exercise 6.3).
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6.4 Generalized random graph with i.i.d. weights

We next state a consequence of Theorem 6.2, where we treat the special case where
(wi)i∈[n] are independent and identically distributed. In this case, we have that, condi-
tionally on the weights (Wi)i∈[n], the edge ij is occupied is equal to

pij =
WiWj

Ln +WiWj
, (6.4.1)

where

Ln =

n∑
i=1

Wi (6.4.2)

denotes the total weight. Note that there now is double randomness. Indeed, there is
randomness due to the fact that the weights (Wi)i∈[n] are random themselves, and then
there is the randomness in the occupation status of the edges conditionally on the weights
(Wi)i∈[n]. We denote the resulting graph by GRGn(W ). By Exercise 6.9, the edge statuses
are not independent.

We now investigate the degrees and degree sequence of GRGn(W ):

Corollary 6.6 (Degrees of GRGn(W )). When (Wi)i∈[n] are i.i.d. random variables with
distribution function F with a finite mean, then

(a) the degree Dk of vertex k converges in distribution to a mixed Poisson random vari-
able with mixing distribution F ;

(b) the degrees D1, . . . , Dm of vertices 1, . . . ,m are asymptotically independent.

To see that Corollary 6.6 follows from Theorem 6.2, we note that when (Wi)i∈[n] =

(wi)i∈[n], where Wi are i.i.d. with distribution function F , we have that E[W 2
n ]/`n → 0,

since E[W 2
n ] = oP(n) follows when W has a finite mean:

Exercise 6.16 (Bound on sum of squares of i.i.d. random variables). Show that when
(Wi)i∈[n] are i.i.d. random variables with distribution function F with a finite mean, then

1

n2

n∑
i=1

W 2
i

P−→ 0. (6.4.3)

Hint: Show that maxni=1 Wi = oP(n), by using that

P(
n

max
i=1

Wi ≥ εn) ≤
n∑
i=1

P(Wi ≥ εn)

= nP(W ≥ εn). (6.4.4)

Then use a variant of the Markov inequality (Theorem 2.14) to show that P(W ≥ εn) =
o( 1
n

).

Theorem 6.2 is an extension of [52, Theorem 3.1], in which Corollary 6.6 was proved
under the extra assumption that Wi have a finite (1 + ε)−moment.

Theorem 6.7 (Degree sequence of GRGn(W )). When (Wi)i∈[n] are i.i.d. random vari-
ables with distribution function F with a finite mean, then, for every ε > 0,

P
( ∞∑
k=0

|P (n)

k − pk| ≥ ε
)
→ 0, (6.4.5)

where (pk)∞k=0 is the probability mass function of a mixed Poisson distribution with mixing
distribution F .
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We leave the proof of Theorem 6.7, which is quite similar to the proof of Theorem 6.5,
to the reader:

Exercise 6.17 (Proof of Theorem 6.7). Complete the proof of Theorem 6.7, now using
Corollary 6.4, as well as the equality

E[(P (n)

k )2] =
1

n2

∑
1≤i,j≤n

P(Di = Dj = k)

=
1

n
P(D1 = k) +

2

n2

∑
1≤i<j≤n

P(Di = Dj = k). (6.4.6)

We next turn our attention to the case where the weights (Wi)i∈[n] are i.i.d. with infinite
mean. We denote the distribution of Wi by F .

Exercise 6.18 (Condition for infinite mean). Show that the mean of W is infinite precisely
when the distribution function F of W satisfies∫ ∞

0

[1− F (x)]dx =∞. (6.4.7)

Our next goal is to obtain a random graph which has a power-law degree sequence with
a power-law exponent τ ∈ (1, 2). We shall see that this is a non-trivial issue.

Theorem 6.8 (Degrees of GRGn(W ) with i.i.d. conditioned weights). When (Wi)i∈[n]

are i.i.d. random variables with distribution function F , and let (W (n)

i )i∈[n] be i.i.d. copies
of the random variable W1 conditioned on W1 ≤ an. Then, for every an → ∞ such that
an = o(n),

(a) the degree D(n)

k of vertex k in the GRG with weights (W (n)

i )i∈[n], converges in dis-
tribution to a mixed Poisson random variable with mixing distribution F ;

(b) the degrees (D(n)

i )i∈[m] of vertices 1, . . . ,m are asymptotically independent.

Proof. Theorem 6.8 follows by a simple adaptation of the proof of Theorem 6.2 and will
be left as an exercise:

Exercise 6.19 (Proof of Theorem 6.8). Prove Theorem 6.8.

We finally show that the conditioning in Theorem 6.8 is necessary by proving that if we
do not condition the weights to be at most an, then the degree distribution changes:

Theorem 6.9 (Degrees of GRGn(W ) with i.i.d. infinite mean weights). When (Wi)i∈[n]

are i.i.d. random variables with distribution function F satisfying that for some τ ∈ (1, 2),

lim
x→∞

xτ−1[1− F (x)] = c. (6.4.8)

Let the edge probabilities (pij)1≤i<j≤n conditionally on the weights (Wi)i∈[n] be given by

pij =
WiWj

n
1

τ−1 +WiWj

. (6.4.9)

Then
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(a) the degree Dk of vertex k converges in distribution to a mixed Poisson random vari-
able with parameter γW τ−1, where

γ = c

∫ ∞
0

(1 + x)−2x−(τ−1)dx. (6.4.10)

(b) the degrees (Di)i∈[m] of vertices 1, . . . ,m are asymptotically independent.

The proof of Theorem 6.9 is deferred to Section 6.5 below. We note that a mixed Poisson
distribution with mixing distribution γWα does not obey a power law with exponent τ :

Exercise 6.20 (Tail of degree law for τ ∈ (1, 2)). Let the distribution function F satisfy
(6.4.8), and let Y be a mixed Poisson random variable with parameter W τ−1, where W has
distribution function F . Show that Y is such that there exists a constant c > 0 such that

P(Y ≥ y) = cy−1(1 + o(1)). (6.4.11)

As a result of Exercise 6.20, we see that if we do not condition on the weights to be at
most an, and if the distribution function F of the weights satisfies (6.4.8), then the degree
distribution always obeys a power law with exponent τ = 2.

We note that the choice of the edge probabilities in (6.4.9) is different from the choice in

(6.4.1). Indeed, the term Ln in the denominator in (6.4.1) is replaced by n
1

τ−1 in (6.4.9).
Since, when (6.4.8) is satisfied,

Lnn
− 1
τ−1

d−→ S, (6.4.12)

where S is a stable random variable with parameter τ − 1 ∈ (0, 1), we expect that the
behavior for the choice (6.4.1) is similar (recall Theorem 2.28).

6.5 Generalized random graph conditioned on its degrees

In this section, we investigate the distribution of GRGn(w) in more detail. The main re-
sult in this section is that the generalized random graph conditioned on its degree sequence
is a uniform random graph with that degree sequence (see Theorem 6.10 below).

We start by introducing some notation. We let X = (Xij)1≤i<j≤n, where Xij are
independent random variables with

P(Xij = 1) = 1− P(Xij = 0) = pij , (6.5.1)

where pij is given in (6.1.1). Then, with qij = 1− pij , we have that, for x = (xij)1≤i<j≤n,

P(X = x) =
∏

1≤i<j≤n

p
xij
ij q

1−xij
ij . (6.5.2)

We define the odd-ratios (rij)1≤i<j≤n by

rij =
pij
qij

. (6.5.3)

Then

pij =
rij

1 + rij
, qij =

1

1 + rij
, (6.5.4)

so that

P(X = x) =
∏

1≤i<j≤n

1

1 + rij

∏
1≤i<j≤n

r
xij
ij . (6.5.5)
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We now specialize to the setting of the generalized random graph, and choose

rij = uiuj , (6.5.6)

for some weights {ui}ni=1. Later, we shall choose

ui =
wi√
`n
, (6.5.7)

in which case we return to (6.1.1) since

pij =
rij

1 + rij
=

uiuj
1 + uiuj

=
wiwj

`n + wiwj
. (6.5.8)

Then, with

G(u) =
∏

1≤i<j≤n

(1 + uiuj), (6.5.9)

we obtain

P(X = x) = G(u)−1
∏

1≤i<j≤n

(uiuj)
xij = G(u)−1

n∏
i=1

u
di(x)
i , (6.5.10)

where {di(x)}ni=1 is given by

di(x) =

n∑
j=1

xij , (6.5.11)

i.e., di(x) is the degree of vertex i in the generalized random graph configuration x =
(xij)1≤i<j≤n. By convention, we assume that xii = 0, and we recall that xij = xji.

Exercise 6.21 (Equality for probability mass function GRG). Prove the last equality in
(6.5.10).

From (6.5.10), and using that
∑
x P(X = x) = 1, it follows that

∏
1≤i<j≤n

(1 + uiuj) = G(u) =
∑
x

n∏
i=1

u
di(x)
i . (6.5.12)

Furthermore, it also follows from (6.5.10) that the distribution of X conditionally on
{di(X) = di∀1 ≤ i ≤ n} is uniform. That is, all graphs with the same degree sequence
have the same probability. This wonderful result is formulated in the following theorem:

Theorem 6.10 (GRG conditioned on degrees has uniform law). The GRG with edge
probabilities (pij)1≤i<j≤n given by

pij =
uiuj

1 + uiuj
, (6.5.13)

conditioned on {di(X) = di∀i = 1, . . . , n}, is uniform over all graphs with degree sequence
{di}ni=1.

Proof. For x satisfying di(x) = di for all i = 1, . . . , n, we can write out

P(X = x|di(X) = di∀i = 1, . . . , n) =
P(X = x)

P(di(X) = di∀i = 1, . . . , n)

=
P(X = x)∑

y:di(y)=di∀i P(X = y)
. (6.5.14)
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By (6.5.10), we have that (6.5.14) simplifies to

P(X = x|di(X) = di∀i = 1, . . . , n) =

∏n
i=1 u

di(x)
i∑

y:di(y)=di∀i
∏n
i=1 u

di(y)
i

=

∏n
i=1 u

di
i∑

y:di(y)=di∀i
∏n
i=1 u

di
i

=
1

#{y : di(y) = di∀i = 1, . . . , n} , (6.5.15)

that is, the distribution is uniform over all graphs with the prescribed degree sequence.
We next compute the generating function of all degrees, that is, for t1, . . . , tn ∈ R, we

compute, with Di = di(X),

E
[ n∏
i=1

tDii

]
=
∑
x

P(X = x)

n∏
i=1

t
di(x)
i . (6.5.16)

By (6.5.10) and (6.5.12),

E
[ n∏
i=1

tDii

]
= G(u)−1

∑
x

n∏
i=1

(uiti)
di(x) =

G(tu)

G(u)
, (6.5.17)

where (tu)i = tiui. By (6.5.9), we obtain

E
[ n∏
i=1

tDii

]
=

∏
1≤i<j≤n

1 + uitiujtj
1 + uiuj

. (6.5.18)

Therefore, we have proved the following nice property:

Proposition 6.11 (Generating function of degrees of GRGn(w)). For the edge probabili-
ties given by (6.1.1) and (6.5.7),

E
[ n∏
i=1

tDii

]
=

∏
1≤i<j≤n

`n + witiwjtj
`n + wiwj

. (6.5.19)

Exercise 6.22 (Alternative proof Theorem 6.2). Use Proposition 6.11 to give an alterna-
tive proof of Theorem 6.2.

Exercise 6.23 (Degree of vertex 1 in ERn(λ/n)). Show that for the Erdős-Rényi random
graph with p = λ/n, the degree of vertex 1 is close to a Poisson random variable with mean
λ by using (B.119). Hint: Use that the Erdős-Rényi random graph is obtained by taking
Wi ≡ λ

1− λ
n

.

Exercise 6.24 (Asymptotic independence of vertex degrees in ERn(λ/n)). Show that
for the Erdős-Rényi random graph with p = λ/n, the degrees of vertices 1, . . . ,m are
asymptotically independent.

We finally make use of Proposition 6.11 to prove Theorem 6.9:

Proof of Theorem 6.9. We study the generating function of the degree Dk. We note that

E[tDk ] = E
[∏
i 6=k

1 + tWiWkn
− 1
τ−1

1 +WiWkn
− 1
τ−1

]
. (6.5.20)
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Denote φw : R 7→ R by

φw(x) =
1 + twx

1 + wx
. (6.5.21)

Then, by the independence of the weights (wi)i∈[n], we have that

E[tDk |Wk = w] = E
[∏
i 6=k

φw
(
Win

− 1
τ−1
)]

= ψn(w)n−1, (6.5.22)

where

ψn(w) = E
[
φw
(
Win

− 1
τ−1
)]
. (6.5.23)

We claim that

ψn(w) = 1 +
1

n
(t− 1)γwτ−1 + o(n−1). (6.5.24)

This completes the proof since it implies that

E[tDk |Wk = w] = ψn(w)n−1 = e(t−1)γwτ−1

(1 + o(1)), (6.5.25)

which in turn implies that

lim
n→∞

E[tDk ] = E[e(t−1)γWτ−1
k ]. (6.5.26)

Since E[e(t−1)γWτ−1
k ] is the probability generating function of a mixed Poisson random

variable with mixing distribution γW τ−1
k (see Exercise 6.25), (6.5.24) indeed completes

the proof.

Exercise 6.25 (Identification of limiting vertex degree). Prove that E[e(t−1)γWτ−1

] is the
probability generating function of a mixed Poisson random variable with mixing distribution
γW τ−1

We complete the proof of Theorem 6.9 by showing that (6.5.24) holds. For this, we first
note

ψn(w) = E
[
φw
(
W1n

− 1
τ−1
)]

= 1 + E
[
φw
(
W1n

− 1
τ−1
)
− 1
]
. (6.5.27)

Exercise 6.26 (A partial integration formula). Prove that for every function h : [0,∞)→
R, with h(0) = 0 and every random variable X ≥ 0 with distribution function F , we have
the partial integration formula

E[h(X)] =

∫ ∞
0

h′(x)[1− F (x)]dx. (6.5.28)

Applying (6.5.28) to h(x) = φw
(
xn−

1
τ−1
)
− 1 and X = W1 yields

ψn(w) = 1 + n−
1

τ−1

∫ ∞
0

φ′w
(
xn−

1
τ−1
)
[1− F (x)]dx

= 1 +

∫ ∞
0

φ′w(x)[1− F (xn
1

τ−1 )]dx. (6.5.29)
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Thus,

n(ψn(w)− 1) =

∫ ∞
0

φ′w(x)

xτ−1
(n

1
τ−1 x)τ−1[1− F (xn

1
τ−1 )]dx. (6.5.30)

By assumption, xτ−1[1− F (x)] is a bounded function that converges to c. As a result, by
the Dominated convergence theorem (Theorem A.10),

lim
n→∞

∫ ∞
0

φ′w(x)

xτ−1
(n

1
τ−1 x)τ−1[1− F (xn

1
τ−1 )]dx = c

∫ ∞
0

φ′w(x)

xτ−1
dx. (6.5.31)

Exercise 6.27 (Conditions for dominated convergence). Verify the conditions for domi-
nated convergence for the integral on the left-hand side of (6.5.31).

We complete the proof of (6.5.24) by noting that

φ′w(x) =
tw

1 + wx
− w(1 + twx)

(1 + wx)2
=

w(t− 1)

(1 + wx)2
, (6.5.32)

so that

c

∫ ∞
0

φ′w(x)

xτ−1
dx = c

∫ ∞
0

w(t− 1)

(1 + wx)2xτ−1
dx = γ(t− 1)wτ−1. (6.5.33)

6.6 Asymptotic equivalence of inhomogeneous random graphs

There are numerous papers that introduce models along the lines of the generalized ran-
dom graph, in that they have (conditionally) independent edge statuses. The most general
model has appeared in [44]. In this paper, the properties of such random graphs (such as
diameter, phase transition and average distances) have been studied using comparisons to
multitype branching processes. We shall return to [44] in Chapter ??. We start by inves-
tigating when two inhomogeneous random graph sequences are asymptotically equivalent,
following the results of Janson in [107].

In this section, we shall investigate when two random graphs are asymptotically equiv-
alent. We shall start by introducing this notion for general random variables. Before we
can do so, we say that (X ,F) is a measurable space when X is the state space, i.e., the
space of all possible outcomes, and F the set of all possible events. We shall be particularly
interested in discrete measurable spaces, in which case X is a discrete set and F can be
taken to be the set of all subsets of X . However, all notions that will be introduced in this
section, can be more generally defined.

Definition 6.12 (Asymptotic equivalence of sequences of random variables). Let (Xn,Fn)
be a sequence of measurable spaces. Let Pn and Qn be two probability measures on (Xn,Fn).
Then, we say that the sequences (Pn)∞n=1 and (Qn)∞n=1 are asymptotically equivalent if, for
every sequence En ∈ Fn of events, we have

lim
n→∞

Pn(En)−Qn(En) = 0. (6.6.1)

Thus, (Pn)∞n=1 and (Qn)∞n=1 are asymptotically equivalent when they have asymptoti-
cally equal probabilities. In practice, this means that there is asymptotically no difference
between (Pn)∞n=1 and (Qn)∞n=1.

The main result that we shall prove in this section is the following theorem that gives a
sharp criterium on when two inhomogeneous random graph sequences are asymptotically
equivalent. In its statement, we write p = (pij)1≤i<j≤n for the edge probabilities in
the graph, and IRGn(p) for the inhomogeneous random graph for which the edges are
independent and the probability that the edge ij is present equals pij .
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Theorem 6.13 (Asymptotic equivalence of inhomogeneous random graphs). Let IRGn(p)
and IRGn(q) be two inhomogeneous random graphs with edge probabilities p = (pij)1≤i<j≤n
and q = (qij)1≤i<j≤n respectively. Assume that there exists ε > 0 such that max1≤i<j≤n pij ≤
1− ε. Then IRGn(p) and IRGn(q) are asymptotically equivalent when

lim
n→∞

∑
1≤i<j≤n

(pij − qij)2

pij
= 0. (6.6.2)

When the edge probabilities p = (pij)1≤i<j≤n and q = (qij)1≤i<j≤n are themselves random
variables, with max1≤i<j≤n pij ≤ 1−ε a.s., then IRGn(p) and IRGn(q) are asymptotically
equivalent when ∑

1≤i<j≤n

(pij − qij)2

pij

P−→ 0. (6.6.3)

We note that, in particular, IRGn(p) and IRGn(q) are asymptotically equivalent when
they can be coupled in such a way that P(IRGn(p) 6= IRGn(q)) = o(1). Thus, Theorem
6.13 is a quite strong result. The remainder of this section shall be devoted to the proof
of Theorem 6.13. We start by introducing the necessary ingredients.

There is a strong relation between asymptotic equivalence of random variables and
coupling, in the sense that two sequences of random variables are asymptotically equivalent
precisely when they can be coupled such that they agree with high probability. Recall the
results in Section 2.2 that we shall use and extend in this section. Let p = (px)x∈X and
q = (qx)x∈X be two discrete probability measures on the space X , and recall that the total
variation distance between p and q is given by

dTV(p, q) =
1

2

∑
x

|px − qx|. (6.6.4)

By (2.2.17)-(2.2.18), we see that two sequences of discrete probability measures p(n) =
(p(n)
x )x∈X and q(n) = (q(n)

x )x∈X are asymptotically equivalent when

dTV(p(n), q(n))→ 0. (6.6.5)

In fact, this turns out to be an equivalent definition:

Exercise 6.28 (Asymptotic equivalence and total variation distance). Use (2.2.7) and
Definition 6.12 to prove that p(n) = (p(n)

x )x∈X and q(n) = (q(n)
x )x∈X are asymptotically

equivalent if and only if dTV(p(n), q(n))→ 0.

When p and q correspond to BE(p) and BE(q) distributions, then it is rather simple to
show that

dTV(p, q) = |p− q|. (6.6.6)

Now, for IRGn(p) and IRGn(q), the edge occupation variables are all independent BE(pij)
and BE(qij) random variables. Thus, we can couple each of the edges in such a way that
the probability that a particular edge is distinct is equal to

dTV(pij , qij) = |pij − qij |, (6.6.7)

so that we are led to the naive bound

dTV(IRGn(p), IRGn(q)) ≤
∑

1≤i<j≤n

|pij − qij |, (6.6.8)
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which is far worse than (6.6.2). As we shall see later on, there are many examples for which∑
1≤i<j≤n

(pij−qij)2

pij
= o(1), but

∑
1≤i<j≤n |pij − qij | 6= o(1). Thus, the coupling used in

the proof of Theorem 6.13 is substantially stronger.
To explain this seeming contradiction, it is useful to investigate the setting of the Erdős-

Rényi random graph ERn(p). Fix p and q, assume that q ≤ p and that p ≤ 1 − ε. Then,
by Theorem 6.13, ERn(p) and ERn(q) are asymptotically equivalent when

∑
1≤i<j≤n

(pij − qij)2

pij
≤ n2(p− q)2/p = O(n3(p− q)2), (6.6.9)

when we assume that p ≥ ε/n. Thus, it suffices that p − q = o(n−3/2). On the other
hand, the right-hand side of (6.6.8) is o(1) when p− q = o(n−2), which is rather stronger.
This can be understood by noting that if we condition on the number of edges M , then the
conditional distribution of ERn(p) conditionally on M = m does not depend on the precise
value of p involved. As a result, we obtain that the asymptotic equivalence of ERn(p) and
ERn(q) follows precisely when we have asymptotic equivalence of the number of edges in
ERn(p) and ERn(q). For this, we note that M ∼ BIN(n(n− 1)/2, p) for ERn(p), while the
number of edges M ′ for ERn(q) satisfies M ′ ∼ BIN(n(n− 1)/2, q). By Exercise 4.2 as well
as Exercise 4.22, we have that binomial distributions with a variance that tends to infinity
satisfy a central limit theorem. When M and M ′ both satisfy central limit theorems with
equal asymptotic variances, it turns out that the asymptotic equivalence of M and M ′

follows when the asymptotic means are equal:

Exercise 6.29 (Asymptotic equivalence of binomials with increasing variances [107]). Let
M and M ′ be two binomial random variables with M ∼ BIN(m, p) and M ′ ∼ BIN(m, q) for
some m. Show that M and M ′ are asymptotically equivalent when m(p− q)/√mp = o(1).

We apply Exercise 6.29 with m = n(n − 1)/2 to obtain that ERn(p) and ERn(q) are
asymptotically equivalent precisely when n2(p−q)2/p = o(1), and, assuming that p = λ/n,

this is equivalent to p − q = o(n−3/2). This explains the result in Theorem 6.13 for the
Erdős-Rényi random graph, and also shows that the result is optimal for the Erdős-Rényi
random graph.

We now proceed by proving Theorem 6.13. In this section, rather than working with
the total variation distance between two measures, it is more convenient to work with
the so-called Hellinger distance, which is defined, for discrete measures p = (px)x∈X and
q = (qx)x∈X by

dH(p, q) =

√
1

2

∑
x

(
√
px −

√
qx)2. (6.6.10)

It is readily seen that dH and dTV are quite intimately related:

Exercise 6.30 (Total variation and Hellinger distance). Prove that, for discrete probability
measures p = (px)x∈X and q = (qx)x∈X ,

dH(p, q)2 ≤ dTV(p, q) ≤ 21/2dH(p, q). (6.6.11)

Exercise 6.31 (Asymptotic equivalence and Hellinger distance). Use Exercises 6.28 and
6.30 to prove that p(n) = (p(n)

x )x∈X and q(n) = (q(n)
x )x∈X are asymptotically equivalent if

and only if dH(p(n), q(n))→ 0.

We define

ρ(p, q) = 2dH(BE(p),BE(q))2 =
(√
p−√q

)2
+
(√

1− p−
√

1− q
)2
, (6.6.12)
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and note that
ρ(p, q) ≤ (p− q)2(p−1 + (1− p)−1). (6.6.13)

Exercise 6.32 (Bound on Hellinger distance Bernoulli variables). Prove that ρ(p, q) ≤
(p− q)2

(
p−1 + (1− p)−1

)
.

In particular, Exercise 6.32 implies that when p ≤ 1− ε, then

ρ(p, q) ≤ C(p− q)2/p (6.6.14)

for some C = C(ε) > 0. Now we are ready to complete the proof of Theorem 6.13:

Proof of Theorem 6.13. Let IRGn(p) and IRGn(q) with p = (pij)1≤i<j≤n and q =
(qij)1≤i<j≤n be two inhomogeneous random graphs. The asymptotic equivalence of IRGn(p)
and IRGn(q) is equivalent to the asymptotic equivalence of the edge variables, which are
independent Bernoulli random variables with success probabilities p = (pij)1≤i<j≤n and
q = (qij)1≤i<j≤n. In turn, asymptotic equivalence of the edge variables is equivalent to
the fact that dH(p, q) = o(1), which is what we shall prove now.

For two discrete probability measures p = (px)x∈X and q = (qx)x∈X , we denote

H(p, q) = 1− 1

2
dH(p, q)2 =

∑
x∈X

√
px
√
qx. (6.6.15)

We shall assume that
X = X (1) × · · · × X (m) (6.6.16)

is of product form, and, for x = (x1, . . . , xm) ∈ X ,

px =

m∏
i=1

p(i)
xi , qx =

m∏
i=1

q(i)xi (6.6.17)

are product measures, so that p and q correspond to the probability mass functions of
independent random variables. Then, due to the product structure of (6.6.15), we obtain

H(p, q) =

m∏
i=1

H(p(i), q(i)). (6.6.18)

For IRGn(p) and IRGn(q) with p = (pij)1≤i<j≤n and q = (qij)1≤i<j≤n, the edges are
independent, so that

H(p, q) =
∏

1≤i<j≤n

(1− 1

2
ρ(pij , qij)), (6.6.19)

so that
dH(p, q) =

√
2− 2H(p, q). (6.6.20)

As a result, dH(p, q) = o(1) precisely when H(p, q) = 1 + o(1). By (6.6.19) and using that
(1− x)(1− y) ≥ 1− x− y and 1− x ≤ e−x, we obtain

1− 1

2

∑
1≤i<j≤n

ρ(pij , qij) ≤ H(p, q) ≤ e−
1
2

∑
1≤i<j≤n ρ(pij ,qij), (6.6.21)

so that H(p, q) = 1 − o(1) precisely when
∑

1≤i<j≤n ρ(pij , qij) = o(1). By (6.6.14), we
further obtain that when max1≤i<j≤n pij ≤ 1− ε for some ε > 0, then∑

1≤i<j≤n

ρ(pij , qij) ≤ C
∑

1≤i<j≤n

(pij − qij)2

pij
= o(1), (6.6.22)
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by (6.6.2). This completes the proof of the first part of Theorem 6.13. For the second part,
we note that if (6.6.3) holds, then we can find a sequence εn such that

P
( ∑

1≤i<j≤n

(pij − qij)2

pij
≤ εn

)
= 1− o(1). (6.6.23)

Then, the asymptotic equivalence of IRGn(p) and IRGn(q) is, in turn, equivalent to the

asymptotic equivalence of IRGn(p) and IRGn(q) conditionally on
∑

1≤i<j≤n
(pij−qij)2

pij
≤

εn. For the latter, we can use the first part of Theorem 6.13.

In fact, tracing back the above proof, we see that under the assumptions of Theorem 6.13,
we also obtain that ρ(p, q) ≥ c(p − q)2/p for some c = c(ε) ≥ 0. Thus, we can strengthen
Theorem 6.13 to the fact that IRGn(p) and IRGn(q) are asymptotically equivalent if and
only if (6.6.2) holds.

6.7 Related inhomogeneous random graph models

We now discuss two examples of inhomogeneous random graphs which have appeared
in the literature, and are related to the generalized random graph. We start with the
expected degree random graph.

6.7.1 Chung-Lu model or expected degree random graph

In this section, we prove a coupling result for the degrees of the Chung-Lu random
graph, where the edge probabilities are given by

p(CL)

ij =
wiwj
`n
∧ 1, (6.7.1)

where again

`n =

n∑
i=1

wi. (6.7.2)

When maxni=1 w
2
i ≤ `n, we may forget about the maximum with 1 in (6.7.1). We shall as-

sume maxni=1 w
2
i ≤ `n throughout this section, and denote the resulting graph by CLn(w).

Naturally, when wi√
`n

is quite small, there is hardly any difference between edge weights

pij =
wiwj

`n+wiwj
and pij =

wiwj
`n

. Therefore, one would expect that these models behave

rather similarly. We shall make use of Theorem 6.13, and investigate the asymptotic
equivalence of CLn(w) and GRGn(w):

Theorem 6.14 (Asymptotic equivalence of CL and GRG with deterministic weights).
The random graphs CLn(w) and GRGn(w) are asymptotically equivalent precisely when∑

i∈[n]

w3
i = o(n3/2), (6.7.3)

where Wn is the weight of a uniformly chosen vertex in [n].

Proof. We make use of Theorem 6.13. For this, we compute, for fixed ij, and using the
fact that 1− 1/(1 + x) ≤ x,

p(CL)

ij − pij =
wiwj
`n
− wiwj
`n + wiwj

=
wiwj
`n

[
1− 1

1 +
wiwj
`n

]
≤
w2
iw

2
j

`2n
. (6.7.4)
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Moreover, since wi = o(
√
n) by Assumption 6.1(a)-(c) and Exercise 6.3, for n sufficiently

large

pij =
wiwj

`n + wiwj
≥ wiwj/(2`n), (6.7.5)

we arrive at∑
1≤i<j≤n

(pij − p(CL)

ij )2

pij
≤ 2`−3

n

∑
1≤i<j≤n

w3
iw

3
j ≤ `−3

n

( n∑
i=1

w3
i

)2

= o(1), (6.7.6)

by (6.7.3).

When Assumption 6.1(a)-(c) hold, Exercise 6.3 implies that maxi∈[n] wi = o(
√
n), so that∑

i∈[n]

w3
i = o(

√
n)
∑
i∈[n]

w2
i = o(n3/2)E[W 2

n ] = o(n3/2). (6.7.7)

Thus, we have proved the following corollary:

Corollary 6.15 (Asymptotic equivalence of CL and GRG). Assume that Assumption
6.1(a)-(c) hold. Then, the random graphs CLn(w) and GRGn(w) are asymptotically equiv-
alent.

We can prove stronger results linking the degree sequences of CLn(w) and GRGn(w)
for deterministic weights given by (6.1.11) when E[W ] <∞, by splitting between vertices
with small and high weights, but we refrain from doing so.

6.7.2 Norros-Reittu model or the Poisson graph process

In [152], the authors introduce a random multigraph with a Poisson number of edges in
between any two vertices i and j, with parameter equal to wiwj/`n. The graph is defined
as a graph process, where at each time t, a new vertex is born with an associated weight wt.
The number of edges between i and t is Poi(wiwt/`t) distributed. Furthermore, at each
time each of the older edges is erased with probability equal to wt/`t. We claim that the
number of edges between vertices i and j at time t is a Poisson random variable with mean
wiwj
`t

, and that the number of edges between the various pairs of vertices are independent.

To see this, we start by observing a useful property of Poisson random variables:

Exercise 6.33 (Poisson number of Bernoulli variables is Poisson). Let X be a Poisson
random variable with mean λ, and let (Ii)

∞
i=1 be an independent and identically distributed

sequence of BE(p) random variables. Prove that

Y =

X∑
i=1

Ii (6.7.8)

has a Poisson distribution with mean λp.

We make use of Exercise 6.33 to prove that the number of edges between vertices i and
j at time t is a Poisson random variable with mean

wiwj
`t

, and that the number of edges

between different pairs are independent. Indeed, making repeated use of Exercise 6.33
shows that the number of edges at time t between vertices i and j, for i < j, is Poisson
with parameter

wiwj
`j

t∏
s=j+1

(1− ws
`s

) =
wiwj
`j

t∏
s=j+1

(
`s−1

`s
) =

wiwj
`t

, (6.7.9)
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as required. The independence of the number of edges between different pairs of vertices
follows by the independence in the construction of the graph.

The Norros-Reittu graph process produces a multigraph. However, when the weights
are sufficiently bounded, it can be seen that the resulting graph is with positive probability
simple:

Exercise 6.34 (Simplicity of the Norros-Reittu random graph). Compute the probability
that the Norros-Reittu random graph is simple at time n.

Exercise 6.35 (The degree of a fixed vertex). Assume that Assumptions 6.1(a)-(b) hold.
Prove that the degree of vertex k in the Norros-Reittu graph at time n has an asymptotic
mixed Poisson distribution with mixing distribution F , the asymptotic distribution function
of Wn.

We now discuss the Norros-Reittu model at time n, ignoring the dynamic formulation
given above. We shall denote this graph by NRn(w). The Norros-Reittu is a multigraph,
for which the probability that there is at least one edge between vertices i and j exists is,
conditionally on the weights (wi)i∈[n], given by

p(NR)

ij = 1− e
−
wiwj
`n , (6.7.10)

and the occupation status of different edges is independent.
We next return to the relation between the various random graph models discussed in

this section. We shall fixe the weights to be equal to (wi)i∈[n], and compare the generalized
random graph, Chung-Lu model and Norros-Reittu model with these weights. The latter
is denoted by NRn(w).

We say that a random graph Gn is stochastically dominated by the random graph
G′n when, with (Xij)1≤i<j≤n and (X ′ij)1≤i<j≤n denoting the occupation statuses of the

edges in Gn and G′n respectively, there exists a coupling
(

(X̂ij)1≤i<j≤n, (X̂
′
ij)1≤i<j≤n

)
of

(Xij)1≤i<j≤n and (X ′ij)1≤i<j≤n such that

P
(
X̂ij ≤ X̂ ′ij∀i, j ∈ [n]

)
= 1. (6.7.11)

We write Gn � G′n when the random graph Gn is stochastically dominated by the random
graph G′n.

Exercise 6.36 (Stochastic domination of increasing random variables). Let Gn � G′n. Let
the random variable X(G) be an increasing random variable of the edge occupation random
variables of the graph G. Let Xn = X(Gn) and X ′n = X(G′n). Show that Xn � X ′n.

When the statuses of the edges are independent, then (6.7.11) is equivalent to the bound
that, for all i, j ∈ [n],

pij = P(Xij = 1) ≤ p′ij = P(X ′ij = 1). (6.7.12)

We note that, by (6.7.12) and the fact that, for every x ≥ 0,

x

1 + x
≤ 1− e−x ≤ max{x, 1}, (6.7.13)

we have that
GRGn(w) � NRn(w) � CLn(w). (6.7.14)

This provides a good way of comparing the various inhomogeneous random graph models
discussed in this chapter.

Exercise 6.37 (Asymptotic equivalence of IRGs). Assume that Assumptions 6.1(a)-(c)
hold. Show that NRn(w) is asymptotically equivalent to GRGn(W ).
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6.8 Notes and discussion

Notes on Section 6.1. In the generalized random graph studied in [52], the situation
where the vertex weights are i.i.d. is investigated, and `n in the denominator of the edge
probabilities in (6.1.1) is replaced by n, which leads to a minor change. Indeed, when the
weights have finite mean, then `n = E[W ]n(1 + o(1)), by the law of large numbers. If we
would replace `n by E[W ]n in (6.1.1), then the edge occupation probabilities become

wiwj
E[W ]n+ wiwj

, (6.8.1)

so that this change amounts to replacing wi by wi/
√

E[W ]. Therefore, at least on a
heuristic level, there is hardly any difference between the definition of pij in (6.1.1), and
the choice pij =

wiwj
n+wiwj

in [52].

In the literature, both the cases with i.i.d. weights as well as the one with deterministic
weights have been studied. In [59, 60, 61, 64, 133], the Chung-Lu model, as defined in
Section 6.7, is studied with deterministic weights. In [87], general settings are studied,
including the one with deterministic weights as in (6.1.11). In [52], on the other hand, the
generalized random graph is studied where the weights are i.i.d., and in [87] for several
cases including the one for i.i.d. degrees, in the case where the degrees have finite variance
degrees, for the Chung-Lu model, the Norros-Reittu model, as well as the generalized
random graph.

The advantage of deterministic weights is that there is no double randomness, which
makes the model easier to analyse. The results are also more general, since often the
results for random weights are a simple consequence of the ones for deterministic weights.
On the other hand, the advantage of working with i.i.d. weights is that the vertices are
exchangeable, and, in contrast to the deterministic weights case, not many assumptions
need to be made. For deterministic weights, one often has to make detailed assumptions
concerning the precise structure of the weights.

Notes on Section 6.2. The results in this section are novel, and are inspired by the
ones in [52].

Notes on Section 6.3. The results in this section are novel, and are inspired by the
ones in [52].

Notes on Section 6.4. Theorem 6.9 is [52, Proof of Theorem 3.2], whose proof we
follow. Exercise 6.20 is novel.

Notes on Section 6.5. The proof in Section 6.5 follows the argument in [52, Section 3].

Notes on Section 6.6. Theorem 6.13 is [107, Corollary 2.12]. In [107], there are many
more examples and results, also investigating the notion of asymptotic contiguity of random
graphs, which is a slightly weaker notion than asymptotic equivalence, and holds when
events that have vanishing probability under one measure also have vanishing probabilities
under the other. There are deep relations between convergence in probability and in
distribution and asymptotic equivalence and contiguity, see [107, Remark 1.4].

Notes on Section 6.7. The expected degree random graph, or Chung-Lu model, has
been studied extensively by Chung and Lu in [59, 60, 61, 64, 133]. See in particular the
recent book [62], in which many of these results are summarized.



Chapter 7

Configuration model

In this chapter, we investigate graphs with fixed degrees. Ideally, we would like to inves-
tigate uniform graphs having a prescribed degree sequence, i.e, a degree sequence which
is given to us beforehand. An example of such a situation could arise from a real-world
network, of which we know the degree sequence, and we would be interested in generating
a random graph with precisely the same degrees.

