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Abstract

We propose an algorithm for the automatic verification of first-order modalµ-calculus formulae on
infinite state, data-dependent processes. The use ofboolean equation systemsfor solving the model-
checking problem in the finite case is well-studied. In this paper, we extend on this solution, such that
we can deal with infinite state, data-dependent processes. We provide a transformation from the model
checking problem to first order boolean equation systems. Moreover, we present an algorithm to solve
these equation systems and discuss the capabilities of the algorithm, implemented in a prototype. We
also present the application of our prototype tool to several well-known infinite state processes from the
literature. This prototype has also been successfully applied in proving properties of systems that we
could not deal with using other available tools.
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1 Introduction

Model checking has come about as one of the major advances in automated verification of systems in
the last decade. It has earned its medals in many application areas (e.g. communications protocols, timed
systems and hybrid systems), originating from both academic and industrial environments.

However, the class of systems to which model checking techniques are applicable, is restricted to
systems in which dependencies on infinite data-types are absent, or can be abstracted from. The models
for such systems therefore do not always represent these systems best. In particular, for some systems the
most vital properties express requirements on data. There, the model checking technique breaks down.
This clearly calls for an extension of model checking techniques for systems that are data dependent.

In this paper, we explore a possibility for extending model checking techniques to deal with processes
which can depend on data. We describe an algorithm, for which we have also implemented a prototype, that
verifies a given property on a given data-dependent process. The problem in general is easily shown to be
undecidable, so, while we can guarantee soundness of our algorithm, we cannot guarantee termination of
the algorithm. However, it turns out that many interesting systems with infinite state spaces can be verified
using our algorithm, as several examples suggest, including systems with extremely large but finite state
spaces, for which all other available techniques failed to provide answers.

The framework we use for describing the behaviour of a system is process algebraic. We use the
process algebraic languageµCRL [14, 16], which is an extension of ACP [3]; this language includes a
formal treatment of data, as well as an operational and axiomatic semantics of process terms. Compared
to CCS or ACP, the languageµCRL is more expressive. This is due to the presence of data. For our
model checking algorithm, we assume that the processes are written in a special format, theLinear Process
Equationformat, which is discussed in e.g. [27]. Note that this does not pose a restriction on the set of
processes that can be modelled usingµCRL, as all sensible process descriptions can be transformed to this
format [15]. When dealing with data-types, an explicit representation of the entire state space is often not
possible, since it can very well be infinite. Using the LPE format has the advantage of working with a finite
representation of the (possibly infinite) state space.
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The language we use to denote our properties in is an extension of the modalµ-calculus [19]. In
particular, we allow first order logic predicates and parameterised fixpoint variables in our properties.
These extensions, which are also described in e.g. [13], are needed to express properties about data.

The approach we follow is very much inspired by the work of Mader [21], and uses (in our case,
first order) boolean equation systems as an intermediate formalism. We present a translation of first order
modalµ-calculus expressions to first order boolean equation systems in the presence of a fixed Linear
Process Equation. The algorithm for solving the first order boolean equation systems is based on the Gauß
elimination algorithm described in, e.g. [21].

This paper is structured as follows: Section 2 briefly introduces the languageµCRL and the Linear
Process Equations format that is used in all subsequent sections. In Section 3, we describe the first order
modalµ-calculus. Section 4 discusses first order boolean equation systems and describes how we can
translate first order modalµ-calculus formulas, given a Linear Process Equation, to a sequence of first
order boolean equations. An algorithm for solving the first order boolean equations is then described in
Section 5; its implementation is discussed in Section 6, along with two small examples, demonstrating the
capabilities of a prototype implementation. Section 7 is reserved for concluding remarks.

Related Work. We distinguish automatic verification from semi-automatic and manual verification. As
an example of the latter two types of verification, theorem proving systems are often employed. The
advantages of theorem proving lie in the ability of the user to express virtually any system and prove any
property. Of course, this comes at the cost of reduced automation, and is considered intractable for large
systems.

In the fully automatic verification of systems, we can distinguish between two different approaches. On
the one hand, dedicated techniques are being developed to deal with specialised classes of systems. Such
classes contain communication protocols (e.g. regular expressions [1], queue representations [5]) process
networks (e.g. Presburger arithmetic [9]) and parameterised systems (e.g. counter abstraction [24]). This
clearly contrasts to our work, as we do not restrict the class of systems we consider. The other approach is
to deal with a restricted class of properties that can be verified. A promising techniques in this direction is
theCounter arithmetic with Lambda expressions and Uninterpreted functions(CLU) by Bryant et al. [8].
CLU is very general in that it can be used to model both data and control, and in [8], it is shown to
be decidable. The tool, based on CLU, UCLID, is however restricted to dealing with safety properties
only. Our approach is more general, as it allows safety, liveness and fairness properties to be verified
automatically. Moreover, CLU is restricted to the quantifier-free fragment of first order logic, whereas the
logic we use in our approach employs the full first order logic.

2 Preliminaries

Our main focus in this paper is on processes with data. As a framework, we use the process algebra
µCRL [14]. Its basic constructs are along the lines of ACP [3] and CCS [23], though its syntax is influenced
mainly by ACP. In the process algebraµCRL, data is an integral part of the language, which makes the
language more expressive than CCS or ACP (see discussion in [20]). As we enforce no restrictions on data
or on data-types, we here introduce the more abstract notion of data by considering only adata algebra.

Definition 2.1 (Data Algebra).
A Data Algebrais a tupleA = (D,F), whereD is a collection of sets calleddata domains. The setF
contains functions from data domains to some single data domain.

For the exhibition of the remainder of the theory, we assume we work in the context of a data algebra
without explicitly mentioning its constituent components. As a convention, we assume the data algebra
contains all the required data types; in particular, we always have the domainB of booleans with functions
t:→ B andf:→ B, representingtrueandfalseat our disposal.

The languageµCRL has only a small number of carefully chosen operators and primitives. Processes
are the main objects in the language. A set of parameterised actionsAct is assumed; actions can be con-
sidered as functions from a data domain to a process. An actiona∈Act represents an atomic event, taking
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a number of data arguments. The process representing no behaviour, i.e. the process that cannot perform
any actions is denotedδ. This constant is often referred to asdeadlockor inaction. Note that all actionsa
terminate successfully immediately after executing the action, whereas the processa · δ does not terminate
successfully.

Processes are constructed using several operators. The main operators are alternative composition (p+q
for some processesp andq) and sequential composition (p · q for some processesp andq). The sequential
composition operator is often not written down explicitly . Conditional behaviour is denoted using a ternary
operator (we writep / b . q when we mean processp if b holds and else processq). The processb::→p
serves as a shorthand for the processp/b.δ, which represents the processp under the premise thatb holds.
Recursive behaviour is specified using equations. Data is intertwined with processes such that process
variables can be considered as functions from a data domain to processes. Consider the following process.

