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Abstract. This paper addresses the question of how often the square
code of an arbitrary l-dimensional subcode of the code GRSk(a,b) is
exactly the code GRS2k−1(a,b ∗ b). To answer this question we first
introduce the notion of gaps of a code which allows us to characterize
such subcodes easily. This property was first stated and used in [10]
where Wieschebrink applied the Sidelnikov-Shestakov attack [8] to brake
the Berger-Loidreau cryptostystem [1].
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1 Introduction

The notion of a Public-Key Cryptosystem (PKC) was first introduced in 1976
by Diffie and Hellman in [3]. Most PKC are based on hard number-theoretic
problems such as integer factorization (like the RSA cryptosystem) or taking
discrete logarithms in finite groups (like the El Gamal cryptosystem).

In [5] McEliece introduced the first PKC based on the theory of error-
correcting codes which resist precisely the attacks to which the RSA and El
Gamal cryptosystem are vulnerable. This property makes McEliece scheme an
interesting candidate for post-quantum cryptography (see [7, 2] for an overview
of the state of the art). Later, Niederreiter presents a dual version of the previ-
ous cryptosystem which is equivalent in terms of security (see [4]). In its original
paper [6] Niederreiter proposed the class of Generalized Reed-Solomon (GRS)
codes over F2m . However, Sidelnikov and Shestakov in [8] introduced an algo-
rithm that, in polynomial time, permits us to discover the structure of the secret



GRS code used in the cryptosystem. Therefore, the initial Niederreiter scheme
is completely broken.

That is why Berger and Loidreau in [1] propose another version of the Nieder-
reiter scheme which is designed to resist the Sidelnikov-Shestakov attack. The
main idea of this variant is to work with subcodes of the original GRS code
rather than using the complete GRS code.

However, in [9] Wieschebrink presents the first feasible attack to the Berger-
Loidreau cryptosystem that allows us to recover the secret key if the chosen
subcode is large enough, which is impractical for small subcodes. Furthermore,
in [10] Wieschebrink notes that if the double code of a subcode of a GRS code of
parameters [n, k] is itself a GRS code of dimension 2k−1 (what he says that seems
to happen with high probability) then we can apply the Sidelnikov-Shestakov
attack and thus reconstruct the secret key in polynomial time.

The main task of this paper is to confirm the previous question and give a
characterization of the possible parameters that should be used to avoid attacks
on the Berger-Loidreau cryptosystem.

The structure of this paper is as follows. First we give a brief review of
basic concepts from Coding Theory that are relevant to this work and thus
establish the notation that will be used throughout the paper. Furthermore, after
discussing about the basic attributes and structure of GRS Codes we introduce
the non-gap sequence associated to subcodes of such codes and we define some
properties that characterize these subcodes in terms of this sequence. The final
result of this section even allows us to count the number of subcodes of a GRS
code if we identify all possible associated non-gap sequence.

The main objective of the second section is to study the probability that an
arbitrary subcode of a GRS code is itself a GRS code. To achieve our goal it
would be enough to analyze the non-gaps sequences associated to subcodes with
the required properties, which provides an upper bound on the number of such
subcodes and, consequently, we could estimate the probability of the occurrence
that we are looking for.

Finally we introduce the square code of a subcode of a GRS code. Wiesche-
brink in [10] stated that this code is often a GRS code. In the last section we
give some clues on how to solve this question but the final result will appear
in a subsequent paper. However, we establish some properties that the non-gap
sequence of the analyzed subcode must verify to have a square code which is
a GRS code and has dimension 2k − 1. Therefore, the weak subcodes for the
Berger-Loidreau cryptosystem are completely characterized.

In order to shorten this abstract we will show all the results without proofs.

2 Gaps of a code

Let us start fixing the notation and introducing some basic definitions and some
known results from coding theory. Let Fq be a finite field with q elements and
let n, k ∈ N such that 1 ≤ k ≤ n ≤ q.



We define the set Lk = {f ∈ Fq[X] : deg(f(X)) ≤ k − 1}. Then for each
a, b ∈ Fn

q the evaluation map at these elements is given by:

eva,b : Lk −→ Fn
q

f 7→ eva,b(f(X)) = (f(a1)b1, . . . , f(an)bn)

We will denote the map eva,b by eva if b is the all one vector. For all vector
b ∈ (Fq \ {0})n this evaluation map is injective, since f ∈ Lk has at most k ≤ n
zeros.