As it turns out, it is not a trivial task to generate graphs having prescribed degrees,
in particular, because they may not exist (recall (I.3) on page 120). We shall therefore
introduce a model that produces a multigraph with the prescribed degrees, and which,
when conditioned on simplicity, is uniform over all simple graphs with the prescribed
degree sequence. This random multigraph is called the configuration model. We shall
discuss the connections between the configuration model and a uniform simple random
graph having the same degree sequence, and give an asymptotic formula for the number
of simple graphs with a given degree sequence.

This chapter is organized as follows. In Section 7.1, we shall introduce the configuration
model. In Sections 7.2, we shall investigate properties of the configuration model, given
that the degrees satisfy some regularity conditions. We shall investigate two ways of turning
the configuration model into a simple graph, namely, by erasing the self-loops and multiple
edges, or by conditioning on obtaining a simple graph. For the latter, we compute the
asymptotic probability of the configuration model to be simple. This also allows us to
compute the asymptotic number of graphs with a given degree sequence in the case where
the degrees are not too large. In Section 7.4, we shall discuss the tight relations that
exist between the configuration model conditioned on being simple, and the generalized
random graph conditioned on its degrees. This relation shall prove to be quite useful when
deducing results for the generalized random graph from those for the configuration model.
In Section 7.5, we treat the special case of i.i.d. degrees. We close this chapter in Section
7.6 with notes and discussion.

7.1 Introduction to the model

Fix an integer n. Consider a sequence d = (di)i∈[n]. The aim is to construct an
undirected (multi)graph with n vertices, where vertex j has degree dj . Without loss of
generality, throughout this chapter, we shall assume that dj ≥ 1 for all j ∈ [n], since when
dj = 0, vertex j is isolated and can be removed from the graph. One possible random
graph model is then to take the uniform measure over such undirected and simple graphs.
Here, we call a graph simple when it has no self-loops and no multiple edges between any
pair of vertices. However, the set of undirected simple graphs with n vertices where vertex
j has degree dj may be empty. For example, in order for such a graph to exist, we must
assume that the total degree

`n =
∑
j∈[n]

dj (7.1.1)

is even. We wish to construct a simple graph such that (di)i∈[n] are the degrees of the
n vertices. However, even when `n =

∑
j∈[n] dj is even, this is not always possible, as

explained in more detail in (I.3) on page 120.

Exercise 7.1 (Non-graphical degree sequence). Find a simple example of a (di)i∈[n] sat-
isfying that `n =

∑
j∈[n] dj is even, for which there is no simple graph where vertex i has

145
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degree di.

Since it is not always possible to construct a simple graph with a given degree sequence,
instead, we can construct a multigraph, that is, a graph possibly having self-loops and
multiple edges between pairs of vertices. One way of obtaining a uniform multigraph with
the given degree sequence is to pair the half-edges attached to the different vertices in a
uniform way. Two half-edges together form an edge, thus creating the edges in the graph.

To construct the multigraph where vertex j has degree dj for all j ∈ [n], we have n
separate vertices and incident to vertex j, we have dj half-edges. Every half-edge needs
to be connected to another half-edge to build the graph. The half-edges are numbered in
an arbitrary order from 1 to `n. We start by randomly connecting the first half-edge with
one of the `n − 1 remaining half-edges. Once paired, two half-edges form a single edge of
the multigraph. Hence, a half-edge can be seen as the left or the right half of an edge. We
continue the procedure of randomly choosing and pairing the half-edges until all half-edges
are connected, and call the resulting graph the configuration model with degree sequence d,
abbreviated as CMn(d).

Unfortunately, vertices having self-loops, as well as multiple edges may occur. However,
we shall see that self-loops and multiple edges are scarce when n → ∞. Clearly, when
the total degree `n =

∑
j∈[n] dj is even, then the above procedure produces a multigraph

with the right degree sequence. Here, in the degree sequence of the multigraph, a self-loop
contributes two to the degree of the vertex incident to it, while each of the multiple edges
contributes one to the degree of each of the two vertices incident to it.

To explain the term configuration model, we now present an equivalent way of defining
the configuration model. For this, we construct a second graph, with vertices 1, . . . , `n.
These vertices in the new graph will correspond to the edges of the random multigraph
in the configuration model. We pair the vertices in a uniform way to produce a uniform
matching. For this, we pair vertex 1 with a uniform other vertex. After this, we pair the
first not yet paired vertex to a uniform vertex which is not yet paired. The procedure stops
when all vertices are paired to another (unique) vertex. We denote the resulting graph
by Confn(d). Thus, Confn(d) can be written as Confn(d) = {iσ(i) : i ∈ [`n]}, where σ(i)
is the label of the vertex to which vertex i ∈ [`n] is paired. The pairing of the vertices
1, . . . , `n is called a configuration, and each configuration has the same probability.

Exercise 7.2 (The number of configurations). Prove that there are (2m − 1)!! = (2m −
1)(2m− 3) · · · 3 · 1 different ways of pairing vertices 1, . . . , 2m.

To construct the graph of the configuration model from the above configuration, we
identify vertices 1, . . . , d1 in Confn(d) to form vertex 1 in CMn(d), and vertices d1 +
1, . . . , d1 +d2 in Confn(d) to form vertex 2 in CMn(d), etc. Therefore, precisely dj vertices
in Confn(d) are identified with vertex j in CMn(d).

In the above identification, the number of edges in CMn(d) between vertices i, j ∈ [n] is
the number of vertices in Confn(d) that are identified with i ∈ CMn(d) and are paired to
the vertex in Confn(d) that is identified with vertex j ∈ CMn(d). As a consequence, the
degree of vertex j in CMn(d) is precisely equal to dj . The resulting graph is a multigraph,
since both self-loops and multiple edges between vertices are possible. We can identify
the graph as CMn(d) = (Xij)i,j∈[n], where Xij is the number of edges between vertices
i, j ∈ [n] and Xii is the number of self-loops of vertex i ∈ [n], so that, for all i ∈ [n],

di = Xii +
∑
j∈[n]

Xij . (7.1.2)

Here, the number of self-loops of vertex i, Xii, appears twice, so that a self-loop contributes
2 to the degree. Since the uniform matching of the `n vertices in Confn(d) is sometimes
referred to as the configuration, the resulting graph CMn(d) is called the configuration
model.
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We note (see e.g. [108, Section 1]) that not all multigraph has the same probability,
i.e., not every multigraph is equally likely and the measure obtained is not the uniform
measure on all multigraphs with the prescribed degree sequence. Indeed, there is a weight
1/j! for every edge of multiplicity j, and a factor 1/2 for every self-loop:

Proposition 7.1 (The law of CMn(d)). Let G = (xij)i,j∈[n] be a multigraph on the vertices
[n] which is such that

di = xii +
∑
j∈[n]

xij . (7.1.3)

Then,

P(CMn(d) = G) =
1

(`n − 1)!!

∏
i∈[n] di!∏

i∈[n] 2xii
∏

1≤i≤j≤n xij !
. (7.1.4)

Proposition 7.1 implies that if we condition on the graph as being simple, then the
resulting graph is a uniform simple graph with the prescribed degree sequence. Here, we
call a graph G = (xij)i,j∈[n] simple whenever xij ∈ {0, 1} for every i, j ∈ [n] with i 6= j,
and xii = 0 for every i ∈ [n], i.e., there are no multiple edges and no self-loops.

Proof. By Exercise 7.2, the number of configurations is equal to (`n − 1)!!. Each configu-
ration has the same probability, so that

P(CMn(d) = G) =
1

(`n − 1)!!
N(G), (7.1.5)

where N(G) is the number of configurations that, after identifying the vertices, give the
multigraph G. We note that if we permute the half-edges incident to a vertex, then the
resulting multigraph remains unchanged, and there are precisely

∏
i∈[n] di! ways to permute

the half-edges incident to all vertices. Some of these permutations, however, give rise to the
same configuration. The factor xij ! compensates for the multiple edges between vertices
i, j ∈ [n], and the factor 2xii compensates for the fact that the paring kl and lk in Confn(d)
give rise to the same configuration.

Exercise 7.3 (Example of multigraph). Let n = 2, d1 = 2 and d2 = 4. Use the direct
connection probabilities to show that the probability that CMn(d) consists of 3 self-loops
equals 1/5. Hint: Note that when d1 = 2 and d2 = 4, the graph CMn(d) consists only of
self-loops precisely when the first half-edge of vertex 1 connects to the second half-edge of
vertex 1.

Exercise 7.4 (Example of multigraph (Cont.)). Let n = 2, d1 = 2 and d2 = 4. Use
Proposition 7.1 to show that the probability that CMn(d) consists of 3 self-loops equals 1/5.

The flexibility in choosing the degree sequence d gives us a similar flexibility as in
choosing the vertex weights w in Chapter 6. However, in this case, the choice of the vertex
degrees gives a much more direct control over the topology of the graph. For example, for
CMn(d), it is possible to build graphs with fixed degrees, or where all degrees are at least
a certain value. In many applications, such flexibility is rather convenient. For example,
it allows us to generate a (multi)graph with precisely the same degrees as a real-world
network, so that we can investigate whether the real-world network is similar to it or not.

The configuration model with fixed degrees has a long history, see e.g. [42, Section 2.4].
One specific example is to take the degrees all equal, in which case we speak of a random
regular graph.

As in Chapter 6, we shall again impose regularity conditions on the degree sequence d.
In order to state these assumptions, we introduce some notation. We denote the degree of
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a uniformly chosen vertex V in [n] by Dn = dV . The random variable Dn has distribution
function Fn given by

Fn(x) =
1

n

∑
j∈[n]

1l{dj≤x}. (7.1.6)

We assume that the vertex degrees satisfy the following regularity conditions:

Assumption 7.2 (Regularity conditions for vertex degrees).
(a) Weak convergence of vertex weight.
There exists a distribution function F such that

Dn
d−→ D, (7.1.7)

where Dn and D have distribution functions Fn and F , respectively.
Equivalently, for any x,

lim
n→∞

Fn(x) = F (x). (7.1.8)

(b) Convergence of average vertex degrees.

lim
n→∞

E[Dn] = E[D], (7.1.9)

where Dn and D have distribution functions Fn and F , respectively. Further, we assume
that P(D ≥ 1) = 1.
(c) Convergence of second moment vertex degrees.

lim
n→∞

E[D2
n] = E[D2]. (7.1.10)

Similarly to Assumption 6.1 in Chapter 6, we shall almost always assume that Assump-
tions 7.2)(a)-(b) hold, and only sometimes assume Assumption 6.1(c). We note that, since
di only takes values in the integers, so does Dn, and therefore so must the limiting random
variable D. As a result, the limiting distribution function F is constant between integers,
and makes a jump P(D = x) at x ∈ N. As a result, the distribution function F does have
discontinuity points, and the weak convergence in (7.1.7) usually only implies (7.1.8) at
continuity points. However, since Fn is constant in between integers, we do obtain the
implication:

Exercise 7.5 (Weak convergence integer random variables). Let (Dn) be a sequence of

integer random variables such that Dn
d−→ D. Show that, for all x ∈ R,

lim
n→∞

Fn(x) = F (x), (7.1.11)

and that also limn→∞ P(Dn = x) = P(D = x) for every x ∈ N.

Instead of defining CMn(d) in terms of the degrees, we could have defined it in terms
of the number of vertices with fixed degrees. Indeed, let

nk =
∑
i∈[n]

1l{di=k} (7.1.12)

denote the number of vertices with degree k. Then, clearly, apart from the vertex labels,
the degree sequence d is uniquely determined by the sequence (nk)k≥0. Then, Assumption
7.2(a) is equivalent to limn→∞ nk/n = P(D = k), while Assumption 7.2(b) is equivalent to
limn→∞

∑
k≥0 knk/n = E[D].

We next describe two canonical ways of obtaining a degree sequence d such that As-
sumption 7.2 holds.
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The configuration model with fixed degrees moderated by F . Fix a distribution
function F of an integer random variable D. We take the number of vertices with degree
k to be equal to

nk = dnF (k)e − dnF (k − 1)e, (7.1.13)

and take the corresponding degree sequence d = (di)i∈[n] the unique ordered degree se-
quence compatible with (nk)k≥0. Clearly, for this sequence, Assumption 7.2(a) is satisfied:

Exercise 7.6 (Regularity condition for configuration model moderated by F ). Fix CMn(d)
be such that there are precisely nk = dnF (k)e − dnF (k − 1)e vertices with degree k. Show
that Assumption 7.2(a) holds.

The nice thing about our example is that

Fn(k) =
1

n
dnF (k)e. (7.1.14)

In particular, Dn � D, since Fn(x) ≥ F (x) for every x. As a result, Assumption 7.2(b)
holds whenever E[D] <∞, and Assumption 7.2(c) whenever E[D2] <∞:

Exercise 7.7 (Regularity condition for configuration model moderated by F (Cont.)). Fix
CMn(d) be such that there are precisely nk = dnF (k)e − dnF (k − 1)e vertices with degree
k. Show that Assumption 7.2(b) holds whenever E[D] <∞.

The configuration model with i.i.d. degrees. The next canonical example arises by
assuming that the degrees D = (Di)i∈[n] are an i.i.d. sequence of random variables. When
we extend the construction of the configuration model to i.i.d. degrees D, we should bear
in mind that the total degree

Ln =
∑
i∈[n]

Di (7.1.15)

is odd with probability close to 1/2, as the following exercise shows:

Exercise 7.8 (Probability of i.i.d. sum to be odd). Assume that (Di)i≥1 is an i.i.d.
sequence of random variables. Prove that Ln =

∑
i∈[n] Di is odd with probability close to

1/2. For this, note that

P(Ln is odd) =
1

2

[
1− E[(−1)Ln ]

]
. (7.1.16)

Then compute
E[(−1)Ln ] = φD1(π)n, (7.1.17)

where
φD1(t) = E[eitD1 ] (7.1.18)

is the characteristic function of the degree D1. Prove that, when P(D even) 6= 1, |φD1(π)| <
1, so that P(Ln is odd) is exponentially close to 1

2
.

There are different possible solutions to overcome the problem of an odd total degree
Ln, each producing a graph with similar characteristics. We make use of the following
solution: If Ln is odd, then we add a half-edge to the nth vertex, so that Dn is increased
by 1, i.e., di = Di + 1l{Ln odd,i=n}. This single half-edge will make hardly any difference
in what follows, and we will ignore this effect. Also, we warn the reader that now Dn
has two distinct meanings. The first is the distribution of the degree of a random vertex
Dn = dV , the second the nth element of the sequence D = (Di)i∈[n]. In what follows, we
shall always be clear about the meaning of Dn, which is always equal to Dn = dV unless
explicitly stated otherwise.

It is not hard to see that Assumption 7.2 follows from the Law of Large Numbers:
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Exercise 7.9 (Regularity condition for configuration model with i.i.d. degrees). Fix CMn(d)
with degrees d given by di = Di + 1l{Ln odd,i=n}, where (Di)i∈[n] is an i.i.d. sequence of
integer random variables. Show that Assumption 7.2(a) holds, whereas Assumption 7.2(b)
and (c) hold when E[D] and E[D2], respectively, are finite. Here the convergence is replaced
with convergence in probability.

Organization of the remaining chapter. In this chapter, we study the configuration
model both with fixed degrees, as well as with i.i.d. degrees. We focus on two main results.
The first main result shows that when we erase all self-loops and combine the multiple
edges into one, then we obtain a graph with asymptotically the same degree sequence.
This model is also referred to as the erased configuration model, see also [52, Section 2.1].

In the second main result, we investigate the probability that the configuration model
actually produces a simple graph. Remarkably, even though there could be many self-loops
and multiple edges, in the case when the degrees are not too large, there is an asymptotically
positive probability that the configuration model produces a simple graph. Therefore, we
may obtain a uniform simple random graph by repeating the procedure until we obtain a
simple graph. As a result, this model is sometimes called the repeated configuration model.
The fact that the configuration model yields a simple graph with asymptotically positive
probability has many interesting consequences that we shall explain in some detail. For
example, it allows us to compute the asymptotics of the number of simple graphs with a
given degree sequence.

7.2 Erased configuration model

We first define the erased configuration model. We fix the degrees d. We start with the
multigraph CMn(d) and erase all self-loops, if any exist. After this, we merge all multiple
edges into single edges. Therefore, the erased configuration model yields a simple random
graph, where two vertices are connected by an edge if and only if there is (at least one)
edge connecting them in the original multigraph definition of the configuration model.

We next introduce some notation. We denote the degrees in the erased configuration
model by D(er) = (D(er)

i )i∈[n], so that

D(er)

i = di − 2si −mi, (7.2.1)

where (di)i∈[n] are the degrees in the configuration model, si = xii is the number of self-
loops of vertex i in the configuration model, and

mi =
∑
j 6=i

(xij − 1)1l{xij≥2} (7.2.2)

is the number of multiple edges removed from i.
Denote the empirical degree sequence (p(n)

k )k≥1 in the configuration model by

p(n)

k =
1

n

∑
i∈[n]

1l{di=k}, (7.2.3)

and denote the related degree sequence in the erased configuration model (P (er)

k )k≥1 by

P (er)

k =
1

n

∑
i∈[n]

1l{D(er)
i =k}. (7.2.4)

From the notation it is clear that (p(n)

k )k≥1 is a deterministic sequence since (di)i∈[n] is

deterministic, while (P (er)

k )k≥1 is a random sequence, since the erased degrees (D(er)

i )i∈[n]

is a random vector.
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Exercise 7.10 (Mean degree sequence equals average degree). Prove that

∞∑
k=1

kp(n)

k =
1

n

∑
i∈[n]

di =
`n
n
. (7.2.5)

Now we are ready to state the main result concerning the degree sequence of the erased
configuration model:

Theorem 7.3 (Degree sequence of erased configuration model with fixed degrees). For
fixed degrees d satisfying Assumption 7.2(a)-(b), the degree sequence of the erased config-

uration model (P (er)

k )k≥1 converges to (pk)k≥1. More precisely, for every ε > 0,

P
( ∞∑
k=1

|P (er)

k − pk| ≥ ε
)
→ 0. (7.2.6)

Proof. By (??) and the fact that pointwise convergence of a probability mass function is
equivalent to convergence in total variation distance (recall Exercise 2.14), we obtain that

lim
n→∞

∞∑
k=1

|p(n)

k − pk| = 0. (7.2.7)

Therefore, we can take n so large that

∞∑
k=1

|p(n)

k − pk| ≤ ε/2. (7.2.8)

We start by proving the result under the extra assumption that

max
i∈[n]

di = o(
√
n), (7.2.9)

For this, we bound P(
∑∞
k=1 |P

(er)

k − p(n)

k | ≥ ε/2). For this, we use (7.2.1), which implies

that D(er)

i 6= di if and only if 2si +mi ≥ 1. We use

∞∑
k=1

|P (er)

k − p(n)

k | ≤
1

n

∞∑
k=1

∑
i

|1l{D(er)
i =k} − 1l{di=k}|, (7.2.10)

and write out that

1l{D(er)
i =k} − 1l{di=k} = 1l{D(er)

i =k,di>k}
− 1l{D(er)

i <k,di=k}

= 1l{si+mi>0}
(
1l{D(er)

i =k} − 1l{di=k}
)
. (7.2.11)

Therefore,
|1l{D(er)

i =k} − 1l{di=k}| ≤ 1l{si+mi>0}
(
1l{D(er)

i =k} + 1l{di=k}
)
, (7.2.12)

so that
∞∑
k=1

|P (er)

k − p(n)

k | ≤
1

n

∞∑
k=1

∑
i∈[n]

|1l{D(er)
i =k} − 1l{di=k}|

≤ 1

n

∑
i∈[n]

1l{si+mi>0}

∞∑
k=1

(
1l{D(er)

i =k} + 1l{di=k}
)

=
2

n

∑
i∈[n]

1l{si+mi>0} ≤
2

n

∑
i∈[n]

(si +mi). (7.2.13)
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We denote the number of self-loops by Sn and the number of multiple edges by Mn, that
is

Sn =
∑
i∈[n]

si, Mn =
1

2

∑
i∈[n]

mi. (7.2.14)

Then, by (7.2.13),

P
( ∞∑
k=1

|P (er)

k − p(n)

k | ≥ ε/2
)
≤ P

(
2Sn + 4Mn ≥ εn/2

)
, (7.2.15)

so that Theorem 7.3 follows if

P(2Sn + 4Mn ≥ εn/2)→ 0. (7.2.16)

By the Markov inequality (Theorem 2.14), we obtain

P(2Sn + 4Mn ≥ εn/2) ≤ 4

εn

(
E[Sn] + 2E[Mn]

)
. (7.2.17)

Bounds on E[Sn] and E[Mn] are provided in the following proposition:

Proposition 7.4 (Bounds on the expected number of self-loops and multiple edge). The
expected number of self-loops Sn in the configuration model CMn(d) satisfies

E[Sn] ≤
∑
i∈[n]

d2
i

`n
, (7.2.18)

while the expected number of multiple edges Mn satisfies

E[Mn] ≤ 2
( ∑
i∈[n]

d2
i

`n

)2

. (7.2.19)

Proof. For a vertex i, and for 1 ≤ s < t ≤ di, we define Ist,i to be the indicator of the
event that the half-edge s is paired to the half-edge t. Here we number the half-edges, or
half-edges, of the vertices in an arbitrary way. Then

Sn =
∑
i∈[n]

∑
1≤s<t≤di

Ist,i. (7.2.20)

Therefore,

E[Sn] =
∑
i∈[n]

∑
1≤s<t≤di

E[Ist,i] =
∑
i∈[n]

1

2
di(di − 1)E[I12,i], (7.2.21)

since the probability of producing a self-loop by pairing the half-edges s and t does not
depend on s and t. Now, E[I12,i] is equal to the probability that half-edges 1 and 2 are
paired to each other, which is equal to (`n − 1)−1. Therefore,

E[Sn] =
1

2

∑
i∈[n]

di(di − 1)

`n − 1
≤
∑
i∈[n]

d2
i

`n
. (7.2.22)

Similarly, for vertices i and j, and for 1 ≤ s1 < s2 ≤ di and 1 ≤ t1 6= t2 ≤ dj , we define
Is1t1,s2t2,ij to be the indicator of the event that the half-edge s1 is paired to the half-edge
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t1 and half-edge s2 is paired to the half-edge t2. If Is1t1,s2t2,ij = 1 for some s1t1 and s2t2,
then there are multiple edges between vertices i and j. It follows that

Mn ≤
1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij , (7.2.23)

so that

E[Mn] ≤ 1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

E[Is1t1,s2t2,ij ]

=
1

4

∑
1≤i 6=j≤n

di(di − 1)dj(dj − 1)E[I11,22,ij ]. (7.2.24)

Now, since I11,22,ij is an indicator, E[I11,22,ij ] is the probability that I11,22,ij = 1, which is
equal to the probability that half-edge 1 of vertex i and half-edge 1 of vertex j, as well as
half-edge 2 of vertex i and half-edge 2 of vertex j are paired, which is equal to

E[I11,22,ij ] =
1

(`n − 1)(`n − 3)
. (7.2.25)

Therefore,

E[Mn] ≤
n∑

i,j=1

di(di − 1)dj(dj − 1)

4(`n − 1)(`n − 3)
=

(∑
i∈[n] di(di − 1)

)2

4(`n − 1)(`n − 3)
≤

2
(∑

i∈[n] di(di − 1)
)2

`2n
,

(7.2.26)

where we use that 8(`n − 1)(`n − 3) ≥ `2n since `n ≥ 4. Since Mn = 0 with probability one
when `n ≤ 3, the claim follows.

To complete the proof of Theorem 7.3 in the case that maxi∈[n] di = o(
√
n) (recall (7.2.9)),

we apply Proposition 7.4, we obtain

E[Sn] ≤
∑
i∈[n]

d2
i

`n
≤ max

i∈[n]
di = o(

√
n). (7.2.27)

The bound on E[Mn] is similar. By (7.2.17), this proves the claim.
To prove the result assuming only Assumption 7.2(a)-(b), we start by noting that As-

sumption 7.2(a)-(b) implies that maxi∈[n] di = o(n) (recall, e.g., Exercise 6.3). We note

that
∑∞
k=1 |P

(er)

k − p(n)

k | ≥ ε implies that the degrees of at least εn vertices are changed by
the erasure procedure. Take an →∞ arbitrarily slowly, such that there are at most εn/2

vertices i ∈ [n] of degree di ≥ an. Then,
∑∞
k=1 |P

(er)

k − p(n)

k | ≥ ε implies that the number
of vertices of degree at most an whose degrees are changed by the erasure procedure is at
least εn/2. Let

Sn(an) =
∑
i∈[n]

si1l{di≤an}, Mn(an) =
1

2

∑
i∈[n]

mi1l{di≤an} (7.2.28)

denote the number of self-loops and multiple edge incident to vertices of degree at most
an. Then, it is straightforward to adapt Proposition 7.4 to show that

E[Sn(an)] ≤
∑
i∈[n]

d2
i 1l{di≤an}

`n
, E[Mn(an)] ≤ 2

∑
i∈[n]

d2
i 1l{di≤an}

`n

∑
j∈[n]

d2
j

`n
. (7.2.29)
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Therefore, E[Sn(an)] ≤ an,E[Mn(an)] ≤ an maxj∈[n] dj . Take an so small that an maxj∈[n] dj =
o(n) (which is possible since maxj∈[n] dj = o(n)), then

P(2Sn(an) + 4Mn(an) ≥ εn/2) ≤ 4

εn

(
E[Sn(an)] + 2E[Mn(an)]

)
= o(1), (7.2.30)

as required.

7.3 Repeated configuration model and probability simplicity

In this section, we investigate the probability that the configuration model yields a
simple graph, i.e., the probability that the graph produced in the configuration model
has no self-loops nor multiple edges. Then the asymptotics of the probability that the
configuration model is simple is derived in the following theorem:

Theorem 7.5 (Probability of simplicity of CMn(d)). Assume that d = (di)i∈[n] satisfies
Assumption 7.2(a)-(c). Then, the probability that CMn(d) is a simple graph is asymptoti-

cally equal to e−ν/2−ν
2/4, where

ν = E[D(D − 1)]/E[D]. (7.3.1)

Theorem 7.5 is a consequence of the following result:

Proposition 7.6 (Poisson limit of self-loops and multiple edges). Assume that d =
(di)i∈[n] satisfies Assumption 7.2(a)-(c). Then (Sn,Mn) converges in distribution to (S,M),

where S and M are two independent Poisson random variables with means ν/2 and ν2/4.

Indeed, Theorem 7.5 is a simple consequence of Proposition 7.6, since CMn(d) is simple
precisely when Sn = Mn = 0. By the weak convergence result stated in Proposition 7.6 and
the independence of S and M , the probability that Sn = Mn = 0 converges to e−µS−µM ,
where µS and µM are the means of the limiting Poisson random variables S and M . Using
the identification of the means of S and M in Proposition 7.6, this completes the proof of
Theorem 7.5. We are left to prove Proposition 7.6.

Proof of Proposition 7.6. Throughout the proof, we shall assume that S and M are two
independent Poisson random variables with means ν/2 and ν2/4.

We make use of Theorem 2.6 which imply that it suffices to prove that the factorial
moments converge. Also, Sn is a sum of indicators, so that we can use Theorem 2.7 to
identify its factorial moments. For Mn, this is not so clear. However, we define

M̃n =
∑

1≤i<j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij , (7.3.2)

so that, by (7.2.23), Mn ≤ M̃n. We shall first show that with high probability Mn = M ′n.

Note that Mn < M̃n precisely when there exist vertices i 6= j such that there are at least
three edges between i and j. The probability that there are at least three edges between i
and j is bounded above by

di(di − 1)(di − 2)dj(dj − 1)(dj − 2)

(`n − 1)(`n − 3)(`n − 5)
. (7.3.3)

Thus, by Boole’s inequality, the probability that there exist vertices i 6= j such that there
are at least three edges between i and j is bounded above by

n∑
i,j=1

di(di − 1)(di − 2)dj(dj − 1)(dj − 2)

(`n − 1)(`n − 3)(`n − 5)
= o(1), (7.3.4)
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since di = o(
√
n) when Assumption 7.2(a)-(c) holds (recall Exercise 6.3) as well as `n ≥ n.

We conclude that the probability that there are i, j ∈ [n] such that there are at least three
edges between i and j is o(1) as n → ∞. As a result, (Sn,Mn) converges in distribution

to (S,M) precisely when (Sn, M̃n) converges in distribution to (S,M).

To prove that (Sn, M̃n) converges in distribution to (S,M), we use Theorem 2.6 to see
that we are left to prove that, for every s, r ≥ 0,

lim
n→∞

E[(Sn)s(M̃n)r] =
(ν

2

)s(ν2

4

)r
. (7.3.5)

By Theorem 2.7,

E[(Sn)s(M̃n)r] =
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

m
(2)
1 ,...,m

(2)
r ∈I2

P
(
I(1)

m
(1)
1

= . . . = I(1)

m
(1)
s

= I(2)

m
(2)
1

= . . . = I(2)

m
(2)
r

= 1
)
, (7.3.6)

where

I1 = {(st, i) : i ∈ [n], 1 ≤ s < t ≤ di}, (7.3.7)

I2 = {(s1t1, s2t2, i, j) : 1 ≤ i < j ≤ n, 1 ≤ s1 < s2 ≤ di, 1 ≤ t1 6= t2 ≤ dj}, (7.3.8)

and where, for m(1) = (st, i) ∈ I1 and m(2) = (s1t1, s2t2, i, j) ∈ I2,

I(1)

m(1) = Ist,i, I(2)

m(2) = Is1t1,s2t2,ij . (7.3.9)

Now, by the fact that all half-edges are uniformly paired, we have that

P
(
I(1)

m
(1)
1

= . . . = I(1)

m
(1)
s

= I(2)

m
(2)
1

= . . . = I(2)

m
(2)
r

= 1
)

=
1∏s+2r

i=0 (`n − 1− 2i)
, (7.3.10)

unless there is a conflict in the attachment rules, in which case

P
(
I(1)

m
(1)
1

= . . . = I(1)

m
(1)
s

= I(2)

m
(2)
1

= . . . = I(2)

m
(2)
r

= 1
)

= 0. (7.3.11)

Such a conflict arises precisely when a half-edge is required to be paired to two different
other half-half-edges. Since the upper bound in (7.3.10) always holds, we arrive at

E[(Sn)s(M̃n)r] ≤
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

∑∗

m
(2)
1 ,...,m

(2)
r ∈I2

1

(`n − 1)(`n − 3) · · · (`n − 1− 2s− 4r)

=
|I1|(|I1| − 1) · · · (|I1| − s+ 1)|̇I2|(|I2| − 1) · · · (|I2| − r + 1)

(`n − 1)(`n − 3) · · · (`n − 1− 2s− 4r)
. (7.3.12)

Since |I1|, |I2|, `n all tend to infinity, and s, r remain fixed, we have that

lim sup
n→∞

E[(Sn)s(M̃n)r] =
(

lim
n→∞

|I1|
`n

)s(
lim
n→∞

|I2|
`2n

)r
. (7.3.13)

Now,

lim
n→∞

|I1|
`n

= lim
n→∞

1

`n

∑
i∈[n]

di(di − 1)

2
= ν/2, (7.3.14)
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by Assumption 7.2(b)-(c). Further, again by Assumption 7.2(b)-(c) and also using that
di = o(

√
n) by Exercise 6.3, as well as `n ≥ n,

lim
n→∞

|I2|
`2n

= lim
n→∞

1

`2n

∑
1≤i<j≤n

di(di − 1)

2
dj(dj − 1)

=
(

lim
n→∞

1

`n

∑
i∈[n]

di(di − 1)

2

)2

− lim
n→∞

∑
i∈[n]

d2
i (di − 1)2

2`2n
= (ν/2)2. (7.3.15)

This provides the required upper bound.
To prove the matching lower bound, we note that, by (7.3.11),

∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

∑∗

m
(2)
1 ,...,m

(2)
r ∈I2

1∏s+2r
i=0 (`n − 1− 2i)

− E[(Sn)s(M̃n)r]

=
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

∑∗

m
(2)
1 ,...,m

(2)
r ∈I2

I
m

(1)
1 ,...,m

(1)
s ,m

(2)
1 ,...,m

(2)
r

(`n − 1)(`n − 3) · · · (`n − 1− 2s− 4r)
, (7.3.16)

where the indicator I
m

(1)
1 ,...,m

(1)
s ∈I1,m

(2)
1 ,...,m

(2)
r

is equal to one precisely when there is a

conflict in m(1)

1 , . . . ,m(1)
s ,m(2)

1 , . . . ,m(2)
r . There is a conflict precisely when there exist a

vertex i such that one of its half-edges s must be paired to two different half-edges. For
this, there has to be a pair of indices in m(1)

1 , . . . ,m(1)
s , m(2)

1 , . . . ,m(2)
r which create the

conflict. There are three such possibilities: (a) the conflict is created by m(1)
a ,m(1)

b for

some a, b; (b) the conflict is created by m(1)
a ,m(2)

b for some a, b; and (c) the conflict is

created by m(2)
a ,m(2)

b for some a, b. We shall bound each of these possibilities separately.

In case (a), the number of m(1)
c , c ∈ {1, . . . , s}\{a, b} and m(2)

d , d ∈ {1, . . . , r} is bounded

by |I1|s−2|I2|r. Thus, comparing with (7.3.12), we see that it suffices to prove that the

number of conflicting m(1)
a ,m(1)

b is o(|I1|2). Now, the number of conflicting m(1)
a ,m(1)

b is
bounded by ∑

i∈[n]

d3
i = o

( ∑
i∈[n]

di(di − 1)
)2

, (7.3.17)

where we use that di = o(
√
n), as required.

In case (b), the number of m(1)
c , c ∈ {1, . . . , s} \ {a} and m(2)

d , d ∈ {1, . . . , r} \ {b} is

bounded by |I1|s−1|I2|r−1, while the number of conflicting m(1)
a ,m(2)

b is bounded by

∑
i∈[n]

d3
i

∑
j∈[n]

d2
j = o

( ∑
i∈[n]

di(di − 1)
)3

, (7.3.18)

where we again use that di = o(
√
n), as required.

In case (c), the number of m(1)
c , c ∈ {1, . . . , s} and m(2)

d , d ∈ {1, . . . , r}\{a, b} is bounded

by |I1|s|I2|r−2, while the number of conflicting m(2)
a ,m(2)

b is bounded by

∑
i∈[n]

d3
i

∑
j∈[n]

d2
j

∑
k∈[n]

d2
k = o

( ∑
i∈[n]

di(di − 1)
)4

, (7.3.19)

where we again use that di = o(
√
n), as required. This completes the proof.
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Exercise 7.11 (Characterization moments independent Poisson variables). Show that the
moments of (X,Y ), where (X,Y ) are independent Poisson random variables with param-
eters µX and µY are identified by the relations, for r ≥ 1,

E[Xr] = µXE[(X + 1)r−1], (7.3.20)

and, for r, s ≥ 1,
E[XrY s] = µY E[Xr(Y + 1)s−1]. (7.3.21)

Exercise 7.12 (Alternative proof of Proposition 7.6). Give an alternative proof of Propo-
sition 7.6 by using Theorem 2.3(e) together with Exercise 7.11 and the fact that all joint
moments of (Sn,Mn) converge to those of (S,M), where S and M are two independent

Poisson random variables with means ν
2

and ν2

4
.

Exercise 7.13 (Average number of triangles CM). Compute the average number of occu-
pied triangles in CMn(d).

Exercise 7.14 (Poisson limit triangles CM). Show that the number of occupied triangles
in CMn(d) converges to a Poisson random variable when Assumption 7.2(a)-(c) holds.

7.4 Configuration model, uniform simple random graphs and
GRGs

In this section, we shall investigate the relations between the configuration model, uni-
form simple random graphs with given degrees, and the generalized random graph with
given weights. These results are ‘folklore’ in the random graph community, and allow to
use the configuration model to prove results for several other models.

Proposition 7.7 (Uniform graphs with given degree sequence). For any degree sequence
(di)i∈[n], and conditionally on the event {CMn(d) is a simple graph}, CMn(d) is a uniform
simple random graph with the prescribed degree sequence.

Proof. We recall that the graph in the configuration model is produced by a uniform
matching of the corresponding configuration of half-edges. By Exercise 7.15 below, we note
that, conditionally on the matching producing a simple graph, the conditional distribution
of the configuration is uniform over all configurations which are such that the corresponding
graph is simple:

Exercise 7.15 (A conditioned uniform variable is again uniform). Let P be a uniform
distribution on some finite state space X , and let U be a uniform random variable on X .
Let Y ⊆ X be a non-empty subset of X . Show that the conditional probability P(·|U ∈ Y)
given that U is in Y is the uniform distribution on Y.

We conclude that Proposition 7.7 is equivalent to the statement that every simple graph
has an equal number of configurations contributing to it, which follows from Proposition
7.1.

Exercise 7.16 (Poisson limits for self-loops, multiple edges and triangles). Assume that the
fixed degree sequence (di)i∈[n] satisfies Assumption 7.2(a)-(c). Let Tn denote the number
of triangles in CMn(d), i.e., the number of i, j, k such that i < j < k and such that there
are edges between i and j, between j and k and between k and i. Show that (Sn,Mn, Tn)
converges to three independent Poisson random variables and compute their asymptotic
parameters.