X(n:N) = up ·X(n+ 1) + show(n) ·X(n) + [n > 0]::→down·X(n− 1)

The behaviour denoted by processX(n) is the increasing and the decreasing of an internal countern or
showing its current value. Note that theup anddownactions do not have parameters. For the formal ex-
position, however, it can be more convenient to assume that actions and processes have a single parameter.
This assumption is easily justified, as we can assume the existence of a singleton data domain, together
with adequate pairing and projection functions.

A more complex notion of process composition consists of the parallel composition of processes (we
write p‖q to denote the processp parallel to the processq). Synchronisation is achieved using a separate
communication functionγ, prescribing the result of a communication of two actions (e.g.γ(a, b) = c
denotes the communication between actionsa andb, resulting in actionc). Two parameterised actionsa(n)
andb(n′) can communicate to actionc(n′′) only if the communication between actionsa andb results in
actionc (i.e.γ(a, b) = c) andn′′ = n′ = n.

The communication function is used to specifywhencommunication is possible; this, however, does
not mean communication is enforced. To this end, we must encapsulate the individual occurrences of the
actions that participate in the communication. This is done using the encapsulation operator (we write
∂H(p) to specify that all actions in the set of actionsH are to be encapsulated in processp).

The last operator considered here is data-dependent alternative quantification (we write
∑
d:D p to

denote the alternatives of processp, dependent on some arbitrary datumd selected from the (possibly
infinite) data domainD). The

∑
-operator is best compared to e.g. input prefixing, but is more expressive

(see e.g. [20]). As an example of the
∑

-operator we consider a process that can set an internal counter to
an arbitrary value, which can be read at will:

V (n:N) = read(n) · V (n) +
∑
n′:N

set(n′) · V (n′)

For verification or analysis purposes, it is often most convenient to eliminate parallelism in favour of
sequential composition and (quantified) alternative composition. A behaviour of a process can then be de-
noted as a state-vector of typed variables, accompanied by a set of condition-action-effect rules. Processes
denoted in this fashion are calledLinear Process Equations.

Definition 2.2 (Linear Process Equations).
A Linear Process Equation(LPE) is a parameterised equation taking the form

X(d:D) =
∑
i:I

∑
ei:Di

[ci(d, ei)] ::→ ai(fi(d, ei)) ·X(gi(d, ei))

whereI is a finite index set;D andDi are data domains;d andei are data variables;ai∈Act are actions
with parameters of sortDai ; fi:D ×Di → Dai , gi:D ×Di → D andci:D ×Di → B are functions. The
functionfi yields, on the basis of the current stated and the bound variableei, the parameter for an action
ai; the “next-state” is encoded in the functiongi, and is determined on the basis of the current state and the
bound variableei. The functionci describes when actionai can be executed.

In this paper, we restrict ourselves to the use of non-terminating processes, i.e. we do not consider pro-
cesses that, apart from executing an infinite number of actions, also have the possibility to perform a finite
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number of actions and then terminate successfully. Including termination into our theory does not pose any
theoretical challenges, but is omitted in our exposition for brevity. Several techniques and tools exist to
translate a guardedµCRL process to linear form (see e.g. [15, 27]). In the remainder of this paper, we use
the LPE-notation as a vehicle for our exposition of the theory and practice.

The operational semantics forµCRL can be found in e.g. [14, 16]. Since we restrict our discussions to
process expressions in LPE-form, we here only provide a definition of the labelled transition system as it
is induced by a process in LPE-form.

Definition 2.3 (Transition System of an LPE).
The labelled transition systemof a Linear Process Equation as defined in Def. 2.2 is a quadrupleM =
〈S,Σ,−→, s0), where

• S = {X(d) | d∈D} is the (possibly infinite) set ofstates;

• Σ = {ai(dai) | i∈I ∧ ai∈Act∧ dai∈Dai} is the (possibly infinite) set of labels;

• →= {(X(d), ai(d′a), X(d′)) | i∈I ∧ ai∈Act∧ ∃ei∈Dici(d, ei) ∧ d′a = fi(d, ei) ∧ d′ = gi(d, ei)} is

thetransition relation. We writeX(d)
a(e)−→ X(d′) rather than(X(d), a(e), X(d′))∈ →;

• s0 = X(d0)∈S, for a givend0∈D, is theinitial state.

3 First Order Modal µ-Calculus

The logic we consider is based upon the modalµ-calculus [19], extended with data variables, quantifiers
and parameterisation (see [13]). This logic allows us to express data dependent properties. We refer to this
logic as thefirst order modalµ-calculus. Its syntax and semantics are defined below.

Definition 3.1 (Action Formulae).
An Action Formulais defined by the following grammar

α ::= a(e) | > | ⊥ | ¬α1 | α1 ∧ α2 | α1 ∨ α2 | ∃d:D.α1 | ∀d:D.α1

Here,a is a parameterised action of setActande is some data expression of the datatypeD.

The action formulae are interpreted over a labelled transition systemM , which is induced by an LPE (see
Def. 2.3). In this paper, we useenvironmentsfor registering the (current) values of variables. Hence, an
environment is a (partial) mapping of a set of variables to elements of a given type. The action formulae are
interpreted in the context of a data environmentε. We use the following notational convention: we write
ε[v/d] for the data environmentε′, defined asε′(d′) = ε(d′) for all d′ 6≡ d andε′(d) = v. In effect,ε[v/d]
stands for the data environmentε where the value ofd has changed tov. The interpretation of a datumd in
a data environmentε is written asdε.

Definition 3.2 (Interpretation of Action Formulae).
Let ε be a data environment andα be an action formula. The interpretation ofα in the context of data
environmentε is denoted[[α]]ε, and is defined inductively as:

[[>]]ε = Σ
[[⊥]]ε = ∅
[[a(e)]]ε = {a(eε)}
[[¬α]]ε = Σ \ [[α]]ε
[[α1 ∧ α2]]ε = [[α1]]ε ∩ [[α2]]ε
[[α1 ∨ α2]]ε = [[α1]]ε ∪ [[α2]]ε
[[∃d:D.α]]ε =

⋃
v∈D [[α]]ε[v/d]

[[∀d:D.α]]ε =
⋂
v∈D [[α]]ε[v/d]
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Hence, we can use> to denote an arbitrary (parameterised) action. This is useful for expressing e.g.
progress conditions. We subsequently define the set ofstate formulae. We present these inPositive Normal
Form. This means that negation only occurs on the level of atomic propositions and, in addition, all bound
variables are distinct.

Definition 3.3 (State Formulae).
A State Formulais given by the following grammar.

ϕ ::= b | Y (e) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [α]ϕ1 | 〈α〉ϕ1 |
∃d:D.ϕ | ∀d:D.ϕ | (µZ(d:D).ϕ)(e) | (νZ(d:D).ϕ)(e)

whereb is an expression of the domainB, e is some data expression,α is an action formula andY is a
propositional variable. We assume all names in(σX(d:D).ϕ)(e), whereσ∈{µ, ν} is a fixpoint operator,
are unique, i.e. each variable is bound only once by a fixpoint operator.