Let a be a vector of mutually distinct elements of Fq and b a vector consisting
of n nonzero entries of Fq then the generalized Reed-Solomon code (or GRS code)
is defined by GRSk(a,b) := {eva,b(f(X)) : f ∈ Lk}.

That is, for every codeword c ∈ GRSk(a,b) there exists a unique polynomial
fc ∈ Lk, known as polynomial associated to c, such that c = eva,b(fc(X)).

For a,b ∈ Fn
q we define the Schur or star product a ∗ b ∈ Fn

q by:

a ∗ b = (a1 · b1, . . . , an · bn) .

Let 1 be the all one vector. Then GRSk(a,b) = b ∗GRSk(a,1). Furthermore

eva,b(f(X)g(X)) = eva,1(f(X)) ∗ eva,b(g(X)).

From now on, let l be an integer such that 1 ≤ l ≤ k ≤ n ≤ q then C
denotes an l-dimensional subcode of the code GRSk(a,b) and we denote by
Ci = Ci(a,b) := C ∩GRSi(a,b).

We have the following nice embedding property:

C0 ⊆ C1 ⊆ . . . ⊆ Ck = C ∩GRSk(a,b) = C.

Definition 1. i ∈ Z≥0 is called an (a,b)-gap of the code C or simply a gap of
C if Ci = Ci+1.

The next Proposition show us how to identify all the (a,b) non-gaps of any
l-dimensional subcode of the code GRSk(a,b).

Proposition 1. i ∈ Z≥0 is an (a,b) non-gap of C if and only if there exists
f ∈ Fq[X] with deg(f(X)) = i such that eva,b(f(X)) ∈ C.

We define an associated (a,b) non-gap sequence of C by

I(C,a,b) = I(C) = {i ∈ Z≥0 : i is a non-gap of C}.

Using the previous characterization proposition we have the following result
that allows us to define any subcode C ⊆ GRSk(a,b) as the subspace generated
by polynomials in Fq[X] whose degree is an element of the associated (a,b)
non-gap sequence of C.

Corollary 1. Let C be an l-dimensional subcode of the code GRSk(a,b) with
associated non-gap sequence I(C). Then:



1. I(C) = {i : ∃f ∈ Fq[X] with deg(f(X)) = i < k such that eva,b(f(X)) ∈ C}.
2. C = {eva,b(f(X)) : f = 0 or f ∈ Fq[X] and deg(f(X)) ∈ I(C)}.

Furthermore applying elementary operations to the above result we obtain a
basis of any l-dimensional subcode C ⊆ GRSk(a,b) just studying the associated
(a,b) non-gap sequence of C.

Proposition 2. There is a set I consisting of the strictly increasing sequence of
non-negative integers i1, . . . , il and there are polynomials f1, . . . , fl in the unique
normal form

fj(X) = Xij +
∑
s<ij
s/∈I

fj,sX
s ∈ Fq[X], for all j = 1, . . . , l,

such that the evaluation of these elements with respect to (a,b) form a basis of
the code C. Furthermore I(C) = I and dim(C) = |I(C)|.

Therefore Proposition 2 allows us to count the number of l-dimensional sub-
codes C by identifying all possible associated non-gaps sequences (i.e. analyzing
all subsets of the set of integers {0, . . . , k − 1}).

Proposition 3. Let I be a set consisting of the strictly increasing sequence of
non-negative integers i1, . . . , il. Let

e(I) = i1l + (i2 − i1 − 1)(l − 1) + · · ·+ (il − il−1 − 1)

=

l∑
s=1

(is − is−1 − 1)(l − s + 1)

where i0 = −1. Then the number of l-dimensional subcodes of the code GRSk(a,b)
over Fq with a given non-gap sequence I is equal to qe(I).

The number e(I) is minimal and equal to 0 for I = {0, 1, . . . , l− 1} and it is
maximal and equal to l(k − l) for I = {k − l, . . . , k − 2, k − 1}.

Accordingly to a well-known result and by Proposition 3 we have that the
number of l-dimensional subcodes of the code GRSk(a,b) over Fq is equal to
the Gaussian binomial:

(qk − 1)(qk − q) · · · (qk − ql−1)

(ql − 1)(ql − q) · · · (ql − ql−1)
:=

[
k
l

]
q

=
∑

I⊆{0,...,k−1}
|I|=l

qe(I).