An important consequence of Theorem 7.5 is that it allows us to compute the asymptotic
number of graphs with a given degree sequence:
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Corollary 7.8 (Number of graphs with given degree sequence). Assume that the degree
sequence (di)i∈[n] satisfies Assumption 7.2(a)-(c), and that `n =

∑
i∈[n] di is even. Then,

the number of simple graphs with degree sequence (di)i∈[n] is equal to

e−ν/2−ν
2/4 (`n − 1)!!∏

i∈[n] di!
(1 + o(1)). (7.4.1)

Proof. By Proposition 7.7, the distribution of CMn(d), conditionally on CMn(d) being
simple, is uniform over all simple graphs with degree sequence d = (di)i∈[n]. Let Q(d)
denote the number of such simple graphs, and let G denote any simple random graph with
degree sequence d = (di)i∈[n]. Recall from the proof of Proposition 7.1 that N(G) denotes
the number of configurations that give rise to G. By Proposition 7.1, we have that N(G)
is the same for all simple G. Recall further that the total number of configurations is given
by (`n − 1)!!. Then,

Q(d) = P(CMn(d) simple)
(`n − 1)!!

N(G)
. (7.4.2)

By Proposition 6.11, for any simple graph G,

N(G) =
∏
i∈[n]

di!. (7.4.3)

Proposition 7.7 then yields the result.

A special case of the configuration model is when all degrees are equal to some r. In this
case, when we condition on the fact that the resulting graph in the configuration model
to be simple, we obtain a uniform regular random graph. Uniform regular random graphs
can be seen as a finite approximation of a regular tree. In particular, Corollary 7.8 implies
that, when nr is even, the number of regular r-ary graphs is equal to

e−(r−1)/2−(r−1)2/4 (rn− 1)!!

(r!)n
(1 + o(1)). (7.4.4)

Exercise 7.17 (The number of r-regular graphs). Prove (7.4.4).

Exercise 7.18 (The number of simple graphs without triangles). Assume that the fixed
degree sequence (di)i∈[n] satisfies Assumption 7.2(a)-(c). Compute the number of simple
graphs with degree sequence (di)i∈[n] not containing any triangle. Hint: use Exercise 7.16.

A further consequence of Theorem 7.5 is that it allows to prove a property for uniform
graphs with a given degree sequence by proving it for the configuration model with that
degree sequence:

Corollary 7.9 (Uniform graphs with given degree sequence and CMn(d)). Assume that
d = (di)i∈[n] satisfies Assumption 7.2(a)-(c), and that `n =

∑
i∈[n] di is even. Then,

an event En occurs with high probability for a uniform simple random graph with degrees
(di)i∈[n] when it occurs with high probability for CMn(d).

Corollary 7.9 allows a simple strategy to study proporties of uniform simple random
graphs with a prescribed degree sequence. Indeed, CMn(d) can be constructed in a rather
simple manner, which makes it easier to prove properties for CMn(d) than it is for a uniform
random graph with degrees d. For completeness, we now prove the above statement.
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Proof. Let UGn(d) denote a uniform simple random graph with degrees d. We need to
prove that if limn→∞ P(CMn(d) ∈ Ecn) = 0, then also limn→∞ P(UGn(d) ∈ Ecn) = 0. By
Proposition 7.7,

P(UGn(d) ∈ Ecn) = P(CMn(d) ∈ Ecn|CMn(d) simple) (7.4.5)

=
P(CMn(d) ∈ Ecn,CMn(d) simple)

P(CMn(d) simple)

≤ P(CMn(d) ∈ Ecn)

P(CMn(d) simple)
.

By Theorem 7.5, for which the assumptions are satisfied by the hypotheses in Corollary
7.9, lim infn→∞ P(CMn(d) simple) > 0. Moreover, limn→∞ P(CMn(d) ∈ Ecn) = 0, so that
P(UGn(d) ∈ Ecn)→ 0, as required.

As a consequence of Proposition 7.7 and Theorem 6.10, we see that the GRG condition-
ally on its degrees, and CMn(d) with the same degrees conditioned on producing a simple
graph, have identically the same distribution. This also partially explains the popularity of
the configuration model: Some results for the Erdős-Rényi random graph are more easily
proved by conditioning on the degree sequence, proving the result for the configuration
model, and using that the degree distribution of the Erdős-Rényi random graph is very
close to a sequence of independent Poisson random variables. See Chapters ?? and ??. We
shall formalize this ‘folklore’ result in the following theorem:

Theorem 7.10 (Relation between GRGn(w) and CMn(d)). Let Di be the degree of vertex
i in GRGn(w) defined in (6.2.1), and let D = (Di)i∈[n]. Then,

P(GRGn(w) = G |D = d) = P(CMn(d) = G | CMn(d) simple). (7.4.6)

Assume that D = (Di)i∈[n] satisfies that Assumptions 7.2(a)-(c) hold in probability and

that P(CMn(D) ∈ En)
P−→ 1, where CMn(D) denotes the configuration model with degrees

equal to the (random) degrees of GRGn(w), and P(CMn(D) ∈ En) is interpreted as a

function of the random degrees D. Then, by (7.4.6), also P(GRGn(w) ∈ En)
P−→ 1.

We note that, by Theorem 6.5, in many cases, Assumption 7.2(a)-(c). These properties
are often easier to verify than the event En itself. We also remark that related versions
of Theorem 7.10 can be stated with stronger hypotheses on the degrees. Then, the state-
ment becomes that, when an event En occurs with high probability for CMn(d) under the
assumptions on the degrees, En also occurs with high probability for GRGn(w).

Proof. Equation (7.4.6) follows from Theorem 6.10 and Corollary 7.9, for every simple
graph G with degree sequence d, as these two results imply that both GRGn(w) condi-
tionally on D = d and CMn(d) conditionally on being simple are uniform simple random
graphs with degree sequence d. By (7.4.6), for every event En,

P(GRGn(w) ∈ En |D = d) = P(CMn(d) ∈ En | CMn(d) simple). (7.4.7)

We rewrite

P(GRGn(w) ∈ Ecn) = E
[
P(GRGn(w) ∈ Ecn |D)

]
(7.4.8)

= E
[
P(CMn(D) ∈ Ecn | CMn(D) simple)

]
≤ E

[( P(CMn(D) ∈ Ecn)

P(CMn(D) simple)

)
∧ 1
]
. (7.4.9)
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By assumption, P(CMn(D) ∈ Ecn)
P−→ 0. Further, since the degrees D satisfies Assumption

7.2(a)-(c),

P(CMn(D) simple)
P−→ e−ν/2−ν

2/4 > 0. (7.4.10)

Therefore, by Dominated Convergence (Theorem A.11), we obtain that

lim
n→∞

E
[( P(CMn(D) ∈ Ecn)

P(CMn(D) simple)

)
∧ 1
]

= 0,

so that we conclude that limn→∞ P(GRGn(w) ∈ Ecn) = 0, as required.

7.5 Configuration model with i.i.d. degrees

In this section, we apply the results of the previous sections to the configuration model
with i.i.d. degrees. Indeed, we take the degrees (Di)i≥1 to be an i.i.d. sequence. Since the
total degree

∑
i∈[n] Di is with probability close to 1/2 odd (recall Exercise 7.8), we need

to make sure that the total degree is even. Therefore, by convention, we set

di = Di + 1l{∑j∈[n]Dj odd,i=n}, (7.5.1)

and set
Ln =

∑
i∈[n]

di =
∑
i∈[n]

Di + 1l{∑i∈[n]Di odd}. (7.5.2)

Often, we shall ignore the effect of the added indicator in the definition of dn, since it shall
hardly make any difference.

We note that, similarly to the generalized random graph with i.i.d. weights, the in-
troduction of randomness in the degrees introduces a double randomness in the model:
firstly the randomness of the weights, and secondly, the randomness of the pairing of the
edges given the degrees. Due to this double randomness, we need to investigate the degree
sequence (P (n)

k )∞k=1 defined by

P (n)

k =
1

n

∑
i∈[n]

1l{di=k}. (7.5.3)

If we ignore the dependence on n of dn, then we see that (P (n)

k )∞k=1 is precisely equal to
the empirical distribution of the degrees, which is an i.i.d. sequence. As a result, by the
Strong Law of Large Numbers, we have that

P (n)

k

a.s.−→ pk ≡ P(D1 = k), (7.5.4)

so that the empirical distribution of i.i.d. degrees is almost surely close to the probability
distribution of each of the degrees. By Exercise 2.14, the above convergence also implies

that dTV(P (n), p)
a.s.−→ 0, where p = (pk)k≥1 and P (n) = (P (n)

k )k≥1.
The main results are the following:

Theorem 7.11 (Degree sequence of erased configuration model with i.i.d. degrees). Let
(Di)i∈[n] be an i.i.d. sequence of finite mean random variables with P(D ≥ 1) = 1. The

degree sequence of the erased configuration model (P (er)

k )k≥1 with degrees (Di)i∈[n] converges
to (pk)k≥1. More precisely,

P(

∞∑
k=1

|P (er)

k − pk| ≥ ε)→ 0. (7.5.5)
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Proof. By Exercise 7.9, when E[D] < ∞, Assumption 7.2(a)-(b) hold, where the conver-
gence is in probability. As a result, Theorem 7.11 follows directly from Theorem 7.3.

We next investigate the probability of obtaining a simple graph in CMn(D):

Theorem 7.12 (Probability of simplicity in CMn(D)). Let (Di)i≥1 be an i.i.d. sequence
of random variables with Var(D) < ∞ and P(D ≥ 1) = 1. Then, the probability that

CMn(D) is simple is asymptotically equal to e−ν/2−ν
2/4, where ν = E[D(D − 1)]/E[D].

Proof. By Exercise 7.9, when E[D] < ∞, Assumption 7.2(a)-(b) hold, where the conver-
gence is in probability. As a result, Theorem 7.12 follows directly from Theorem 7.5.

We finally investigate the case where the mean is infinite, with the aim to produce a
random graph with power-law degrees with an exponent τ ∈ (1, 2). In this case, the graph
topology is rather different, as the majority of edges is in fact multiple, and self-loops
from vertices with high degrees are abundant. As a result, the erased configuration model
has rather different degrees compared to those in the multigraph. Therefore, in order to
produce a more realistic graph, we need to perform some sort of a truncation procedure.
We start by investigating the case where we condition the degrees to be bounded above by
some an = o(n), which, in effect reduces the number of self-loops significantly.

Theorem 7.13 (Degree sequence of erased configuration model with i.i.d. conditioned

infinite mean degrees). Let (D(n)

i )i∈[n] be i.i.d. copies of the random variable D conditioned
on D ≤ an. Then, for every an = o(n), the empirical degree distribution of the erased

configuration model (P (er)

k )∞k=1 with degrees (D(n)

i )i∈[n] converges to (pk)k≥1, where pk =
P(D = k). More precisely,

P(

∞∑
k=1

|P (er)

k − pk| ≥ ε)→ 0. (7.5.6)

Theorem 7.13 is similar in spirit to Theorem 6.8 for the generalized random graph, and
is left as an exercise:

Exercise 7.19 (Proof of Theorem 7.13). Adapt the proof of Theorem 7.11 to prove The-
orem 7.13.

We continue by studying the erased configuration model with infinite mean degrees in
the unconditioned case. We assume that there exists a slowly varying function x 7→ L(x)
such that

1− F (x) = x1−τL(x), (7.5.7)

where F (x) = P(D ≤ x) and where τ ∈ (1, 2). We now investigate the degree sequence in
the configuration model with infinite mean degrees, where we do not condition the degrees
to be at most an. We shall make substantial use of Theorem 2.28. In order to describe
the result, we need a few definitions. We define the (random) probability distribution
P = (Pi)i≥1 as follows. Let, as in Theorem 2.28, (Ei)i≥1 be i.i.d. exponential random

variables with parameter 1, and define Γi =
∑i
j=1 Ej . Let (Di)i≥1 be an i.i.d. sequence

of random variables with distribution function FD in (7.5.7), and let D(n:n) ≥ D(n−1:n) ≥
· · · ≥ D(1:n) be the order statistics of (Di)i∈[n]. We recall from Theorem 2.28 that there

exists a sequence un, with unn
−1/(τ−1) slowly varying, such that

u−1
n (Ln, {D(i)}∞i=1)

d−→

∑
j≥1

Γ
−1/(τ−1)
j , (Γ

−1/(τ−1)
i )i≥1

 . (7.5.8)



162 Configuration model

We abbreviate η =
∑
j≥1 Γ

−1/(τ−1)
j and ξi = Γ

−1/(τ−1)
i , and let

Pi = ξi/η, (7.5.9)

so that, by (7.5.8),
∞∑
i=1

Pi = 1. (7.5.10)

However, the Pi are all random variables, so that P = (Pi)i≥1 is a random probability
distribution. We further write MP,k for a multinomial distribution with parameters k and
probabilities P = (Pi)i≥1, and UP,Dk is the number of distinct outcomes of the random
variable MP,Dk

, where Dk is independent of P = (Pi)i≥1 and the multinomial trials.

Theorem 7.14 (Degree sequence of erased configuration model with i.i.d. infinite mean
degrees). Let (Di)i≥1 be i.i.d. copies of a random variable D1 having distribution function
F satisfying (7.5.7). Fix k ∈ N. The degree of vertex k in the erased configuration model
with degrees (Di)i∈[n] converges in distribution to the random variable UP,Dk , where P =
(Pi)i≥1 is given by (7.5.9), and the random variables Dk and P = (Pi)i≥1 are independent.

Theorem 7.14 is similar in spirit to Theorem 6.9 for the generalized random graph.

Proof. We fix vertex k, and note that its degree is given by Dk. With high probability,
we have that Dk ≤ logn, so that Dk is not one of the largest order statistics. Therefore,
Dk is independent of (η, ξ1, ξ2, . . . ). The vertex k now has Dk half-edges, which need to
be connected to other half-edges. The probability that any half-edge is connected to the
vertex with the jth largest degree is asymptotic to

P (n)

j = D(n−j+1:n)/Ln, (7.5.11)

where, by Theorem 2.28 (see also (7.5.8)),

(P (n)

j )j≥1
d−→ (ξj/η)j≥1. (7.5.12)

Moreover, the vertices to which the Dk half-edges are connected are close to being inde-
pendent, when Dk ≤ logn. As a result, the Dk half-edges of vertex k are paired to Dk
vertices, and the number of edges of vertex k that are paired to the vertex with the ith

largest degree are asymptotically given by the ith coordinate of M
P (n),Dk

. The random

variable M
P (n),Dk

converges in distribution to MP,Dk
. We note that in the erased configu-

ration model, the degree of the vertex k is equal to the number of distinct vertices to which
k is connected, which is therefore equal to the number of distinct outcomes of the random
variable MP,Dk

, which, by definition, is equal to UP,Dk .
We next investigate the properties of the degree distribution, to obtain an equivalent

result as in Exercise 6.20.

Theorem 7.15 (Power law with exponent 2 for erased configuration model with infinite
mean degrees). Let the distribution function F of Dk satisfy (7.5.7) with L(x) = 1. Then,
the asymptotic degree of vertex k, which is given by UP,Dk satisfies that

P(UP,Dk ≥ x) ≤ x−1. (7.5.13)

The result in Theorem 7.15 is similar in spirit to Exercise 6.20. It would be of interest
to prove a precise identity here as well.
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Proof. We give a sketch of proof only. We condition on Dk = dxbe, for some b ≥ 1.
Then, in order that UP,Dk ≥ x, at least x/2 values larger than x/2 need to be chosen. By
(2.6.17), we have that the probability that value k is chosen, for some large value k, is close

to k−1/(τ−1)/η. Therefore, the probability that a value at least k is chosen is close to

k−1/(τ−1)+1/η = k(τ−2)/(τ−1)/η. (7.5.14)

Moreover, conditionally on Dk = dxbe, the number of values larger than x/2 that are
chosen is equal to a Binomial random variable with dxbe trials and success probability

qx = x(τ−2)/(τ−1)/η. (7.5.15)

Therefore, conditionally on Dk = dxbe, and using Theorem 2.18, the probability that at
least x/2 values larger than x/2 are chosen is negligible when, for some sufficiently large
C > 0,

|xbqx −
x

2
| ≥ C log x

√
xbqx. (7.5.16)

Equations (7.5.15) and (7.5.16) above imply that b = 1− (τ − 2)/(τ − 1) = 1/(τ − 1). As
a result, we obtain that

P(UP,Dk ≥ x) ≤ P(Dk ≥ dxbe) ≤ x−b(τ−1) = x−1. (7.5.17)

7.6 Notes and discussion

Notes on Section 7.1. The configuration model has a long history. It was introduced
in [38] to study uniform random graphs with a given degree sequence (see also [42, Section
2.4]). The introduction was inspired by, and generalized the results in, the work of Bender
and Canfield [26]. The original work allowed for a careful computation of the number of
graphs with prescribed degrees, using a probabilistic argument. This is the probabilistic
method at its best, and also explains the emphasis on the study of the probability for the
graph to be simple. It was further studied in [141, 142], where it was investigated when
the resulting graph has a giant component. We shall further comment on these results in
Chapter ?? below.

Notes on Section 7.2. The result in Theorem 7.3 can be found in [106]. The term
erased configuration model is first used in [52, Section 2.1].

Notes on Section 7.4. Corollary 7.9 implies that the uniform simple random graph
model is contiguous to the configuration model, in the sense that events with vanishing
probability for the configuration model also have vanishing probability for the uniform
simple random graph model with the same degree sequence. See [107] for a discussion of
contiguity of random graphs. Theorem 7.10 implies that the generalized random graph
conditioned on having degree sequence d is contiguous to the configuration model with
that degree sequence, whenever the degree sequence satisfies Assumption 7.2(a)-(c).

Notes on Section 7.5. A version of Theorem 7.11 can be found in [52]. Results on
the erased configuration model as in Theorems 7.14-7.15 have appeared in [33], where
first passage percolation on CMn(D) was studied with infinite mean degrees, both for the
erased as well as for the original configuration model, and it is shown that the behavior in
the two models is completely different.





Chapter 8

Preferential attachment models

The generalized random graph model and the configuration model described in Chapters
6 and 7, respectively, are static models, i.e., the size of the graph is fixed, and we have
not modeled the growth of the graph. There is a large body of work investigating dynamic
models for complex networks, often in the context of the World-Wide Web. In various
forms, such models have been shown to lead to power-law degree sequences, and, thus, they
offer a possible explanation for the occurrence of power-law degree sequences in random
graphs. The existence of power-law degree sequences in various real networks is quite
striking, and models offering a convincing explanation can teach us about the mechanisms
which give rise to their scale-free nature.

A possible and convincing explanation for the occurrence of power-law degree sequences
is offered by the preferential attachment paradigm. In the preferential attachment model,
vertices are added sequentially with a number of edges connected to them. These edges are
attached to a receiving vertex with a probability proportional to the degree of the receiving
vertex at that time, thus favoring vertices with large degrees. For this model, it is shown
that the number of vertices with degree k decays proportionally to k−3 [46], and this result
is a special case of the more general result that we shall describe in this chapter.

The idea behind preferential attachment is simple. In an evolving graph, i.e., a graph
that evolves in time, the newly added vertices are connected to the already existing vertices.
In an Erdős-Rényi random graph, which can also be formulated as an evolving graph, where
edges are added and removed, these edges would be connected to each individual with equal
probability.

Exercise 8.1 (A dynamic formulation of ERn(p)). Give a dynamical model for the Erdős-
Rényi random graph, where at each time n we add a single individual, and where at time n
the graph is equal to ERn(p). See also the dynamic description of the Norros-Reittu model
on Page 142.

Now think of the newly added vertex as a new individual in a social population, which
we model as a graph by letting the individuals be the vertices and the edges be the ac-
quaintance relations. Is it then realistic that the edges connect to each already present
individual with equal probability, or is the newcomer more likely to get to know socially ac-
tive individuals, who already know many people? If the latter is true, then we should forget
about equal probabilities for receiving ends of the edges of the newcomer, and introduce
a bias in his/her connections towards more social individuals. Phrased in a mathematical
way, it should be more likely that the edges be connected to vertices that already have a
high degree. A possible model for such a growing graph was proposed by Barabási and
Albert [20], and has incited an enormous research effort since.

Strictly speaking, Barabási and Albert in [20] were not the first to propose such a model,
and we shall start by referring to the old literature on the subject. Yule [183] was the first
to propose a growing model where preferential attachment is present, in the context of
the evolution of species. He derives the power law distribution that we shall also find in
this chapter. Simon [166] provides a more modern version of the preferential attachment
model, as he puts it

“Because Yule’s paper predates the modern theory of stochastic processes, his
derivation was necessarily more involved than the one we shall employ here.”

The stochastic model of Simon is formulated in the context of the occurrence of words in
large pieces of text (as in [184]), and is based on two assumptions, namely (i) that the

165
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probability that the (k + 1)st word is a word that has already appeared exactly i times is
proportional to the number of occurrences of words that have occurred exactly i times, and
(ii) that there is a constant probability that the (k + 1)st word is a new word. Together,
these two assumptions give rise to frequency distributions of words that obey a power law,
with a power-law exponent that is a simple function of the probability of adding a new
vertex. We shall see a similar effect occurring in this chapter. A second place where the
model studied by Simon and Yule can be found is in work by Champernowne [56], in the
context of income distributions in populations.

In [20], Barabási and Albert describe the preferential attachment graph informally as
follows:

“To incorporate the growing character of the network, starting with a small
number (m0) of vertices, at every time step we add a new vertex with m(≤ m0)
edges that link the new vertex to m different vertices already present in the
system. To incorporate preferential attachment, we assume that the probability
Π that a new vertex will be connected to a vertex i depends on the connectivity
ki of that vertex, so that Π(ki) = ki/

∑
j kj. After t time steps, the model

leads to a random network with t+m0 vertices and mt edges.”

This description of the model is informal, but it must have been given precise meaning in
[20] (since, in particular, Barabási and Albert present simulations of the model predicting
a power-law degree sequence with exponent close to τ = 3). The model description does
not explain how the first edge is connected (note that at time t = 1, there are no edges,
so the first edge can not be attached according to the degrees of the existing vertices),
and does not give the dependencies between the m edges added at time t. We are left
wondering whether these edges are independent, whether we allow for self-loops, whether
we should update the degrees after each attachment of a single edge, etc. In fact, each of
these choices has, by now, been considered in the literature, and the results, in particular
the occurrence of power laws and the power-law exponent, do not depend sensitively on the
respective choices. See Section 8.7 for an extensive overview of the literature on preferential
attachment models.

The first to investigate the model rigorously, were Bollobás, Riordan, Spencer and
Tusnady [46]. They complain heavily about the lack of a formal definition in [20], arguing
that

“The description of the random graph process quoted above (i.e, in [20], edt.)
is rather imprecise. First, as the degrees are initially zero, it is not clear how
the process is started. More seriously, the expected number of edges linking a
new vertex v to earlier vertices is

∑
i Π(ki) = 1, rather than m. Also, when

choosing in one go a set S of m earlier vertices as the neighbors of v, the
distribution of S is not specified by giving the marginal probability that each
vertex lies in S.”

One could say that these differences in formulations form the heart of much confusion
between mathematicians and theoretical physicists. To resolve these problems, choices had
to be made, and these choices were, according to [46], made first in [45], by specifying the
initial graph to consist of a vertex with m self-loops, and that the degrees will be updated
in the process of attaching the m edges. This model will be described in full detail in
Section 8.1 below.

This chapter is organized as follows. In Section 8.1, we introduce the model. In Section
8.2, we investigate how the degrees of fixed vertices evolve as the graph grows. In Section
8.3, we investigate the degree sequences in preferential attachment models. The main result
is Theorem 8.2, which states that the preferential attachment model has a power-law degree
sequence. The proof of Theorem 8.2 consists of two key steps, which are formulated and
proved in Sections 8.4 and 8.5, respectively. In Section 8.6, we investigate the maximal
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degree in a preferential attachment model. In Section 8.7, we also discuss many related
preferential attachment models. We close this chapter with notes and discussion in Section
8.8.

8.1 Introduction to the model

In this chapter, we prove that the preferential attachment model has a power-law degree
sequence. We start by introducing the model. The model we investigate produces a graph
sequence which we denote by {PAt(m, δ)}∞t=1, which for every t yields a graph of t vertices
and mt edges for some m = 1, 2, . . . We start by defining the model for m = 1. In this
case, PA1,δ(1) consists of a single vertex with a single self-loop. We denote the vertices

of PAt(1, δ) by {v(1)

1 , . . . , v(1)

t }. We denote the degree of vertex v(1)

i in PAt(1, δ) by Di(t),
where a self-loop increases the degree by 2.

Then, conditionally on PAt(1, δ), the growth rule to obtain PAt+1(1, δ) is as follows.

We add a single vertex v(1)

t+1 having a single edge. This edge is connected to a second

end point, which is equal to v(1)

t+1 with probability (1 + δ)/(t(2 + δ) + (1 + δ)), and to a

vertex v(1)

i ∈ PAt(1, δ) with probability (Di(t) + δ)/(t(2 + δ) + (1 + δ)), where δ ≥ −1 is a
parameter of the model. Thus,

P
(
v(1)

t+1 → v(1)

i

∣∣PAt(1, δ)
)

=

{
1+δ

t(2+δ)+(1+δ)
for i = t+ 1,

Di(t)+δ
t(2+δ)+(1+δ)

for i ∈ [t].
(8.1.1)

Exercise 8.2 (Non-negativity of Di(t) + δ). Verify that Di(t) ≥ 1 for all i and t, so that
Di(t) + δ ≥ 0 for all δ ≥ −1.

Exercise 8.3 (Attachment probabilities sum up to one). Verify that the probabilities in
(8.1.1) sum up to one.

The model with m > 1 is defined in terms of the model for m = 1 as follows. We
start with PAmt(1, δ/m), and denote the vertices in PAmt(1, δ/m) by v(1)

1 , . . . , v(1)

mt. Then

we identify v(1)

1 , . . . , v(1)
m in PAmt(1, δ/m) to be v(m)

1 in PAt(m, δ), and v(1)

m+1, . . . , v
(1)

2m

in PAmt(1, δ/m) to be v(m)

2 in PAt(m, δ), and, more generally, v(1)

(j−1)m+1, . . . , v
(1)

jm in

PAmt(1, δ/m) to be v(m)

j in PAt(m, δ). This defines the model for general m ≥ 1. The
above identification procedure is sometimes called the collapsing of vertices. We note that
PAt(m, δ) is a multigraph with precisely t vertices and mt edges, so that the total degree
is equal to 2mt.

Exercise 8.4 (Total degree). Prove that the total degree of PAt(m, δ) equals 2mt.

In order to explain the description of PAt(m, δ) in terms of PAmt(1, δ/m), we note that

an edge in PAmt(1, δ/m) is attached to vertex v(1)

k with probability proportional to the

weight of vertex v(1)

k , where the weight is equal to the degree of vertex v(1)

k plus δ/m. Now,

vertices v(1)

(j−1)m+1, . . . , v
(1)

jm in PAmt(1, δ/m) are identified or collapsed to vertex v(m)

j in

PAt(m, δ). Thus, an edge in PAt(m, δ) is attached to vertex v(m)

j with probability propor-

tional to the total weight of the vertices v(1)

(j−1)m+1, . . . , v
(1)

jm. Since the sum of the degrees

of the vertices v(1)

(j−1)m+1, . . . , v
(1)

jm is equal to the degree of vertex v(m)

j , this probability is

proportional to the degree of vertex v(m)

j in PAt(m, δ) plus δ. We note that in the above
construction and for m ≥ 2, the degrees are updated after each edge is attached. This is
what we refer to as intermediate updating of the degrees.

The important feature of the model is that edges are more likely to be connected to
vertices with large degrees, thus making the degrees even larger. This effect is called
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Figure 8.1: Preferential attachment random graph with m = 2 and δ = 0 of sizes 10, 30
and 100.

preferential attachment. Preferential attachment may explain why there are quite large de-
grees. Therefore, the preferential attachment model is sometimes called the Rich-get-Richer
model. It is quite natural to believe in preferential attachment in many real networks. For
example, one is more likely to get to know a person who already knows many people,
making preferential attachment not unlikely in social networks. However, the precise form
of preferential attachment in (8.1.1) is only one possible example.

The above model is a slight variation of models that have appeared in the literature. The
model with δ = 0 is the Barabási-Albert model, which has received substantial attention
in the literature and which was first formally defined in [45]. We have added the extra
parameter δ to make the model more general.

The definition of {PAt(m, δ)}∞t=1 in terms of {PAt(1, δ/m)}∞t=1 is quite convenient. How-
ever, we can also equivalently define the model for m ≥ 2 directly. We start with PA1(m, δ)
consisting of a single vertex with m self-loops. To construct PAt+1(m, δ) from PAt(m, δ),
we add a single vertex with m edges attached to it. These edges are attached sequentially
with intermediate updating of the degrees as follows. The eth edge is connected to vertex
v(m)

i , for i ∈ [t], with probability proportional to (Di(e− 1, t) + δ), where, for e = 1, . . . ,m,

Di(e, t) is the degree of vertex i after the eth edge is attached, and to vertex v(m)

t+1 with
probability proportional to (Dt+1(e−1, t)+eδ/m), with the convention that Dt+1(0, t) = 1.
This alternative definition makes it perfectly clear how the choices missing in [20] are made.
Indeed, the degrees are updated during the process of attaching the edges, and the initial
graph at time 1 consists of a single vertex with m self-loops. Naturally, the edges could
also be attached sequentially by a different rule, for example by attaching the edges in-
dependently according to the distribution for the first edge. Also, one has the choice to
allow for self-loops or not. See Figure 8.1 for a realization of {PAt(m, δ)}∞t=1 for m = 2
and δ = 0, and Figure 8.2 for a realization of {PAt(m, δ)}∞t=1 for m = 2 and δ = −1.

Exercise 8.5 (Collapsing vs. growth of the PA model). Prove that the alternative definition
of {PAt(m, δ)}∞t=1 is indeed equal to the one obtained by collapsing m consecutive vertices
in {PAt(1, δ/m)}∞t=1.

Exercise 8.6 (Graph topology for δ = −1). Show that when δ = −1, the graph PAt(1, δ)

consists of a self-loop at vertex v(1)

1 , and each other vertex is connected to v(1)

1 with precisely
one edge. What is the implication of this result for m > 1?

In some cases, it will be convenient to consider a slight variation on the above model
where, form = 1, self-loops do not occur. We shall denote this variation by {PA(b)

t (m, δ)}t≥2

and sometimes refer to this model by model (b). To define PA(b)

t (1, δ), we let PA(b)

2 (1, δ)
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Figure 8.2: Preferential attachment random graph with m = 2 and δ = −1 of sizes 10, 30
and 100.

consist of two vertices v(1)

1 and v(1)

2 with two edges between them, and we replace the
growth rule in (8.1.1) by the rule that, for all i ∈ [t],

P
(
v(1)

t+1 → v(1)

i

∣∣PA(b)

t (1, δ)
)

=
Di(t) + δ

t(2 + δ)
. (8.1.2)

The advantage of this model is that it leads to a connected graph. We again define the
model with m ≥ 2 and δ > −m in terms of {PA(b)

t (1, δ/m)}∞t=2 as below Exercise 8.3.

We also note that the differences between {PAt(m, δ)}t≥1 and {PA(b)

t (m, δ)}t≥2 are minor,
since the probability of a self-loop in PAt(m, δ) is quite small when t is large. Thus,
most of the results we shall prove in this chapter for {PAt(m, δ)}t≥1 shall also apply to

{PA(b)

t (m, δ)}t≥2, but we shall not state these extensions explicitly.
Interestingly, the above model with δ ≥ 0 can be viewed as an interpolation between the

models with δ = 0 and δ =∞. We show this for m = 1, the statement for m ≥ 2 can again
be seen by collapsing the vertices. We again let the graph at time 2 consist of two vertices
with two edges between them. We fix α ∈ [0, 1]. Then, we first draw a random variable
Xt+1 taking values 0 with probability α and Xt+1 = 1 with probability 1−α. The random
variables {Xt}∞t=1 are independent. When Xt+1 = 0, then we attach the (t + 1)st edge to
a uniform vertex in [t]. When Xt+1 = 1, then we attach the (t+ 1)st edge to vertex i ∈ [t]

with probability Di(t)/(2t). We denote this model by {PA(b′)
t (1, α)}∞t=1. When α ≥ 0 is

chosen appropriately, then this is precisely the above preferential attachment model:

Exercise 8.7 (Alternative formulation of PAt(1, δ)). For α = δ
2+δ

, the law of {PA(b′)
t (1, α)}∞t=2

is equal to the one of {PAt(1, δ)}∞t=1.

Exercise 8.8 (Degrees grow to infinity a.s.). Fix m = 1. Prove that Di(t)
a.s.−→ ∞.

Hint: use that, with {It}∞t=i a sequence of independent Bernoulli random variables with
P(It = 1) = (1 + δ)/(t(2 + δ) + 1 + δ), we have that

∑t
s=i Is � Di(t). What does this imply

for m > 1?

8.2 Degrees of fixed vertices

We start by investigating the degrees of given vertices. To formulate the results, we
define the Gamma-function t 7→ Γ(t) for t > 0 by

Γ(t) =

∫ ∞
0

xt−1e−xdx. (8.2.1)
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We also make use of the recursion formula

Γ(t+ 1) = tΓ(t). (8.2.2)

Exercise 8.9 (Recursion formula for the Gamma function). Prove (8.2.2) using partial
integration, and also prove that Γ(n) = (n− 1)! for n = 1, 2, . . . .

The main result in this section is the following:

Theorem 8.1 (Degrees of fixed vertices). Fix m = 1 and δ > −1. Then, Di(t)/t
1

2+δ

converges almost surely to a random variable ξi as t→∞, and

E[Di(t) + δ] = (1 + δ)
Γ(t+ 1)Γ(i− 1

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(i)
. (8.2.3)

In Section 8.6, we shall considerably extend the result in Theorem 8.1. For example,
we shall also prove the almost sure convergence of maximal degree.

Proof. Fix m = 1. We compute that

E[Di(t+ 1) + δ|Di(t)] = Di(t) + δ + E[Di(t+ 1)−Di(t)|Di(t)]

= Di(t) + δ +
Di(t) + δ

(2 + δ)t+ 1 + δ

= (Di(t) + δ)
(2 + δ)t+ 2 + δ

(2 + δ)t+ 1 + δ

= (Di(t) + δ)
(2 + δ)(t+ 1)

(2 + δ)t+ 1 + δ
. (8.2.4)

Using also that

E[Di(i) + δ] = 1 + δ +
1 + δ

(2 + δ)(i− 1) + 1 + δ
= (1 + δ)

(2 + δ)(i− 1) + 2 + δ

(2 + δ)(i− 1) + 1 + δ

= (1 + δ)
(2 + δ)i

(2 + δ)(i− 1) + 1 + δ
, (8.2.5)

we obtain that

Mi(t) =
Di(t) + δ

1 + δ

t−1∏
s=i−1

(2 + δ)s+ 1 + δ

(2 + δ)(s+ 1)
(8.2.6)

is a non-negative martingale with mean 1. As a consequence of the martingale convergence
theorem (Theorem 2.21), as t → ∞, Mi(t) converges almost surely to a limiting random
variable ξi.

We compute that

t−1∏
s=i−1

(2 + δ)s+ 1 + δ

(2 + δ)s+ 2 + δ
=

t−1∏
s=i−1

s+ 1+δ
2+δ

s+ 1
=

Γ(t+ 1+δ
2+δ

)Γ(i)

Γ(t+ 1)Γ(i− 1
2+δ

)
. (8.2.7)

It is not hard to see that, using Stirling’s formula,

Γ(t+ a)

Γ(t)
= ta(1 +O(1/t)). (8.2.8)
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Therefore, we have that Di(t)/t
1

2+δ converges in distribution to a random variable Mi

having expected value (1 + δ)
Γ(i− 1

2+δ
)

Γ(i)
. In particular, the degrees of the first i vertices

at time t is at most of order t
1

2+δ . Note, however, that we do not yet know whether
P(ξi = 0) = 0 or not!

Exercise 8.10 (Asymptotics for ratio Γ(t+a)/Γ(t)). Prove (8.2.8), using that [92, 8.327]

e−ttt+
1
2
√

2π ≤ Γ(t+ 1) ≤ e−ttt+
1
2
√

2πe
1

12t . (8.2.9)

Note that we can extend the above result to the case when m ≥ 1, by using the relation
between PAt(m, δ) and PAmt(1, δ/m). This implies in particular that

Eδm[Di(t)] =

m∑
s=1

Eδ/m1 [Dm(i−1)+s(mt)], (8.2.10)

where we have added a subscript m and a superscript δ to denote the values of m and δ
involved.

Exercise 8.11 (Mean degree for m ≥ 2). Prove (8.2.10) and use it to compute Eδm[Di(t)].

Exercise 8.12 (A.s. limit of degrees for m ≥ 2). Prove that, for m ≥ 2 and any i ≥ 1,

Di(t)(mt)
−1/(2+δ/m) a.s.−→ ξ′i, where

ξ′i =

mi∑
j=(i−1)m+1

ξj , (8.2.11)

and ξj is the almost sure limit of Dj(t) in {PAt(1, δ/m)}∞t=1.