State formulae are interpreted over a labelled transition systemM , induced by an LPE, according to
Def. 2.3. The value of a propositional variableX in the context of a propositional environmentρ is written
asXρ and is a function of typeD → 2S . We use the same notational conventions for propositional environ-
ments as we used for data environments. We interpret state formulae in the context of a data environment
ε and a propositional environmentρ.

Definition 3.4 (Interpretation of State Formulae).
Let ε be a data environment,ρ a propositional environment and letϕ be a state formula. The interpretation
of ϕ in the context of data environmentε and propositional environmentρ is denoted[[ϕ]]ρε, and is defined
inductively as:

[[b]]ρε =
{
S if [[b]]ε
∅ otherwise

[[X(e)]]ρε = (Xρ)(eε)
[[ϕ1 ∧ ϕ2]]ρε = [[ϕ1]]ρε ∩ [[ϕ2]]ρε
[[ϕ1 ∨ ϕ2]]ρε = [[ϕ1]]ρε ∪ [[ϕ2]]ρε
[[[α]ϕ]]ρε = {X(v)∈S | ∀v′∈D ∀a∈Act∀va∈Da

(X(v)
a(va)−→ X(v′) ∧ a(va)∈[[α]]ε)→ X(v′)∈[[ϕ]]ρε}

[[〈α〉ϕ]]ρε = {X(v)∈S | ∃v′∈D ∃a∈Act∃va∈Da

(X(v)
a(va)−→ X(v′) ∧ a(va)∈[[α]]ε ∧X(v′)∈[[ϕ]]ρε)}

[[∀d:D.ϕ]]ρε =
⋂
v′∈D [[ϕ]]ρ(ε[v′/d])

[[∃d:D.ϕ]]ρε =
⋃
v′∈D [[ϕ]]ρ(ε[v′/d])

[[(µZ(d:D).ϕ)(e)]]ρε = (
⋂
{X:D → 2S | [[ϕ]](ρ[X/Z])ε⊆̇X})(eε)

[[(νZ(d:D).ϕ)(e)]]ρε = (
⋃
{X:D → 2S | X⊆̇[[ϕ]](ρ[X/Z])ε})(eε)

Note: forX:2D→2S andd∈D, we writeX(d) for the set of elements{x(d)|x∈X}.

Here, we define the orderinġ⊆ on the setD → 2S asX⊆̇Y iff for all d:D we haveX(d) ⊆ Y (d). The
set(D → 2S , ⊆̇) forms a complete lattice. From Lemma 3.5, stated below, the existence and uniqueness
of fixpoints in state formulae immediately follows.

Lemma 3.5. The operatorΨ:(D → 2S) → (D → 2S), associated to state formula(σZ(d:D).ψ)(e),
and defined asΨ = λX:D → 2S .λv:D.[[ψ]](ρ[X/Z])(ε[v/d]) for data environmentε and propositional
environmentρ is monotonic over the complete lattice(D → 2S , ⊆̇).

Proof. Follows from the fact that the state formulae are presented in Positive Normal Form. 2

The modalµ-calculus is quite expressive, but also renowned for its incomprehensibility. An enlightening
explanation of the modalµ-calculus can be found in e.g. [6]. We here provide two sample expressions and
give an explanation of their meaning.
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Example 3.6. An example of a (first order) modalµ-calculus formula is one that identifies processes for
which progress is ensured. The expressionνX.([>]X ∧ 〈>〉>) expresses that we can “infinitely often”
perform at least a single step. Thus, this expression must be interpreted as freedom of deadlock.

Example 3.7. Assume a process with at least the statess0, s1 ands2, the labelsa(>) anda(⊥) and the
state formulaϕ (see Fig. 1). We writes |= ϕ to denote thatϕ is satisfied in states, and, likewise, we write
s 6|= ϕ to denote thatϕ is not satisfied in states. We illustrate the difference in data-quantification in action
formulae and data-quantification in state formulae. Then, we can formulate two properties, showing the
distinction between data-quantification in action formulae and in state formulae:

1. The state formula(∃b:B. [a(b)]ϕ) holds in states0. Basically, this expression states there exists a
data-parameterb, such that after executing an actiona(b), we end up in a state satisfyingϕ.

2. The state formula([∃b:B.a(b)]ϕ) does not hold in states0. This expression states that, whatever the
value of the parameter of the actiona is, we end up in a state satisfyingϕ, which, obviously, is not
true.

��
��
��
��
�1

PPPPPPPPPq

s
s

s
s0

s1 |= ϕ

s2 6|= ϕ

a(>)

a(⊥)

Figure 1: Example of a simple transition system.

Note that data-quantification in action formulae can be used for abstracting from the actual values for
parameterised actions.

Note also that we have several identities between action formulae and state formulae (see Lemma 3.8).
Using these identities, we can rephrase the second state formula of the last example to the equivalent state
formula∀b:B.[a(b)]ϕ, which makes the difference between both state formulae in that particular example
more obvious.

Lemma 3.8. Let ϕ be a state formula, such thatd 6∈ FV (ϕ), and letα be an action formula. Then, we
have the following identities:

• 〈∃d:D.α〉ϕ⇔ ∃d:D.〈α〉ϕ,

• [∃d:D.α]ϕ⇔ ∀d:D.[α]ϕ,

• ∃d:D.[α]ϕ⇒ [∀d:D.α]ϕ,

• 〈∀d:D.α〉ϕ⇒ ∀d:D.〈α〉ϕ

Note: here we use implication as an abbreviation for⊆ and bi-implication as an abbreviation for= on the
interpretations of the state formulae.

Proof. Follows immediately from the interpretations of action formulae and state formulae. 2

Notice that the converse of the latter two identities is in general not true. For this, we consider the following
example.

Example 3.9. Assume again a process with at least the statess0, s1 ands2, the labelsa(>) anda(⊥) and
the state formulaϕ. Consider the part of this process visualised by Fig. 2. We show that the converse of
the latter two identities in Lemma 3.8 does not hold.
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1. The state formula∀b:B.〈a(b)〉ϕ obviously holds in states0: since the universal quantifier ranges
over a finite domain, we can write this formula as〈a(>)〉ϕ ∧ 〈a(⊥)〉ϕ. However, the state formula
〈∀b:B.a(b)〉ϕ does not hold in states0: we can write this formula as〈⊥〉ϕ, which actually holds in
no state.

2. Similarly, we can prove that state formula[∀b:B.a(b)]¬ϕ holds in states0. However, state formula
∃b:B.[a(b)]¬ϕ does not hold in states0, since both transitiona(>) anda(⊥) lead to a state whereϕ
holds, contradicting the requirement thatϕ should not hold.

��
��
��
��
�1

PPPPPPPPPq

s
s

s
s0

s1 |= ϕ

s2 |= ϕ

a(>)

a(⊥)

Figure 2: Example of another transition system.