Hence this number is polynomial in q with non-negative integers as coefficients.

3 GRS subcodes of GRS codes

In this section we study the particular case of l-dimensional subcodes C of the
code GRSk(a,b) that are themselves GRS codes.

The simplest case is when C = GRSl(a,b) with 2 ≤ l ≤ k. The result
presented bellow characterize uniquely such subcodes.



Proposition 4. C = GRSl(a,b) if and only if I(C) = {0, . . . , l − 1}.

Corollary 2. There is exactly one l-dimensional subcode of the code GRSk(a,b)
over Fq with non-gap sequence {0, . . . , l − 1}, that is GRSl(a,b).

Another special case is when C = GRSl(a,a
i∗b) with i+l < k. The following

results allow us to give an upper bound on the number of such subcodes.

Proposition 5. Let il be the largest non-gap of C and let c = eva(f(X)) for
f ∈ Fq[X] of degree i. If i + il < k, then I(c ∗ C) = i + I(C).

Let us define ai by induction: a0 = 1, a1 = a and ai+1 = a ∗ ai.

Corollary 3. If i+ l ≤ k, then the non-gap sequence of the code GRSl(a,a
i ∗b)

is equal to {i, i + 1, . . . , i + l − 1}.

Note that the converse is not true in general.

Corollary 4. The number of l-dimensional subcodes of the code GRSk(a,b)
over Fq with l consecutive non-gaps is equal to

k∑
l=1

k−l∑
i=0

qil.

Now we consider the general case i.e. we consider C = GRSl(c,d) an l-
dimensional subcode of the code GRSk(a,b). First we give the necessary con-
ditions that C must verified to be a subcode of the code GRSl(a,b) and how is
its associated non-gap sequence. Then, with an additional assumption, we show
the converse (which are the necessary conditions that the associated non-gap
sequence of C must verified to be a subcode of the code GRSk(a,b)). With these
two results we can give an upper bound on the number of such subcodes.

Proposition 6. Let l ≥ 2 and let a be a vector of n mutually distinct elements
of Fq and b a vector consisting of n nonzero entries of Fq. Let g0, h1 ∈ Fq[X].
Let d0 = deg(g0(X)) and d1 = d0 + deg(h1(X)). Suppose that eva(h1(X)) = c
is a vector of n mutually distinct elements of Fq and eva,b(g0(X)) = d is a
vector consisting of nonzero entries. If d0 < d1 and d0 + (l − 1)(d1 − d0) < k,
then GRSl(c,d) is an l dimensional subcode of the code GRSk(a,b) with (a,b)
non-gap sequence:

d0, . . . , d0 + j(d1 − d0), . . . , d0 + (l − 1)(d1 − d0).

If 2k − 2 < n and l ≥ 2, then there is a converse of the above Proposition
given by the following result.

Proposition 7. Let d0 < d1 be the first two elements of the (a,b) non-gap
sequence of C and suppose that C = GRSl(c,d) where c is a vector of n mutually
distinct elements of Fq and d is a vector consisting of nonzero entries. Then
there exist g0, h1 ∈ Fq[X] such that d0 = deg(g0(X)), d1 = d0 + deg(h1(X)),
eva(h1(X)) = c and eva,b(g0(X)) = d.



Corollary 5. If 2k − 2 < n and 2 ≤ l ≤ k. Then the number of l-dimensional
subcodes of the code GRSk(a,b) over Fq that are a GRS code is at most qk−l+3.

With the previous assumptions i.e. let 2 ≤ l ≤ k and 2k − 2 < n ≤ q,
then Corollary 5 and Proposition 3 imply that the probability that an arbitrary
l-dimensional subcode of the code GRSk(a,b) is a generalized Reed-Solomon
code is at most

qk−l+3[
k
l

]
q

≤ qk−l+3

ql(k−l)
= q−(l−1)(k−l)+3

This fraction tends to zero for k →∞ or (k − l)→∞.

4 The square of a code

Definition 2. We define the square code of a [n, k] linear code C over Fq and we
denoted by D = 〈C ∗C〉 as the code generated by the set {ri ∗ rj : 1 ≤ i ≤ j ≤ k}
where r1, . . . , rk denotes the rows of a generator matrix of the code C.