Exercise 8.13 (Mean degree for model (b)). Prove that for PA(b)

t (1, δ), (8.2.3) is adapted
to

E[Di(t) + δ] = (1 + δ)
Γ(t+ 1

2+δ
)Γ(i)

Γ(t)Γ(i+ 1
2+δ

)
. (8.2.12)

We close this section by giving a heuristic explanation for the occurrence of a power-
law degree sequence in preferential attachment models. Theorem 8.1 in conjunction with
Exercise 8.12 implies that there exists an am such that, for i, t large, and any m ≥ 1,

E[Di(t)] ∼ am
( t
i

)1/(2+δ/m)

. (8.2.13)

When the graph indeed has a power-law degree sequence, then the number of vertices with
degrees at least k will be close to ctk−(τ−1) for some τ > 1 and some c > 0. The number
of vertices with degree at least k at time t is equal to N≥k(t) =

∑t
i=1 1l{Di(t)≥k}. Now,

assume that in the above formula, we are allowed to replace 1l{Di(t)≥k} by 1l{E[Di(t)]≥k}
(there is a big leap of faith here). Then we would obtain that

N≥k(t) ∼
t∑
i=1

1l{E[Di(t)]≥k} ∼
t∑
i=1

1l
{am
(
t
i

)1/(2+δ/m)
≥k}

=

t∑
i=1

1l{i≤ta2+δ/mm k−(2+δ/m)} = ta2+δ/m
m k−(2+δ/m), (8.2.14)

so that we obtain a power-law with exponent τ − 1 = 2 + δ/m, so that τ = 3 + δ/m. The
above heuristic shall be made precise in the following section, but the proof will be quite
a bit more subtle than the above heuristic!
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8.3 Degree sequences of preferential attachment models

The main result establishes the scale-free nature of preferential attachment graphs. In
order to state the result, we need some notation. We write

Pk(t) =
1

t

t∑
i=1

1l{Di(t)=k} (8.3.1)

for the (random) proportion of vertices with degree k at time t. For m ≥ 1 and δ > −m,
we define {pk}∞k=0 to be the probability distribution given by pk = 0 for k = 0, . . . ,m− 1
and, for k ≥ m,

pk = (2 +
δ

m
)
Γ(k + δ)Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)
(8.3.2)

For m = 1, (8.3.2) reduces to

pk = (2 + δ)
Γ(k + δ)Γ(3 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
. (8.3.3)

Also, when δ = 0 and k ≥ m, (8.3.2) simplifies to

pk =
2Γ(k)Γ(m+ 2)

Γ(k + 3)Γ(m)
=

2m(m+ 1)

k(k + 1)(k + 2)
. (8.3.4)

We start by proving that {pk}∞k=1 is a probability distribution. For this, we note that, by
(8.2.2),

Γ(k + a)

Γ(k + b)
=

1

b− a− 1

( Γ(k + a)

Γ(k − 1 + b)
− Γ(k + 1 + a)

Γ(k + b)

)
. (8.3.5)

Applying (8.3.5) to a = δ, b = 3 + δ + δ
m

, we obtain that, for k ≥ m,

pk =
Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)

( Γ(k + δ)

Γ(k + 2 + δ + δ
m

)
− Γ(k + 1 + δ)

Γ(k + 3 + δ + δ
m

)

)
. (8.3.6)

Using that pk = 0 for k < m, and by a telescoping sum identity,

∑
k≥1

pk =
∑
k≥m

pk =
Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)

Γ(m+ δ)

Γ(m+ 2 + δ + δ
m

)
= 1. (8.3.7)

Thus, since also pk ≥ 0, we obtain that {pk}∞k=1 indeed is a probability distribution. We
shall see that {pk}∞k=1 arises as the limiting degree distribution for PAt(m, δ):

Theorem 8.2 (Degree sequence in preferential attachment model). Fix δ > −m and
m ≥ 1. Then, there exists a constant C = C(m, δ) > 0 such that, as t→∞,

P
(

max
k
|Pk(t)− pk| ≥ C

√
log t

t

)
= o(1). (8.3.8)

Theorem 8.2 identifies the asymptotic degree sequence of PAt(m, δ) as {pk}∞k=1. We
next show that, for k large, pk is close to a power-law distribution. For this, we first note
that from (8.3.2) and (8.2.8), as k →∞,

pk = cm,δk
−τ (1 +O(

1

k
)), (8.3.9)
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Figure 8.3: The degree sequences of a preferential attachment random graph with m =
2, δ = 0 of sizes 300,000 and 1,000,000 in log-log scale.

where

τ = 3 +
δ

m
> 2, (8.3.10)

and

cm,δ =
(2 + δ

m
)Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)
. (8.3.11)

Therefore, by Theorem 8.2 and (8.3.9), the asymptotic degree sequence of PAt(m, δ) is
close to a power law with exponent τ = 3 + δ/m. We note that any exponent τ > 2 is
possible by choosing δ > −m and m ≥ 1 appropriately. The power-law degree sequence
can clearly be observed in a simulation, see Figure 8.3, where a realization of the degree
sequence of PAt(m, δ) is shown for m = 2, δ = 0 and t = 300, 000 and t = 1, 000, 000.

The important feature of the preferential attachment model is that, unlike the configu-
ration model and the generalized random graph, the power law in PAt(m, δ) is explained
by giving a model for the growth of the graph that produces power-law degrees. There-
fore, preferential attachment offers a convincing explanation as to why power-law degree
sequences occur. As Barabási puts it [19]

“...the scale-free topology is evidence of organizing principles acting at each
stage of the network formation. (...) No matter how large and complex a
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network becomes, as long as preferential attachment and growth are present it
will maintain its hub-dominated scale-free topology.”.

Many more possible explanations have been given for why power laws occur in real networks,
and many adaptations of the above simple preferential attachment model have been studied
in the literature, all giving rise to power-law degrees. See Section 8.7 for an overview of
the literature.

The remainder of this chapter shall be primarily devoted to the proof of Theorem 8.2,
which is divided into two main parts. In Section 8.4, we prove that the degree sequence
is concentrated around its mean, and in Section 8.5, we identify the mean of the degree
sequence. In the course of the proof, we also prove results related to Theorem 8.2.

Exercise 8.14 (The degree of a uniform vertex). Prove that Theorem 8.2 implies that the
degree at time t of a uniform vertex in [t] converges in probability to a random variable
with probability mass function {pk}∞k=1.

Exercise 8.15 (Degree sequence uniform recursive tree [105]). In a uniform recursive tree
we attach each vertex to a uniformly chosen old vertex. This can be seen as the case where
m = 1 and δ =∞ of {PA(b)

t (m, δ)}t≥2. Show that Theorem 8.2 remains true, but now with

pk = 2−(k+1).

8.4 Concentration of the degree sequence

In this section, we prove that the (random) degree sequence is sufficiently concentrated
around its expected degree sequence. We use a martingale argument which first appeared
in [46], and has been used in basically all subsequent works proving power-law degree
sequences for preferential attachment models. The argument is very pretty and general,
and we spend some time explaining the details of it.

We start by stating the main result in this section. In its statement, we use the notation

Nk(t) =

t∑
i=1

1l{Di(t)=k} = tPk(t) (8.4.1)

for the total number of vertices with degree k at time t.

Proposition 8.3 (Concentration of the degrees). Fix δ ≥ −m and m ≥ 1. Then, for any

C > m
√

8, as t→∞,

P
(

max
k
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
= o(1). (8.4.2)

We note that Theorem 8.2 predicts that Nk(t) ≈ tpk. Thus, at least for k for which pk
is not too small, i.e., tpk �

√
t log t, Proposition 8.3 suggests that the number of vertices

with degree equal to k is very close to its expected value. Needless to say, in order to
prove Theorem 8.2, we still need to investigate E[Nk(t)], and prove that it is quite close to
tpk. This is the second main ingredient in the proof of Theorem 8.2 and is formulated in
Proposition 8.4. We first prove Proposition 8.3.

Proof. We start by reducing the proof. First of all, Nk(t) = 0 when k > m(t + 1).
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Therefore,

P
(

max
k
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
= P

(
max

k≤m(t+1)
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
≤
m(t+1)∑
k=1

P
(
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
.

(8.4.3)

We shall prove that for any C > m
√

8, uniformly in k ≤ m(t+ 1),

P
(
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
= o(t−1), (8.4.4)

which would complete the proof of Proposition 8.3.
For n = 0, . . . , t, we denote by

Mn = E
[
Nk(t)|PAn(m, δ)

]
(8.4.5)

the conditional expected number of vertices with degree k at time t, conditionally on the
graph PAn(m, δ) at time n ∈ {0, . . . , t}. We shall show that {Mn}tn=0 is a martingale.

Firstly, since Nk(t) is bounded by the total number of vertices at time t, we have
Nk(t) ≤ t, so that

E[|Mn|] = E[Mn] = E[Nk(t)] ≤ t <∞. (8.4.6)

Secondly, by the tower property of conditional expectations, and the fact that PAn(m, δ)
can be deduced from PAm,δ(n+ 1), we have that, for all n ≤ t− 1,

E[Mn+1|PAn(m, δ)] = E
[
E
[
Nk(t)|PAm,δ(n+ 1)

]∣∣∣PAn(m, δ)
]

= E
[
Nk(t)|PAn(m, δ)

]
= Mn, (8.4.7)

so that {Mn}tn=0 satisfies the conditional expectation requirement for a martingale. In
fact, {Mn}tn=0 is a so-called Doob martingale (see also Exercise 2.22).

Therefore, {Mn}tn=0 also satisfies the moment condition for martingales. We conclude
that {Mn}tn=0 is a martingale process with respect to {PAn(m, δ)}tn=0. This is the first
main ingredient of the martingale proof of (8.4.4).

For the second ingredient, we note that M0 is identified as

M0 = E
[
Nk(t)|PAm,δ(0)

]
= E[Nk(t)], (8.4.8)

Since PAm,δ(0) is the empty graph. Furthermore, Mt is trivially identified as

Mt = E
[
Nk(t)|PAt(m, δ)

]
= Nk(t), (8.4.9)

since one can determine Nk(t) from PAt(m, δ). Therefore, we have that

Nk(t)− E[Nk(t)] = Mt −M0. (8.4.10)

This completes the second key ingredient in the martingale proof of (8.4.4).
The third key ingredient is the Azuma-Hoeffding inequality, Theorem 2.23. For this, we

need to investigate the support of |Mn −Mn−1|. We claim that, for all n ∈ [t], a.s.,

|Mn −Mn−1| ≤ 2m. (8.4.11)
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In order to prove this, we note that

Mn = E[Nk(t)|PAn(m, δ)] =

t∑
i=1

P(Di(t) = k|PAn(m, δ)), (8.4.12)

and, similarly,

Mn−1 =

t∑
i=1

P(Di(t) = k|PAn−1(m, δ)), (8.4.13)

so that

Mn −Mn−1 =

t∑
i=1

P(Di(t) = k|PAn(m, δ))− P(Di(t) = k|PAn−1(m, δ)). (8.4.14)

Thus, we need to investigate the influence of the extra information contained in PAn(m, δ)
compared to the information contained in PAn−1(m, δ). For any s = 1, . . . , t, conditioning
on PAs(m, δ) is the same as conditioning to which vertices the first sm edges are attached.

Thus, in PAn−1(m, δ), we know where the edges of the vertices v(m)

1 , . . . , v(m)

n−1 are attached
to. In PAn(m, δ), we have the additional information of where the m edges originating
from the vertex v(m)

n are attached to. These m edges effect the degrees of at most m other
vertices, namely, the receiving ends of these m edges.

For the conditional expectations given PAs(m, δ), we need to take the expectation with
respect to all possible ways of attaching the remaining edges originating from the vertices
v(m)

s+1, . . . , v
(m)

t . As explained above, only the distribution of the degrees of the vertices in

PAt(m, δ) to which the m edges originating from v(m)
n are connected are effected by the

knowledge of PAn(m, δ) compared to PAn−1(m, δ). This number of vertices is at most
m, so that the distribution of the degrees of at most 2m vertices is different in the law of
PAt(m, δ) conditionally on PAn−1(m, δ) compared to the law of PAt(m, δ) conditionally
on PAn(m, δ). This implies (8.4.11).

The Azuma-Hoeffding’s Inequality (Theorem 2.23) then yields that, for any a > 0,

P
(
|Nk(t)− E[Nk(t)]| ≥ a

)
≤ 2e

− a2

8m2t . (8.4.15)

Taking a = C
√
t log t for any C with C2 > 8m2 then proves that

P
(
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
≤ 2e

−(log t) C
2

8m2 = o(t−1). (8.4.16)

This completes the proof of (8.4.4), and thus of Proposition 8.3.
The above proof is rather general, and can also be used to prove concentration around

the mean of other graph properties that are related to the degrees. An example is the
following. Denote by

N≥k(t) =

∞∑
l=k

Nl(t) (8.4.17)

the total number of vertices with degrees at least k. Then we can also prove that N≥k(t)

concentrates. Indeed, for C >
√

8m,

P
(
|N≥k(t)− E[N≥k(t)]| ≥ C

√
t log t

)
= o(t−1). (8.4.18)

The proof uses the same ingredients as given above for N≥k(t), where now we can make
use of the martingale

M ′n = E[N≥k(t)|PAn(m, δ)]. (8.4.19)

Exercise 8.16 (Concentration of the number of vertex of degree at least k). Prove (8.4.18)
by adapting the proof of Proposition 8.3.
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8.5 Expected degree sequence

The main result in this section investigates the expected number of vertices with degree
equal to k. We denote the expected number of vertices of degree k in PAt(m, δ) by

N̄k(t) = E
[
tPk(t)

]
. (8.5.1)

The main aim is to prove that N̄k(t) is close to pkt, where pk is defined in (8.3.3). This is
the content of the following proposition:

Proposition 8.4 (Expected degree sequence). Fix δ > −m and m ≥ 1. Then, there exists
a constant C = C(δ,m) such that for all t ≥ 1 and all k ∈ N,

|N̄k(t)− pkt| ≤ C. (8.5.2)

The proof of Proposition 8.4 is split into two separate cases. We first prove the claim for
m = 1 in Section 8.5.1, and extend the proof to m > 1 in Section 8.5.2.

Exercise 8.17 (The total degree of high degree vertices). Use Propositions 8.4 and 8.3
to prove that for l = l(t) → ∞ as t → ∞ such that tl2−τ ≥ K

√
t log t for some K >

0 sufficiently large, there exists a constant B > 0 such that with probability exceeding
1− o(t−1), for all such l, ∑

i:Di(t)≥l

Di(t) ≥ Btl2−τ . (8.5.3)

Show further that, with probability exceeding 1− o(t−1), for all such l,

N≥l(t)�
√
t. (8.5.4)

8.5.1 Expected degree sequence for m = 1

In this section, we study the expected degree sequence when m = 1. We adapt the
argument in [43]. We start by writing

E
[
Nk(t+ 1)|PAt(1, δ)] = Nk(t) + E[Nk(t+ 1)−Nk(t)|PAt(1, δ)]. (8.5.5)

Conditionally on PAt(1, δ), there are four ways how Nk(t + 1) −Nk(t) can be unequal to
zero:

(a) The end vertex of the (unique) edge incident to vertex v(1)

t+1 had degree k−1, so that

its degree is increased to k, which happens with probability k−1+δ
t(2+δ)+(1+δ)

. Note that

there are Nk−1(t) end vertices with degree k − 1 at time t;

(b) The end vertex of the (unique) edge incident to vertex v(1)

t+1 had degree k, so that

its degree is increased to k + 1, which happens with probability k+δ
t(2+δ)+(1+δ)

. Note

that there are Nk(t) end vertices with degree k at time t;

(c) The degree of vertex v(1)

t+1 is one, so that N1(t) is increased by one, when the end

vertex of the (unique) edge incident to vertex v(1)

t+1 is not v(1)

t+1, which happens with

probability 1− 1+δ
t(2+δ)+(1+δ)

;

(d) The degree of vertex v(1)

t+1 is equal to two, so that N2(t) is increased by one, when

the end vertex of the (unique) edge incident to vertex v(1)

t+1 is equal to v(1)

t+1, which

happens with probability 1+δ
t(2+δ)+(1+δ)

.
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The changes in the degree sequence in cases (a) and (b) arise due to the attachment of

the edge (thus, the degree of one of the vertices v(1)

1 , . . . , v(1)

t is changed), whereas in cases

(c) and (d) we determine the degree of the added vertex v(1)

t+1.
Taking all these cases into account, we arrive at the key identity

E
[
Nk(t+ 1)−Nk(t)|PAt(1, δ)

]
=

k − 1 + δ

t(2 + δ) + (1 + δ)
Nk−1(t)

− k + δ

t(2 + δ) + (1 + δ)
Nk(t)

+ 1l{k=1}

(
1− 1 + δ

t(2 + δ) + (1 + δ)

)
+ 1l{k=2}

1 + δ

t(2 + δ) + (1 + δ)
. (8.5.6)

Here, k ≥ 1, and for k = 0, by convention, we define

N0(t) = 0. (8.5.7)

By taking the expectation on both sides of (8.5.6), obtain

E[Nk(t+ 1)] = E[Nk(t)] + E[Nk(t+ 1)−Nk(t)]

= E[Nk(t)] + E
[
E[Nk(t+ 1)−Nk(t)|PAt(1, δ)]

]
. (8.5.8)

Now using (8.5.6) gives us the explicit recurrence relation that, for k ≥ 1,

N̄k(t+ 1) = N̄k(t) +
k − 1 + δ

t(2 + δ) + (1 + δ)
N̄k−1(t)

− k + δ

t(2 + δ) + (1 + δ)
N̄k(t)

+ 1l{k=1}
(
1− 1 + δ

t(2 + δ) + (1 + δ)

)
+ 1l{k=2}

1 + δ

t(2 + δ) + (1 + δ)
. (8.5.9)

Equation (8.5.9) will the the key to the proof of Proposition 8.4 for m = 1. We start by
explaining its relation to (8.3.3). Indeed, when N̄k(t) ≈ tpk, then one might expect that
N̄k(t+1)−N̄k(t) ≈ pk. Substituting these approximations into (8.5.9), and approximating
t/(t(2 + δ) + (1 + δ)) ≈ 1/(2 + δ) and 1+δ

t(2+δ)+(1+δ)
≈ 0, we arrive at the fact that pk must

satisfy the recurrence relation, for k ≥ 1,

pk =
k − 1 + δ

2 + δ
pk−1 −

k + δ

2 + δ
pk + 1l{k=1}, (8.5.10)

where we define p0 = 0. We now show that the unique solution to (8.5.10) is (8.3.3). We
can rewrite

pk =
k − 1 + δ

k + 2 + 2δ
pk−1 +

2 + δ

k + 2 + 2δ
1l{k=1}. (8.5.11)

When k = 1, using that p0 = 0, we obtain

p1 =
2 + δ

3 + 2δ
. (8.5.12)
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On the other hand, when k > 1, we arrive at

pk =
k − 1 + δ

k + 2 + 2δ
pk−1. (8.5.13)

Therefore, using (8.2.2) repeatedly,

pk =
Γ(k + δ)Γ(4 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
p1 =

(2 + δ)Γ(k + δ)Γ(4 + 2δ)

(3 + 2δ)Γ(k + 3 + 2δ)Γ(1 + δ)

=
(2 + δ)Γ(k + δ)Γ(3 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
, (8.5.14)

and we see that the unique solution of (8.5.10) is pk in (8.3.3).
The next step is to use (8.5.9) and (8.5.10) to prove Proposition 8.4 for m = 1. To this

end, we define
εk(t) = N̄k(t)− tpk. (8.5.15)

Then, in order to prove Proposition 8.4 for m = 1, we are left to prove that there exists a
constant C = C(δ) such that

max
k
|εk(t)| ≤ C. (8.5.16)

The value of C will be determined in the course of the proof.
Now we deviate from the proof in [43]. In [43], induction in k was performed. Instead,

we use induction in t. First of all, we note that we can rewrite (8.5.10) as

(t+ 1)pk = tpk + pk

= tpk +
k − 1 + δ

2 + δ
pk−1 −

k + δ

2 + δ
pk + 1l{k=1}

= tpk +
k − 1 + δ

t(2 + δ) + (1 + δ)
tpk−1 −

k + δ

t(2 + δ) + (1 + δ)
tpk + 1l{k=1}

+
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k − 1 + δ)pk−1

−
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k + δ)pk. (8.5.17)

We abbreviate

κk(t) = −
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)(
(k + δ)pk − (k − 1 + δ)pk−1

)
, (8.5.18)

γk(t) =
1 + δ

t(2 + δ) + (1 + δ)

(
1l{k=2} − 1l{k=1}

)
. (8.5.19)

Then, (8.5.9) and (8.5.17) can be combined to yield that

εk(t+ 1) =
(

1− k + δ

t(2 + δ) + (1 + δ)

)
εk(t) +

k − 1 + δ

t(2 + δ) + (1 + δ)
εk−1(t) + κk(t) + γk(t).

(8.5.20)

We prove the bounds on εk(t) in (8.5.16) by induction on t ≥ 1. We start by initializing
the induction hypothesis. When t = 1, we have that PA1,δ(1) consists of a vertex with a
single self-loop. Thus,

N̄k(1) = 1l{k=2}. (8.5.21)



180 Preferential attachment models

Therefore, since also pk ≤ 1, we arrive at the estimate that, uniformly in k ≥ 1,

|εk(1)| = |N̄k(1)− pk| ≤ max{N̄k(1), pk} ≤ 1. (8.5.22)

We have initialized the induction hypothesis for t = 1 in (8.5.16) for any C ≥ 1.
We next advance the induction hypothesis. We start with k = 1. In this case, we have

that ε0(t) = N0(t)− p0 = 0 by convention, so that (8.5.20) reduces to

ε1(t+ 1) =
(

1− 1 + δ

t(2 + δ) + (1 + δ)

)
ε1(t) + κ1(t) + γ1(t). (8.5.23)

We note that

1− 1 + δ

t(2 + δ) + (1 + δ)
≥ 0, (8.5.24)

so that

|ε1(t+ 1)| ≤
(

1− 1 + δ

t(2 + δ) + (1 + δ)

)
|ε1(t)|+ |κ1(t)|+ |γ1(t)|. (8.5.25)

Using the explicit forms in (8.5.18) and (8.5.19), it is not hard to see that there are universal
constants Cκ = Cκ(δ) and Cγ = Cγ(δ) such that, uniformly in k ≥ 1,

|κk(t)| ≤ Cκ(t+ 1)−1, |γk(t)| ≤ Cγ(t+ 1)−1. (8.5.26)

Exercise 8.18 (Formulas for Cγ and Cκ). Show that Cγ = 1 does the job, and Cκ =

supk≥1(k + δ)pk = (1 + δ)p1 = (1+δ)(2+δ)
3+2δ

.

Using the induction hypothesis (8.5.16), as well as (8.5.26), we arrive at

|ε1(t+ 1)| ≤ C
(

1− 1 + δ

t(2 + δ) + (1 + δ)

)
+ (Cκ + Cγ)(t+ 1)−1. (8.5.27)

Next, we use that t(2 + δ) + (1 + δ) ≤ (t+ 1)(2 + δ), so that

|ε1(t+ 1)| ≤ C − (t+ 1)−1
(
C

1 + δ

2 + δ
− (Cκ + Cγ)

)
≤ C, (8.5.28)

whenever

C ≥ 2 + δ

1 + δ
(Cκ + Cγ). (8.5.29)

This advances the induction hypothesis for k = 1.
We now extend the argument to k ≥ 2. We again use (8.5.20). We note that

1− k + δ

t(2 + δ) + (1 + δ)
≥ 0 (8.5.30)

as long as
k ≤ t(2 + δ) + 1. (8.5.31)

We will assume (8.5.31) for the time being, and deal with k ≥ t(2 + δ) + 2 later.
By (8.5.20) and (8.5.31), we obtain that, for k ≥ 2 and δ > −1, so that k − 1 + δ ≥ 0,

|εk(t+ 1)| ≤
(

1− k + δ

t(2 + δ) + (1 + δ)

)
|εk(t)|+ k − 1 + δ

t(2 + δ) + (1 + δ)
|εk−1(t)|+ |κk(t)|+ |γk(t)|.

(8.5.32)
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Again using the induction hypothesis (8.5.16), as well as (8.5.26), we arrive at

|εk(t+ 1)| ≤ C
(

1− k + δ

t(2 + δ) + (1 + δ)

)
+ C

k − 1 + δ

t(2 + δ) + (1 + δ)
+ (Cκ + Cγ)(t+ 1)−1

= C
(

1− 1

t(2 + δ) + (1 + δ)

)
+ (Cκ + Cγ)(t+ 1)−1. (8.5.33)

As before,
t(2 + δ) + (1 + δ) ≤ (t+ 1)(2 + δ), (8.5.34)

so that

|εk(t+ 1)| ≤ C − (t+ 1)−1
( C

2 + δ
− (Cκ + Cγ)

)
≤ C, (8.5.35)

whenever
C ≥ (2 + δ)(Cκ + Cγ). (8.5.36)

Finally, we deal with the case that k ≥ t(2 + δ) + 2. Note that k ≥ t(2 + δ) + 2 > t+ 2
when δ > −1. Since the maximal degree of PAt(1, δ) is t+2 (which happens precisely when
all edges are connected to the initial vertex), we have that N̄k(t+1) = 0 for k ≥ t(2+δ)+2.
Therefore, for k ≥ t(2 + δ) + 2,

|εk(t+ 1)| = (t+ 1)pk. (8.5.37)

By (8.3.9) and (8.3.10), uniformly for k ≥ t(2 + δ) + 2 ≥ t+ 2 for δ ≥ −1, there exists
a Cp = Cp(δ) such that

pk ≤ Cp(t+ 1)−(3+δ). (8.5.38)

For δ > −1, and again uniformly for k ≥ t+ 2,

(t+ 1)pk ≤ Cp(t+ 1)−(2+δ) ≤ Cp. (8.5.39)

Therefore, if C ≥ Cp, then also the claim follows for k ≥ t(2+δ)+2. Comparing to (8.5.29)
and (8.5.29), we choose

C = max
{

(2 + δ)(Cκ + Cγ),
(2 + δ)(Cκ + Cγ)

1 + δ
, Cp

}
. (8.5.40)

This advances the induction hypothesis for k ≥ 2, and completes the proof of Proposition
8.4 when m = 1 and δ > −1.

8.5.2 Expected degree sequence for m > 1∗

In this section, we prove Proposition 8.4 for m > 1. We adapt the argument in Section
8.5.1 above. In Section 8.5.1, we have been rather explicit in the derivation of the recursion
relation in (8.5.9), which in turn gives the explicit recursion relation on the errors εk(t) in
(8.5.20). In this section, we make the derivation more abstract, since the explicit derivations
become too involved when m > 1. The current argument is rather flexible, and can, e.g.,
be extended to different preferential attachment models.

We make use of the fact that to go from PAt(m, δ) to PAt+1(m, δ), we add precisely m
edges in a preferential way. This process can be described in terms of certain operators.
For a sequence of numbers Q = {Qk}∞k=1, we define the operator Tt+1 : R∞ 7→ R∞ by

(Tt+1Q)k =
(

1− k + δ

t(2 + δ′) + (1 + δ′)

)
Qk +

k − 1 + δ

t(2 + δ′) + (1 + δ′)
Qk−1, (8.5.41)
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where we recall that δ′ = δ/m. Then, writing N̄(t) = {N̄k(t)}∞k=1, we can rewrite (8.5.9)
when m = 1 so that δ′ = δ,

N̄k(t+ 1) = (Tt+1N̄(t))k + 1l{k=1}

(
1− 1 + δ

t(2 + δ) + (1 + δ)

)
+ 1l{k=2}

1 + δ

t(2 + δ) + (1 + δ)
.

(8.5.42)

Thus, as remarked above (8.5.6), the operator Tt+1 describes the effect to the degree
sequence of a single addition of the (t + 1)st edge, apart from the degree of the newly
added vertex. The latter degree is equal to 1 with probability 1− 1+δ

t(2+δ)+(1+δ)
, and equal

to 2 with probability 1+δ
t(2+δ)+(1+δ)

. This explains the origin of each of the terms appearing

in (8.5.9).
In the case when m > 1, every vertex has m edges that are each connected in a prefer-

ential way. Therefore, we need to investigate the effect of attaching m edges in sequel. Due
to the fact that we update the degrees after attaching an edge, the effect of attaching the
(j + 1)st edge is described by applying the operator Tj to N̄(j). When we add the edges
incident to the tth vertex, this corresponds to attaching the edges m(t − 1) + 1, . . . ,mt
in sequel with intermediate updating. The effect on the degrees of vertices v1, . . . , vt is
described precisely by applying first Tmt+1 to describe the effect of the addition of the
first edge, followed by Tmt+2 to describe the effect of the addition of the second edge,
etc. Therefore, the recurrence relation of the expected number of vertices with degree k is
changed to

N̄k(t+ 1) = (T (m)

t+1 N̄(t))k + αk(t), (8.5.43)

where
T (m)

t+1 = Tm(t+1) ◦ · · · ◦ Tmt+1, (8.5.44)

and where, for k = m, . . . , 2m, we have that αk(t) is equal to the probability that the
degree of the (t + 1)st added vertex is precisely equal to n. Indeed, when t changes to
t+ 1, then the graph grows by one vertex. Its degree is equal to n with probability qn(t),
so that the contribution of this vertex is equal to αk(t). On the other hand, the edges
that are connected from the (t + 1)st vertex also change the degrees of the other ver-
tices. The expected number of vertices with degree k among vertices v1, . . . , vt is precisely
given by (T (m)

t+1 N̄(t))k. Thus, the operator T (m)

t+1 describes the effect to the degrees of ver-
tices v1, . . . , vt of the attachment of the edges emanating from vertex vt+1. This explains
(8.5.43).

When t grows large, then the probability distribution k 7→ αk(t) is such that αm(t) is
very close to 1, while αk(t) is close to zero when k > m. Indeed, for k > m, at least one
of the m edges should be connected to its brother half-edge, so that

2m∑
k=m+1

αk(t) ≤ m2(1 + δ)

mt(2 + δ′) + (1 + δ′)
. (8.5.45)

We define
γk(t) = αk(t)− 1l{k=m}, (8.5.46)

then we obtain from (8.5.45) that there exists a constant Cγ = Cγ(δ,m) such that

|γk(t)| ≤ Cγ(t+ 1)−1. (8.5.47)

The bound in (8.5.47) replaces the bound on |γk(t)| for m = 1 in (8.5.26).
Denote the operator S(m) on sequences of numbers Q = {Qk}∞k=1 by

(S(m)Q)k = m
k − 1 + δ

2m+ δ
Qk−1 −m

k + δ

2m+ δ
Qk. (8.5.48)
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Then, for m = 1, we have that (8.5.10) is equivalent to

pk = (S(1)p)k + 1l{k=1}. (8.5.49)

For m > 1, we replace the above recursion on p by pk = 0 for k < m and, for k ≥ m,

pk = (S(m)p)k + 1l{k=m}. (8.5.50)

Again, we can explicitly solve for p = {pk}∞k=1. The solution is given in the following
lemma:

Lemma 8.5 (Solution recursion for m > 1). Fix δ > −1 and m ≥ 1. Then, the solution
to (8.5.50) is given by (8.3.2).

Proof. We start by noting that pk = 0 for k < m, and identify pm as

pm = −m m+ δ

2m+ δ
pm + 1, (8.5.51)

so that

pm =
2m+ δ

m(m+ δ) + 2m+ δ
=

2 + δ
m

(m+ δ) + 2 + δ
m

. (8.5.52)

For k > m, the recursion relation in (8.5.50) becomes

pk =
m(k − 1 + δ)

m(k + δ) + 2m+ δ
pk−1 =

k − 1 + δ

k + δ + 2 + δ
m

pk−1. (8.5.53)

As a result, we obtain that, again repeatedly using (8.2.2),

pk =
Γ(k + δ)Γ(m+ 3 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)
pm

=
Γ(k + δ)Γ(m+ 3 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)

(2 + δ
m

)

(m+ δ + 2 + δ
m

)

=
(2 + δ

m
)Γ(k + δ)Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)
. (8.5.54)

Similarly to (8.5.17), we can rewrite (8.5.50) as

(t+ 1)pk = tpk + pk = tpk + (S(m)p)k + 1l{k=m}

= (T (m)

t+1 tp)k + 1l{k=m} − κk(t), (8.5.55)

where, writing I for the identity operator,

κk(t) = −
([
S(m) + t(I − T (m)

t+1 )
]
p
)
k
. (8.5.56)

While (8.5.56) is not very explicit, a similar argument as the ones leading to (8.5.26)
can be used to deduce an identical bound. That is the content of the following lemma:

Lemma 8.6 (A bound on κk(t)). Fix δ ≥ −1 and m ≥ 1. Then there exists a constant
Cκ = Cκ(δ,m) such that

|κk(t)| ≤ Cκ(t+ 1)−1. (8.5.57)
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We defer the proof of Lemma 8.6 to the end of this section, and continue with the proof
of Proposition 8.4 for m > 1.

We define, for k ≥ m,
εk(t) = N̄k(t)− tpk. (8.5.58)

Subtracting (8.5.55) from (8.5.43) and writing ε(t) = {εk(t)}∞k=1 leads to

εk(t+ 1) = (T (m)

t+1ε(t))k + κk(t) + γk(t). (8.5.59)

In order to study the recurrence relation (8.5.59) in more detail, we investigate the prop-

erties of the operator T (m)

t . To state the result, we introduce some notation. We let
Q = {Qk}∞k=1 be a sequence of real numbers, and we let Q = R∞ denote the set of all such
sequences. For Q ∈ Q, we define the supremum-norm to be

‖Q‖∞ =
∞

sup
k=1
|Qk|. (8.5.60)

Thus, in functional analytic terms, we consider the `∞ norm on Q = R∞.
Furthermore, we let Qm(t) ⊆ Q be the subset of sequences for which Qk = 0 for

k > m(t+ 1), i.e.,
Qm(t) = {Q ∈ Q : Qk = 0 ∀k > m(t+ 1)}. (8.5.61)

Clearly, N̄(t) ∈ Qm(t).

We regard T (m)

t+1 in (8.5.44) as an operator on Q. We now derive its functional analytic
properties:

Lemma 8.7 (A contraction property). Fix δ ≥ −1 and m ≥ 1. Then T (m)

t+1 maps Qm(t)
into Qm(t+ 1) and, for every Q ∈ Qm(t),

‖T (m)

t+1Q‖∞ ≤
(

1− 1

t(2m+ δ) + (m+ δ)

)
‖Q‖∞. (8.5.62)

Lemma 8.7 implies that T (m)

t+1 acts as a contraction on elements of Qm(t). Using Lemmas
8.6 and 8.7, as well as (8.5.47) allows us to complete the proof of Proposition 8.4:

Proof of Proposition 8.4. We use (8.5.59). We define the sequence ε′(t) = {ε′k(t)}∞k=1 by

ε′k(t) = εk(t)1l{k≤m(t+1)}. (8.5.63)

Then, by construction, ε′(t) ∈ Qm(t). Therefore, by Lemma 8.7,

‖ε(t+ 1)‖∞ ≤ ‖T (m)

t+1ε
′(t)‖∞ + ‖ε′(t+ 1)− ε(t+ 1)‖∞ + ‖κ(t)‖∞ + ‖γ(t)‖∞

≤
(

1− 1

(2m+ δ) + (m+ δ)

)
‖ε′(t)‖∞

+ ‖ε′(t+ 1)− ε(t+ 1)‖∞ + ‖κ(t)‖∞ + ‖γ(t)‖∞. (8.5.64)

Equation (8.5.47) is equivalent to the statement that

‖γ(t)‖∞ ≤
Cγ
t+ 1

. (8.5.65)

Lemma 8.6 implies that

‖κ(t)‖∞ ≤
Cκ
t+ 1

. (8.5.66)
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It is not hard to see that

‖ε′(t+ 1)− ε(t+ 1)‖∞ ≤ Cε′(t+ 1)−(τ−1), (8.5.67)

where τ > 2 is defined in (8.3.10). See (8.5.38)–(8.5.39) for the analogous proof for m = 1.
Therefore,

‖ε(t+ 1)‖∞ ≤
(

1− 1

t(2m+ δ) + (m+ δ)

)
‖ε(t)‖∞ +

(Cγ + Cκ + Cε′)

t+ 2
. (8.5.68)

Using further that, for m ≥ 1 and δ > −m,

t(2m+ δ) + (m+ δ) ≤ (2m+ δ)(t+ 1) (8.5.69)

we arrive at

‖ε(t+ 1)‖∞ ≤
(

1− 1

(t+ 1)(2m+ δ)

)
‖ε(t)‖∞ +

(Cγ + Cκ + Cε′)

t+ 1
. (8.5.70)

Now we can advance the induction hypothesis

‖ε(t)‖∞ ≤ C. (8.5.71)

For some C > 0 sufficiently large, this statement trivially holds for t = 1. To advance it,
we use (8.5.70), to see that

‖ε(t+ 1)‖∞ ≤
(

1− 1

(2m+ δ)(t+ 1)

)
C +

(Cγ + Cκ + Cε′)

t+ 1
≤ C, (8.5.72)

whenever
C ≥ (2m+ δ)(Cγ + Cκ + Cε′). (8.5.73)

This advances the induction hypothesis, and completes the proof that |N̄k(t) − pkt| ≤ C
for m ≥ 2.

Proof of Lemmas 8.6 and 8.7. We first prove Lemma 8.7, and then Lemma 8.6.

Proof of Lemma 8.7. We recall that

T (m)

t+1 = Tm(t+1) ◦ · · · ◦ Tmt+1, (8.5.74)

Thus, the fact that T (m)

t+1 maps Qm(t) into Qm(t+ 1) follows from the fact that Tt+1 maps
Q1(t) into Q1(t+ 1). This proves the first claim in Lemma 8.7.

To prove that the contraction property of T (m)

t+1 in (8.5.62), we shall first prove that, for

all Q ∈ Q1(mt+ a− 1), a = 1, . . . ,m, δ > −m and δ′ = δ/m > −1, we have

‖(Tmt+aQ)‖∞ ≤
(

1− 1

t(2 + δ) + (1 + δ)

)
‖Q‖∞. (8.5.75)

For this, we recall from (8.5.41) that

(Tmt+aQ)k =
(

1− k + δ

(mt+ a)(2 + δ′) + (1 + δ′)

)
Qk +

k − 1 + δ

(mt+ a)(2 + δ′) + (1 + δ′)
Qk−1.