This last example shows that the quantifiers inside action formulae cannot in general be removed in favour
of the quantifiers in state formulae. Thus, compared to the fragment of the first order modalµ-calculus
that disallows quantifiers inside action formulae, the quantifiers inside action formulae indeed increase the
expressivity of the whole first order modalµ-calculus.

4 Equation Systems

We aim at verifying first order modalµ-calculus expressions on processes, specified as a Linear Process
Equations. For this, we follow the approach, outlined in e.g. [21]. In essence, we use an extension of the
formalism ofboolean equation systemsas an intermediate formalism that allows us to combine a Linear
Process Equation with a first order modalµ-calculus expression.

Definition 4.1 (First Order Boolean Expression).
A first order boolean expressionis a formulaϕ in positive form, defined by the following grammar:

ϕ ::= b | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | X(e) | ∀d:D.ϕ | ∃d:D.ϕ

whereb is an expression of datatypeB, X is a variable of a setX of variables ande is a term of data-type
D.

We define the orderinġ⇒ on the setD → B asϕ⇒̇ψ iff for all d:D, we haveϕ(d) ⇒ ψ(d). The set of
first order boolean expressions(D → B, ⇒̇) forms a complete lattice and is isomorphic to the powerset of
the setD.

The propositional variablesX∈X , occurring as free variables in first order boolean expressions are
bound infirst-order boolean equation systems, used in the sequel. The interpretation of the variablesX is
given by an environmentθ for propositional variables, assigning functions of typeD → B to the variables
in the setX . For a given environmentθ, we writeϕθ for the first order boolean expression that is obtained
by replacing all occurrences of free variablesX in ϕ with θ(X). We again use the convention to write
θ[ψ/X], denoting the environmentθ′, defined asθ′(X ′) = θ(X ′) for all X ′ 6≡ X andθ′(X) = ψ.

We define the ordering≤ on the set of propositional environmentsX → D → B asθ1 ≤ θ2 iff for all
X∈X , we haveθ1(X)⇒̇θ2(X). The set(X → D → B,≤) is (for fixed setsX andD), a complete lattice.

Definition 4.2 (Interpretation of First Order Boolean Expression).
Let θ be a propositional environment andη be a data environment. Theinterpretationof a first order
boolean expressionϕ in the context of environmentsθ and η, written as[[ϕ]]θη is either true or false,
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determined by the following induction:

[[b]]θη = [[b]]η
[[ϕ1 ∧ ϕ2]]θη = [[ϕ1]]θη ∧ [[ϕ2]]θη
[[ϕ1 ∨ ϕ2]]θη = [[ϕ1]]θη ∨ [[ϕ2]]θη
[[X(e)]]θη = θ(X)([[e]]η)

[[∀d:D.ϕ]]θη =
{

true, if for all v:D it holds that[[ϕ]]θ(η[v/d])
false, otherwise

[[∃d:D.ϕ]]θη =
{

true, if there exists anv:D such that[[ϕ]]θ(η[v/d])
false, otherwise

Definition 4.3 (First Order Boolean Equation System).
A first order boolean equation systemE is a finite sequence of equations of the formσX(d:D) = ϕ. Here,
σ represents either the greatest or least fixed pointsν orµ, andϕ:D → B is a first order boolean expression.
We require that all bound variables are distinct.

In the sequel, we refer to first order boolean equation systems asequation systems. The equation system
E ′ that is obtained by applying an environmentθ to an equation systemE is the equation system in which
every free variableX∈X is assigned the valueθ(X).

Definition 4.4 (Solution to an Equation System).
Given a propositional environmentθ, and an equation systemE . The solutionEθ to the equation systemE
is an environment that is defined as follows (see also e.g. [21], Definition 3.3), whereσ is either the greatest
fixpoint or the least fixpointν or µ.

[ε]θ = θ
[(σX(d:D) = ϕ)E ]θ = [E ](θ[σX.ϕ([E ]θ)/X])

where

µX.ϕ([E ]θ) =
∧
{ψ:D → B | ϕ([E ]θ[ψ/X])⇒̇ψ}

νX.ϕ([E ]θ) =
∨
{ψ:D → B | ψ⇒̇ϕ([E ]θ[ψ/X])}

Note: we represent an empty equation system asε. The operators
∧

and
∨

resp. denote thegreatest lower
boundand theleast upper boundof the complete lattice(D → B, ⇒̇).

Lemma 4.5(Monotonicity of First Order Boolean Expressions).
Let X(d:D) = ϕ be an equation, letθ be a propositional environment andη a data environment. For
an equationX(d:D) = ϕ, we define an operatorΦ:(D → B) → (D → B) as Φ = λF :D →
B.λv:D.[[ϕ]](θ[F/X])(η[v/d]). The operatorΦ is monotonic over the complete lattice(D → B, ⇒̇).

Proof. Assume we are given an equationX(d:D) = ϕ, a propositional environmentθ and a data
environmentη, and assume we have first order boolean expressionsψ1, ψ2:D → B. We proceed by
induction on the structure ofϕ.

• Supposeϕ ≡ b. Then,Φ(ψ1) equalsλv:D.[[b]](θ[ψ1/X])(η[v/d]). As there is no occurrence ofX
in b, this is equivalent toλv:D.[[b]](η[v/d]). Using the same steps in reverse order, we find this is
equivalent toλv:D.[[b]](θ[ψ2/X])(η[v/d]) and thereforeΦ(ψ2).

• Supposeϕ ≡ Y (e). Then,Φ(ψ1) is equivalent toλv:D.ψ1([[e]])(η[v/d])(∗), given thatY ≡ X
(if not, then we are done immediately). Sinceψ1⇒̇ψ2, we therefore also have that(∗) is at most
λv:D.ψ2([[e]])(η[v/d]), which is equivalent toΦ(ψ2).

• Supposeϕ ≡ ϕ1 ∧ ϕ2. Assume for first order boolean expressionsϕ1 andϕ2, we already have
Φ1(ψ1)⇒̇Φ1(ψ1) andΦ2(ψ1)⇒̇Φ2(ψ2). Then,Φ(ψ1) is equal to the conjunction of the functionals
λv:D.[[ϕ1]](θ[ψ1/X])(η[v/d]) andλv:D.[[ϕ2]](θ[ψ1/X])(η[v/d]). By induction, we know this is
at most the conjunction ofλv:D.[[ϕ1]](θ[ψ2/X])(η[v/d]) andλv:D.[[ϕ2]](θ[ψ2/X])(η[v/d]), from
which we can deduceΦ(ψ2). Similarly, we proveΦ(ψ1)⇒̇Φ(ψ2) in the case ofϕ ≡ ϕ1 ∨ ϕ2.
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• Supposeϕ ≡ ∀e:D.ϕe. Assume for first order boolean expressionsϕe, we already have for alle:D,
Φe(ψ1) ≤ Φe(ψ2). Then,Φ(ψ1) is equivalent toλv:D.[[ϕe]](θ[ψ1/X])(η[v/d][x/e]) for all x:D. By
induction, this is at mostλv:D.[[ϕe]](θ[ψ2/X])(η[v/d][x/e]) for all x:D, which is equal toΦ(ψ2).
Similarly, we proveΦ(ψ1)⇒̇Φ(ψ2) in the case ofϕ ≡ ∃e:D.ϕe.

