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Abstract

Although most model checking logics focus on proving qualitative prop-
erties, with the logic pLµ�⊕ introduced in Mio’s PhD thesis [Mio12] one
can check the probability that some behaviour happens. In this work we
try to bring this logic to practice. We attempt to find intuitive meaning
for pLµ�⊕-formulas with the aim to create guidelines to create meaningful
formulas. Also, we give an alternative representation of a pLµ�⊕ model
checking problem in form of an equations system and we give an algo-
rithm to extract the solution from this representation, based on the work
of Mader [Mad97]. This algorithm will be compared to an approximation
algorithm by applying both on a number of use cases.
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1 Introduction

It is very difficult to get a software system completely bug free. By testing one
can find and squash most bugs, but it is near impossible to cover all possible
behaviour of the system. A more thorough way of making sure that some prop-
erty holds for the system is model checking. In this approach, one specifies a
property in terms of a logical formula and applies it to a transition system that
models the behaviour of the software system. In [Koz83] Kozen introduces such
a logic, the modal µ-calculus Lµ, which can be used to verify (boolean) prop-
erties on labeled transition systems. A lot of research has already gone in this
logic (and its extensions) and it has even found its uses in institutions [HKW11]
and companies [vBGH+17].
However, sometimes one would like to prove more than whether some property is
simply either true of false. Especially in the context of systems that also contain
probabilistic behaviour, it might be desirable to compute the exact probability
that some type of behaviour happens. For instance, in a system where data is
sent over a lossy channel one might want to quantify the reliability by comput-
ing the probability that this data will actually arrive at the receiving end of the
channel. In the PhD thesis of Mio [Mio12] the logic pLµ�⊕ is introduced, which
allows for this type of model checking.

Mio’s PhD thesis however is very theoretical. Therefore, in this work we will fo-
cus somewhat more on practical aspects. We will attempt to find the (intuitive)
meaning for a selection of pLµ�⊕-formulas and to create some guidelines based
on this for using pLµ�⊕ in practice. To solve a pLµ�⊕ model checking problem
we will give an approximation algorithm. To compute the solution exactly, we
will give an alternative representation in the form of an equation system which
we will name RES�⊕ and an algorithm to extract the exact solution from this
representation, both inspired by the work of Mader [Mad97]. Both algorithms
will be compared to each other by applying them on a number of use cases.

The outline of the thesis is as follows. Firstly we will give some background
knowledge on the relevant mathematical subjects, transition systems and quan-
titative verification in sections 2, 3 and 4. In section 5 we will discuss what has
been done before in the field of verification on probabilistic systems, focusing
on adaptations of the modal µ-calculus of Kozen that have lead to pLµ�⊕. The
logic pLµ�⊕ will be introduced in section 6, where we will also investigate the
semantics and meaning of various pLµ�⊕-formulas. In section 7 we will shortly

give an approximation algorithm and introduce the RES�⊕ with an algorithm
to solve it. Both algorithms will be tested on a number of use cases and we
will consider changes to the algorithm for RES�⊕’s to reduce its running time in
section 8. Lastly we conclude with section 9.
If one is only interested in the algorithmic part of this thesis, sections 5 and 6
can be skipped.
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2 Mathematical Background

2.1 Probability theory

Probability theory is the theory for analyzing random events. Given a collection
of distinct outcomes Ω, an event is a set of such outcomes. Let A and B be
such events. Then we denote the probability that if an outcome happens, it is
in A, or rather that event A happens with P (A). The value of a probability
is always a real number in the interval [0, 1]. Since events are sets, we can
denote the probability that both events A and B happen with P (A ∩ B) and
the probability that event A or event B happens with P (A ∪ B). The above
probabilities are related to each other in the following addition rule:

P (A ∪B) = P (A) + P (B)− P (A ∩B) (1)

We denote the complement of A as A such that P (A) = 1− P (A). Intuitively,
this is the probability that event A does not happen. The event that equals the
set of all possible outcomes Ω is called the universe, for which P (Ω) = 1.
Given events A and B, the values of P (A∪B) and P (A∩B) depend on how much
A and B overlap. This is known as dependence. We denote the probability that
event A happens given that event B happens, where P (B) > 0, with P (A|B).
This probability relates to the others by the product rule:

P (A ∩B) = P (A|B) · P (B) (2)

Applying this equation twice, assuming P (A) > 0 as well, results in Bayes’
theorem [Fel68]:

P (A|B) =
P (B|A) · P (A)

P (B)
(3)

See figure 1 for some visual examples. For a practical example, see the following.