(8.5.76)
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When Q ∈ Q1(mt+ a), then, for all k for which Qk 6= 0,

1− k + δ

(mt+ a− 1)(2 + δ′) + (1 + δ′)
∈ [0, 1], (8.5.77)

and, for k ≥ 2, also
k − 1 + δ

(mt+ a− 1)(2 + δ′) + (1 + δ′)
∈ [0, 1]. (8.5.78)

As a consequence, we have that

‖Tmt+aQ‖∞ ≤ sup
k

[(
1− k + δ

(mt+ a− 1)(2 + δ′) + (1 + δ′)

)
‖Q‖∞

+
k − 1 + δ

(mt+ a− 1)(2 + δ′) + (1 + δ′)
‖Q‖∞

]
=
(

1− 1

(mt+ a− 1)(2 + δ′) + (1 + δ′)

)
‖Q‖∞. (8.5.79)

Now, by (8.5.79), the application of Tmt+a to an element Q of Q1(mt+ a− 1) reduces its
norm. By (8.5.74), we therefore conclude that, for every Q ∈ Qm(t),

‖T (m)

t+1Q‖∞ ≤ ‖Tmt+1Q‖∞ ≤
(

1− 1

mt(2 + δ′) + (1 + δ′)

)
‖Q‖∞

=
(

1− 1

t(2m+ δ) + (m+ δ)

)
‖Q‖∞, (8.5.80)

since δ′ = δ/m. This completes the proof of Lemma 8.7.
Proof of Lemma 8.6. We recall

κk(t) =
([
S(m) + t(I − T (m)

t+1 )
]
p
)
k
. (8.5.81)

We start with

T (m)

t+1 = Tm(t+1) ◦ · · · ◦ Tmt+1 =
(
I + (Tm(t+1) − I)

)
◦ · · · ◦

(
I + (Tmt+1 − I)

)
. (8.5.82)

Clearly,(
(Tt+1 − I)Q)k = − k + δ

t(2 + δ′) + (1 + δ′)
Qk +

k − 1 + δ

t(2 + δ′) + (1 + δ′)
Qk−1. (8.5.83)

When supk k|Qk| ≤ K, then there exists a constant C such that

sup
k

∣∣∣((Tt+1 − I)Q)k

∣∣∣ ≤ C

t+ 1
. (8.5.84)

Moreover, when supk k
2|Qk| ≤ K, then there exists a constant C = CK such that, when

u, v ≥ t,
sup
k

∣∣((Tu+1 − I) ◦ (Tv+1 − I)Q)k
∣∣ ≤ C

(t+ 1)2
. (8.5.85)

We expand out the brackets in (8.5.82), and note that, by (8.5.85) and the fact that the
operators Tu are contractions that the terms where we have at least two factors Tu − I
lead to error terms. More precisely, we conclude that, when supk k

2|Qk| ≤ K,

(T (m)

t+1Q)k = Qk +

m∑
a=1

(
(Tmt+a − I)Q

)
k

+ Ek(t, Q), (8.5.86)
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where, uniformly in k and Q for which supk k
2|Qk| ≤ K,

|Ek(t, Q)| ≤ CK
(t+ 1)2

. (8.5.87)

As a result, we obtain that

(
(I − T (m)

t+1 )Q)k = −
m∑
a=1

(
(Tmt+a − I)Q

)
k
− Ek(t, Q). (8.5.88)

Furthermore, for every a = 1, . . . ,m,

(
(Tmt+a − I)Q

)
k

=
1

mt
(S(m)Q)k + Fk,a(t, Q), (8.5.89)

where, uniformly in k, Q for which supk k|Qk| ≤ K and a = 1, . . . ,m,

|Fk,a(t, Q)| ≤ C′K
(t+ 1)2

. (8.5.90)

Therefore, we also obtain that

m∑
a=1

(
(Tmt+a − I)Q

)
k

=
1

t
(S(m)Q)k + Fk(t, Q), (8.5.91)

where

Fk(t, Q) =

m∑
a=1

Fk,a(t, Q). (8.5.92)

We summarize from (8.5.88) and (8.5.91) that(
[S(m) + t(I − T (m)

t+1 )]Q
)
k

= −tFk(t, Q)− tEk(t, Q), (8.5.93)

so that

κk(t) =
(
[S(m) + t(I − T (m)

t+1 )]p
)
k

= −tFk(t, p)− tEk(t, p). (8.5.94)

We note that by (8.3.9) and (8.3.10), p satisfies that

sup
k
k2pk ≤ Cp, (8.5.95)

so that we conclude that

‖κ(t)‖∞ = sup
k

∣∣∣([S(m) + t(I − T (m)

t+1 )p]
)
k

∣∣∣ ≤ sup
k
t
(
|Ek(t, p)|+ |Fk(t, p)|

)
≤ t(CK + C′K)

(t+ 1)2
≤ CK + C′K

t+ 1
. (8.5.96)
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8.5.3 Degree sequence: completion proof of Theorem 8.2

We only prove the result for m = 1, the proof for m > 1 being identical. By Proposition
8.4, we obtain that

max
k
|E[Nk(t)]− pkt| ≤ C. (8.5.97)

Therefore, by Proposition 8.3 we obtain

P
(

max
k
|Nk(t)− pkt| ≥ C(1 +

√
t log t)

)
= o(1), (8.5.98)

which, since Pk(t) = Nk(t)/t, implies that

P
(

max
k
|Pk(t)− pk| ≥

C

t
(1 +

√
t log t)

)
= o(1). (8.5.99)

Equation (8.5.99) in turn implies Theorem 8.2.

8.6 Maximal degree in preferential attachment models

In this section, we shall investigate the maximal degree and the clustering of the graph
PAt(m, δ). In order to state the results on the maximal degree, we denote

Mt =
t

max
i=1

Di(t). (8.6.1)

The main result on the maximal degree is the following theorem:

Theorem 8.8 (Maximal degree of PAt(m, δ)). Fix m ≥ 1 and δ > −m. Then,

Mtt
− 1
τ−1

a.s.−→ µ, (8.6.2)

with P(µ = 0) = 0.

Below, we shall be able to compute all moments of the limiting random variables ξi
of Di(t)t

−1/(2+δ). We do not recognize these moments as the moments of a continuous
random variable.

Exercise 8.19 ([?]). Fix m = 1 and δ > −1. Then, prove that for all t ≥ i

P(Di(t) = j) ≤ Cj
Γ(t)Γ(i+ 1+δ

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(i)
, (8.6.3)

where C1 = 1 and

Cj =
j − 1 + δ

j − 1
Cj−1. (8.6.4)

Mori [143] studied various martingales related to degrees, and used them to prove that
the maximal degree of {PAt(m, δ)}∞t=1 converges a.s. We shall reproduce his argument
here, applied to a slightly different model. See also [75, Section 4.3]. We fix m = 1 for the
time being, and extend the results to m ≥ 2 at the end of this section.

In [143], the graph at time 1 consists of two vertices, 0 and 1, connected by a single
edge. In the attachment scheme, no self-loops are created, so that the resulting graph is
a tree. The proof generalizes easily to other initial configurations and attachment rules,
and we shall adapt the argument here to the usual preferential attachment model in which
self-loops do occur and PA1(1, δ) consists of one vertex with a single self-loop. At the tth
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step, a new vertex is added and connected to an existing vertex. A vertex of degree k is
chosen with probability (k + δ)/n(t) where δ > −1 and n(t) = t(2 + δ) + 1 + δ is the sum
of the weights for the random graph with t edges and t vertices.

Let Xj(t) = Dj(t)+δ be the weight of vertex j at time t, let ∆j(t+1) = Xj(t+1)−Xj(t).
If j ≤ t, then

P (∆j(t+ 1) = 1|PAt(1, δ)) = Xj(t)/n(t). (8.6.5)

From this, we get

E (Xj(t+ 1)|PAt(1, δ)) = Xj(t)

(
1 +

1

n(t)

)
(8.6.6)

so ctXj(t) will be a martingale if and only if ct/ct+1 = n(t)/(1 + n(t)).
Anticipating the definition of a larger collection of martingales we let

ck(t) =
Γ(t+ 1+δ

2+δ
)

Γ(t+ k+1+δ
2+δ

)
, t ≥ 1, k ≥ 0, (8.6.7)

For fixed k ≥ 0, by (8.2.8),

ck(t) = t−k/(2+δ)(1 + o(1)) as t→∞ (8.6.8)

Using the recursion Γ(r) = (r − 1)Γ(r − 1) we have

ck(t+ 1)

ck(t)
=

t+ 1+δ
2+δ

t+ k+1+δ
2+δ

=
n(t)

n(t) + k
. (8.6.9)

In particular, it follows that c1(t)Xj(t) is a martingale for t ≥ j. Being a positive martingale
it will converge a.s. to a random variable ξj , as discussed in full detail in Theorem 8.1. To
study the joint distribution of the Xj(t) we make use of a whole class of martingales. We
first introduce some notation. For a, b > −1 with a−b > −1, where a, b are not necessarily
integers, we write (

a

b

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
. (8.6.10)

The restriction on a, b is such that the arguments of the Gamma-function are all strictly
positive. Then the following proposition identifies a whole class of useful martingales
related to the degrees of the vertices:

Proposition 8.9 (A rich class of degree martingales). Let r ≥ 0 be a non-negative integer,
k1, k2, . . . , kr > −max{1, 1 + δ}, and 0 ≤ j1 < . . . < jr be non-negative integers. Then,
with k =

∑
i ki,

Z~j,~k(t) = ck(t)

r∏
i=1

(
Xji(t) + ki − 1

ki

)
(8.6.11)

is a martingale for t ≥ max{jr, 1}.

The restriction ki > −max{1, 1 + δ} is to satisfy the restrictions a, b, a − b > −1 in
(8.6.10), since Xj(t) ≥ 1 + δ. Since δ > −1, this means that Proposition 8.9 also holds for
certain ki < 0.

Exercise 8.20 (Martingale mean). Use Proposition 8.9 to show that, for all t ≥ max{jr, 1},

E[Z~j,~k(t)] =

r∏
i=1

cKi(ji)

cKi−1
(ji)

(
ki + δ

ki

)
, (8.6.12)

where Ki =
∑i
a=1 ka.
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Proof. By considering the two cases ∆j(t) = 0 or ∆j(t) = 1, and using (8.6.10) and
Γ(r) = (r − 1)Γ(r − 1), it is easy to check that, for all k,(

Xj(t+ 1) + k − 1

k

)
=

(
Xj(t) + k − 1

k

)
Γ(Xj(t+ 1) + k)

Γ(Xj(t) + k)

=

(
Xj(t) + k − 1

k

)(
1 +

k∆j(t)

Xj(t)

)
. (8.6.13)

At most one Xj(t) can change, so that

r∏
i=1

(
1 +

ki∆ji(t)

Xji(t)

)
=

(
1 +

r∑
i=1

ki∆ji(t)

Xji(t)

)
. (8.6.14)

Together, (8.6.13) and (8.6.14) imply that

r∏
i=1

(
Xji(t+ 1) + ki − 1

ki

)
=

(
1 +

r∑
i=1

ki∆ji(t)

Xji(t)

)
r∏
i=1

(
Xji(t) + ki − 1

ki

)
. (8.6.15)

Since P
(
∆j(t + 1) = 1|PAt(1, δ)

)
= Xj(t)/n(t), using the definition of Z~j,~k(t) and taking

expected value,

E
(
Z~j,~k(t+ 1)|PAt(1, δ)

)
= Z~j,~k(t) · ck(t+ 1)

ck(t)

(
1 +

∑
i ki

n(t)

)
= Z~j,~k(t), (8.6.16)

where k =
∑
i ki and the last equality follows from (8.6.9).

Being a non-negative martingale, Z~j,~k(t) converges. From the form of the martingale, the
convergence result for the factors, and the asymptotics for the normalizing constants in

(8.6.8), the limit must be
∏r
i=1 ξ

ki
i /Γ(ki + 1), where we recall that ξi is the almost sure

limit of Di(t)t
−1/(2+δ). Here we make use of (8.2.8), which implies that(

Xj(t) + k − 1

k

)
= Xj(t)

k(1 +O(1/Xj(t))), (8.6.17)

together with the fact that Di(t)
a.s.−→∞ (see Exercise 8.8).

Our next step is to check that the martingale converges in L1. To do this we begin by
observing that (8.6.8) implies cm(t)2/c2m(t)→ 1 and we have(

x+ k − 1

k

)2

=

(
Γ(x+ k)

Γ(x)Γ(k + 1)

)2

=
Γ(x+ k)

Γ(x)

Γ(x+ k)

Γ(x)Γ(k + 1)2
. (8.6.18)

Now we use that x 7→ Γ(x+ k)/Γ(x) is increasing for k ≥ 0, so that(
x+ k − 1

k

)2

≤ Γ(x+ 2k)

Γ(x+ k)

Γ(x+ k)

Γ(x)Γ(k + 1)2
=

(
x+ 2k − 1

2k

)
·

(
2k

k

)
. (8.6.19)

From this it follows that
Z~j,~k(t)2 ≤ C~kZ~j,2~k(t), (8.6.20)
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where

C~k =

r∏
i=1

(
2ki
ki

)
. (8.6.21)

Therefore, Z~j,~k(t) is an L2−bounded martingale, and hence converge in L1.
Taking r = 1 we have, for all j ≥ 1 integer and k ∈ R with k ≥ 0,

E[ξkj /Γ(k + 1)] = lim
t→∞

E[Zj,k(t)] = E[Zj,k(j)] = ck(j)

(
k + δ

k

)
. (8.6.22)

Recalling that ck(j) =
Γ(j+ 1+δ

2+δ
)

Γ(j+ k+1+δ
2+δ

)
, we thus arrive at the fact that, for all j non-negative

integers, and all k non-negative,

E[ξkj ] =
Γ(j + 1+δ

2+δ
)

Γ(j + k+1+δ
2+δ

)

Γ(k + 1 + δ)

Γ(1 + δ)
. (8.6.23)

It is, as far as we know, unknown which random variable has these moments, but we can
see that the above moments identify the distribution:

Exercise 8.21 (Uniqueness of limit). Prove that the moments in (8.6.23) identify the
distribution of ξj uniquely. Prove also that P(ξj > x) > 0 for every x > 0, so that ξj has
unbounded support.

Exercise 8.22 (A.s. limit of Dj(t) in terms of limit D1(t)). Show that ξj has the same
distribution as

ξ1

j∏
k=1

Bk, (8.6.24)

where Bk has a Beta(1, (2 + δ)k − 1)-distribution.

Exercise 8.23 (Martingales for alternative construction PA model [143]). Prove that when
the graph at time 0 is given by two vertices with a single edge between them, and we do not
allow for self-loops, then (8.6.22) remains valid when we instead define

ck(t) =
Γ(t+ δ

2+δ
)

Γ(t+ k+δ
2+δ

)
t ≥ 1, k ≥ 0. (8.6.25)

We complete this discussion by showing that P(ξj = 0) = 0 for all j ≥ 1. For this, we
use (8.2.8), which implies that, for k > −max{1, 1 + δ},

lim sup
t→∞

E
[( Xj(t)

t1/(2+δ)

)k]
≤ Ak lim sup

t→∞
E[Zj,k(t)] <∞. (8.6.26)

Since δ > −1, we have −1 − δ < 0, so that the a negative moment of Xj(t)/t
1/(2+δ)

remains uniformly bounded. This implies that P(ξj = 0) = 0. Indeed, we use that

Xj(t)/t
1/(2+δ) a.s.−→ ξj , which implies that Xj(t)/t

1/(2+δ) d−→ ξj , so that, using the Markov
property (Theorem 2.14), for every ε > 0 and k ∈ (−max{1, 1 + δ}, 0),

P(ξj ≤ ε) = lim sup
t→∞

P
(
Xj(t)/t

1/(2+δ) ≤ ε) ≤ lim sup
t→∞

ε−kE
[( Xj(t)

t1/(2+δ)

)k]
= O(ε−k).

(8.6.27)
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Letting ε ↓ 0, we obtain that P(ξj = 0) = 0.
We next move on to study the maximal degree Mt. Let Mt denote the maximal degree

in our random graph after t steps, and, for t ≥ j, let

Mj(t) = max
0≤i≤j

Zi,1(t). (8.6.28)

Note that Mt(t) = c1(t)(Mt + δ). We shall now prove that Mt(t)
a.s.−→ sup∞j=1 ξj :

Proof of Theorem 8.8 for m = 1. We start by proving Theorem 8.8 for m = 1. Being a max-

imum of martingales, {Mt(t)}∞t=1 is a non-negative submartingale. Therefore, Mt(t)
a.s.−→ µ

for some limiting random variable µ, and we are left to prove that µ = supj≥0 ξj .

Since Zj,1(t)k is a submartingale for every k ≥ 1, and Zj,1(t)k converges in L1 to ξkj ,
we further have that

E[Zj,1(t)k] ≤ E[ξkj ]. (8.6.29)

Then, using the trivial inequality

Mt(t)
k = max

0≤i≤t
Zi,1(t)k ≤

t∑
j=0

Zj,1(t)k, (8.6.30)

and (8.6.29), we obtain

E[Mt(t)
k] ≤

t∑
j=0

E[Zj,1(t)k] ≤
∞∑
j=0

E[ξkj ] = Γ(k + 1)

(
k + δ

k

)
∞∑
j=0

ck(j), (8.6.31)

which is finite by (8.6.8) if k > 2 + δ. Thus Mt(t) is bounded in Lk for every integer
k > 2 + δ, and hence bounded and convergent in Lp for any p ≥ 1. Therefore, to prove
that µ = supj≥0 ξj , we are left to prove that Mt(t) converges to supj≥0 ξj in Lk for some
k.

Let k > 2 + δ be fixed. Then, by a similar inequality as in (8.6.30),

E
[
(Mt(t)−Mj(t))

k] ≤ t∑
i=j+1

E[Zi,1(t)k] (8.6.32)

Since Mj(t) is a finite maximum of martingales, it is again a non-negative submartingale
which each converge almost surely and in Lk for any k > 2 + δ, its almost sure limit is
equal to max0≤i≤j ξi = µj , Therefore, the limit of the left-hand side of (8.6.32) is

E
[ (

lim
t→∞

t−1/(2+δ)Mt − µj
)k ]

(8.6.33)

while the right-hand side of (8.6.32) increases to (compare to (8.6.29))

∞∑
i=j+1

E[ξki ] = k!

(
k + δ

k

)
∞∑

i=j+1

ck(i), (8.6.34)

which is small if j is large by (8.6.8). Recall that t−1/(2+δ)Mt
a.s.−→ µ. Therefore, we obtain

that

lim
j→∞

E
[

(µ− µj)k
]

= 0. (8.6.35)
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Hence limt→∞ t
−1/(2+δ)Mt = µ as claimed.

When m ≥ 2, then the above can be used as well. Indeed, in this case, we have that by

Exercise 8.12, Di(t)(mt)
−1/(2+δ/m) a.s.−→ ξ′i, where

ξ′i =

mi∑
j=(i−1)m+1

ξj , (8.6.36)

and ξj is the almost sure limit of Dj(t) in {PA1,δ/m(t)}∞t=1. This implies that Mt
a.s.−→ µ =

sup∞j=1 ξ
′
j . We omit the details.

Since P(ξ1 = 0) = 0, we have that P(µ = 0) = P(sup∞j=1 ξj = 0) ≤ P(ξ1 = 0) = 0. Thus,

we see that Mt really is of order t1/(2+δ), and is not smaller.

8.7 Related preferential attachment models

There are numerous related preferential attachment models in the literature. Here we
discuss a few of them:

A directed preferential attachment model. In [43], a directed preferential attach-
ment model is investigated, and it is proved that the degrees obey a power law similar
to the one in Theorem 8.2. We first describe the model. Let G0 be any fixed initial di-
rected graph with t0 edges. Fix some non-negative parameters α, β, γ, δin and δout, where
α+ β + γ = 1.

We next define G(t). In order to do so, we say that we choose a vertex according to
fi(t) when we choose vertex i with probability

fi(t)∑
j fj(t)

. (8.7.1)

Thus, the probability that we choose a vertex i is proportional to the value of the function
fi(t). Also, we denote the in-degree of vertex i in G(t) by Din,i(t), and the out-degree of
vertex i in G(t) by Dout,i(t).

We let G(t0) = G0, where t0 is chosen appropriately, as we will indicate below. For
t ≥ t0, we form G(t+ 1) from G(t) according to the following growth rules:

(A) With probability α, we add a new vertex v together with an edge from v to an
existing vertex which is chosen according to Din,i(t) + δin.

(B) With probability β, we add an edge between the existing vertices v and w, where
v and w are chosen independently, v according to Din,i(t) + δin and w according to
Dout,i(t) + δout.

(C) With probability γ, we add a vertex w and an edge from an existing vertex v to w
according to Dout,i(t) + δout.

The above growth rule produces a graph process {G(t)}t≥t0 where G(t) has precisely t
edges. The number of vertices in G(t) is denoted by T (t), where T (t) ∼ BIN(t, α+ γ).

It is not hard to see that if αδin + γ = 0, then all vertices outside of G0 will have
in-degree zero, while if γ = 1 all vertices outside of G0 will have in-degree one. Similar
trivial graph processes arise when γδout + α = 0 or α = 1.

Exercise 8.24 (Special cases directed PA model). Prove that if αδin + γ = 0, then all
vertices outside of G0 will have in-degree zero, while if γ = 1 all vertices outside of G0 will
have in-degree one.
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We exclude the above cases. Then, [43] show that both the in-degree and the out degree
of the graph converge, in the sense that we will explain now. Denote by Xi(t) the in-degree
sequence of G(t), so that

Xk(t) =
∑

v∈G(t)

1l{Din,v(t)=k}, (8.7.2)

and, similarly, let Yi(t) be the out-degree sequence of G(t), so that

Yk(t) =
∑

v∈G(t)

1l{Dout,v(t)=k}. (8.7.3)

Denote

τin = 1 +
1 + δin(α+ β)

α+ β
, τout = 1 +

1 + δout(γ + β)

γ + β
. (8.7.4)

Then [43, Theorem 3.1] shows that there exist probability distributions p = {pk}∞k=0 and
q = {qk}∞k=0 such that with high probability

Xk(t)− pkt = o(t), Yk(t)− qkt = o(t), (8.7.5)

while, for k →∞,

pk = Cink
−τin(1 + o(1)), qk = Coutk

−τout(1 + o(1)). (8.7.6)

In fact, the probability distributions p and q are determined explicitly, as in (8.3.2) above,
and p and q have a similar shape as p in (8.3.2). Also, since δin, δout ≥ 0, and α+β, γ+β ≤ 1,
we again have that τin, τout ∈ (2,∞). In [43], there is also a result on the joint distribution
of the in- and out-degrees of G(t), which we shall not state here.

The proof in [43] is similar to the one chosen here. Again the proof is split into a
concentration result as in Proposition 8.3, and a determination of the expected empirical
degree sequence in Proposition 8.4. In fact, the proof Proposition 8.4 is adapted after the
proof in [43], which also writes down the recurrence relation in (8.5.20), but analyses it in
a different way, by performing induction on k, rather than on t as we do in Sections 8.5.1
and 8.5.2. As a result, the result proved in Proposition 8.4 is slightly stronger. A related
result on a directed preferential attachment model can be found in [54]. In this model,
the preferential attachment probabilities only depend on the in-degrees, rather than on the
total degree, and power-law in-degrees are proved.

A general preferential attachment model. A quite general version of preferential
attachment models is presented in [68]. In this paper, an undirected graph process is
defined. At time 0, there is a single initial vertex v0. Then, to go from G(t) to G(t + 1),
either a new vertex can be added or a number of edges between existing vertices. The
first case is called NEW, the second OLD. With probability α, we choose to apply the
procedure OLD, and with probability 1− α we apply the procedure NEW.

In the procedure NEW, we add a single vertex, and let f = {fi}∞i=1 be such that fi is
the probability that the new vertex generates i edges. With probability β, the end vertices
of these edges are chosen uniformly among the vertices, and, with probability 1 − β, the
end vertices of the added edges are chosen proportionally to the degree.

In the procedure OLD, we choose a single old vertex. With probability δ, this vertex is
chosen uniformly, and with probability 1 − δ, it is chosen with probability proportionally
to the degree. We let g = {gi}∞i=1 be such that gi is the probability that the old vertex
generates i edges. With probability γ, the end vertices of these edges are chosen uniformly
among the vertices, and, with probability 1 − γ, the end vertices of the added edges are
chosen proportionally to the degree.
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The main result in [68] states that the empirical degree distribution converges to a
probability distribution which obeys a power law with a certain exponent τ which depends
on the parameters of the model. More precisely, a result such as in Theorem 8.2 is proved,
at least for k ≤ t1/21. Also, a version of Proposition 8.4 is proved, where the error term
E[Pk(t)]−tpk is proved to be at most Mt1/2 log t. For this result, some technical conditions
need to be made on the first moment of f , as well as on the distribution g. The result
is nice, because it is quite general. The precise bounds are a bit weaker than the ones
presented here.

Interestingly, also the maximal degree is investigated, and it is shown that the maximal
degree is of order Θ(t1/(τ−1)) as one would expect. This result is proved as long as τ < 3.
1 Finally, the results close to those that we present here are given in [4]. In fact, the error
bound in Proposition 8.4 is proved there for m = 1 for several models. The result for
m > 1 is, however, not contained there.

Non-linear preferential attachment. There is also work on preferential attachment
models where the probability of connecting to a vertex with degree k depends in a non-
linear way on k. In [125], the attachment probabilities have been chosen proportional to kγ

for some γ. The linear case was non-rigorously investigated in [124], and the cases where
γ 6= 1 in [125]. As one can expect, the results depend dramatically in the choice of γ.
When γ < 1, the degree sequence is predicted to have a power law with a certain stretched
exponential cut-off. Indeed, the number of vertices with degree k at time t is predicted to
be roughly equal to tαk, where

αk =
µ

kγ

k∏
j=1

1

1 + µ
jγ
, (8.7.7)

and where µ satisfies the implicit equation that
∑
k αk = 1. When γ > 1, then [124]

predicts that there is a single vertex that is connected to nearly all the other vertices. In
more detail, when γ ∈ (1 + 1

m+1
, 1 + 1

m
), it is predicted that there are only finitely many

vertices that receive more than m+1 links, while there are, asymptotically, infinitely many
vertices that receive at least m links. This was proved rigorously in [154].

In [162], random trees with possibly non-linear preferential attachment are studied
by relating them to continuous-time branching processes and using properties of such
branching processes. Their analysis can be seen as a way to make the heuristic in Section
1.3.2 precise. To explain their results, let wi be the weight of a vertex of degree i. The
random tree evolves, conditionally on the tree at time t, by attaching the (t+ 1)st vertex
to vertex i with probability proportional to wDi(t)−1. Let λ∗ be the solution, if it exists,
of the equation

1 =

∞∑
n=1

n−1∏
i=0

wi
wi + λ

. (8.7.8)

Then, it is proved in [162] that the degree distribution converges to pw = {pw(k)}∞k=1,
where2

pw(k) =
λ∗

wk + λ∗

k∏
i=0

wi
wi + λ∗

. (8.7.9)

1On [68, Page 318], it is mentioned that when the power law holds with power law exponent τ ,
that this suggests that the maximal degree should grow like t1/τ . However, when the degrees are
independent and identically distributed with a power law exponent equal to τ , then the maximal
degree should grow like Θ(t1/(τ−1)), which is precisely what is proved in [68, Theorems 2 and 5].

2The notion of degree used in [162] is slightly different since [162] makes use of the in-degree
only. For trees, we have that the degree is the in-degree plus 1, which explains the apparent
difference in the formulas.
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For linear preferential attachment models where wi = i + 1 + δ, we have that λ∗ = δ, so
that (8.7.9) reduces to (8.3.3):

Exercise 8.25 (The affine preferential attachment case). Prove that, when λ∗ = δ and
wi = i+ 1 + δ, (8.7.9) reduces to (8.3.3).

Interestingly, in [162] not only the degree of a uniformly chosen vertex is studied, but
also its neighborhood. We refrain from describing these results here. These analyses are
extended beyond the tree case in [32].

Preferential attachment with fitness. The models studied in [34, 35, 86] include
preferential attachment models with random fitness. In general, in such models, the vertex
vi which is added at time i is given a random fitness (ζi, ηi). The later vertex vt at
time t > i connects to vertex vi with a conditional probability which is proportional to
ζiDi(t)+ηi. The variable ζi is called the multiplicative fitness, and ηi is the additive fitness.
The case of additive fitness only was introduced in [86], the case of multiplicative fitness
was introduced in [34, 35] and studied further in [48]. Bhamidi [32] finds the exact degree
distribution both for the additive and multiplicative models.

Preferential attachment and power-law exponents in (1, 2). In all models, and
similarly to Theorem 8.2, the power law exponents τ are limited to the range (2,∞). It
would be of interest to find simple examples where the power law exponent can lie in
the interval (1, 2). A possible solution to this is presented in [?], where a preferential
attachment model is presented in which a random number of edges can be added which
is, unlike [68], not bounded. In this case, when the number of edges obeys a power law,
then there is a cross-over between a preferential attachment power law and the power law
from the edges, the one with the smallest exponent winning. Unfortunately, the case where
the weights have degrees with power-law exponent in (1, 2) is not entirely analyzed. The
conjecture in [?] in this case is partially proved by Bhamidi in [32, Theorem 40].

Universal techniques to study preferential attachment models. In [32], Bhamidi
investigates various preferential attachment models using universal techniques from continuous-
time branching processes (see [10] and the works by Jagers and Nerman [103, 104, 146])
to prove powerful results for preferential attachment graphs. Models that can be treated
within this general methodology include fitness models [34, 35, 86], competition-induced
preferential attachment models [29, 30], linear preferential attachment models as studied
in this chapter, but also sublinear preferential attachment models and preferential attach-
ment models with a cut-off. Bhamidi is able to prove results for (1) the degree distribution
of the graph; (2) the maximal degree; (3) the degree of the initial root; (4) the local
neighborhoods of vertices; (5) the height of various preferential attachment trees; and (6)
properties of percolation on the graph, where we erase the edges independently and with
equal probability.

8.8 Notes and discussion

Notes on Section 8.1. There are various ways of modeling the Rich-get-Richer or
preferential attachment phenomenon, and in these notes, we shall describe some related
models. The most general model is studied in [68], the main result being that the degrees
obey a power law. A model where the added edges are conditionally independent given
the degrees is given in [114]. A directed preferential attachment model is presented in [28].
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Notes on Section 8.2. The degrees of fixed vertices plays a crucial role in the analysis
of preferential attachment models, see e.g. [46]. In [171], several moments of the degrees are
computed for the Albert-Barabási model, including the result in Theorem 8.1 and several
extensions.

Notes on Section 8.3. Most papers on specific preferential attachment models prove
that the degree sequences obey a power law. We shall refer in more detail to the various
papers on the topic when we discuss the various different ways of proving Proposition 8.4.
General results in this direction can be found for example in [32].

Notes on Section 8.4. The proof of Theorem 8.2 relies on two key propositions, namely,
Propositions 8.3 and 8.4. Proposition 8.3 is a key ingredient in the investigation of the
degrees in preferential attachment models, and is used in many related results for other
models. The first version, as far as we know, of this proof is in [46].

Notes on Section 8.5. The proof of the expected empirical degree sequence in Propo-
sition 8.4 is new, and proves a stronger result than the one for δ = 0 appearing in [46].
The proof of Proposition 8.4 is also quite flexible. For example, instead of the growth rule
in (8.1.1), we could attach the m edges of the newly added vertex v(m)

t+1 each independently
and with equal probability to a vertex i ∈ [t] with probability proportional to Di(t) + δ.
More precisely, this means that, for t ≥ 3,

P
(
v(m)

t+1 → v(1)

i

∣∣PAt(m, δ)
)

=
Di(t) + δ

t(2m+ δ)
for i ∈ [t], (8.8.1)

and, conditionally on PAt(m, δ), the attachment of the edges are independent. We can
define PA2(m, δ) to consist of 2 vertices connected by m edges.

It is not hard to see that the proof of Proposition 8.3 applies verbatim:

Exercise 8.26 (Adaptation concentration degree sequence). Adapt the proof of Propo-
sition 8.3 showing the concentration of the degrees to the preferential attachment model
defined in (8.8.1).

It is not hard to see that also the proof of Proposition 8.4 applies by making the obvious
changes. In fact, the limiting degree sequence remains unaltered. A second slightly different
model, in which edges are added independently without intermediate updating, is studied
by Jordan in [112].

The original proof in [46] of the asymptotics of the expected empirical degree sequence
for δ = 0 makes use of an interesting relation between this model and so-called n-pairings.
An n-pairing is a partition of the set {1, . . . , 2n} into pairs. We can think about the pairs
as being points on the x-axis, and the pairs as chords joining them. This allows us to speak
of the left- and right-endpoints of the pairs.

The link between an n-pairing and the preferential attachment model with δ = 0 and
m = 1 is obtained as follows. We start from the left, and merge all left-endpoints up to
and including the first right endpoint into the single vertex v1. Then, we merge all further
left-endpoints up to the next right endpoint into vertex v2, etc. For the edges, we replace
each pair by a directed edge from the vertex corresponding to its right endpoint to the
vertex corresponding to its left endpoint. Then, as noted in [45], the resulting graph has
the same distribution as G1(t). The proof in [46] then uses explicit computations to prove

that for k ≤ t1/15,
E[Nk(t)] = tpk(1 + o(1)). (8.8.2)

The advantage of the current proof is that the restriction on k in k ≤ t1/15 is absent, that
the error term in (8.8.2) is bounded uniformly by a constant, and that the proof applies
to δ = 0 and δ 6= 0.
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The approach of Hagberg and Wiuf in [95] is closest to ours. In it, the authors assume
that the model is a preferential attachment model, where the expected number of vertices
of degree k in the graph at time t+ 1, conditionally on the graph at time t solves

E[Nk(t+ 1)|N(t)] = (1− ak
t

)Nk(t)− ak−1

t
Nk−1(t) + ck, (8.8.3)

where Nk(t) is the number of vertices of degree k at time t, N(t) = {Nk(t)}∞k=0 and it
is assumed that a−1 = 0, and where ck ≥ 0 and ak ≥ ak−1. Also, it is assumed that
|Nk(t)−Nk(t− 1)| is uniformly bounded. This is almost true for the model considered in
this chapter. Finally, {N(t)}∞t=0 is assumed to be a Markov process, starting at some time
t0 in a configuration N(t0). Then, with

αk =

k∑
j=0

cj
1 + aj

∞∏
i=j+1

ai−1

1 + ai
, (8.8.4)

it is shown that Nt(k)/t converges to αk.

Exercise 8.27 (Monotonicity error [95]). Show that

k
max
j=1
|E[Nt(j)]− αjt| (8.8.5)

is non-increasing.

Notes on Section 8.6. The beautiful martingale description in Proposition 8.9 is due
to Mori [143] (see also [144]). We largely follow the presentation in [75, Section 4.3],
adapting it to the setting of preferential attachment models in Section 8.1. The fact that
Proposition 8.9 also holds for non-integer ki is, as far as we know, new. This is relevant,
since it identifies all moments of the limiting random variables ξj , which might prove useful
in order to identify their distribution, which, however, has not been done yet.



Appendix A

Some measure and integration results

. In this section, we give some classical results from the theory of measure and integration,
which will be used in the course of the proofs. For details and proofs of these results, we
refer to the books [37, 90, 74, 96]. For the statements of the results below, we refer to [90,
Pages 110-111].

Theorem A.10 (Lebesque’s dominated convergence theorem). Let Xn and Y satisfy

E[Y ] <∞, Xn
a.s.−→ X, and |Xn| ≤ Y almost surely. Then

E[Xn]→ E[X], (A.6)

and E[|X|] <∞.

We shall also make use of a slight extension, where almost sure convergence is replaced
with convergence in distribution:

Theorem A.11 (Lebesque’s dominated convergence theorem). Let Xn and Y satisfy

E[|Xn|] <∞, E[Y ] <∞, Xn
d−→ X, and |Xn| ≤ Y . Then

E[Xn]→ E[X], (A.7)

and E[|X|] <∞.

Theorem A.12 (Monotone convergence theorem). Let Xn be a monotonically increasing
sequence, i.e., Xn ≤ Xn+1 such that E[|Xn|] <∞. Then Xn(ω) ↑ X(ω) for all ω and some
limiting random variable X, and

E[Xn] ↑ E[X]. (A.8)

In particular, when E[X] =∞, then E[Xn] ↑ ∞.

Theorem A.13 (Fatou’s lemma). If Xn ≥ 0 and E[|Xn|] <∞, then

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn]. (A.9)

In particular, if Xn(ω)→ X(ω) for every ω, then

E[X] ≤ lim inf
n→∞

E[Xn]. (A.10)
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Appendix B

Solutions to selected exercises

Solutions to the exercises of Chapter 1.

Solution to Exercise 1.1. When (1.1.6) holds with equality, then

1− FX(x) =

∞∑
k=x+1

fk =

∞∑
k=x+1

k−τ .

Therefore, by monotonicity of x 7→ x−τ ,

1− FX(x) ≤
∫ ∞
x

y−τdy =
x1−τ

τ − 1
,

while

1− FX(x) ≥
∫ ∞
x+1

y−τdy =
(x+ 1)1−τ

τ − 1
.

As a result, we obtain that

1− FX(x) =
x1−τ

τ − 1
(1 +O(

1

x
)).

For an example where (??) holds, but (1.1.6) fails, we can take f2k+1 = 0 for k ≥ 0 and,
for k ≥ 1,

f2k =
1

kτ−1
− 1

(k + 1)τ−1
.

Then (1.1.6) fails, while

1− FX(x) =
∑
k>x

fk ∼
1

bx/2cτ−1
∼ 1

xτ−1
.