Now let C be an l-dimensional subcode of the code GRSk(a,b), let r1, . . . , rl
be the rows of a generator matrix of C and let f1, . . . , fl be the polynomials
associated to those rows, then ri ∗ rj for all i, j ∈ {1, . . . , l} has the form:

ri ∗ rj =
(
b21fi(a1)fj(a1), . . . , b2nfi(an)fj(an)

)
where deg(fi(X)fj(X)) = deg(fi(X)) + deg(fj(X)) ≤ 2k − 2.

That is, the code D = 〈C ∗ C〉 := 〈ri ∗ rj : 1 ≤ i ≤ j ≤ j〉 is a subcode of the
code GRS2k−1(a,b ∗ b).

Similarly to what we did in the previous section we denote by

Di = Di(a,b ∗ b) := D ∩GRSi(a,b ∗ b).

In this case i ∈ Z≥0 is called an (a,b ∗ b) gap of D if Di = Di+1. Define the
following set of non-gaps

J (D) = {j ∈ Z≥0 : j is an (a,b ∗ b) non-gap of D}.

From now on we assume that k, l are integers such that 2 ≤ l ≤ k ≤ n ≤ q
and 2k − 1 ≤ n.

Remark 1. i is an (a,b∗b) non-gap of D if and only if there exists a polynomial
g ∈ Fq[X] with deg(g(X)) = i such that eva,b∗b(g(X)) ∈ D. This result is
directly consequence of Proposition 1.

Next Proposition shows the relationship between the (a,b) non-gap sequence
associated to the subcode C, i.e. I(C), and the (a,b ∗b) non-gap sequence asso-
ciated to the square code D, i.e. J (D).



Proposition 8. I(C) + I(C) = {i + j : i, j ∈ I(C)} ⊆ J (D). Furthermore:

1. If 0 is an (a,b) non-gap of C then I(C) ⊆ J (D).
2. Otherwise let i1, il be the first and last element, respectively of the (a,b)

non-gap sequence of C. Let c = eva,b(f(X)) ∈ C for f ∈ Fq[X] of degree i1.
Then, if i1 + il < 2k − 1, we have that

I(c ∗ C) = i1 + I(C) ⊆ J (D).

However, the previous equality does not hold in general.

Proposition 9. dim(D) ≤ min{2k − 1,
(
l+1
2

)
}. Furthermore:

1. If D = GRSr(a,b ∗ b) then the associated (a,b) non-gap sequence of the
code C verifies that I(C) ⊆ {0, . . . , b r−12 c}.

2. If D = GRSr(a,ai ∗b∗b) then the associated (a,b) non-gap sequence of the
code C verifies that

I(C) ⊆
{⌊

i

2

⌋
, . . . ,

⌊
i + r − 1

2

⌋}
.

3. If D = GRSr(c,d) then the associated (a,b) non-gap sequence of the code C
verifies that

I(C) ⊆
{⌊

d0
2

⌋
, . . . ,

⌊
d0 + (r − 1)(d1 − d0)

2

⌋}
where d0 < d1 and d0 + (r − 1)(d1 − d0) < 2k − 1.

The aim of this section is to obtain a characterization of the l-dimensional
subcodes C of the code GRSk(a,b) such that its square code is exactly the code
GRS2k−1(a,b ∗ b).

The first possibility occurs when C is itself a GRS code. The following two
results are related to this special case.

Proposition 10. 〈GRSk(a,b) ∗GRSl(a, c)〉 = GRSk+l−1(a,b ∗ c).
In particular, GRS2l−1(a,b ∗ b) is the square of the code GRSl(a,b).

Corollary 6. If the associated (a,b) non-gap sequence of the subcode C is pre-
cisely I(C) = {0, . . . , l − 1} then the (a,b ∗ b) non-gap sequence associated to
the square code D is J (D) = {0, . . . , 2l − 2}, that is D = GRS2l−2(a,b ∗ b).

The converse is not true in general.
Next Proposition determines a property that must verified all the elements

of the (a,b) non-gap sequence of C to have that the square code D is exactly
the code GRS2k−1(a,b ∗ b).

Proposition 11. Let the increasing sequence i1, . . . , il be an enumeration of the
(a,b) non-gap sequence of C. If the square of C is equal to GRS2k−1(a,b ∗ b),
then

|{ (u, v) : iu + iv ≥ t and 1 ≤ u ≤ v ≤ l }| ≥ 2k − t− 1

for all t = 0, . . . , 2k − 2.