2

Lemma 4.6. Let θ, θ′ be propositional environments and letE be an equation system. Then, ifθ ≤ θ′ we
also have[E ]θ ≤ [E ]θ′.

Proof. We use induction on the length of the equation system. Letθ ≤ θ′ be propositional environments.

• supposeE = ε. Then,[ε]θ = [ε]θ′.

• SupposeE is of the form(σX(d:D) = ϕ)E ′. Assume we have[E ′]θ ≤ [E ′]θ′.
Now, [(σX(d:D) = ϕ)E ′]θ ≤ [(σX(d:D) = ϕ)E ′]θ′ follows from

[E ′](θ[σX(d:D).ϕ([E ′]θ)/X]) ≤ [E ′](θ′[σX(d:D).ϕ([E ′]θ′)/X]) (see Def. 4.4).

By induction, this holds, asθ[σX(d:D).ϕ([E ′]θ)/X] ≤ θ′[σX(d:D).ϕ([E ′]θ′)/X], follows from
θ ≤ θ′ and Lemma 4.5.

2

We next discuss how to use the formalism of equation systems as an intermediate formalism for solving
the model-checking problem for processes with data. We define a translation that takes a Linear Process
Equation and a first order modalµ-calculus formula and yields an equation system. Then, verifying a first
order modalµ-calculus formula on an LPE is equivalent to calculating the solution to the equation system
that takes the LPE and the expression as its input.

Definition 4.7. Let ϕ be a first orderµ-calculus expression, such thatϕ is of the form(σX(d:D).Φ)(e),
and letY (dp:Dp) =

∑
i:I

∑
ei:Di

[ci(d, ei)]::→ai(fi(d, ei)) · Y (gi(d, ei)) be a Linear Process Equation,
wheredp:Dp is the parameter of the processY andai for i:I is an action.
The equation systemE that corresponds to the expressionϕ for the LPEY , is given byE[](ϕ), where[]
denotes the empty list of parameters. The translation functionE~dl:~Dl

is defined by structural induction in
Table 1, and action satisfaction, denoted byα |= α′ is defined using structural induction in Table 2 and
assumes the LPEY as given.

The translation functionE breaks down theµ-calculus expression given as an argument into several equa-
tions. The left-hand side of each equation is defined by the functionE, whereas its right-hand side is given
by the functionẼ. Below, we illustrate the translation by means of a small example.

Example 4.8. Consider a coffee-vending machine that produces either cappuccino or espresso on the
insertion of a special coin. The coffee-vending machine is clever enough to notice when it can no longer
dispense a type of coffee; it accepts coins as long as there is at least one type of coffee that can still be
dispensed. If the machine has run out of a type of coffee, it signals this type must be replaced (which is
assumed to be done immediately after the signal).

proc M(b:B, c, e:N) = [b ∧ c > 0]::→ cappuccino·M(¬b, c− 1, e)
+ [b ∧ e > 0]::→ espresso·M(¬b, c, e− 1)
+ [¬b ∧ c+ e > 0]::→ coin ·M(¬b, c, e)
+ [¬b ∧ c = 0]::→ refillcappuccino·M(b, C, e)
+ [¬b ∧ e = 0]::→ refillespresso·M(b, c, E)

Here, the booleanb indicates whether a coin has been inserted or not; the variablec, resp.e registers the
number of servings of cappuccino, reps. espresso are left in the coffee-vending machine.
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E~dl:~Dl
(b) def= ε

E~dl:~Dl
(X(df :Df )) def= ε

E~dl:~Dl
(Φ1 ∧ Φ2) def= E~dl:~Dl

(Φ1)E~dl:~Dl
(Φ2)

E~dl:~Dl
(Φ1 ∨ Φ2) def= E~dl:~Dl

(Φ1)E~dl:~Dl
(Φ2)

E~dl:~Dl
([α]Φ) def= E~dl:~Dl

(Φ)

E~dl:~Dl
(〈α〉Φ) def= E~dl:~Dl

(Φ)

E~dl:~Dl
(∀d:D.Φ) def= E~dl:~Dl;d:D(Φ)

E~dl:~Dl
(∃d:D.Φ) def= E~dl:~Dl;d:D(Φ)

E~dl:~Dl
((σX(df :Df ).Φ)(d)) def= (σX̃(df :Df , dp:Dp, ~dl: ~Dl) = Ẽ~dl:~Dl

(Φ) ) E~dl:~Dl
(Φ)

Ẽ~dl:~Dl
(b) def= b

Ẽ~dl:~Dl
(X(d)) def= X̃(d, dp, ~dl)

Ẽ~dl:~Dl
(Φ1 ∧ Φ2) def= Ẽ~dl:~Dl

(Φ1) ∧ Ẽ~dl:~Dl
(Φ2)

Ẽ~dl:~Dl
(Φ1 ∨ Φ2) def= Ẽ~dl:~Dl

(Φ1) ∨ Ẽ~dl:~Dl
(Φ2)

Ẽ~dl:~Dl
([α]Φ) def=

∧
i:I ∀ei:Di(ai(fi(d, ei)) |= α ∧ ci(d, ei))→

Ẽ~dl:~Dl
(Φ)[gi(d, ei)/dp]

Ẽ~dl:~Dl
(〈α〉Φ) def=

∨
i:I ∃ei:Di(ai(fi(d, ei)) |= α ∧ ci(d, ei)∧

Ẽ~dl:~Dl
(Φ)[gi(d, ei)/dp])

Ẽ~dl:~Dl
(∀d:D.Φ) def= ∀d:D.Ẽ~dl:~Dl;d:D(Φ)

Ẽ~dl:~Dl
(∃d:D.Φ) def= ∃d:D.Ẽ~dl:~Dl;d:D(Φ)

Ẽ~dl:~Dl
((σX(df :Df ).Φ)(d)) def= X̃(d, dp, ~dl)

Table 1: Translation of first orderµ-calculus formula and LPE to an equation system. Note thatX̃ is a
fresh variable, associated to the variableX

a(d) |= a′(d′) def= a = a′ ∧ d = d′

a(d) |= > def= true

a(d) |= ¬α def= ¬(a(d) |= α)
a(d) |= α1 ∧ α2

def= (a(d) |= α1) ∧ (a(d) |= α2)
a(d) |= α1 ∨ α2

def= (a(d) |= α1) ∨ (a(d) |= α2)
a(d) |= ∃d′:D.α def= ∃d′:D.(a(d) |= α)
a(d) |= ∀d′:D.α def= ∀d′:D.(a(d) |= α)

Table 2: Action Satisfaction
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Consider the first orderµ-calculus expressionµZ.〈coin∨cappuccino〉Z∨〈refillcappuccino〉>, expressing
that there exists a path where eventually cappuccino is refilled when cappuccino is the only thing that has
been ordered. Following the translation of Def. 4.7, we obtain the following equation system.