Solution to Exercise 1.2. Recall that a function x 7→ L(x) is slowly varying when, for
every c > 0,

lim
x→∞

L(cx)

L(x)
= 1.

For L(x) = log x, we can compute

lim
x→∞

L(cx)

L(x)
= lim
x→∞

log(cx)

log x
= lim
x→∞

log x+ log c

log x
= 1.

For L(x) = e(log x)γ , we compute similarly

lim
x→∞

L(cx)

L(x)
= lim

x→∞
e(log (cx))γ−(log x)γ

= lim
x→∞

e
log(x)γ

(
(1+ log c

log x
)γ−1

)
= lim

x→∞
elog(x)γ−1γ log c = 1.
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When γ = 1, however, we have that L(x) = elog x = x, which is regularly varying with
exponent 1.

Solutions to the exercises of Chapter 2.

Solution to Exercise 2.1. Take

Xn =

{
Y1 for n even,

Y2 for n odd,

where Y1 and Y2 are two independent copies of a random variable which is such that
P(Yi = E[Yi]) < 1. Then, since Y1 and Y2 are identical in distribution, the sequence
{Xn}∞n=1 converges in distribution. In fact, {Xn}∞n=1 is constant in distribution.

Moreover, X2n ≡ Y1 and X2n+1 ≡ Y2. Since subsequences of converging sequences are
again converging, if {Xn}∞n=1 converges in probability, the limit of {Xn}∞n=1 should be
equal to Y1 and to Y2. Since P(Y1 6= Y2) > 0, we obtain a contradiction.

Solution to Exercise 2.2. Note that for any ε > 0, we have

P(|Xn| > ε) = P(Xn = n) =
1

n
→ 0. (B.1)

Therefore, Xn
P−→ 0, which in turn implies that Xn

d−→ 0.

Solution to Exercise 2.3. The random variable X with density

fX(x) =
1

π(1 + x2)
,

which is a Cauchy random variable, does the job.

Solution to Exercise 2.4. Note that, by a Taylor expansion of the moment generating
function, if MX(t) <∞ for all t, then

MX(t) =

∞∑
r=0

E[Xr]
tr

r!
.

As a result, when MX(t) <∞ for all t, we must have that

lim
r→∞

E[Xr]
tr

r!
= 0.

Thus, when t > 1, (2.1.8) follows. Thus, it is sufficient to show that the moment generating
function MX(t) of the Poisson distribution is finite for all t. For this, we compute

MX(t) = E[etX ] =

∞∑
k=0

etke−λ
λk

k!
= e−λ

∞∑
k=0

(λet)k

k!
= exp{−λ(1− et)} <∞,

for all t.
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Solution to Exercise 2.5. We write out

E[(X)r] = E[X(X − 1) · · · (X − r + 1)] =

∞∑
x=0

x(x− 1) · · · (x− r + 1)P(X = x)

=

∞∑
x=r

x(x− 1) · · · (x− r + 1)e−λ
λx

x!

= λr
∞∑
x=r

e−λ
λx−r

(x− r)! = λr. (B.2)

Solution to Exercise 2.6. Compute that

E[Xm] = e−λ
∞∑
k=1

km
λk

k!
= λe−λ

∞∑
k=1

km−1 λk−1

(k − 1)!
= λe−λ

∞∑
l=0

(l+1)m−1 λ
l

l!
= λE[(X+1)m−1].

Solution to Exercise 2.7. By the discussion around (2.1.16), we have that the sum∑n
r=k(−1)k+r E[(X)r ]

(r−k)!k!
is alternatingly larger and smaller than P(X = k). Thus, it suffices

to prove that, when (2.1.18) holds, then also

lim
n→∞

n∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
=

∞∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
. (B.3)

This is equivalent to the statement that

lim
n→∞

∞∑
r=n

(−1)k+r E[(X)r]

(r − k)!k!
= 0. (B.4)

To prove (B.4), we bound∣∣∣ ∞∑
r=n

(−1)k+r E[(X)r]

(r − k)!k!

∣∣∣ ≤ ∞∑
r=n

E[(X)r]

(r − k)!k!
→ 0, (B.5)

by (2.1.18).

Solution to Exercise 2.8. For r = 2, we note that

E[(X)r] = E[X2]− E[X], (B.6)

and, for X =
∑
i∈I Ii a sum of indicators,

E[X2] =
∑
i,j

E[IiIj ] =
∑
i 6=j

P(Ii = Ij = 1) +
∑
i

P(Ii = 1). (B.7)

Using that E[X] =
∑
i P(Ii = 1), we thus arrive at

E[(X)r] =
∑
i 6=j

P(Ii = Ij = 1), (B.8)

which is (2.1.21) for r = 2.
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Solution to Exercise 2.9. For the Poisson distribution factorial moments are given by

E[(X)k] = λk

(recall Exercise 2.5.) We make use of Theorems 2.4 and 2.5. If Xn is binomial with
parameters n and pn = λ/n, then

E[(Xn)k] = E[Xn(Xn − 1) · · · (Xn − k + 1)] = n(n− 1) . . . (n− k + 1)pk → λk,

when p = λ/n and n→∞.

Solution to Exercise 2.10. We prove Theorem 2.7 by induction on d ≥ 1. The induc-
tion hypothesis is that (2.1.21) holds for all measures P with corresponding expectations
E and all r1, . . . , rd.

Theorem 2.7 for d = 1 is Theorem 2.5, which initializes the induction hypothesis. We
next advance the induction hypothesis by proving (2.1.21) for d + 1. For this, we first
note that we may assume that E[(Xd+1,n)rd+1 ] > 0, since (Xd+1,n)rd+1 ≥ 0 and when
E[(Xd+1,n)rd+1 ] = 0, then (Xd+1,n)rd+1 ≡ 0, so that (2.1.21) follows. Then, we define the
measure PX,d by

PX,d(E) =
E
[
(Xd+1,n)rd+11lE

]
E[(Xd+1,n)rd+1 ]

, (B.9)

for all possible measurable events E . Then,

E[(X1,n)r1 · · · (Xd,n)rd(Xd+1,n)rd+1 ] = E[(Xd+1,n)rd+1 ]EX,d
[
(X1,n)r1 · · · (Xd,n)rd

]
.

(B.10)
By the induction hypothesis applied to the measure PX,d, we have that

EX,d
[
(X1,n)r1 · · · (Xd,n)rd

]
=

∑∗

i
(1)
1 ,...,i

(1)
r1
∈I1

· · ·
∑∗

i
(d)
1 ,...,i

(d)
rd
∈Id

PX,d
(
I(l)

is
= 1∀l = 1, . . . , d&s = 1, . . . , rl

)
.

(B.11)
Next, we define the measure P~id by

P~id(E) =
E
[∏d

l=1 I
(l)

is
1lE
]

P
(
I(l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

) , (B.12)

so that

E[(Xd+1,n)rd+1 ]PX,d
(
I(l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

)
= E~id [(Xd+1,n)rd+1 ]P

(
I(l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

)
. (B.13)

Again by Theorem 2.5,

E~id [(Xd+1,n)rd+1 ] =
∑∗

i
(d+1)
1 ,...,i

(d+1)
r1

∈Id+1

P~id(I(d+1)

i1
= · · · = I(d+1)

ird+1
= 1). (B.14)

Then, the claim for d+ 1 follows by noting that

P
(
I(l)

is
= 1 ∀l = 1, . . . , d, s = 1, . . . , rl

)
P~id(I(d+1)

i1
= · · · = I(d+1)

ird+1
= 1) (B.15)

= P
(
I(l)

is
= 1 ∀l = 1, . . . , d+ 1, s = 1, . . . , rl

)
.
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Solution to Exercise 2.11. Observe that∑
x

|px − qx| =
∑
x

(px − qx)1l{px>qx} +
∑
x

(qx − px)1l{qx>px} (B.16)

0 = 1− 1 =
∑
x

(px − qx) =
∑
x

(px − qx)1l{px>qx} +
∑
x

(px − qx)1l{qx>px}. (B.17)

We add the two equalities to obtain∑
x

|px − qx| = 2
∑
x

(px − qx)1l{px>qx}.

Complete the solution by observing that∑
x

(px −min(px, qx)) =
∑
x

(px − qx)1l{px>qx}.

Solution to Exercise 2.12. The proof of (2.2.11) is the continuous equivalent of the
proof of (2.2.9). Therefore, we will only prove (2.2.9).

Let Ω be the set of possible outcomes of the probability mass functions {px} and {qx}.
The set Ω can be partitioned into two subsets

Ω1 = {x ∈ Ω : px ≥ qx} and Ω2 = {x ∈ Ω : px < qx}.

Since {px} and {qx} are probability distribution functions, the sum
∑
x∈Ω(px − qx) equals

zero. Therefore, ∑
x∈Ω

|px − qx| =
∑
x∈Ω1

(px − qx)−
∑
x∈Ω2

(px − qx)

0 =
∑
x∈Ω

(px − qx) =
∑
x∈Ω1

(px − qx) +
∑
x∈Ω2

(px − qx)

Adding and subtracting the above equations yields∑
x∈Ω

|px − qx| = 2
∑
x∈Ω1

(px − qx) = −2
∑
x∈Ω2

(px − qx).

Hence, there exists a set A ⊆ Ω such that |F (A) −G(A)| ≥ 1
2

∑
x∈Ω |px − qx|. It remains

to show that |F (A)−G(A)| ≤ 1
2

∑
x∈Ω |px − qx| for all A ⊆ Ω.

Let A be any subset of Ω. Just as the set Ω, the set A can be partitioned into two
subsets

A1 = A ∩ Ω1 and A2 = A ∩ Ω2,

so that
|F (A)−G(A)| = |

∑
x∈A1

(px − qx) +
∑
x∈A2

(px − qx) | = |αA + βA|.

Since αA is non-negative and βA non-positive, it holds that

|αA + βA| ≤ max
A

(
αA,−βA

)
.

The quantity αA satisfies

αA ≤
∑
x∈Ω1

(px − qx) =
1

2

∑
x∈Ω

|px − qx|,
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while βA satisfies

βA ≥
∑
x∈Ω2

(px − qx) = −1

2

∑
x∈Ω

|px − qx|.

Therefore,

|F (A)−G(A)| ≤ 1

2

∑
x∈Ω

|px − qx| ∀A ⊆ Ω,

which completes the proof.

Solution to Exercise 2.13. By (2.2.13) and (2.2.18)

dTV(f, g) ≤ P(X̂ 6= Ŷ ). (B.18)

Therefore, the first claim follows directly from Theorem 2.9. The second claim follows by
(2.2.9).

Solution to Exercise 2.15. Without any loss of generality we can take σ2 = 1. Then
for each t, and with Z a standard normal variate

P(X ≥ t) = P(Z ≥ t− µX) ≤ P(Z ≥ t− µY ) = P(Y ≥ t),

whence X � Y .

Solution to Exercise 2.16. The answer is negative. Take X standard normal and
Y ∼ N(0, 2), then X � Y implies

P(Y ≥ t) ≥ P(X ≥ t) = P(Y ≥ t
√

2),

for each t. However, this is false for t < 0.

Solution to Exercise 2.17. Let X be Poisson distributed with parameter λ, then

E[etX ] =

∞∑
n=0

etne−λ
λn

n!
= e−λ

∞∑
n=0

(λet)n

n!
= eλ(et−1).

Put
g(t) = at− logE[etX ] = at+ λ− λet

then g′(t) = a−λet = 0⇔ t = log(a/λ). Hence, I(a) in (2.4.12) is equal to I(a) = Iλ(a) =
a(log (a/λ)− 1) + λ and with a > λ we obtain from (2.4.9),

P(

n∑
i=1

Xi ≥ an) ≤ e−nIλ(a).

This proves (2.4.17). For a < λ, we get g′(t) = a − λet = 0 for t = log(a/λ) < 0 and we
get again

Iλ(a) = a(log a/λ− 1) + λ.

By (2.4.9), with a < λ, we obtain (2.4.18).
Iλ(λ) = 0 and d

da
Iλ(a) = log a − log λ, so that for a < λ the function a 7→ Iλ(a)

decreases, whereas for a > λ the function a 7→ Iλ(a) increases. Because Iλ(λ) = 0, this
shows that for all a 6= λ, we have Iλ(a) > 0.
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Solution to Exercise 2.19. By taking expectations on both sides of (2.5.2),

E[Mn] = E[E[Mn+1|M1,M2, . . . ,Mn]] = E[Mn+1],

since according to the theorem of total probability:

E[E[X|Y1, . . . , Yn]] = E[X].

Solution to Exercise 2.20. First we show that E[|Mn|] < ∞. Indeed, since E[|Xi|] <
∞, ∀i, and since the fact that Xi is an independent sequence implies that the sequence
|Xi| is independent we get

E[|Mn|] =

n∏
i=0

E[|Xi|] <∞.

To verify the martingale condition, we write

E[Mn+1|X1, X2, . . . , Xn] = E
[ n+1∏
i=1

Xi

∣∣∣X1, X2, . . . , Xn
]

=
( n∏
i=1

Xi
)
· E[Xn+1|X1, X2, . . . , Xn] = MnE[Xn+1] = Mn a.s.

Solution to Exercise 2.21. First we show that E[|Mn|] < ∞. Indeed, since E[|Xi|] <
∞∀i,

E[|Mn|] = E
∣∣∣ n∑
i=1

Xi

∣∣∣ ≤ n∑
i=1

E|Xi| <∞.

To verify the martingale condition, we write

E[Mn+1|M1,M2, . . . ,Mn] = E[

n+1∑
i=1

Xi|X0, X1, . . . , Xn]

=

n∑
i=1

Xi + E[Xn+1|X0, X1, . . . , Xn] = Mn + E[Xn+1] = Mn a.s.

Solution to Exercise 2.22. Again we first that E[|Mn|] < ∞. Indeed, since E[|Xi|] <
∞∀i,

E[|Mn|] = E
∣∣∣E[Y |X0, . . . , Xn]

∣∣∣ ≤ E
[
E
[
|Y |
∣∣X0, . . . , Xn

]]
= E[|Y |] <∞.

To verify the martingale condition, we write

E[Mn+1|X0, . . . , Xn] = E
[
E[Y |X0, . . . , Xn+1]

∣∣∣X0, . . . , Xn
]

= E[Y |X0, . . . , Xn] = Mn + E[Xn+1] = Mn a.s.
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Solution to Exercise 2.23. Since Mn is non-negative we have E[|Mn|] = E[Mn] = µ ≤
M , by Exercise 2.19. Hence, according to Theorem 2.21 we have convergence to some
limiting random variable M∞.

Solution to Exercise 2.24. Since Xi ≥ 0, we have Mn =
∏n
i=0 Xi ≥ 0, hence the claim

is immediate from Exercise 2.23.

Solution to Exercise 2.25. First,

E[|Mn|] ≤
m∑
i=1

E[|M (i)
n |] <∞. (B.19)

Secondly, since E[max{X,Y }] ≥ max{E[X],E[Y ]}, we obtain

E[Mn+1|X0, . . . , Xn] = E
[

m
max
i=0

M (i)

n+1|X0, . . . , Xn
]
≥ m

max
i=0

E[M (i)

n+1|X0, . . . , Xn] (B.20)

=
m

max
i=0

M (i)
n = Mn, (B.21)

where we use that {M (i)
n }∞n=0 is a sequence of martingales with respect to {Xn}∞n=0.

Solution to Exercise 2.26. We can write

Mn =

n∑
i=1

Ii − p, (B.22)

where {Ii}∞i=1 are i.i.d. indicator variables with P(Ii = 1) = 1 − P(Ii = 0) = p. Then,
M−n has the same distribution as X−np, while, by Exercise 2.21, the sequence {Mn}∞n=0

is a martingale with

|Mn −Mn−1| = |In − p| ≤ max{p, 1− p} ≤ 1− p, (B.23)

since p ≤ 1/2. Thus, the claim follows from the Azuma-Hoeffding inequality (Theorem
2.23).

Solution to Exercise 2.27. Since E[Xi] = 0, we have, by Exercise 2.21, that Mn =∑n
i=1 Xi is a martingale, with by hypothesis,

−1 ≤Mn −Mn−1 = Xn ≤ 1,

so that the condition of Theorem 2.23 is satisfied with αi = βi = 1. Since E[Mn] = 0, we
have µ = 0 and

∑n
i=0(αi + βi)

2 = 4(n+ 1), hence from (2.5.18) we get (2.5.31).
We now compare the Azuma-Hoeffding bound (2.5.31) with the central limit approxi-

mation. With a = x
√
n+ 1, and σ2 = Var(Xi),

P(|Mn| ≥ a) = P(|Mn| ≥ x
√
n+ 1) = P(|Mn|/σ

√
n+ 1 ≥ x/σ)→ 2(1− Φ(x/σ)),

where Φ(t) = 1√
2π

∫ t
−∞ e

−u2/2 du. A well-known approximation tells us that

2(1− Φ(t)) ∼ 2φ(t)/t =

√
2

t
√
π
e−t

2/2,

so that by the central limit theorem and this approximation

P(|Mn| ≥ a) ∼ σ
√

2

x
√
σπ

e−x
2/2σ2

=
σ
√

2(n+ 1)

a
√
π

e−a
2/2(n+1)σ2

Finally σ2 ≤ 1, so that the leading order term and with a = x
√
n+ 1, the inequality of

Azuma-Hoefding is quite sharp!
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Solutions to the exercises of Chapter 3.

Solution to Exercise 3.1. When η = 0, then, since η is a solution of η = GX(η), we
must have that

p0 = GX(0) = 0. (B.24)

Solution to Exercise 3.2. We note that for p = {px}∞x=0 given in (3.1.15), and writing
q = 1− p, we have that E[X] = 2p, so that η = 1 when p ≤ 1/2, and

GX(s) = q + ps2. (B.25)

Since η satisfies η = G(η), we obtain that

η = q + pη2, (B.26)

of which the solutions are

η =
1±
√

1− 4pq

2p
. (B.27)

Noting further that 1− 4pq = 1− 4p(1− p) = 4p2 − 4p + 1 = (2p− 1)2, and p > 1/2, we
arrive at

η =
1± (2p− 1)

2p
. (B.28)

Since η ∈ [0, 1) for p > 1/2, we must have that

η =
1− (2p− 1)

2p
=

1− p
p

. (B.29)

Solution to Exercise 3.3. We compute that

GX(s) = 1− b/p+

∞∑
k=1

b(1− p)k−1sk = 1− b

p
+

bs

1− qs , (B.30)

so that

µ = G′X(1) =
b

p2
. (B.31)

As a result, η = 1 if µ = b/p2 ≤ 1 follows from Theorem 3.1. Now, when µ = b/p2 > 1,
then η < 1 is the solution of GX(η) = η, which becomes

1− b

p
+

bη

1− qη = η, (B.32)

which has the solution given by (3.1.18).
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Solution to Exercise 3.4. We note that s 7→ GX(s) in (B.30) has the property that for
any points s, u, v

GX(s)−GX(u)

GX(s)−GX(v)
=
s− u
s− v

1− qv
1− qu . (B.33)

Taking u = η, v = 1 and using that GX(η) = η by Theorem 3.1, we obtain that, if η < 1,

GX(s)− η
GX(s)− 1

=
s− η
s− 1

p

1− qη . (B.34)

By (3.1.18), we further obtain that

p

1− qη = µ−1 = p2/b, (B.35)

so that we arrive at
GX(s)− η
GX(s)− 1

=
1

µ

s− η
s− 1

. (B.36)

Since Gn(s) is the n-fold iteration of s 7→ GX(s), we thus arrive at

Gn(s)− η
Gn(s)− 1

=
1

µn
s− η
s− 1

, (B.37)

of which the solution is given by the first line of (3.1.19).
When µ = 1, then we have that b = p2, so that

GX(s) =
q − (q − p)s

1− qs . (B.38)

We now prove by induction that Gn(s) is equal to the second line of (3.1.19). For n = 1,
we have that G1(s) = GX(s), so that the induction is initialized by (B.38).

To advance the induction, we assume it for n and advance it to n+ 1. For this, we note
that, since Gn(s) is the n-fold iteration of s 7→ GX(s), we have

Gn+1(s) = Gn(GX(s)). (B.39)

By the induction hypothesis, we have that Gn(s) is equal to the second line of (3.1.19), so
that

Gn+1(s) =
nq − (nq − p)G(s)

p+ nq − nqGX(s)
=
nq(1− qs)− (nq − p)(q − (q − p)s)
(p+ nq)(1− qs)− nq(q − (q − p)s) . (B.40)

Note that, using p = 1− q,

nq(1− qs)− (nq − p)(q − (q − p)s) =
[
nq − (nq − p)q

]
+ s
[
(q − p)(nq − p)− nq2]

(B.41)

= (n+ 1)qp− s[qp(n+ 1)− p2],

while

(p+ nq)(1− qs)− nq(q − (q − p)s) =
[
(p+ nq)− nq2]+ s

[
(q − p)nq − (p+ nq)q

]
(B.42)

= [p+ nqp]− s(n+ 1)pq = p[p+ (n+ 1)q]− s(n+ 1)pq,

and dividing (B.41) by (B.42) advances the induction hypothesis.
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Solution to Exercise 3.5. We first note that

P(Zn > 0, ∃m > n such that Zm = 0) = P(∃m > n such that Zm = 0)−P(Zn = 0) = η−P(Zn = 0).
(B.43)

We next compute, using (3.1.19),

P(Zn = 0) = Gn(0) =

{
1− µn 1−η

µn−η when b 6= p2;
nq
p+nq

when b = p2.
(B.44)

Using that η = 1 when b ≤ p2 gives the first two lines of (3.1.20). When η < 1, so that
µ > 1, we thus obtain

P(Zn > 0, ∃m > n such that Zm = 0) = (1− η)
[ µn

µn − η − 1
]

=
(1− η)η

µn − η . (B.45)

This proves the third line of (3.1.20).

Solution to Exercise 3.6. By (B.25), we have that G(s) = q + ps2. Thus, by (3.1.23),
we obtain

GT (s) = s
(
q + pGT (s)2), (B.46)

of which the solutions are given by

GT (s) =
1±

√
1− 4s2pq

2sp
. (B.47)

Since GT (0) = 0, we must that that

GT (s) =
1−

√
1− 4s2pq

2sp
. (B.48)

Solution to Exercise 3.7. By (B.30), we have GX(s) = 1− b
p

+ bs
1−qs . Thus, by (3.1.23),

we obtain

GT (s) = s
[
1− b

p
+

bGT (s)

1− qGT (s)

]
. (B.49)

Multiplying by p(1− qGT (s)), and using that p+ q = 1, leads to

pGT (s)(1−qGT (s)) = s
[
(p−b)(1−qGT (s))+bpGT (s)

]
= s
[
(p−b)+(b−pq)GT (s)

]
. (B.50)

We can simplify the above to

pqGT (s)2 + (p+ s(b− pq))GT (s) + s(p− b) = 0, (B.51)

of which the two solutions are given by

GT (s) =
−(p+ sbq)±

√
(p+ s(b− pq))2 − 4pqs(p− b)

2pq
. (B.52)

Since GT (s) ≥ 0 for all s ≥ 0, we thus arrive at

GT (s) =

√
(p+ s(b− pq))2 − 4pqs(p− b)− (p+ sbq)

2pq
. (B.53)
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Solution to Exercise 3.8. Compute

E[Zn|Zn−1 = m] = E[
∑Zn−1

i=1 Xn,i|Zn−1 = m] = E[
∑m
i=1 Xn,i|Zn−1 = m]

=
∑m
i=1 E[Xn,i] = mµ,

so that, by taking double expectations,

E[Zn] = E[E[Zn|Zn−1]] = E[µZn−1] = µE[Zn−1].

Solution to Exercise 3.9. Using induction we conclude from the previous exercise that

E[Zn] = µE[Zn−1] = µ2E[Zn−2] = . . . = µnE[Z0] = µn.

Hence,
E[µ−nZn] = µ−nE[Zn] = 1.

Therefore, we have that, for all n ≥ 0, E[|µ−nZn|] = E[µ−nZn] <∞
By the Markov property and the calculations in the previous exercise

E[Zn|Z1, . . . , Zn−1] = E[Zn|Zn−1] = µZn−1,

so that, with Mn = Zn/µ
n,

E[Mn|Z1, . . . , Zn−1] = E[Mn|Zn−1] =
1

µn
µZn−1 = Mn−1,

almost surely. Therefore, Mn = µ−nZn is a martingale with respect to {Zn}∞n=1.

Solution to Exercise 3.10. For a critical BP we have µ = 1, and so Zn is a martingale.
Therefore, for all n,

E[Zn] = E[Z0] = 1.

On the other hand, if P(X = 1) < 1, then, η = 1 by Theorem 3.1, and by monotonicity,

lim
n→∞

P(Zn = 0) = P( lim
n→∞

Zn = 0) = η = 1.

Solution to Exercise 3.11.

P(Zn > 0) = P(Zn ≥ 1) ≤ E[Zn] = µn,

by Theorem 3.3.

Solution to Exercise 3.12. Since T = 1 +
∑∞
n=1 Zn, we obtain by (3.2.1) that

E[T ] = 1 +

∞∑
n=1

E[Zn] = 1 +

∞∑
n=1

µn = 1/(1− µ). (B.54)
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Solution to Exercise 3.13. For k = 1, we note that, in (3.3.2), {T = 1} = {X1 = 0},
so that

P(T = 1) = p0. (B.55)

On the other hand, in (3.1.21), T = 1 precisely when Z1 = X1,1 = 0, which occurs with
probability p0 as well.

For k = 2, since Xi ≥ 0, we have that {T = 2} = {X1 = 1, X2 = 0}, so that

P(T = 2) = p0p1. (B.56)

On the other hand, in (3.1.21), T = 2 precisely when Z1 = X1,1 = 1 and Z2 = X2,1 = 0,
which occurs with probability p0p1 as well, as required.

For k = 3, since Xi ≥ 0, we have that {T = 3} = {X1 = 2, X2 = X3 = 0} ∪ {X1 =
X2 = 1, X3 = 0}, so that

P(T = 3) = p2
0p2 + p0p

2
1. (B.57)

On the other hand, in (3.1.21),

{T = 3} = {Z1 = Z2 = 1, Z3 = 0} ∪ {Z1 = 2, Z2 = 0}, (B.58)

so that {T = 3} = {X1,1 = X2,1 = 1, X3,1 = 0}∪{X1,1 = 2, X2,1 = X2,2 = 0}, which occurs
with probability p2

0p2 + p0p
2
1 as well, as required. This proves the equality of P(T = k) for

T in (3.3.2) and (3.1.21) and k = 1, 2 and 3.

Solution to Exercise 3.14. We note that

P
(
S0 = Sk+1 = 0, Si > 0 ∀1 ≤ i ≤ k

)
= pP

(
S1 = 1, Si > 0 ∀1 ≤ i ≤ k, Sk+1 = 0

)
, (B.59)

since the first step must be upwards. By (3.3.2),

P
(
S1 = 1, Si > 0 ∀1 ≤ i ≤ k, Sk+1 = 0

)
= P(T = k), (B.60)

which completes the proof.

Solution to Exercise 3.15. We note that p′x ≥ 0 for all x ∈ N. Furthermore,

∞∑
x=0

p′x =

∞∑
x=0

ηx−1px = η−1
∞∑
x=0

ηxpx = η−1G(η). (B.61)

Since η satisfies η = G(η), it follows also that p′ = {p′x}∞x=0 sums up to 1, so that p′ is a
probability distribution.

Solution to Exercise 3.16. We compute

Gd(s) =
∞∑
x=0

sxp′x =

∞∑
x=0

sxηx−1px = η−1
∞∑
x=0

(ηs)xpx =
1

η
GX(ηs). (B.62)

Solution to Exercise 3.17. We note that

E[X ′] =

∞∑
x=0

xp′x =

∞∑
x=0

xηx−1px = G′X(η). (B.63)

Now, η is the smallest solution of η = GX(η), and, when η > 0, GX(0) = p0 > 0 by
Exercise 3.1. Therefore, since s 7→ G′X(s) is increasing, we must have that G′X(η) < 1.
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Solution to Exercise 3.18. Since Mn = µ−nZn
a.s.−→W∞ by Theorem 3.9, by Lebesques

dominated convergence theorem and the fact that, for y ≥ 0 and s ∈ [0, 1], we have that
sy ≤ 1, it follows that

E[sMn ]→ E[sW∞ ]. (B.64)

However,

E[sMn ] = E[sZn/µn ] = Gn(sµ
−n

). (B.65)

Since Gn(s) = GX(Gn−1(s)), we thus obtain

E[sMn ] = GX
(
Gn−1(sµ

−n
)
)

= GX
(
Gn−1

(
(sµ
−1

)µ
−n−1))

→ GX
(
GW (s1/µ)

)
, (B.66)

again by (B.64).

Solution to Exercise 3.19. If Mn = 0, then Mm = 0 for all m ≥ n, so that

{M∞ = 0} = lim
n→∞

{Mn = 0} = ∩∞n=0{Mn = 0}.

On the other hand, {extinction} = {∃n : Mn = 0} or {survival} = {∀n,Mn > 0}. We
hence conclude that {survival} ⊂ {M∞ > 0} = ∪∞n=0{Mn > 0}, and so

P(M∞ > 0|survival) =
P(M∞ > 0 ∩ {survival})

P(survival)
=

P(M∞ > 0)

1− η = 1,

because it is given that P(W∞ > 0) = 1− η.

Solution to Exercise 3.20. By Theorem 3.9, we have that Mn = µ−nZn
a.s.−→W∞. By

Fubini’s theorem, we thus obtain that

E[W∞] ≤ lim
n→∞

E[Mn] = 1, (B.67)

where the equality follows from Theorem 3.3.

Solution to Exercise 3.25. The total offspring equals T = 1 +
∑∞
n=1 Zn, see (3.1.21).

Since we search for T ≤ 3, we must have
∑∞
n=1 Zn ≤ 2 or

∑2
n=1 Zn ≤ 2, because Zk > 0

for some k ≥ 3 implies Z3 ≥ 1, Z2 ≥ 1, Z1 ≥ 1, so that
∑∞
n=1 Zn ≥

∑3
n=1 Zn ≥ 3. Then,

we can write out

P(T = 1) = P(

2∑
n=1

Zn = 0) = P(Z1 = 0) = e−λ,

P(T = 2) = P(
2∑

n=1

Zn = 1) = P(Z1 = 1, Z2 = 0) = P(X1,1 = 1)P(X2,1 = 0) = λe−2λ

P(T = 3) = P(

2∑
n=1

Zn = 2) = P(Z1 = 1, Z2 = 1, Z3 = 0) + P(Z1 = 2, Z2 = 0)

= P(X1,1 = 1, X2,1 = 1, X3,1 = 0) + P(X1,1 = 2, X2,1 = 0, X2,2 = 0)

= (λe−λ)2 · e−λ + e−λ(λ2/2) · e−λ · e−λ = e−3λ 3λ2

2
.

These answers do coincide with P(T = n) = e−nλ (nλ)n−1

n!
, for n ≤ 3.
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Solutions to the exercises of Chapter 4.

Solution to Exercise 4.3. We start by computing P(T = m) for m = 1, 2, 3. For m = 1,
we get

P(T = 1) = P(S1 = 0) = P(X1 = 0) = P(BIN(n− 1, p) = 0) = (1− p)n−1.

For m = 2, we get

P(T = 2) = P(S1 > 0, S2 = 0) = P(X1 > 0, X1 +X2 = 1) = P(X1 = 1, X2 = 0)

= P(X1 = 1)P(X2 = 0|X1 = 1) = P(BIN(n− 1, p) = 1)P(BIN(n− 2, p) = 0)

= (n− 1)p(1− p)n−2 · (1− p)n−2 = (n− 1)p(1− p)2n−4.

For m = 3, we get

P(T = 3) = P(S1 > 0, S2 > 0, S3 = 0) = P(X1 > 0, X1 +X2 > 1, X1 +X2 +X3 = 2)

= P(X1 = 1, X2 = 1, X3 = 0) + P(X1 = 2, X2 = 0, X3 = 0)

= P(X3 = 0|X2 = 1, X1 = 1)P(X2 = 1|X1 = 1)P(X1 = 1)

+P(X3 = 0|X2 = 0, X1 = 2)P(X2 = 0|X1 = 2)P(X1 = 2)

= P(X3 = 0|S2 = 1)P(X2 = 1|S1 = 1)P(X1 = 1)

+P(X3 = 0|S2 = 1)P(X2 = 0|S1 = 2)P(X1 = 2)

= P(BIN(n− 3, p) = 0)P(BIN(n− 2, p) = 1)P(BIN(n− 1, p) = 1)

+P(BIN(n− 3, p) = 0)P(BIN(n− 3, p) = 0)P(BIN(n− 1, p) = 2)

= (1− p)n−3(n− 2)p(1− p)n−3(n− 1)p(1− p)n−2

+(1− p)n−3(1− p)n−3(n− 1)(n− 2)p2(1− p)n−3/2

= (n− 1)(n− 2)p2(1− p)3n−8 + (n− 1)(n− 2)p2(1− p)3n−9/2

= (n− 1)(n− 2)p2(1− p)3n−9(
3

2
− p).

We now give the combinatoric proof. For m = 1,

P(|C(v)| = 1) = (1− p)n−1,

because all connections from vertex 1 have to be closed. For m = 2,

P(|C(v)| = 2) = (n− 1)p(1− p)2n−4

because you must connect one of n − 1 vertices to vertex v and then isolate these two
vertices which means that 2n− 4 connections should not be present.

For m = 3, the first possibility is to attach one vertex a to 1 and then a second vertex
b to a, with the edge vb being closed. This gives

(n− 1)p(1− p)n−2(n− 2)p(1− p)n−3(1− p)n−3 = (n− 1)(n− 2)p2(1− p)3n−8.

The second possibility is to attach one vertex a to v and then a second vertex b to a, with
the edge vb being occupied. This gives(

n− 1

2

)
p(1− p)n−3p(1− p)n−3(1− p)n−3p =

(
n− 1

2

)
p3(1− p)3n−9.
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The final possibility is that you pick two vertices attached to vertex v, and then leave both
vertices without any further attachments to the other n − 3 and being unconnected (the
connected case is part of the second possibility)(

n− 1

2

)
p2(1− p)n−3 · (1− p)2n−5 =

(
n− 1

2

)
p2(1− p)3n−8.

In total, this gives

(n− 1)(n− 2)p2(1− p)3n−8 +

(
n− 1

2

)
p3(1− p)3n−9 +

(
n− 1

2

)
p2(1− p)3n−9 (B.68)

= (n− 1)(n− 2)p2(1− p)3n−9(1− p+
p

2
+

(1− p)
2

)

= (n− 1)(n− 2)p2(1− p)3n−9(
3

2
− p).

Solution to Exercise 4.5. We first pick 3 different elements i, j, k from {1, 2, . . . , n}
without order. This can be done in (

n

3

)
different ways. Then all three edges ij, ik, jk have to be present, which has probability
p3. The number of triangles is the sum of indicators running over all unordered triples.
These indicators are dependent, but that is of no importance for the expectation, because
the expectation of a sum of dependent random variables equals the sum of the expected
values. Hence the expected number of occupied triangles equals:(

n

3

)
p3.

Solution to Exercise 4.6. We pick 4 elements i, j, k, l from {1, 2, . . . , n} This kan be
done in (

n

4

)
different ways. This quadruple may form an occupied square in 3 different orders, that is
(i, j, k, l), (i, k, j, l) and (i, j, l, k). Hence there are

3 ·

(
n

4

)

squares in which all four sides should be occupied. Hence the expected number of occupied
squares equals

3

(
n

4

)
p4.
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Solution to Exercise 4.7. We define the sequence of random variables {Xn}∞n=1 where
Xn is the number of occupied triangles in an Erdős-Rényi random graph with edge prob-
ability p = λ/n. Next we introduce the indicator function

Ia,n :=

{
0 triangle a not connected;

1 triangle i connected.

Now, according to (2.1.21) we have

lim
n→∞

E[(Xn)r] = lim
n→∞

∑∗

a1,a2,...,ar∈I

P(Ia1,n = 1, Ia2,n = 1, . . . , Iar,n = 1). (B.69)

Now, there are two types of collections of triangles, namely, sets of triangles in which all
edges are distinct, or the set of triangles for which at least one edge occurs in two different
triangles. In the first case, we see that the indicators Ia1,n, Ia2,n, . . . , Iar,n are independent,
in the second case, they are not. We first claim that the collection of (a1, a2, . . . , ar) for
which all triangles contain different edges has size

(1 + o(1))

(
n

3

)r
. (B.70)

To see this, we note that the upper bound is obvious (since
((
n
3

))r
is the number of

collections of r triangles without any restriction). For the lower bound, we note that
ai = (ki, li,mi) for ki, li,mi ∈ [n] such that ki < li < mi. We obtain a lower bound on the
number of triangles containing different edges when we assume that all vertices ki, li,mi

for i = 1, . . . , r are distinct. There are precisely

r−1∏
i=0

(
n− i

3

)
(B.71)

of such combinations. When r is fixed, we have that

r−1∏
i=0

(
n− i

3

)
= (1 + o(1))

(
n

3

)r
. (B.72)

Thus, the contribution to the right-hand side of (B.69) of collections (a1, a2, . . . , ar) for
which all triangles contain different edges is, by independence and (B.70), equal to

(1 + o(1))

(
n

3

)r(λ3

n3

)r
= (1 + o(1))

(λ3

6

)r
. (B.73)

We next prove that the contribution to the right-hand side of (B.69) of collections (a1, a2, . . . , ar)
for which at least one edge occurs in two different triangles. We give a crude upper bound
for this. We note that each edge which occurs more that once reduces the number of
possible vertices involved. More precisely, when the collection of triangles (a1, a2, . . . , ar)
contains precisely 3r−l edges for some l ≥ 1, then the collection of triangles (a1, a2, . . . , ar)
contains at most 3r−2l vertices, as can easily be seen by induction. As a result, the contri-
bution to the right-hand side of (B.69) of collections (a1, a2, . . . , ar) (a1, a2, . . . , ar) contains
precisely 3r − l edges is bounded by

n3r−2l(λ/n)3r−l = λ3r−ln−l = o(1). (B.74)
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Since this is negligible, we obtain that

lim
n→∞

E[(Xn)r] =
(λ3

6

)r
. (B.75)

Hence, due to Theorem 2.4 we have that the number of occupied triangles in an Erdős-
Rényi random graph with edge probability p = λ/n has an asymptotic Poisson distribution
with parameter λ3/6.