Example 2.1. Consider a six-sided die. There are a total of six outcomes,
namely the numbers 1 through 6, all with the same probability of 1

6 . Let A>1 =
{2, 3, 4, 5, 6} be the event of throwing a value greater than 1 and let Bodd =
{1, 3, 5} be the event of throwing an odd number. Then the probability P (A>1)
of throwing a value greater than 1 equals 5

6 , the probability P (A>1 ∩ Bodd) of
throwing an odd value greater than 1 equals 1

3 , the probability P (A>1 ∪ Bodd)
to throw an odd value or a value greater than 1 equals 1 and the probability
P (Bodd|A>1) to throw an odd value given a value greater than 1 will be thrown
equals 2

5 .

If P (A) and P (B) are known but the degree of dependence is unknown, there
is a range of values possible for P (A ∩ B). Similarly to the work in [FBH83],
we differentiate between three types of dependence.

Definition 2.1. A is positively dependent on B iff P (A ∩ B) > P (A) · P (B).
We will write this as B ↗ A (B supports A).

Definition 2.2. A is independent of B iff P (A ∩ B) = P (A) · P (B). We will
write this as B⊥A.
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Figure 1: Visualization of probabilities. The value of the probability below a
figure is the area coloured grey in the figure, given that the total area is equal
to 1.
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Figure 2: Visualization of maximal dependence cases. In the top two cases A
and B are maximally positively dependent and in the bottom two cases A and
B are maximally negatively dependent. Event A is coloured blue, Event B is
coloured red and where they overlap (A ∩B) is coloured dark purple.

Definition 2.3. A is negatively dependent on B iff P (A ∩ B) < P (A) · P (B).
We will write this as B ↘ A (B weakens A).

All three relations are symmetric and intransitive and due to their definition
only one of the three relations can apply to any A and B. We will shortly pay
extra attention to the two outer extremes of the range of possible values for
P (A ∩B). In case of the upper bound of P (A ∩B) (A and B overlap as much
as possible) we say that A and B are maximally positively dependent. In case
of the lower bound of P (A ∩ B) (A and B overlap as little as possible) we say
that A and B are maximally negatively dependent. Dually, the upper bound of
P (A ∪B) corresponds to maximal positive dependence and the lower bound of
P (A ∪B) corresponds to maximal negative dependence. See figure 2 for situa-
tions where these maximal dependencies occur.

More formally, we can look at events in terms of a probability space [Kol50].

Definition 2.4. A probability space is a tuple 〈Ω,F , P 〉 where

• Ω is a set of outcomes,
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• F ⊆ 2Ω is a set of events such that F is closed under countable union,
countable intersection and complement,

• P : F → [0, 1] is a function assigning probabilities to events, such that
P (Ω) = 1 and for any set S ⊆ F of pairwise disjoint sets P (

⋃
A∈S

A) =∑
A∈S

P (A).

If the restrictions mentioned above are met, the probability function P and the
probability space are well defined. We will only consider events that can be
expressed in a well-defined probability space.

A probability function D → [0, 1] like P mapping elements of some countable
set D to probability values is called a (discrete) probability distribution, usually
denoted by δ. We call a probability distribution δ over D valid iff

∑
d∈D

δ(d) = 1.

We call a probability distribution deterministic iff there is a d ∈ D such that
δ(d) = 1 and δ(d′) = 0 for all d′ ∈ D such that d 6= d′.