Remark 2. If the square code of C is equal to GRS2k−1(a,b ∗ b), then:

1. The special case t = 0 of Proposition 11 implies that 2k − 1 ≤
(
l+1
2

)
which

is in agreement with Proposition 10.
2. The cases t = 2k − 2, t = 2k − 3 and t = 2k − 5 imply that il = k − 1,

il−1 = k − 2 and il−2 ≥ k − 4.

Remark 3. If I(C) = {k − l, . . . , k − 1}, then this non-gap sequence satisfies the
conditions of Proposition 11 for all t. However not all the square codes of a
subcode C of the code GRSk(a,b) with such associated non-gap sequence are
exactly the code GRS2k−1(a,b ∗ b). A case example is the subcode

C =
〈
eva,b(Xi) : i = k − l, . . . , k − 1

〉
.

Assume that we have two polynomials f(X), g(X) ∈ Lk, that is, both poly-
nomials can be written as:

f(X) =
∑k−1

r=0 frX
r and g(X) =

∑k−1
s=0 gsX

s

with fr, gs ∈ Fq for r, s ∈ {0, . . . , k − 1}.
The product of these polynomials give us another polynomial in L2k−2

f(X)g(X) = h(X) = h0 + h1X + . . . + h2k−2X
2k−2 ∈ L2k−2.

This can be expressed in matrix form as follows:

R(f)S(g)T =



h2k−2
h2k−3

...
hk−1

...
h0


,

where R(f) is a matrix of size (2k − 1) × (3k − 2) over Fq with the following
form:

R(f) =



f0 f1 · · · fk−1 0 · · · 0 0 · · · 0
0 f0 · · · fk−2 fk−1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 · · · f0 f1 · · · fk−1 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 · · · 0 0 · · · f0 f1 · · · fk−1


and S(g) is a matrix of size 1× (3k − 2) over Fq with

S(g) = ( 0 · · · 0︸ ︷︷ ︸
k−1

gk−1 · · · g0 0 · · · 0︸ ︷︷ ︸
k−1

).



Now let C be an l-dimensional subcode of the code GRSk(a,b) with asso-
ciated (a,b) non-gap sequence I(C) = {i1, . . . , il} then by Proposition 2 there
exists l polynomials fj ∈ Lk for j ∈ {1, . . . , l} in normal form of degree ij such
that

C = 〈eva,b(f1(X)), . . . , eva,b(fl(X))〉.

Furthermore we know that the elements eva,b∗b(fu(X)fv(X)) generate the
double code of C, denoted by D with 1 ≤ u ≤ v ≤ l.

If we denote by guv(X) = guv0 + guv1X + · · ·+ guv(2k−2)X
2k−2 ∈ L2k−1 the

polynomial obtained by multiplying the polynomials fu and fv for 1 ≤ u ≤ v ≤ l
then the following matrix is a generator matrix of the square code D.

GD =

g11(2k−2) · · · g1l(2k−2) g22(2k−2) · · · g2l(2k−2) · · · gll(2k−2)
...

. . .
...

...
. . .

...
. . .

...
g110 · · · g1l0 g220 · · · g2l0 · · · gll0

 ,

where GD is a matrix of size (2k − 1)×
(
l+1
2

)
over Fq.

We define

R = (R(f1), . . . , R(f1)︸ ︷︷ ︸
l

, R(f2), . . . , R(f2)︸ ︷︷ ︸
l−1

, . . . , R(fl)) ∈ F(2k−1)×(l+1
2 )(3k−2)

q ,

S(f1, . . . , fl) =


S(f1) 0 0 · · · 0

0 S(f2) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · S(fl)

 ∈ Fl×l(3k−2)
q .

and

S =


S(f1, . . . , fl) 0 0 · · · 0

0 S(f2, . . . , fl) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · S(fl)

 ∈ F(l+1
2 )×(l+1

2 )(3k−2)
q .

Then RST = GD.

Remark 4. The following properties are necessary conditions to have that the
square code D of the code C is the code GRS2k−1(a,b ∗ b).

1. I(C) = {i1, . . . , il} ⊆ {0, . . . , k − 1}.
2. il = k − 1, il−1 = k − 2 and il−2 ≥ k − 4.
3. The matrix GD has full rank, i.e. rank(R(f1), . . . , R(fl)) = 2k − 1.

We are aiming to prove in a subsequent paper that the square of almost all
l-dimensional subcodes of GRSk(a,b) is equal to GRS2k−1(a,b).
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