Solution to Exercise 4.8. We have

E[∆G] = E

 ∑
i,j,k∈G

1l{ij,ik,jk occupied}

 =
∑

i,j,k∈G

E
[
1l{ij,ik,jk occupied}

]
(B.76)

= n(n− 1)(n− 2)

(
λ

n

)3

,

and

E[WG] = E

 ∑
i,j,k∈G

I[ij, jk occupied]

 =
∑

i,j,k∈G

E
[
1l{ij,jk occupied}

]
(B.77)

= n(n− 1)(n− 2)

(
λ

n

)2

.

This yields for the clustering coefficient

CCG = λ/n.

Solution to Exercise 4.9. We have E [WG] = n(n − 1)(n − 2)p2(1 − p). According to
the Chebychev inequality we obtain:

lim
n→∞

P[|WG − E[W]| > ε] ≤ lim
n→∞

σ2
WG

ε2
,

lim
n→∞

P[|WG − (n)(n− 1)(n− 2)(
λ

n
)2(

n− λ
n

)| > ε] ≤ lim
n→∞

σ2
WG

ε2
,

lim
n→∞

P[|WG − nλ2| > ε] ≤ 0.

Hence, WG/n
P−→ λ2 and, therefore, n/WG

P−→ 1/λ2. We have already shown in previous
exercise that the number of occupied triangles has an asymptotic Poisson distribution with

parameter λ3

6
. ∆G is three times the number of triangles and thus ∆G

d−→ 3 · Poi(λ
3

6
).

Slutsky’s Theorem states that

Xn
P−→ c and Yn

d−→ Y ⇒ XnYn
d−→ cY

Hence n∆G
WG

d−→ 3
λ2 Y where Y ∼ Poi(λ3/6).
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Solution to Exercise 4.10. We have to show that for each x, the event {|C(v)| ≥ x}
remains true if the the number of edges increases.

Obviously by increasing the number of edges the number |C(v)| increases or stays the
same depending on whether or not some of the added edges connect new vertices to the
cluster. In both cases {|C(v)| ≥ x} remains true.

Solution to Exercise 4.11. This is not true. Take two disjoint clusters which differ by
one in size, and suppose that the larger component equals Cmax, before adding the edges.
Take any v ∈ Cmax. Now add edges between the second largest component and isolated
vertices. If you add two of such edges, then the new Cmax equals the union of the second
largest component and the two isolated vertices. Since originally v did not belong to the
second largest component and v was not isolated, because it was a member of the previous
largest component, we now have v /∈ Cmax.

Solution to Exercise 4.12. As a result of (4.2.1) we have

Eλ[|C(v)|] =

∞∑
k=1

P(|C(v)| ≥ k) ≤
∞∑
k=1

Pn,p(T ≥ k) = E[T ] =
1

1− µ, (B.78)

where
µ = E[Offspring] = np = λ.

Hence,
Eλ[|C(v)|] ≤ 1/(1− λ).

Solution to Exercise 4.14. We recall that Z≥k =
∑n
i=1 1l{|C(i)|≥k}.

|Cmax| < k ⇒ |C(i)| < k∀i, which implies that Z≥k = 0

|Cmax| ≥ k ⇒ |C(i)| ≥ k for at least k vertices ⇒ Z≥k ≥ k.

Solution to Exercise 4.15. Intuitively the statement is logical, for we can see M as
doing n trails with succes probability p and for each trial we throw an other coin with
succes probability q. The eventual amount of successes are the successes where both trails
ended in succes and is thus equal to throwing n coins with succes probability pq.
There are several ways to prove this, we give two of them.

Suppose we have two binomial trials N and Y both of length n and with succes rates
p, q respectively. We thus create two vectors filled with ones and zeros. For each index
i = 1, 2, . . . , n we compare the vectors and in case both entries are 1, we will see this as a
succes. The now counted amount of successes is of course BIN(n, pq) distributed.
Now we produce the first vector similarly by denoting ones and zeros for the successes
and losses in trail N . For each ’one’, we produce an other outcome by a BE(q) experi-
ment. We count the total number of successes of these experiments and those are of course
BIN(N, q) distributed. But now, this is the same as the experiment described above, since
all Bernoulli outcomes are independent. Hence if N ∼ BIN(n, p) and M ∼ BIN(N, q), then
M ∼ BIN(n, pq).
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We will also give an analytical proof, which is somewhat more enhanced. We wish to
show that P(M = m) =

(
n
m

)
(pq)m(1− pq)n−m. Off course we have

P(M = m) =

n∑
i=m

P(N = i) ·

(
i

m

)
· qm · (1− q)i −m,

=

n∑
i=m

(
n

i

)
· (p)i · (1− p)n−i ·

(
i

m

)
· qm · (1− q)i −m.

Rearranging terms yields

P(M = m) =
(1− p)nqm

(1− q)m
n∑

i=m

(
n

i

)(
i

m

)
pi

(1− p)i (1− q)
i.

Further analysis yields

P(M = m) = (1− p)n
( q

1− q

)m n∑
i=m

n!

i!(n− i)!
i!

m!(i−m)!

(p(1− q)
1− p

)i
= (1− p)n

( q

1− q

)m n!

m!

n∑
i=m

1

(n− i)!(i−m)!

(p(1− q)
1− p

)i
= (1− p)n(

q

1− q )m
n!m!∑ n−m

k=0

1

(n− k −m)!(m+ k −m)!

(p(1− q)
1− p

)k+m

= (1− p)n(
q

1− q )m
n!

m!(n−m)!

n−m∑
k=0

(n−m)!

(n− k −m)!k!

(p(1− q)
1− p

)k+m

=

(
n

m

)
n−m∑
k=0

(
n−m
k

)
pk+m(1− p)n−m−kqm(1− q)k+m−m

=

(
n

m

)
pmqm

n−m∑
k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k

It is now sufficient to show that
∑n−m
k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k = (1− pq)n−m.

n−m∑
k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k = (1− p)n−m

n−m∑
k=0

(
n−m
k

)(p− pq
1− p

)k
= (1− p)n−m

(
1 +

p− pq
1− p

)n−m
= (1− p)n−m

(1− p+ p− pq
1− p

)n
−m

= (1− pq)n−m.
Now we can use this result to proof that Nt ∼ BIN(n, (1 − p)t) by using induction. The
initial value N0 = n− 1 is given, hence

N0 = n− 1;

N1 = BIN(n− 1, 1− p);
N2 = BIN(N1, 1− p) = BIN(n− 1, (1− p)2);

...

Nt = BIN(n− 1, (1− p)t).
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Solution to Exercise 4.16. The extinction probability η satisfies

ηλ = GX(ηλ) = E[ηXλ ] = e−λ+ληλ

Hence,
ζλ = 1− ηλ = 1− e−λ+λη = 1− e−λζλ .

This equation has only two solutions, one of which is ζλ = 0, the other must be the survival
probability.

Solution to Exercise 4.17. We compute that

χ(λ) = Eλ[|C(1)|] = Eλ

[
n∑
j=1

1l{j∈C(1)}

]
= 1 +

n∑
j=2

Eλ[1l{j∈C(1)}]

= 1 +

n∑
j=2

Eλ[1l{1↔j}] = 1 +

n∑
j=2

Pλ(1↔ j) = 1 + (n− 1)Pλ(1↔ 2). (B.79)

Solution to Exercise 4.18. In this exercise we denote by |C(1)| ≥ |C(2)| ≥ . . ., the
components ordered by their size. Relation (4.4.1) reads that for ν ∈ ( 1

2
, 1):

P
(∣∣|Cmax| − nζλ

∣∣ ≥ nν) = O(n−δ).

Observe that

Pλ(1↔ 2) = Pλ(∃C(k) : 1 ∈ C(k), 2 ∈ C(k))

=
∑
l≥1

Pλ(1, 2 ∈ C(l)) = Pλ(1, 2 ∈ C(1)) +
∑
l≥2

Pλ(1, 2 ∈ C(l))

=
(nζλ ± nν)2

n2
+O(n−δ) +

∑
l≥2

Pλ(1, 2 ∈ C(l)).

For l ≥ 2, we have |C(l)| ≤ K logn with high probability, hence

Pλ(1, 2 ∈ C(l)) ≤
K2 log2 n

n2
+O(n−2),

so that ∑
l≥2

Pλ(1, 2 ∈ C(l)) ≤
K2 log2 n

n
+O(n−1)→ 0.

Together, this shows that
Pλ(1↔ 2) = ζ2

λ +O(n−δ),

for some δ > 0.

Solution to Exercise 4.19. Combining Exercise 4.17 and Exercise 4.18, yields

χ(λ) = 1 + (n− 1)ζ2
λ(1 + o(1)) = nζ2

λ(1 + o(1)).
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Solution to Exercise 4.20. We have that the cluster of i has size l. Furthermore, we
have Pλ

(
i←→ j

∣∣|C(i)| = l
)

+ Pλ
(
i←→/ j

∣∣|C(i)| = l
)

= 1 Of course i, j ∈ [n] and j 6= i. So,
having i fixed, gives us n− 1 choices for j in ERn(p) and l− 1 choices for j in C(i). Hence,

Pλ
(
i←→ j

∣∣|C(i)| = l
)

=
l − 1

n− 1
,

and thus

Pλ
(
i←→/ j

∣∣|C(i)| = l
)

= 1− l − 1

n− 1
.

Solution to Exercise 4.21. According to the duality principle we have that the random
graph obtained by removing the largest component of a supercritical Erdős-Rényi random
graph is again an Erdős-Rényi random graph of size m ∼ nηλ = µλn

λ
where µλ < 1 < λ are

conjugates as in (3.5.7) and the remaining graph is thus in the subcritical regime. Hence,
studying the second largest component in a supercritical graph is close to studying the
largest component in the remaining graph.
Now, as a result of Theorems 4.4 and 4.5 we have that for some ε > 0

lim
n→∞

(
P
( |Cmax|

logm
> I−1

µλ + ε
)

+ P
( |Cmax|

logm
< I−1

µλ − ε
))

= 0.

Hence, |Cmax|
logm

P−→ I−1
µλ . But since we have that n − m = ζλn(1 + o(1)) and thus m =

n(1− ζλ), we have that logm
logn

→ 1 as n→∞. Hence |Cmax|
logn

P−→ I−1
µλ .

Solution to Exercise 4.22. Denote

Zn =
Xn − anpn√
anpn(1− pn)

, (B.80)

so that we need to prove that Zn converges is distribution to a standard normal random
variable Z. For this, it suffices to prove that the moment generating function MZn(t) =
E[etZn ] of Zn converges to that of Z.

Since the variance of Xn goes to infinity, the same holds for an. Now we write Xn as
to be a sum of an Bernoulli variables Xn =

∑an
i=1 Yi, where {Yi}1≤i≤an are independent

random variables with Yi ∼ BE(pn). Thus, we note that the moment generating function
of Xn equals

MXn(t) = E[etXn ] = E[etY1 ]an . (B.81)

We further prove, using a simple Taylor expansion,

logE[etY1 ] = log
(
pne

t + (1− pn)
)

= pnt+
t2

2
pn(1− pn) +O(|t|3pn). (B.82)

Thus, with tn = t/
√
anpn(1− pn), we have that

MZn(t) = MXn(tt)e
anpntn = ean log E[etY1 ] = e

t2n
2
pn(1−pn)+O(|tn|3anpn) = et

2/2+o(1).
(B.83)

We conclude that limn→∞MZn(t) = et
2/2, which is the moment generating function of a

standard normal distribution. Theorem 2.3(b) implies that Zn
d−→ Z, as required. Hence,

the CLT follows and (4.5.15) implies (4.5.16).
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Solution to Exercise 4.25. We have that nλ/2 edges are added in a total system
of n(n − 1)/2 edges. This intuitively yields for p in the classical notation for the ER

graphs to be p = nλ/2
n(n−1)/2

and λ′ = n · p, so that one would expect subcritical behavior

|Cmax|/ logn
P−→ I−1

λ . We now provide the details of this argument.
We make use of the crucial relation (4.6.1), and further note that when we increase M ,

then we make the event |Cmax| ≥ k more likely. This is a related version of monotonicity
as in Section 4.1.1. In particular, from (4.6.1), it follows that for any increasing event E,
and with p = λ/n,

Pλ(E) =

n(n−1)/2∑
m=1

Pm(E)P
(
BIN(n(n− 1)/2, p) = m) (B.84)

≥
∞∑

m=M

Pm(E)P
(
BIN(n(n− 1)/2, p) = m)

≥ PM(E)P
(
BIN(n(n− 1)/2, p) ≥M).

In particular, when p is chosen such that P
(
BIN(n(n − 1)/2, p) ≥ M) = 1 − o(1), then

PM(E) = o(1) follows when Pλ(E) = o(1).
Take a > I−1

λ and let kn = a logn. Then we shall first show that Pn,M (|Cmax| ≥ kn) =
o(1). For this, we use the above monotonicity to note that, for every λ′,

Pn,M (|Cmax| ≥ kn) ≤ Pλ′(|Cmax| ≥ kn)/P
(
BIN(n(n− 1)/2, λ′/n) ≥M). (B.85)

For any λ′ > λ, we have P
(
BIN(n(n− 1)/2, λ′/n) ≥M) = 1 + o(1). Now, since λ 7→ I−1

λ is

continuous, we can take λ′ > λ such that I−1
λ′ < a, we further obtain by Theorem 4.4 that

Pλ′(|Cmax| ≥ kn) = o(1), so that Pn,M (|Cmax| ≥ kn) = o(1) follows.
Next, take a < I−1

λ , take kn = a logn, and we next wish to prove that Pn,M (|Cmax| ≤
kn) = o(1). For this, we make use of a related bound as in (B.84), namely, for a decreasing
event F , we obtain

Pλ(F ) =

n(n−1)/2∑
m=1

Pm(F )P
(
BIN(n(n− 1)/2, p) = m) (B.86)

≥
M∑
m=1

Pm(F )P
(
BIN(n(n− 1)/2, p) = M)

≥ PM(F )P
(
BIN(n(n− 1)/2, p) ≤M).

Now, we take p = λ′/n where λ′ < λ, so that P
(
BIN(n(n − 1)/2, p) ≤ M) = 1 − o(1).

Then, we pick λ′ < λ such that I−1
λ′ > a and use Theorem 4.5. We conclude that, with

high probability, |Cmax|/ logn ≤ I−1
λ + ε) for any ε > 0, and, again with high probability,

|Cmax|/ logn ≥ I−1
λ − ε) for any ε > 0. This yields directly that |Cmax|/ logn

P−→ I−1
λ .

Solutions to the exercises of Chapter 5.

Solution to Exercise 5.1. Using (3.5.24) we see that

P∗λ(T ∗ ≥ k) = (2π)−1/2
∞∑
n=k

n−3/2[1 +O(n−1)]. (B.87)



224 Solutions to selected exercises

The sum can be bounded from above and below by an integral as follows∫ ∞
k

x−3/2dx ≤
∞∑
n=k

n−3/2 ≤
∫ ∞
k−1

x−3/2dx

Computing these integrals gives

2k−1/2 ≤
∞∑
n=k

n−3/2 ≤ 2(k − 1)−1/2

Similar bounds can be derived such that

∞∑
n=k

n−3/2O(n−1) = O(k−3/2).

Combining both bounds, it follows that

P∗λ(T ∗ ≥ k) =
( 2

π

)1/2

k−1/2[1 +O(k−1)].

Solution to Exercise 5.2. Fix some r > 0, then

χ(1) ≥
rn2/3∑
k=1

P(|C(1)| ≥ k) =

rn2/3∑
k=1

P≥k(1). (B.88)

By Proposition 5.2, we have the bounds

P≥k(1) ≥ c1√
k
.

Substituting this bounds into (B.88) yields

χ(1) ≥
rn2/3∑
k=1

c1√
k
≥ c′1rn1/3,

where c′1 > 0 and r > 0.

Solution to Exercise 5.3. By Theorem 3.14, we have that

1

λ
e−IλtP∗1(T ∗ = t) =

1

λ
e−(λ−1−log λ)t t

t−1

t!
e−t.

Rearranging the terms in this equation we get

1

λ
e−IλtP∗1(T ∗ = t) =

1

λ

(
elog λ

)t tt−1

t!
e−λt =

(λt)t−1

t!
e−λt.
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Solution to Exercise 5.5. Let G(n) be the collection of all possible simple graphs on n
points. The set G(n,m) is the subset of G which contains all possible simple graphs on n
points which have m edges. Then,

P(1←→ 2) = |G(n)|−1

(n2)∑
m=1

∑
G∈G(n,m)

P(G)1l{1←→2 in G}

= 2−(n2)
n∑

m=1

∑
G∈G(n,m)

(
λ

n

)m(
1− λ

n

)(n2)−m
1l{1←→2 in G},

which is polynomial in λ. Furthermore, the maximal degree of the polynoom is
(
n
2

)
.

Solution to Exercise 5.6. Take some l ∈ N such that l < n, then χn−l(λ
n−l
n

) is the
expected component size in the graph ER(n − l, p). We have to prove that the expected
component size in the graph ER(n − l, p) is smaller than the expected component size in
the graph ER(n − l + 1, p) for all 0 < p ≤ 1. Consider the graph ER(n − l + 1, p). This
graph can be created from ER(n− l, p) by adding the vertex n− l + 1 and independently
connecting this vertex to each of the vertices 1, 2, . . . , n− l.

Let C′(1) denote the component of ER(n − l, p) which contains vertex 1 and C(1) rep-
resents the component of ER(n− l+ 1, p) which contains vertex 1. By the construction of
ER(n− l + 1, p), it follows that

P(|C(1)| = k) =

 (1− p)n−l+1 if k = 1,
P(|C′(1)| = k)(1− p)k + P(|C′(1)| = k − 1)(1− (1− p)k−1) if 2 ≤ k ≤ n,
P(|C′(1)| = n)(1− (1− p)n) if k = n+ 1.

Hence, the expected size of C(1) is

E[|C(1)|] =

n+1∑
k=1

P(|C(1)| = k)k

= (1− p)n−l+1 +

n∑
k=2

[
P(|C′(1)| = k)(1− p)k + P(|C′(1)| = k − 1)(1− (1− p)k−1)

]
k

+ P(|C′(1)| = n)(1− (1− p)n)(n+ 1).

Rewriting this expression for the expected size of C(1) yields

E[|C(1)|] = (1− p)n−l+1 + P(|C′(1)| = 1)2p+

n−1∑
k=2

P(|C′(1)| = k)k

+

n−1∑
k=2

P(C′(1) = k)(1− (1− p)k−1) + P(|C′(1)| = n)(n+ (1− (1− p)n))

≥ (1 + p)P(|C′(1)| = 1) +

n−1∑
k=2

kP(C′(1) = k) ≥ E[|C(1)′|].
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Solution to Exercise 5.7. By (5.1.34), we have that

∂

∂λ
χn(λ) = (n− 1)

∂

∂λ
τn(λ).

For the derivative of τn(λ) we use (5.1.48) to obtain

∂

∂λ
χn(λ) ≤

n∑
l=1

lPλ(|C(1)| = l)χn−l(λ
n− l
n

).

The function l 7→ χn−l(λ
n−l
n

) is decreasing (see Exercise 5.6), hence

∂

∂λ
χn(λ) ≤ χn(λ)

n∑
l=1

lPλ(|C(1)| = l) = χn(λ)2,

or
∂
∂λ
χn(λ)

χn(λ)2
≤ 1. (B.89)

The second part of the exercise relies on integration. Integrate both the left-hand and
the right-hand side of (B.89) between λ and 1.

1

χn(λ)
− 1

χn(1)
≤ 1− λ

Bring a term to the other side to obtain

1

χn(λ)
≤ 1

χn(1)
+ 1− λ,

which is equivalent to

χn(λ) ≥ 1

χn(1)−1 + (1− λ)
.

Solution to Exercise 5.8. Using (5.2.8) and (5.2.10) we see that

Eλ[Y 2] = nPλ(|C(1)| = 1) + n(n− 1)

(
λ

n(1− λ
n

)
+ 1

)
Pλ(|C(1)| = 1)2

= n

(
1− λ

n

)n−1

+ n(n− 1)

(
1− λ

n

)2n−3

= n

(
1− λ

n

)n−1
(

1 + (n− 1)

(
1− λ

n

)n−2
)
.

Consider the first power, taking the logarithm yields

logn+ (n− 1) log(1− λ

n
) = logn+ (n− 1) log(1− logn+ t

n
).

Taylor expanding the logarithm gives

logn+ (n− 1) log(1− logn+ t

n
) = logn− (n− 1)

[ logn+ t

n
+O

(( logn+ t

n

)2)]
.
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The latter expression can be simplified to

logn− (n− 1)
[ logn+ t

n
+O

(( logn+ t

n

)2)]
= log n− n− 1

n
logn− n− 1

n
t+O

( (logn+ t)2

n

)
= −t+

logn

n
+
t

n
+O

( (logn+ t)2

n

)
,

and, as n tends to infinity,

−t+
logn

n
+
t

n
+O

( (logn+ t)2

n

)
→ −t.

Hence,

lim
n→∞

n

(
1− λ

n

)n−1

= e−t.

A similar argument gives that as n→∞

lim
n→∞

(
1− λ

n

)n−2

= e−t.

Therefore, we conclude
lim
n→∞

Eλ[Y 2] = e−t(1− e−t),

which is the second moment of a Poisson random variable with mean e−t.

Solutions to the exercises of Chapter 6.

Solution to Exercise 6.1. By the definition of pij (6.1.1), the numerator of pij is
(nλ)2(n− λ)−2. The denominator of pij is

n∑
i=1

nλ

n− λ +

(
nλ

n− λ

)2

=
n2λ

n− λ +

(
nλ

n− λ

)2

=
n2λ(n− λ) + (nλ)2

(n− λ)2
=

n3λ

(n− λ)2
.

Dividing the numerator of pij by its denominator gives

pij =
(nλ)2

n3λ
=
λ

n
.

Solution to Exercise 6.2. Consider the distribution function Fn(x) = P(wV ≤ x) of a
uniformly chosen vertex V and let x ≥ 0. The law of total probability gives that

P(wV ≤ x) =

n∑
i=1

P(wV ≤ x|V = i)P(V = i)

=
1

n

n∑
i=1

1l{wi≤x}, x ≥ 0, (B.90)

as desired.
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Solution to Exercise 6.4. By (6.1.14), Fn(x) = 1
n

(bnF (x)c+1)∧1. To prove pointwise
convergence of this function to F (x), we shall first examine its behavior when F (x) gets
close to 1. Consider the case where 1

n
(bnF (x)c+ 1) > 1, or equivalently, bnF (x)c > n− 1,

which is in turn equivalent to F (x) > n−1
n

. Now fixing x gives us two possibilities: either

F (x) = 1 or there is an n such that F (x) ≤ n−1
n

. In the first case, we have that∣∣∣∣[ 1

n
(bnF (x)c+ 1) ∧ 1

]
− F (x)

∣∣∣∣ =

∣∣∣∣[ 1

n
(bnc+ 1) ∧ 1

]
− 1

∣∣∣∣
= |1− 1| = 0. (B.91)

In the second case, we have that for large enough n∣∣∣∣[ 1

n
(bnF (x)c+ 1) ∧ 1

]
− F (x)

∣∣∣∣ =

∣∣∣∣ 1n (bnF (x)c+ 1)− nF (x)

n

∣∣∣∣
=

∣∣∣∣bnF (x)c − nF (x) + 1

n

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣→ 0, (B.92)

which proves the pointwise convergence of Fn to F , as desired.

Solution to Exercise 6.6. We note that x 7→ F (x) is non-decreasing, since it is a
distribution function. This implies that x 7→ 1 − F (x) is non-increasing, so that u 7→
[1− F ]−1(u) is non-increasing.

To see (6.1.16), we let U be a uniform random variable, and note that

1

n

n∑
i=1

h(wi) = E
[
h
(

[1− F ]−1(dUne/n)
)]
. (B.93)

Now, dUne/n ≥ U a.s., and since u 7→ [1 − F ]−1(u) is non-increasing, we obtain that
[1− F ]−1(dUne/n) ≤ [1− F ]−1(U) a.s. Further, again since x 7→ h(x) is non-decreasing,

h
(

[1− F ]−1(dUne/n)
)
≤ h

(
[1− F ]−1(U)

)
. (B.94)

Thus,

1

n

n∑
i=1

h(wi) ≤ E
[
h
(

[1− F ]−1(U)
)]

= E[h(W )], (B.95)

since [1 − F ]−1(U) has distribution function F when U is uniform on (0, 1) (recall the
remark below (6.1.13)).

Solution to Exercise 6.7. Using the non-decreasing function h(x) = xα in Exercise
6.6, we have that for a uniform random variable U

1

n

n∑
i=1

wαi =

∫ 1

0

[1− F ]−1

(
dune
n

)
1

n
du

= E
[(

[1− F ]−1(dUne/n)
)α]

. (B.96)

We also know that dUne/n ≥ U a.s., and since u 7→ [1 − F ]−1(u) is non-increasing by
Exercise 6.6 and x 7→ xα is non-decreasing, we obtain that

1

n

(
[1− F ]−1(dUne/n)

)α ≤ 1

n

(
[1− F ]−1(U)

)α
. (B.97)
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The right hand side function is integrable with value E[Wα], by assumption. Therefore,
by the dominated convergence theorem (Theorem A.10), we have that the integral of the
left hand side converges to the integral of its pointwise limit. Since dUne/n converges in
distribution to U , we get that [1− F ]−1(dUne/n)→ [1− F ]−1(U), as desired.

Solution to Exercise 6.8. By (6.1.11),

wi = [1− F ]−1(i/n). (B.98)

Now apply the function [1− F ] to both sides to get

[1− F ](wi) = i/n, (B.99)

which, by the assumption, can be bounded from above by

i/n = [1− F ](wi) ≤ cw−(τ−1)
i . (B.100)

This inequality can be rewritten to

i−
1

τ−1 (cn)
1

τ−1 ≥ wi, (B.101)

where the left hand side is a descending function in i for τ > 1. This implies

wi ≤ w1 ≤ c
1

τ−1 n
1

τ−1 , ∀i ∈ [n], (B.102)

giving the c′ = c
1

τ−1 as desired.

Solution to Exercise 6.10. A mixed Poisson variable X has the property that P(X =
0) = E[e−W ] is strictly positive, unless W is infinite whp. Therefore, the random variable
Y with P(Y = 1) = 1

2
and P(Y = 2) = 1

2
cannot be represented by a mixed Poisson

variable.

Solution to Exercise 6.11. By definition, the characteristic function of X is

E[eitX ] =

∞∑
n=0

eitnP(X = n) =

∞∑
n=0

eitn
(∫ ∞

0

fW (w)
e−wwn

n!
dw

)
,

where fW (w) is the density function of W evaluated in w. Since all terms are non-negative
we can interchange summation and integration. Rearranging the terms gives

E[eitX ] =

∫ ∞
0

fW (w)e−w
(
∞∑
n=0

(
eitw

)n
n!

)
dw =

∫ ∞
0

fW (w)e−w exp(eitw)dw

=

∫ ∞
0

fW (w) exp((eit − 1)w)dw.

The latter expression is the moment generating function of W evaluated in eit − 1.
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Solution to Exercise 6.12. By the tower rule, we have that E[E[X|W ]] = E[X]. Com-
puting the expected value on the left hand side gives

E[E[X|W ]] =
∑
w

E[X|W = w]P(W = w)

=
∑
w

P(W = w)
∑
k

ke−w
wk

k!

=
∑
w

w · P(W = w) · e−w
∑
k

w(k−1)

(k − 1)!

=
∑
w

w · P(W = w) = E[W ], (B.103)

so E[X] = E[W ]. For the second moment of X, we consider E[E[X(X−1)|W ]] = E[X(X−
1)]. Computing the expected value on the left hand side gives

E[E[X(X − 1)|W ]] =
∑
w

E[X(X − 1)|W = w]P(W = w)

=
∑
w

P(W = w)
∑
k

k(k − 1)e−w
wk

k!

=
∑
w

w2 · P(W = w) · e−w
∑
k

w(k−2)

(k − 2)!

=
∑
w

w2 · P(W = w) = E[W 2]. (B.104)

Now, we have that Var(X) = E[X2]− E[X]2 = E[W 2] + E[W ]− E[W ]2, which is the sum
of the variance and expected value of W .

Solution to Exercise 6.14. Suppose there exists a ε > 0 such that ε ≤ wi ≤ ε−1 for
every i. Now take the coupling D′i as in (??). Now, by (??), we obtain that

P
(

(D1, . . . , Dm) 6= (D̂1, . . . , D̂m)
)
≤ 2

m∑
i,j=1

pij

= 2

m∑
i,j=1

wiwj
ln + wiwj

. (B.105)

Now ln =
∑n
i=1 wi ≥ nε and ε2 ≤ wiwj ≤ ε−2. Therefore,

2

m∑
i,j=1

wiwj
ln + wiwj

≤ 2m2 ε−2

nε+ ε2
= o(1), (B.106)

since m = o(
√
n).

Solution to Exercise 6.15. We have to prove

max
k
|E[P (n)

k ]− pk| ≤
ε

2
. (B.107)
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We have
max
k
|E[P (n)

k ]− pk| ≤
ε

2
⇔ ∀k|E[p(n)

k ]− pk| ≤
ε

2
. (B.108)

Furthermore the following limit is given

lim
n→∞

E[P (n)

k ] = lim
n→∞

P(D1 = k) = pk. (B.109)

Hence we can write
∀ε>0∀k∃Mk∀n>Mk |E[P (n)

k ]− pk| ≤
ε

2
(B.110)

Taking M := maxkMk we obtain

∀ε>0∃M∀k∀n>M |E[P (n)

k ]− pk| ≤ ε
2

⇔
∀ε>0∃M∀n>M maxk |E[P (n)

k ]− pk| ≤ ε
2
.

Solution to Exercise 6.16. Using the hint, we get

P(
n

max
i=1

Wi ≥ εn) ≤
n∑
i=1

P(Wi ≥ εn)

= nP(W1 ≥ εn). (B.111)

This probability can be rewritten, and applying the Markov inequality now gives

nP(W1 ≥ εn) = nP(1l{W1≥εn}W1 ≥ εn) ≤ P(W1 ≥ εn)E[W1]→ 0. (B.112)

Therefore, maxni=1 Wi is o(n) whp, and

1

n2

n∑
i=1

W 2
i ≤

1

n

n
max
i=1

W 2
i → 0, (B.113)

as desired.

Solution to Exercise 6.18. Using partial integration we obtain for the mean of W1

E[W1] =

∫ ∞
0

xf(x)dx = [xF (x)− x]∞x=0 −
∫ ∞

0

F (x)− 1dx =
(

lim
R→∞

RF (R)−R
)
− 0 +

∫ ∞
0

1− F (x)dx

=

∫ ∞
0

1− F (x)dx

Hence,

E[W1] =∞⇔
∫ ∞

0

[1− F (x)]dx =∞. (B.114)

Solution to Exercise 6.21. It suffices to prove that
∏

1≤i<j≤n(uiuj)
xij =

∏n
i=1 u

di(x)
i ,

where di(x) =
∑n
j=1 xij .

The proof will be given by a simple counting argument. Consider the powers of uk in the
left hand side, for some k = 1, . . . , n. For k < j ≤ n, the left hand side contains the terms
u
xkj
k , whereas for 1 ≤ i < k, it contains the terms u

xik
k . When combined, and using the fact

that xij = xji for all i, j, we see that the powers of uk in the left hand side can be written

as
∑
j 6=k

xkj . But since, xii = 0 for all i, this equals
∑n
j=1 xij = di(x), as required.
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Solution to Exercise 6.22. We pick tk = t and ti = 1 for all i 6= k. Then,

E[tDk ] =
∏

1≤i≤n:i 6=k

ln + wiwkt

ln + wiwk

= e
wk(t−1)

∑
1≤i≤n:i6=k

wi
ln

+Rn , (B.115)

where

Rn =
∑

1≤i≤n:i 6=k

log

(
1 +

wiwkt

ln

)
− log

(
1 +

wiwk
ln

)
− wk(t− 1)

∑
1≤i≤n:i 6=k

wi
ln

=
∑

1≤i≤n:i 6=k

log(ln + wiwkt)− log(ln + wiwk)− wk(t− 1)
∑

1≤i≤n:i 6=k

wi
ln
. (B.116)

A Taylor expansion of x 7→ log(a+ x) yields that

log(a+ x) = log(a) +
x

a
+O(

x2

a2
). (B.117)

Therefore, applying the above with a = ln and x = wiwk, yields that, for t bounded,

Rn = O(w2
k

n∑
i=1

w2
i

l2n
) = o(1), (B.118)

by (??), so that

E[tDk ] = e
wk(t−1)

∑
1≤i≤n:i6=k

wi
ln (1 + o(1))

= ewk(t−1)(1 + o(1)), (B.119)

since wk is fixed. Since the generating function of the degree converges, the degree of
vertex k converges in distribution to a random variable with generating function ewk(t−1)

(recall Theorem 2.3(c)). The probability generating function of a Poisson random variable

with mean λ is given by eλ(t−1), which completes the proof of Theorem 6.2(a).
For Theorem 6.2(b), we use similar ideas, now taking ti = ti for i ≤ m and ti = 0 for

i > m. Then,

E[
m∏
i=1

tDii ] =
∏

1≤i≤m,i<j≤n

ln + wiwjti
ln + wiwj

=

m∏
i=1

ewi(ti−1)(1 + o(1)), (B.120)

so that the claim follows.

Solution to Exercise 6.23. The degree of vertex k converges in distribution to a random
variable with generating function ewk(t−1). We take wi = λ

1−λ/n which yields for the

generating function e
λ(t−1)
1−λ/n . This gives us for the degree a Poi( λ

1−λ/n ) random variable,

which for large n is close to a Poi(λ) random variable.

Solution to Exercise 6.24. The Erdős-Rényi Random Graph is obtained by taking
Wi ≡ λ

1− λ
n

. Since pij = λ/n → 0, Theorem 6.2(b) states that the degrees are asymptoti-

cally independent.
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Solution to Exercise 6.25. Let X be a mixed Poisson random variable with mixing
distribution γW τ−1. The generating function of X now becomes

GX(t) = E[tX ] =

∞∑
k=0

tkP(X = k)

=

∞∑
k=0

tkE[e−γW
τ−1 (γW τ−1)k

k!
]

= E

[
e−γW

τ−1
∞∑
k=0

(γW τ−1t)k

k!

]
= E[e(t−1)γWτ−1

] (B.121)

Solution to Exercise 6.26. By using partial integration we obtain

E[h(X)] =

∫ ∞
0

h(x)f(x)dx

= [h(x)(F (x))− 1]∞x=0 −
∫ ∞

0

h′(x)[F (x)− 1]dx

=
(

lim
R→∞

h(R)(1− F (R))
)
− h(0)(1− F (0)) +

∫ ∞
0

h′(x)[1− F (x)]dx

=

∫ ∞
0

h′(x)[1− F (x)]dx.

Solution to Exercise 6.28. By definition, p(n) and q(n) are asymptotically equivalent
if for every sequence (xn) of events

lim
n→∞

p(n)
xn − q

(n)
xn = 0. (B.122)

By taking the sequence of events xn ≡ x ∈ X for all n, this means that asymptotical
equivalence implies that also

lim
n→∞

max
x∈X
|p(n)
x − q(n)

x | = lim
n→∞

dTV(p(n), q(n)) = 0. (B.123)

Conversely, if the total variation distance converges to zero, which means that the maximum
over all x ∈ X of the difference p(n)

x − q(n)
x converges in absolute value to zero. Since this

maximum is taken over all x ∈ X , it will certainly hold for all x ∈ (xn) ⊆ X as well.
Therefore, it follows that for any sequence of events, p(n)

xn − q
(n)
xn must converge to zero as

well, which implies asymptotical equivalence. /ensol

Solution to Exercise 6.29. We recall that

dTV(M,M ′) = sup
A⊂Z
|P(M ∈ A)− P(M ′ ∈ A)|. (B.124)

Now, for binomial random variables with the same m and with success probabilities p and
q respectively, we have that

P(M = k)

P(M ′ = k)
=
(p
q

)k(1− p
1− q

)m−k
=
(1− p

1− q
)m(p(1− q)

q(1− p)
)k
, (B.125)
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which is monotonically increasing or decreasing for p 6= q. As a result, we have that the
supremum in (B.124) is attained for a set A = {0, . . . , j} for some j ∈ N, i.e.,

dTV(M,M ′) = sup
j∈N
|P(M ≤ j)− P(M ′ ≤ j)|. (B.126)

Now assume that limN→∞m(p − q)/
√
mp = α ∈ (−∞,∞). Then, by Exercise 4.22,

(M−mp)/√mp d−→ Z ∼ N (0, 1) and (M ′−mp)/√mp d−→ Z′simN (α, 1), where N (µ, σ2)

denotes a normal random variable with mean µ and variance σ2. Therefore, we arrive at

dTV(M,M ′) = sup
j∈N
|P(M ≤ j)− P(M ′ ≤ j)| = sup

x∈R
|P(Z ≤ x)− P(Z′ ≤ x)|+ o(1)

→ Φ(α/2)− Φ(−α/2), (B.127)

where x 7→ Φ(x) is the distribution function of a standard normal random variable. Thus,
dTV(M,M ′) = o(1) precisely when α = 0, which implies that m(p− q)/√mp = o(1).