µZ(b:B, c, e:N) = (¬b ∧ c+ e > 0 ∧ Z(¬b, c, e)) ∨ (b ∧ c > 0 ∧ Z(¬b, c− 1, e)) ∨ (¬b ∧ c = 0)

Notice that, even though the first order modalµ-calculus expression did not use parameterised variables, the
resulting equation system consists of an equation carrying the parameters of the Linear Process Equation.

We continue by establishing two results that allow us to define an algorithm for computing a solution to an
equation system. The first lemma states that for an arbitrary equation system, we may replace an occurrence
of an equation variable with its first order boolean expression in all equations prior to its defining equation.

Lemma 4.9. Let E1, E2 andE3 be equation systems and letσ1X1(d:D) = ϕ andσ2X2(e:D) = ψ be
equations. Then, we have the following identity:

[[E1(σ1X1(d:D) = ϕ)E2(σ2X2(e:D) = ψ)E3]]θ
=

[[E1(σ1X1(d:D) = ϕ[ψ/X2])E2(σ2X2(e:D) = ψ)E3]]θ

Proof. The proof is analogous to the proof of Lemma 6.3 in [21]. 2

If we have the solution to a single equation in an equation system, then we can remove this equation from
the equation system and update the environment to store the solution to this single equation. This means
that if we can successively solve all single equations, the solution of the entire equation system follows.

Lemma 4.10. Let E , E ′ be equation systems and letσX(d:D) = ψ be an equation, whereX 6∈ FV (ψ).
Let θ be an arbitrary propositional environment. Then[E(σX(d:D) = ψ)E ′]θ = [EE ′]θ[ψ/X].

Proof. The proof proceeds by induction on the size of the equation systemE .

• [(σX(d:D) = ψ)E ′]θ is by definition equivalent to[E ′](θ[σX(d:D).ψ/X]), which in turn is equiv-
alent to[E ′](θ[ψ/X]), as sinceX 6∈ FV (ψ), σX(d:D).ψ isψ.

• SupposeE is of the form(σ′Y (d:D) = ϕ)E0, and assume[E0(σX(d:D) = ψ)E ′]θ = [E0E ′]θ[ψ/X]
for all environmentsθ. Then,[E(σX(d:D) = ψ)E ′]θ is by definition equivalent to

[E0(σX(d:D) = ψ)E ′](θ[σ′Y (d:D).ϕ/Y ]), which is by induction equivalent to

[E0E ′](θ[σ′Y (d:D).ϕ/Y ])[ψ/X]). Again, by definition, this is equivalent to[EE ′]θ[ψ/X].

2

5 Algorithm

Mader [21] describes an algorithm for solving boolean equation systems. The method she uses resembles
the well-known Gauß elimination algorithm for solving linear equation systems, and is therefore also re-
ferred to as Gauß elimination. The algorithm we use (see Table 3) is an extension of the Gauß elimination
algorithm of [21]. The essential difference is the addition of an extra loop for calculating a stable point in
the approximation for each first order boolean equation.

The reduction of a first order boolean equation system proceeds in two separate steps. First, a stabilisa-
tion step is issued, in which a first order boolean equationσiXi(d:D) = ϕi is reduced to a stable equation
σiXi(d:D) = ϕ′i, whereϕ′i is an expression containing no occurrences ofXi. Second, we substitute each
occurrence ofXi by ϕ′i in the rest of the equations of the first order boolean equation system. Since there
are no more occurrences ofXi in the right-hand side of the equations, it suffices to reduce a smaller first
order boolean equation system. The algorithm terminates iff the stabilisation step terminates for each first
order boolean equation.
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Input: (σ1X1(d1:D1) = ϕ1) . . . (σnXn(dn:Dn) = ϕn).

1. i := n;
2. while not i = 0
3. do
4. j := 0;ψ0 := σbi ;
5. repeat
6. ψj+1 := ϕi[Xi := ψj ];
7. j := j + 1
8. until (ψj ≡ ψj−1)
9. ϕi := ψj ;
10. for k = 1 to i− 1 doϕk := ϕk[Xi := ϕi] od ;
11. i := i− 1
12. od

Remark:σbi is> if σi = ν, else⊥

Table 3: Algorithm for computing the solution of an equation system

Theorem 5.1(Soundness).
On termination of the algorithm in Table 3, the solution of the given equation system has been computed.

Proof. The technique to solve a single equation is based on well-known approximation techniques.
Termination of this approximation means we have computed a solution to a single equation. This solution
can then be substituted in the lexicographical smaller equations of the equation system, as a result of
Lemmas 4.9 and 4.10. Termination of the algorithm, therefore means we have correctly computed the
solution to all equations in the equation system. 2

Note that as it is undecidable whether a first order boolean equation system has a solution, the possible
non-termination of our algorithm is unavoidable. Below, we provide three small examples, showing the
application of the algorithm and its possible non-termination on systems that use data.

Example 5.2. Consider a counter that counts up to nine, starting from zero, and at nine cycles back to
zero. Each time the counter increases, aninc event is issued. Upon reaching nine, the counter issues areset
event, signalling the counter has been reset to zero. A process algebraic description (in LPE form) of such
a process is provided below.

proc C(n:N) = [n ≥ 9]::→ reset· C(0)
+ [n < 9]::→ inc · C(n+ 1)

Our goal is to verify whether it is possible to always execute aresetaction. To this end, we specify the
formulaµY.[>]Y ∨ 〈reset〉>. This basically expresses that on all infinite paths, eventually aresetaction is
executed. The first order boolean equation system for this expression is (after reduction)µZ(n:N) = (n ≥
9 ∨ Z(n+ 1)).

Following the algorithm, we first computeψ0 andψ1, being resp.⊥ andn ≥ 9. Then, we iterate until
we end up with a formulaψ10 = 0 ≤ n, which is equivalent toψ11. Since this is a stable solution of the
equation, we can assess the truth of the equation system by substitutingψ10 for Z in our equation, thereby
obtainingµZ(n:N) = >.

Example 5.3. As an example of a system with an infinite state-space, we consider a process that counts
from zero to infinity, and reports its current state via an actioncurrent. A process algebraic description in
LPE form is provided below.

proc C(n:N) = current(n) · C(n+ 1)

12



Given the simplicity of this process, it is unfortunate to find that with most current technologies, we cannot
even automatically prove absence of deadlock for processC. Using our algorithm, this boils down to
verifying νX.〈>〉>∧ [>]X on the processC. Following the translation, we derive the associated equation
systemνZ(n:N) = Z(n+ 1)∧>. Substituting> for Z(n+ 1) immediately leads to the stable solution>.

Example 5.4. Consider a processC representing a counter that counts down from a randomly chosen
natural number to zero and then randomly selects a new natural number.

proc C(n:N) =
∑
m:N [n = 0]::→ reset· C(m)

+ [n > 0]::→ dec· C(n− 1)

Our goal is again to verify whether it is possible to always execute aresetaction. This is again expressed
as follows:µY.[>]Y ∨〈reset〉>. The equation system for this expression isµZ(n:N) = n = 0∨Z(n−1).

The algorithm prescribes computing a stable solution for this equation. However, this computation does
not terminate, as we end up with approximationsψk, whereψk = n ≤ k. This means, we cannot find a
ψj , such thatψj = ψj+1, and therefore, the algorithm does not terminate. However, it is straightforward
to see that the minimal solution for this equation isµZ(n:N) = >.

6 Verification of Data-Dependent Systems in Practice

Based on our algorithm, described in the previous section, we have implemented a prototype of a tool1.
In this section, we briefly sketch this implementation, without going into too much detail. To test the
applicability of the prototype, we have applied it on a large number of protocols. For brevity, we here
report on the findings of only two smaller protocols having an infinite state-space.

6.1 Implementation

The prototype implementation of our algorithm employsEquational Binary Decision Diagrams(EQ-
BDDs) [18] for representing first-order boolean expressions. These EQ-BDDs extend on standard BDDs [7]
by explicitly allowing equality on nodes. We first define the grammar for EQ-BDDs.

Definition 6.1 (Grammar for EQ-BDDs).
We assume a setP of propositions and a setV of variables. The formulae we consider are given according
to the following grammar.

Φ ::= 0 | 1 | ITE(V = V,Φ,Φ) | ITE(P,Φ,Φ)

The constants0 and1 representfalseandtrue. An expression of the form ITE(ϕ,ψ, ξ) must be read as an
if-then-elseconstruct, i.e.(ϕ∧ψ)∨ (¬ϕ∧ ξ), or, alternatively,(ϕ⇒ ψ)∧ (¬ϕ⇒ ξ). For data variablesd
ande, andϕ of the formd = e, the extension to EQ-BDDs is used, i.e. we explicitly use ITE(d = e, ψ, ξ) in
such cases. Using the standard BDD and EQ-BDD encodings [7, 18], we can then represent all quantifier-
free first order boolean expressions. The representation of expressions that contain quantifiers over finite
domains is done in a straightforward manner, i.e. we construct explicit encodings for each distinct element
in the domain. Expressions containing quantifiers over infinite domains are in general problematic, when
it comes to representation and calculation. The following theorem, however, identifies a number of cases
in which we can deal with these.

Theorem 6.2 Quantification over data-types can be reduced in the following cases: Supposed does not
occur inψ. We find:

• ∃d:D.ITE(d = e, ϕ, ψ) = ϕ[e/d] ∨ ψ providedD contains at least two (different) elements.

• ∀d:D.ITE(d = e, ϕ, ψ) = ϕ[e/d] ∧ ψ providedD contains at least two (different) elements.
1In due time, the techniques developed in this paper are intended to culminate in a freely available tool that is distributed as part

of theµCRL tool-suite [4].
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• ∃d:D.ITE(d = e1, ϕ1, ITE(d = e2, ϕ2, . . . , ITE(d = en, ϕn, ψ) . . .)) =
∨

1≤i≤n((
∧

1≤j<i ej 6=
ei) ∧ ϕi[ei/d]) ∨ ψ providedD contains at least one element not in{ei|1 ≤ i ≤ n}.

• ∀d:D.ITE(d = e1, ϕ1, ITE(d = e2, ϕ2, . . . , ITE(d = en, ϕn, ψ) . . .)) =
∧

1≤i≤n((
∨

1≤j<i ej =
ei) ∨ ϕi[ei/d]) ∧ ψ providedD contains at least one element not in{ei|1 ≤ i ≤ n}.

Proof. The identities follow directly from the observations that

• ∃d:D.ITE(d = e, ϕ, ψ) = ϕ[e/d] ∨ ∃d:D(d 6= e ∧ ψ).

• ∀d:D.ITE(d = e, ϕ, ψ) = ϕ[e/d] ∧ ∀d:D(d = e ∨ ψ).

2

Note that the last two items of the theorem above actually say that ifd only occurs in equations within a
formulaϕ and the domain ofD is sufficiently large, quantification overd can be removed, because each
such formula can be brought into the form given above.

Even though Theorem 6.2 applies to a restricted class of first order boolean expressions, we find that in
practice, it adds considerably to the verification power of the prototype implementation.

6.2 Example Verifications

We have used the prototype on several applications, including many communications protocols, such as the
IEEE-1394 firewire, the sliding window protocol, the bounded retransmission protocol, etc. As an example
of the capabilities, we here report on the use of our prototype on two small systems, viz. Lamport’s Bakery
Protocol [25], and the Alternating Bit Protocol [3]. Both systems have infinite state-spaces due to the use
of infinite data domains, and the properties we are interested in are both liveness and safety properties. We
first briefly introduce the two systems, and the properties we study.

Bakery Protocol The first example we consider is Lamport’s Bakery protocol. AµCRL specification of
this protocol is given in Table 4. The data-types are given as abstract data-types, but are omitted in this
presentation. The bakery protocol we consider is restricted to two processes. An informal explanation of
the protocol is as follows. A process, waiting to enter its critical section can choose a number, larger than
any other number already chosen. Then, the process with the lower number is allowed to enter the critical
section before the process with the larger number.

Given the unbounded growth of the numbers that can be chosen, the protocol clearly has an infinite
state-space. Hence, verification of the bakery protocol is usually performed on an altered version, abstract-
ing in some way from these numbers. Our techniques, however, are immediately applicable. Below, we
list a number of key properties we verify for the bakery protocol.

1. No deadlock can occur, i.e. in every reachable state of the protocol, an action is enabled,

2. All processes requesting a number can eventually enter the critical section,

3. All processes requesting a number inevitably enter the critical section.

The results for the verification of these properties are listed in Table 5. The second and third property
deserve some extra attention, as their difference is quite subtle; it is best compared to the difference between
“may” and “must”. The second property states that if a process requests a number, there is a path leading
towards a state in which a process may gain access to the critical section. The third property states that
if a process requests a number, all paths inevitably lead to states in which the process must gain access to
the critical section. Note that requesting a number (using actionrequest) is not a sufficient condition for
entering the critical section, as this is only guaranteed when the process has also received its number (using
actionget). This explains why the third property does not hold: it can be the case that the request of the
number is not followed by the receiving of a number, in which case the other process can infinitely often
access the critical section.
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commget, send= c

init ∂{get, send}(P(>)‖P(⊥))

proc P(b:B) =
request(b) · P0(b, 0)

+send(b, 0) · P(b)

proc P0(b:B, n:N) =∑
m:N get(¬b,m) · P1(b,m+ 1)

+send(b, n) · P0(b, n)

proc P1(b:B, n:N) =∑
m:N get(¬b,m) · (C1(b, n) / n < m ∨m = 0 . P1(b, n))

+send(b, n) · P1(b, n)

proc C1(b:B, n:N) =
enter(b) · C2(b, n)

+send(b, n) · C1(b, n)

proc C2(b:B, n:N) =
leave(b) · P(b)

+send(b, n) · C2(b, n)

Table 4: Lamport’s Bakery Protocol

Alternating Bit Protocol The Alternating Bit Protocol(ABP, see e.g. [3]) is a basic communications
protocol utilising two channels. A sender sends a message, tagged with a bit, via an unreliable channel.
It repeatedly resends this message (including the bit), until it receives an acknowledgement (with the right
bit) from the receiver, via the other channel. It then starts the entire procedure again with a new message,
and inverts the bit it sends along with the message.