Solution to Exercise 6.30. We write

dTV(p, q) =
1

2

∑
x

|px − qx| =
1

2

∑
x

(
√
px +

√
qx)|√px −

√
qx|

=
1

2

∑
x

√
px|
√
px −

√
qx|+

1

2

∑
x

√
qx|
√
px −

√
qx|. (B.128)

By the Cauchy-Schwarz inequality, we obtain that

∑
x

√
px|
√
px −

√
qx| ≤

√∑
x

px

√∑
x

(
√
px −

√
qx)2 ≤ 2−1/2dH(p, q). (B.129)

The same bound applies to the second sum on the right-hand side of (B.128), which proves
the upper bound in (6.6.11).

For the lower bound, we bound

dH(p, q)2 =
1

2

∑
x

(
√
px −

√
qx)2 ≤ 1

2

∑
x

(
√
px +

√
qx)|√px −

√
qx| = dTV(p, q). (B.130)

Solution to Exercise 6.31. By exercise 6.28, we have that p(n) = {p(n)
x }x∈X and

q(n) = {q(n)
x }x∈X are asymptotically equivalent if and only if their total variation distance

converges to zero. By exercise 6.30, we know that (6.6.11) holds, and therefore also

2−1/2dTV(p(n), q(n)) ≤ dH(p(n), q(n)) ≤
√
dTV(p(n), q(n)). (B.131)

Both the left and right hand side of those inequalities converge to zero if dTV(p(n), q(n))→ 0,
which implies by the sandwich theorem that dH(p(n), q(n))→ 0. Conversely, if dH(p(n), q(n))→
0, by (6.6.11) we have that dTV(p(n), q(n))→ 0.

Solution to Exercise 6.32. We bound

ρ(p, q) =
(√
p−√q

)2
+
(√

1− p−
√

1− q
)2

= (p− q)2((√p+
√
q)−2 + (

√
1− p+

√
1− q)−2).

(B.132)
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Solution to Exercise 6.33. We wish to show that P(Y = k) = e−λp (λp)k

k!
. We will use

that in the case of X fixed, Y is simply a BIN(X, p) random variable. We have

P(Y = k) = P
( X∑
i=0

Ii = k
)

=

∞∑
x=k

P(X = x) · P
( x∑
i=0

Ii = k
)

=

∞∑
x=k

e−λ
λx

x!
·

(
x

k

)
pk(1− p)x−k = e−λ

∞∑
x=k

λx

x!
· x!

(x− k)!k!
pk(1− p)x−k

= e−λ
(λp)k

k!

∞∑
x=k

λx−k(1− p)x−k

(x− k)!
= e−λ

(λp)k

k!

∞∑
x=0

(λ− λp)x

x!

= e−λeλ−λp
(λp)k

k!
= e−λp

(λp)k

k!

If we define Y to be the number of edges between i and j at time t and X the same at
time t − 1. Furthermore we define Ik to be the decision of keeping edge k or not. It is

given that X ∼ Poi(
WiWj
Lt−1

) and Ik ∼ BE(1 − Wt
Lt

). According to what is shown above we

now obtain for Y to be a Poisson random variable with parameter

WiWj

Lt−1
· (1− Wt

Lt
) = WiWj

1

Lt−1

Lt −Wt

Lt
= WiWj

1

Lt−1

Lt−1

LT
=
WiWj

Lt
(B.133)

Solution to Exercise 6.34. A graph is simple when it has no self loops or double edges
between vertices. Therefore, the Norros-Reittu random graph is simple at time n if for all i
Xii = 0, and for all i 6= j Xij = 0 or Xij = 1. By Exercise 6.33, we know that the number
of edges Xij between i and j at time n are Poisson with parameter

wiwj
`n

. The probability

then becomes

P(NRn(w) simple) = P(0 ≤ Xij ≤ 1, ∀i 6= j)P(Xii = 0, ∀i)

=
∏

1≤i<j≤n

(P(Xij = 0) + P(Xij = 1))

n∏
k=1

P(Xkk = 0)

=
∏

1≤i<j≤n

e
−
wiwj
`n (1 +

wiwj
`n

)

n∏
k=1

e
−
w2
k
`n

= e
−

∑
1≤i≤j≤n

wiwj
`n

∏
1≤i<j≤n

(1 +
wiwj
`n

). (B.134)

Solution to Exercise 6.35. Let Xij ∼ Poi(
wiwj
`n

) be the number of edges between vertex

i and j at time n. The degree of vertex k at time n becomes

n∑
j=1

Xkj , and because Xkj is

Poisson with mean
wkwj
Ln

, the sum will be Poisson with mean

n∑
j=1

wkwj
`n

= wk

∑n
j=1 wj

`n
=

Wk. Therefore, since the wi are i.i.d, the degree at time n has a mixed Poisson distribution
with mixing distribution Fw
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Solution to Exercise 6.36. Couple Xn = X(Gn) and X ′n = X(G′n) by coupling the

edge occupation statuses Xij of Gn and X ′ij of G′n such that (6.7.11) holds. Let (X̂n, X̂
′
n)

be this coupling and let En and E′n be the sets of edges of the coupled versions of Gn and
G′n, respectively. Then, since X is increasing

P(X̂n ≤ X̂ ′n) ≥ P(En ⊆ E′n) = P(Xij ≤ X ′ij∀i, j ∈ [n]) = 1, (B.135)

which proves the stochastic domination by Lemma 2.11.

Solutions to the exercises of Chapter 7.

Solution to Exercise 7.1. Consider for instance the graph of size n = 4 with de-
grees {d1, . . . , d4} = {3, 3, 1, 1} or the graph of size n = 5 with degrees {d1, . . . , d5} =
{4, 4, 3, 2, 1}.

Solution to Exercise 7.2. For 2m vertices we use m pairing steps, each time pairing
two vertices with each other. For step i+ 1, we have already paired 2i vertices. The next
vertex can thus be paired with 2m−2i−1 other possible vertices. This gives for all pairing
steps the total amount of possibilities to be

(2m− 1)(2m− 3) · · · (2m− (2m− 2)− 1) = (2m− 1)!!. (B.136)

Solution to Exercise 7.8. We can write

P
(
Ln is odd

)
= P

(
(−1)Ln = −1

)
=

1

2

(
1− E[(−1)Ln ]

)
. (B.137)

To compute E[(−1)Ln ], we use the characteristic function φD1
(t) = E[eitD1 ] as follows:

φD1
(π) = E[(−1)D1 ] (B.138)

Since (−1)Ln = (−1)
∑
Di where {Di}ni=1 are i.i.d. random variables, we have for the

characteristic function of Ln, φLn(π) = (φD1(π))n. Furthermore, we have

φD1
(π) = −P(D1 is odd) + P(D1 is even). (B.139)

Now we assume P(D1 is odd) 6∈ {0, 1}. This gives us

−1 < P(D1 is even)− P(D1 is odd) < 1, (B.140)

so that |φD1
(π)| < 1, which by (B.137) leads directly to the statement that P(Ln is odd)

is exponentially close to 1
2
.

Solution to Exercise 7.10. We compute

∞∑
k=1

kp(n)

k =

∞∑
k=1

k
( 1

n

n∑
i=1

1l{d̃i=k}

)
=

1

n

n∑
i=1

∞∑
k=1

k1l{d̃i=k} =
1

n

n∑
i=1

di =
ln
n
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Solution to Exercise ??. First we shall prove that the degrees P (n)

k converge to some
probability distribution {pk}∞k=1. Obviously,

P (n)

k =
1

n

n∑
i=1

1l{Di=k}, (B.141)

and the variables {1l{Di=k}}
n
i=1 are i.i.d. random variables with a BE(pk) distribution.

Thus, by the strong law of large numbers, P (n)

k

a.s.−→ pk.
To see (??), we note that the mean of the degree distribution is finite precisely when

E[Di] <∞. Since pk = P(Di = k), we have

µ =

∞∑
k=0

kpk. (B.142)

Now, by definition, the total degree equals

Ln =

n∑
i=1

Di, (B.143)

where, since the degrees are i.i.d. {Di}ni=1 is an i.i.d. sequence. Moreover, we have that
µ = E[Di] <∞. Thus, (??) follows from the strong law of large numbers, since

Ln/n =
1

n

n∑
i=1

Di
a.s.−→ E[Di] = µ. (B.144)

Solution to Exercise ??. We need to prove that (??) and (??) imply that

∞∑
k=1

kp(n)

k → µ =

∞∑
k=1

kpk. (B.145)

We note that, as m→∞,

µ =

∞∑
k=1

kpk =

m∑
k=1

kpk + o(1). (B.146)

Moreover, by (??), we have that

∞∑
k=m+1

kp(n)

k ≤ 1

m

∞∑
k=m+1

k(k − 1)p(n)

k ≤ 1

m

∞∑
k=1

k(k − 1)p(n)

k = O(1/m). (B.147)

Thus,
∞∑
k=1

kp(n)

k − µ =

m∑
k=1

k(p(n)

k − pk) + o(1). (B.148)

Now, for every m fixed, by (??),

lim
N→∞

m∑
k=1

k(p(n)

k − pk) = 0, (B.149)

and we conclude that, by first sending n → ∞ followed by m → ∞ that
∑∞
k=1 kp

(n)

k →
µ.
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Solution to Exercise 7.11. We start by evaluating (7.3.20) from the right- to the
left-hand side.

µE[(X + 1)r−1] = µ

∞∑
k=1

(k + 1)r−1 e
−µµk

k!
=

∞∑
k=1

(k + 1)r
e−µµk+1

(k + 1)!
;

=

∞∑
n=1

nr
e−µµn

n!
=

∞∑
x=0

xr
e−µµx

x!
= E[Xr].

Now we can use the independency of the two random variables and the result above for
the evaluation of (7.3.21).

E[XrY s] = E[Xr]E[Y s] = E[Xr]µY E[(Y + 1)s−1] = µY E[Xr(Y + 1)s−1].

Solution to Exercise 7.12. We use a two-dimensional extension of Theorem 2.3(e),
stating that when the mixed moments E[Xr

nY
s
n ] converge to the moments E[XrY s] for each

r, s = 0, 1, 2, . . ., and the moments of X and Y satisfy (2.1.8), then (Xn, Yn) converges in
distribution to (X,Y ). See also Theorem 2.6 for the equivalent statement for the factorial
moments instead of the normal moments, from which the above claim actually follows.
Therefore, we are left to prove the asymptotics of the mixed moments of (Sn,Mn).

To prove that E[SrnM
s
n] converge to the moments E[SrMs], we again make use of in-

duction, now in both r and s.
Proposition 7.6 follows when we prove that

lim
n→∞

E[Srn] = E[Sr] = µSE[(S + 1)r−1], (B.150)

and
lim
n→∞

E[SrnM
s
n] = E[SrMs] = µME[Sr(M + 1)s−1], (B.151)

where the second equalities in (B.150) and (B.151) follow from (7.3.20) and (7.3.21).
To prove (B.150), we use the shape of Sn in (7.2.20), which we restate here as

Sn =

n∑
i=1

∑
1≤a<b≤di

Iab,i. (B.152)

Then, we prove by induction on r that

lim
n→∞

E[Srn] = E[Sr]. (B.153)

The induction hypothesis is that (B.153) is true for all r′ ≤ r−1, for CMn(d) when n→∞
and for all {di}ni=1 satisfying (??). We prove (B.153) by induction on r. For r = 0, the
statement is trivial, which initializes the induction hypothesis.

To advance the induction hypothesis, we write out

E[Srn] =
n∑
i=1

∑
1≤a<b≤di

E[Iab,iS
r−1
n ]

=

n∑
i=1

∑
1≤a<b≤di

P(Iab,i = 1)E[Sr−1
n |Iab,i = 1]. (B.154)



239

When Iab,i = 1, then the remaining stubs need to be paired in a uniform manner. The
number of self-loops in the total graph in this pairing has the same distribution as

1 + S′n, (B.155)

where S′n is the number of self-loops in the configuration model where with degrees {d′i}ni=1,
where d′i = di − 2, and d′j = dj for all j 6= i. The added 1 in (B.155) originates from Iab,i.
By construction, the degrees {d′i}ni=1 still satisfy (??). By the induction hypothesis, for all
k ≤ r − 1

lim
n→∞

E[(S′n)k] = E[Sk]. (B.156)

As a result,
lim
n→∞

E[(1 + S′n)r−1] = E[(1 + S)r−1]. (B.157)

Since the limit does not depend on i, we obtain that

lim
n→∞

E[Srn] = E[(1 + S)r−1] lim
n→∞

n∑
i=1

∑
1≤a<b≤di

P(Iab,i = 1)

E[(1 + S)r−1] lim
n→∞

n∑
i=1

di(di − 1)

2

=
ν

2
E[(1 + S)r−1] = E[Sr]. (B.158)

This advances the induction hypothesis, and completes the proof of (B.150).
To prove (B.151), we perform a similar induction scheme. Now we prove that, for all

r ≥ 0, E[SrnM
s
n] converges to E[SrMs] by induction on s. The claim for s = 0 follows from

(B.150), which initializes the induction hypothesis, so we are left to advance the induction
hypothesis. We follow the argument for Sn above. It is not hard to see that it suffices to
prove that, for every ij,

lim
n→∞

E[SrnM
s−1
n |Is1t1,s2t2,ij = 1] = E[Sr(1 +M)s−1]. (B.159)

Note that when Is1t1,s2t2,ij = 1, then we know that two edges are paired together to form a
multiple edge. Removing these two edges leaves us with a graph which is very close to the
configuration model with degrees {d′i}ni=1, where d′i = di − 2, and d′j = dj − 2 and d′t = dt
for all t 6= i, j. The only difference is that when a stub connected to i is attached to a stub
connected to j, then this creates an additional number of multiple edges. Ignoring this
effect creates the lower bound

E[SrnM
s−1
n |Is1t1,s2t2,ij = 1] ≥ E[Srn(Mn + 1)s−1], (B.160)

which, by the induction hypothesis, converges to E[Sr(1 +M)s−1, ] as required.
Let I ′s1t1,s2t2,ij denote the indicator that stub s1 is connected to t1, s2 to t2 and no

other stub of vertex i is connected to a stub of vertex j. Then,

1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

I ′s1t1,s2t2,ij ≤Mn ≤
1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij .

(B.161)
Hence,

E[SrnM
s
n] ≤ 1

2

∑
1≤i6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(Is1t1,s2t2,ij = 1)E
[
SrnM

s−1
n |Is1t1,s2t2,ij = 1

]
,

(B.162)
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and

E[SrnM
s
n] ≤ 1

2

∑
1≤i6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(I ′s1t1,s2t2,ij = 1)E
[
SrnM

s−1
n |I ′s1t1,s2t2,ij = 1

]
.

(B.163)
Now, by the above, E

[
SrnM

s−1
n |Is1t1,s2t2,ij = 1

]
and E

[
SrnM

s−1
n |I ′s1t1,s2t2,ij = 1

]
converge

to E
[
Sr(M+1)s−1

]
, independently of s1t1, s2t2, ij. Further,

1

2

∑
1≤i6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(I ′s1t1,s2t2,ij = 1)→ ν2/2, (B.164)

and also
1

2

∑
1≤i6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(Is1t1,s2t2,ij = 1)→ ν2/2. (B.165)

This implies that

E[SrnM
s−1
n |Is1t1,s2t2,ij = 1] = E[Srn−1M

s−1
n−1] + o(1). (B.166)

The remainder of the proof is identical to the one leading to (B.158).

Solution to Exercise 7.13. To obtain a triangle we need to three connected stubs say
(s1, t1), (s2, t2), (s3, t3) where s1 and t3 belong to some vertex i with degree di, s2 and t1
to vertex j with degree dj and s3, t2 to some vertex k with degree dk. Obviously we have

1 ≤ s1 ≤ di,

1 ≤ t1 ≤ dj ,

1 ≤ s2 ≤ dj ,

1 ≤ t2 ≤ dk,

1 ≤ s3 ≤ dk,

1 ≤ t3 ≤ di.

The probability of connecting s1 to t1 is 1/(ln − 1). Furthermore, connecting s2 to t2
appears with probability 1/(ln − 3) and s3 to t3 with probability 1/(ln − 5). Of course we
can pick all stubs of i to be s1, and we have di − 1 vertices left from which we may choose
t3. Hence, for the amount of triangles we obtain∑
i<j<k

didj
ln − 1

· (dj − 1)dk
ln − 3

· (dk − 1)(di − 1)

ln − 5
=
∑
i<j<k

di(di − 1)

ln − 1
· dj(dj − 1)

ln − 3
· dk(dk − 1)

ln − 5

(B.167)

∼ 1

6

( n∑
i=1

di(di − 1)

ln

)3

.

We will show that∑
i<j<k

di(di − 1)

ln − 1
· dj(dj − 1)

ln − 3
· dk(dk − 1)

ln − 5
∼ 1

6

( n∑
i=1

di(di − 1)

ln

)3

by expanding the righthand-side. We define

S :=
( n∑
i=1

di(di − 1)

ln

)3

. (B.168)
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Then, we have

S =

n∑
i=1

(di(di − 1)

ln

)3

+ 3

∞∑
i=1

∞∑
j=1,j 6=i

(di(di − 1)

ln

)2(dj(dj − 1)

ln

)
(B.169)

+
∑
i6=j 6=k

di(di − 1)

ln
· dj(dj − 1)

ln
· dk(dk − 1)

ln
, (B.170)

where the first part contains n terms, the second n(n− 1) and the third n(n− 1)(n− 2).
So for large n we can say that

S ∼
∑
i 6=j 6=k

di(di − 1)

ln
· dj(dj − 1)

ln
· dk(dk − 1)

ln
. (B.171)

Now there are six possible orderings of i, j, k, hence

1

6
S ∼

∑
i<j<k

di(di − 1)

ln
· dj(dj − 1)

ln
· dk(dk − 1)

ln
∼
∑
i<j<k

di(di − 1)

ln − 1
· dj(dj − 1)

ln − 3
· dk(dk − 1)

ln − 5
.

(B.172)

Solution to Exercise 7.17. In this case we have di = r for all i ∈ [n]. This gives us

µ = lim
n→∞

n∑
i=1

di(di − 1)

ln
= lim
n→∞

n∑
i=1

r(r − 1)

nr
= r − 1. (B.173)

Furthermore we obtain
n∏
i=1

di! =

n∏
i=1

r! = (r!)n. (B.174)

Finally we have for the total number of stubs ln = rn. Substituting these variables in
(7.4.1) gives us for the number of simple graphs with constant degree sequence di = r

e−
(r−1)

2
− (r−1)2

4
(rn− 1)!!

(r!)n
(1 + o(1)). (B.175)

Solutions to the exercises of Chapter 8.

Solution to Exercise 8.1. At time t, we add a vertex vt, and connect it with each
vertex vi, 1 ≤ i < t with probability p. In the previous chapters, we had the relation
p = λ

n
, but since n is increasing over time, using this expression for p will not result in an

Erdős-Rényi random graph. We could off course wish to obtain a graph of size N , thus
stopping the algorithm at time t = N , and using p = λ

N
.

Solution to Exercise 8.2. We will use an induction argument over t. For t = 1 we have
a single vertex v1 with a self-loop, hence d1(1) = 2 ≥ 1.

Now suppose at time t we have di(t) ≥ 1 ∀i.
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At time t + 1 we add a vertex vt+1. We do not remove any edges, so we only have to
check whether the newly added vertex has a non-zero degree. Now the algorithm adds the
vertex having a single edge, to be connected to itself, in which case dt+1(t + 1) = 2, or
to be connected to another already existing vertex, in which case it’s degree is 1. In the
latter case, one is added to the degree of the vertex to which vt+1 is connected, thus that
degree is still greater than zero. Hence we can say that di(t+ 1) ≥ 1 ∀i
We can now conclude that di(t) ≥ 1 for all i and t. The statement di(t) + δ ≥ 0 for all
δ ≥ −1 follows directly.

Solution to Exercise 8.3. The statement

1 + δ

t(2 + δ) + (1 + δ)
+

t∑
i=1

di(t) + δ

t(2 + δ) + (1 + δ)
= 1 (B.176)

will follow directly if the following equation holds:

(1 + δ) +

t∑
i=1

(di(t) + δ) = t(2 + δ) + (1 + δ). (B.177)

Which is in its turn true if
t∑
i=1

(di(t) + δ) = t(2 + δ). (B.178)

But since
∑t
i=1 di(t) = 2t by construction, the latter equation holds. Hence, the upper

statement holds and the probabilities do sum up to one.

Solution to Exercise 8.6. We will again use an induction argument. At time t = 1 we
have a single vertex v1 with a self-loop, and the statement holds. At time t = 2 we add a
vertex v2 and connect it with v1 with the given probability

P
(
v2 → v1

∣∣PA1,δ(1)
)

=
2− 1

1
= 1. (B.179)

Now suppose at time t we have a graph with one vertex v1 containing a self-loop and
t − 1 other vertices having only one edge which connects it to v1. In that case d1(t) =
2 + (t− 1) = t+ 1 and all other vertices have degree 1.
At time t + 1 we add a vertex vt+1 having one edge which will be connected to v1 with
probability

P
(
vt+1 → v1

∣∣PA1,δ(t)
)

=
t+ 1− 1

t
= 1. (B.180)

Hence, the claim follows by induction.

Solution to Exercise 8.7. The proof is by induction on t ≥ 1. For t = 1, the statement
is correct, since, at time 2, both graphs consist of two vertices with two edges between
them. This initializes the induction hypothesis.

To advance the induction hypothesis, we assume that the law of {PA(b′)
1,α(t)}ts=1 is equal

to the one of {PA(b)

1,δ(s)}
t
s=1, and, from this, prove that the law of {PA(b′)

1,α(s)}ts=1 is equal

to the one of {PA(b)

1,δ(s)}
t
s=1. The only difference between PA(b)

1,δ(t + 1) and PA(b)

1,δ(t) and

between PA(b′)
1,α(t + 1) and PA(b′)

1,α(t) is to what vertex the (t + 1)st edge is attached. For
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{PA(b)

1,δ(t)}
∞
t=1 and conditionally on PA(b)

1,δ(t), this edge is attached to vertex i with proba-
bility

Di(t) + δ

t(2 + δ)
, (B.181)

while, for {PA′1,α(t)}∞t=1 and conditionally on PA′1,α(t), this edge is attached to vertex i
with probability

α
1

t
+ (1− α)

Di(t)

2t
. (B.182)

Bringing the terms in (B.182) onto a single denominator yields

Di(t) + 2 α
1−α

2
1−α t

, (B.183)

which agrees with (B.181) precisely when 2 α
1−α = δ, so that

α =
δ

2 + δ
. (B.184)

Solution to Exercise 8.9. We write

Γ(t+ 1) =

∫ ∞
0

xte−xdx. (B.185)

Using partial integration we obtain

Γ(t+ 1) = [−xte−x]∞x=0 +

∫ ∞
0

txt−1e−xdx = 0 + t ·
∫ ∞

0

xt−1e−xdx = tΓ(t).

In order to prove that Γ(n) = (n − 1)! for n = 1, 2, . . . we will again use an induction
argument. For n = 1 we have

Γ(1) =

∫ ∞
0

x0e−xdx =

∫ ∞
0

e−xdx = 1 = (0)!.

Now the upper result gives us for n = 2

Γ(2) = 1 · Γ(1) = 1 = (2− 1)!. (B.186)

Suppose now that for some n ∈ N we have Γ(n) = (n− 1)!. Again (8.2.2) gives us for n+ 1

Γ(n+ 1) = nΓ(n) = n(n− 1)! = n!. (B.187)

Induction yields Γ(n) = (n− 1)! for n = 1, 2, . . ..

Solution to Exercise 8.10. We rewrite (8.2.9) to be

e−ttt−
1
2
√

2π ≤ Γ(t+ 1) ≤ e−ttt
√

2π
(

1 +
1

12t

)
,

(
t

e
)t
√

2π

t
≤ Γ(t+ 1) ≤ (

t

e
)t
√

2π(1 +
1

12t
),

(
t

e
)t
√

2π

t
≤ tΓ(t) ≤ (

t

e
)t
√

2π(1 +
1

12t
),

(
t

e
)t
√

2π

t

1

t
≤ Γ(t) ≤ (

t

e
)t
√

2π

t

√
t(1 +

1

12t
).
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Using this inequality in the left-hand side of (8.2.8) we obtain

( t
e
)t
√

2π
t

1
t

( t−a
e

)t−a
√

2π
t−a
√
t− a(1 + 1

12(t−a)
)
≤ Γ(t)

Γ(t−a)
≤

( t
e
)t
√

2π
t

√
t(1 + 1

12t
)

( t−a
e

)t−a
√

2π
t−a

1
t−a

tt

(t− a)t−a
e−a

t
√
t(1 + 12/(t− a))

≤ Γ(t)
Γ(t−a)

≤ tt

(t− a)t−a
e−a(1 + 1/12t)√

t− a
.

We complete the proof by noting that t−a = t(1+O(1/t)) and 1+1/12t = 1+O(1/t).

Solution to Exercise 8.11. This result is immediate from the collapsing of the vertices
in the definition of PAt(m, δ), which implies that the degree of vertex v(m)

i in PAt(m, δ) is

equal to the sum of the degrees of the vertices v(1)

m(i−1)+1, . . . , v
(1)

mi in PAmt(1, δ/m).

Solution to Exercise 8.16. We wish to prove

P
(
|P≥k(t)− E[P≥k(t)]| ≥ C

√
t log t

)
= o(t−1). (B.188)

First of all we have P≥k(t) = 0 for k > mt. We define, similarly to the proof of Proposition
8.3 the martingale

Mn = E
[
P≥k(t)|PAm,δ(n)

]
. (B.189)

We have

E[Mn+1|PAm,δ(n)] = E
[
E
[
P≥k(t)|PAm,δ(n+ 1)

]∣∣∣PAm,δ(n)
]

= E
[
P≥k(t)|PAm,δ(n)

]
= Mn.

(B.190)

Hence Mn is a martingale. Furthermore, Mn satisfies the moment condition, since

E
[
Mn

]
= E

[
P≥k(t)

]
≤ t <∞. (B.191)

Clearly, PAm,δ(0) is the empty graph, hence for M0 we obtain

M0 = E
[
P≥k(t)|PAm,δ(0)

]
= E

[
P≥k(t)]. (B.192)

We obtain for Mt

Mt = E
[
P≥k(t)|PAm,δ(t)

]
=
[
P≥k(t), (B.193)

since P≥k(t) can be determined when PAm,δ(t) is known. Therefore, we have

P≥k(t)− E[P≥k(t)] = Mt −M0. (B.194)

To apply the Azuma-Hoeffding inequality, Theorem 2.23, we have to bound |Mn−Mn−1|.
In step n, m edges are added to the graph. Now P≥k only changes is an edge is added
to a vertex with degree k − 1. Now m edges have influence on the degree of at most 2m
vertices, hence, the maximum amount of vertices of which de degree is increased to k is at
most 2m. So we have |Mn −Mn−1| ≤ 2m. The Azuma-Hoeffding inequality now gives us

P
(
|P≥k(t)− E[P≥k(t)]| ≥ a

)
≤ 2e

− a2

8m2t . (B.195)

Taking a = C
√
t log t, C2 ≥ 8m, we obtain

P
(
|P≥k(t)− E[P≥k(t)]| ≥ C

√
t log t

)
= o(t−1). (B.196)



245

Solution to Exercise 8.18. We have for κk(t) and γk(t) the following equation.

κk(t) =
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k − 1 + δ)pk−1 −

( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k + δ)pk,

γk(t) = −1l{k = 1} 1 + δ

t(2 + δ) + (1 + δ)
+ 1l{k = 2} 1 + δ

t(2 + δ) + (1 + δ)
.

We start with Cγ . We have

|γk(t)| ≤ 1 + δ

t(2 + δ) + (1 + δ)
≤ 1

t( 2+δ
1+δ

) + 1
≤ 1

t+ 1
. (B.197)

So indeed Cγ = 1 does the job. For κk(t) we have

κk(t) =
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)(
(k − 1 + δ)pk−1 − (k + δ)pk

)
. (B.198)

This gives us

|κk(t)| ≤
∣∣∣ 1

2 + δ
− t

t(2 + δ) + (1 + δ)

∣∣∣ · ∣∣∣(k − 1 + δ)pk−1 − (k + δ)pk

∣∣∣,
≤

∣∣∣ 1

2 + δ
− t

t(2 + δ) + (1 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣ t(2 + δ) + (1 + δ)− (2 + δ)t

t(2 + δ)2 + (1 + δ)(2 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣ 1 + δ

t(2 + δ)2 + (1 + δ)(2 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣ 1

2 + δ
· 1

t( 2+δ
1+δ

) + 1

∣∣∣ · sup
k≥1

(k + δ)pk,

≤
∣∣∣ 1

t( 2+δ
1+δ

) + 1

∣∣∣ · sup
k≥1

(k + δ)pk,

≤ 1

t+ 1
· sup
k≥1

(k + δ)pk.

Hence, Cκ = supk≥1(k + δ)pk

Solution to Exercise 8.17. We note that∑
i:Di(t)≥l

Di(t) ≥ lN≥l(t), (B.199)

where we recall that N≥l(t) = #{i ≤ t : Di(t) ≥ l} is the number of vertices with degree
at least l.

By the proof of Proposition 8.3 (see also Exercise 8.16), there exists C1 such that
uniformly for all l,

P
(
|N≥l(t)− E[N≥l(t)]| ≥ C1

√
t log t

)
= o(t−1). (B.200)

By Proposition 8.4, there exists a constant C2 such that

sup
l≥1
|E[Pl(t)]− tpl| ≤ C2. (B.201)
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Therefore, we obtain that, with probability exceeding 1− o(t−1),

N≥l(t) ≥ E[N≥l(t)]− C1

√
t log t ≥ E[N≥l(t)]− E[N≥2l(t)]− C1

√
t log t

≥
2l−1∑
l=l

[tpl − C2]− C1

√
t log t ≥ C3tl

1−τ − C2l − C1

√
t log t ≥ Btl2−τ , (B.202)

whenever l is such that

tl1−τ � l, and tl1−τt �
√
t log t. (B.203)

The first condition is equivalent to l � t
1
τ , and the second to l � t

1
2(τ−1) (log t)

− 1
2(τ−1) .

Note that 1
τ
≥ 1

2(τ−1)
for all τ > 2, so the second condition is the strongest, and follows

when tl2−τ ≥ K
√
t log t for some K sufficiently large.

Then, for l satisfying tl2−τ ≥ K
√
t log t, we have with probability exceeding 1− o(t−1),∑

i:Di(t)≥l

Di(t) ≥ Btl2−τ . (B.204)

Also, with probability exceeding 1− o(t−1), for all such l, N≥l(t)�
√
t.

Solution to Exercise 8.19. We prove (8.6.3) by induction on j ≥ 1. Clearly, for every
t ≥ i,

P(Di(t) = 1) =

t∏
s=i+1

(
1− 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)
=

t∏
s=i+1

( s− 1

s− 1 + 1+δ
2+δ

)
=

Γ(t)Γ(i+ 1+δ
2+δ

)

Γ(t+ 1+δ
2+δ

)Γ(i)
,

(B.205)
which initializes the induction hypothesis, since C1 = 1.

To advance the induction, we let s ≤ t be the last time at which a vertex is added to i.
Then we have that

P(Di(t) = j) =

t∑
s=i+j−1

P
(
Di(s− 1) = j− 1

) j − 1 + δ

(2 + δ)(s− 1) + 1 + δ
P
(
Di(t) = j|Di(s) = j

)
.

(B.206)
By the induction hypothesis, we have that

P
(
Di(s− 1) = j − 1

)
≤ Cj−1

Γ(s− 1)Γ(i+ 1+δ
2+δ

)

Γ(s− 1 + 1+δ
2+δ

)Γ(i)
. (B.207)

Moreover, analogously to (B.205), we have that

P(Di(t) = j|Di(s) = j) =

t∏
q=s+1

(
1− j + δ

(2 + δ)(q − 1) + (1 + δ)

)
(B.208)

=

t∏
q=s+1

(q − 1− j−1
2+δ

q − 1 + 1+δ
2+δ

)
=

Γ(t− j−1
2+δ

)Γ(s+ 1+δ
2+δ

)

Γ(t+ 1+δ
2+δ

)Γ(s− j−1
2+δ

)
.

Combining (B.207) and (B.208), we arrive at

P(Di(t) = j) ≤
t∑

s=i+j−1

(
Cj−1

Γ(s− 1)Γ(i+ 1+δ
2+δ

)

Γ(s− 1 + 1+δ
2+δ

)Γ(i)

)( j − 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)

×
(Γ(t− j−1

2+δ
)Γ(s+ 1+δ

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(s− j−1
2+δ

)

)
. (B.209)
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We next use that

Γ(s− 1 +
1 + δ

2 + δ
)((2 + δ)(s− 1) + (1 + δ)) = (2 + δ)Γ(s+

1 + δ

2 + δ
), (B.210)

to arrive at

P(Di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t− j−1
2+δ

)

Γ(t+ 1+δ
2+δ

)

t∑
s=i+j−1

Γ(s− 1)

Γ(s− j−1
2+δ

)
. (B.211)

We note that, whenever l + b, l + 1 + a > 0 and a− b+ 1 > 0,

t∑
s=l

Γ(s+ a)

Γ(s+ b)
=

1

a− b+ 1

[Γ(t+ 1 + a)

Γ(t+ b)
−Γ(l + 1 + a)

Γ(l + b)

]
≤ 1

a− b+ 1

Γ(t+ 1 + a)

Γ(t+ b)
. (B.212)

Application of (B.212) for a = −1, b = − j−1
2+δ

, l = i + j − 1, so that a − b + 1 = j−1
2+δ

> 0
when j > 1, leads to

P(Di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t− j−1
2+δ

)

Γ(t+ 1+δ
2+δ

)

1
j−1
2+δ

Γ(t)

Γ(t− j−1
2+δ

)
(B.213)

= Cj−1
j − 1 + δ

j − 1

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t)

Γ(t+ 1+δ
2+δ

)
.

Equation (B.213) advances the induction by (8.6.4).

Solution to Exercise 8.24. Suppose αδin +γ = 0, then, since all non-negative, we have
γ = 0 and either α = 0 or δin = 0.
Since γ = 0, no new vertices are added with non zero in-degree.
In case of α = 0 we have β = 1, and thus we only create edges in G0. Hence, no vertices
exist outside G0 and thus there cannot exist vertices outside G0 with in-degree non zero.
In case of δin = 0 (and γ = 0 still), vertices can be created outside G0, but in in it’s creation
phase we will only give it an outgöıng edge. And this edge will be connected to a vertex
inside G0, since δin = 0 and the possibility to is thus zero to create an ingoing edge to a
vertex with di(t) = 0. Similarly, in case edges are created within the existing graphs, all
ingoing edges will be in G0 for the same reason. So, during all stages all vertices outside
G0 will have in-degree zero.

Now suppose γ = 1. Then the only edges being created during the process are those
from inside the existing graph to the newly created vertex. So once a vertex is created and
connected to the graph, it will only be able to gain out-going edges. Hence, the in-degree
remains one for all vertices outside G0 at all times.
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branching populations. In Séminaire de Probabilités, XXX, volume 1626 of Lecture
Notes in Math., pages 40–54. Springer, Berlin, (1996).

[105] S. Janson. Asymptotic degree distribution in random recursive trees. Random Struc-
tures Algorithms, 26(1-2):69–83, (2005).

[106] S. Janson. The probability that a random multigraph is simple. Combinatorics,
Probability and Computing, 18(1-2):205–225, (2009).

[107] S. Janson. Asymptotic equivalence and contiguity of some random graphs. Random
Structures Algorithms, 36(1):26–45, (2010).

[108] S. Janson, D.E. Knuth, T.  Luczak, and B. Pittel. The birth of the giant component.
Random Structures Algorithms, 4(3):231–358, (1993). With an introduction by the
editors.



REFERENCES 255

[109] S. Janson, T.  Luczak, and A. Rucinski. Random graphs. Wiley-Interscience Series
in Discrete Mathematics and Optimization. Wiley-Interscience, New York, (2000).

[110] S. Janson and J. Spencer. A point process describing the component sizes in the
critical window of the random graph evolution. Combin. Probab. Comput., 16(4):631–
658, (2007).

[111] S. Jin and A. Bestavros. Small-world characteristics of Internet topologies and im-
plications on multicast scaling. Computer Networks, 50:648–666, (2006).

[112] J. Jordan. The degree sequences and spectra of scale-free random graphs. Random
Structures Algorithms, 29(2):226–242, (2006).

[113] F. Karinthy. Chains. In Everything is different. Publisher unknown, (1929).
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[138] A. Martin-Löf. The final size of a nearly critical epidemic, and the first passage time
of a Wiener process to a parabolic barrier. J. Appl. Probab., 35(3):671–682, (1998).

[139] S. Milgram. The small world problem. Psychology Today, May:60–67, (1967).

[140] M. Mitzenmacher. A brief history of generative models for power law and lognormal
distributions. Internet Math., 1(2):226–251, (2004).

[141] M. Molloy and B. Reed. A critical point for random graphs with a given degree
sequence. Random Structures Algorithms, 6(2-3):161–179, (1995).

[142] M. Molloy and B. Reed. The size of the giant component of a random graph with a
given degree sequence. Combin. Probab. Comput., 7(3):295–305, (1998).
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