The ABP is a famous communications protocol, and is often used to illustrate that a formalism or
technique is capable of dealing with real systems of small to medium size. When applying well-established,
fully-automatic techniques, the data that is transmitted in this (and other) communications protocols, has
to be fixed. Here, we show that, with the use of our prototype, no alterations to the ABP are necessary, and
the messages we transmit are indeed arbitrarily chosen from an infinite set of messages. Communications
protocols usually have an external behaviour, similar to the behaviour of a buffer, i.e. messages sent at one
end are eventually received at the other end. The ABP is no exception to this rule. The properties we
verified for ABP are listed below.

Nr. Formal Property Satisfied Time

1. νX.([>]X ∧ 〈>〉>) yes 2sec
2. νX.([>]X ∧ ∀b:B.[request(b)]µY.〈>〉Y ∨ 〈enter(b)〉>) yes 60sec
3. νX.([>]X ∧ ∀b:B.[request(b)]µY.(([>]Y ∧ 〈>〉>) ∨

〈enter(b)〉>))
no 5sec

Table 5: Verification results of the Bakery protocol. All computations were performed on a1 GHz Intel
Pentium III processor with512Mb main memory running Linux version 2.4. The field “Time” states the
amount of computation time needed to perform the verification.
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comm r2, s2 = c2
r3, s3 = c3
r5, s5 = c5
r6, s6 = c6

init ∂{r2,r3,r5,r6,s2,s3,s5,s6}(S‖K‖L‖R)

proc S =
S(0) · S(1) · S

proc S(n:bit) =∑
d:D r1(d) · S(d, n)

proc S(d:D,n:bit) =
s2(d, n) · ((r6(invert(n)) + r6(e)) · S(d, n) + r6(n))

proc R =
R(1) ·R(0) ·R

proc R(n:bit) =
(r3(e) +

∑
d:D r3(d, n)) · s5(n) ·R(n)

+
∑
d:D r3(d, invert(n)) · s4(d) · s5(invert(n))

proc K =∑
d:D

∑
n:bit r2(d, n) · (i · s3(d, n) + i · s3(e)) ·K

proc L =∑
n:bit r5(n) · (i · s6(n) + i · s6(e)) · L

Table 6: Alternating Bit Protocol

1. No deadlock can occur,

2. A message that is sent always eventually is received,

3. The protocol does not create messages,

4. The protocol does not duplicate messages.

The two latter properties state that the protocol does not allow for any miracles to happen. The results of
the verification of these properties are listed in Table 7.

7 Closing Remarks

7.1 Discussion

In this paper, we discussed a technique for model checking systems that depend on (possibly infinite) data-
types. The techniques and algorithm we used, are based upon the techniques and algorithm, described by
e.g. Mader [21]. We utilise equation systems as an intermediate formalism to which we translate both our
system description (given inµCRL) and a property description (given in a first order modalµ-calculus).
Given that the problem in general is not decidable, we have assessed the applicability of our solution on a
large number of cases, both finite and infinite systems. In Section 6, we have reported on the results ob-
tained for two small systems with infinite state-spaces, showing that the tool indeed functions as expected.
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Nr. Formal Property Satisfied Time

1. νX.([>]X ∧ 〈>〉>) yes 2sec
2. νX.([>]X ∧ ∀d:D.[r1(d)]µY.〈>〉Y ∨ 〈s4(d)〉>) yes 15sec
3. νX.(∀d:D.([¬r1(d)]X ∧ [s4(d)]⊥)) yes 60sec
4. νX.([>]X ∧ ∀d:D.[r1(d)]νY.([¬r1(d) ∨ s4(d)]Y ∧ [r1(d)]⊥) yes 5sec

Table 7: Verification results of the Alternating Bit Protocol. All computations were performed on a1 GHz
Intel Pentium III processor with512Mb main memory running Linux version 2.4. The field “Time” states
the amount of time needed to perform the verification.

The experiences we obtained by verifying properties in the other systems (e.g. the Bounded Retrans-
mission Protocol) show that the tool indeed sometimes fails to terminate, but in general, termination is
achieved in an acceptable run-time. Indeed, in several instances, we have been able to use our prototype
in situations where existing, well-established, tool-sets failed to produce the result. Slightly surprising is
one such instance, viz. a subsystem of theEUV Wafer Stepper Machine[22, 2] of ASML, for which we
had two different specifications. Using our prototype, we were able to verify properties of the specification
given in [22] where the generalµCRL tool-suite [4] (using the Cæsar-Aldébaran [12, 11] front-end) failed
to even build an internal representation of the state-space. The specification, given in [2] was no problem
for the generalµCRL tool-suite, yet proved troublesome for our prototype.

7.2 Summary

Summarising, we find that the verifications take in many cases an acceptable run-time, even though for
systems with finite state spaces, our prototype is often outperformed by most well-established tool-suites.
However, we expect some improvements can still be made on the prototype. More importantly, as we have
demonstrated in Section 6, we are able to automatically verify properties of systems with infinite state-
spaces in a reasonable time. Also, we have successfully applied our prototype on a system with a finite, yet
extremely large state-space, for which established techniques failed to calculate the exact state-space. Since
this is where the current state-of-the-art technology breaks down, our technique is clearly an improvement
on the current technology.

The prototype implementation, however, also revealed a number of new issues to be resolved. We were
not able to prove absence of deadlock of the Bounded Retransmision Protocol [17], with arbitrary bound on
the number of retransmissions. As it turns out, the current rewrite strategy, used for rewriting the abstract
data types is not particularly well-suited for dealing with this case. The possible solutions to this problem
may lie in considering e.g.Associative-Commutativerewriting (see e.g. [10]).

Still, several other issues remain to be investigated. First, in [13], Groote and Mateescu provide four
deduction rules for manually establishing the truth or falsity of a formula on an infinite state-space. It is
interesting to see if some, or parts of these proof rules can be automated, thereby solving problems that
our algorithm cannot deal with. Second, techniques, such as developed by Pnueli et al. [24], and Bryant
et al. [8, 26] may be incorporated to increase the success rate of the algorithm we proposed. Third, the
prototype has only limited diagnostic features. It requires additional research to obtain more meaningful
diagnostics, such as failure traces, to increase the usability of the prototype.
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