2.2 Lattices and fixpoints

The theory that we will focus on is based on lattices [Bir40] and fixpoints [I+81].
Therefore, we will introduce these notions first.

2.2.1 Orders and lattices

Definition 2.5. A partial order, usually denoted with ≤, is a binary relation
on a set Z such that ≤ is:

• reflexive: z ≤ z for all z ∈ Z,

• antisymmetric: if y ≤ z and z ≤ y, then y = z for all y, z ∈ Z,

• transitive: if x ≤ y and y ≤ z, then x ≤ z for all x, y, z ∈ Z.

In case Z is a set of functions, we will use the pointwise order.

Definition 2.6. Let Z = X → Y and let ≤ be some order on Y . Then ≤̇ is
the pointwise order on Z such that f ≤̇ g iff f(x) ≤ g(x) for all x ∈ X.

Definition 2.7. An ordered set is a set equipped with a partial order. We will
denote this with 〈Z,≤〉, where Z is a set and ≤ is a partial order on Z.

Lemma 2.1. Let 〈Z,≤〉 be an ordered set and let Z ′ ⊆ Z. Then 〈Z ′,≤〉 is also
an ordered set.

Definition 2.8. An ordered set 〈Z,≤〉 has a top element, denoted with >, if
for all z ∈ Z it holds that z ≤ >. Dually, an ordered set 〈Z,≤〉 has a bottom
element, denoted with ⊥, if for all z ∈ Z it holds that ⊥ ≤ z.

Definition 2.9. Let 〈Z,≤〉 be an ordered set and let Z ′ ⊆ Z. Then z ∈ Z is
an upper bound of Z ′ if for all z′ ∈ Z ′ z′ ≤ z. Dually, z ∈ Z is a lower bound of
Z ′ if for all z′ ∈ Z ′ z ≤ z′.

8



Definition 2.10. Let 〈Z,≤〉 be an ordered set, let Z ′ ⊆ Z and let Z ′↑ ⊆ Z
and Z ′↓ ⊆ Z be the set of upper and lower bounds of Z ′ respectively. Then the
bottom element of Z ′↑, if it exists, is the least upper bound or supremum of Z ′,
denoted by

⊔
z′∈Z′

z′ or
⊔
Z ′. Dually, the top element of Z ′↓, if it exists, is the

greatest lower bound or infimum of Z ′, denoted by
d

z′∈Z′
z′ or

d
Z ′.

In case Z ′ consists only of two elements x and y, we denote the supremum and
infimum with x t y and x u y respectively. In case of the empty set we define⊔ ∅ = ⊥ and

d ∅ = >.

Definition 2.11. Let 〈Z,≤〉 be an ordered set. Then 〈Z,≤〉 is a lattice if for
all y, z ∈ Z, y t z and y u z exist. If for all Z ′ ⊆ Z we have that

⊔
Z ′ and

d
Z ′

exist, the lattice is complete.

Definition 2.12. Let 〈Z,≤〉 be a lattice. This lattice is distributive if for all
x, y, z ∈ Z it holds that

x u (y t z) = (x u y) t (x u z)
x t (y u z) = (x t y) u (x t z)

Lemma 2.2. Let 〈Z,≤〉, 〈Z1,≤〉, 〈Z2,≤〉, 〈Z1 ∪ Z2,≤〉 and 〈Z1 ∩ Z2,≤〉 be
complete lattices where Z1, Z2 ⊆ Z. Then the following four (in)equations
hold:

(a)
d

(Z1 ∪ Z2) =
d
Z1 u

d
Z2

(b)
⊔

(Z1 ∪ Z2) =
⊔
Z1 t

⊔
Z2

(c)
d

(Z1 ∩ Z2) ≥ d
Z1 t

d
Z2

(d)
⊔

(Z1 ∩ Z2) ≤ ⊔Z1 u
⊔
Z2

Proof. We will prove a and c. The others follow due to duality.

(a) Since Z1, Z2 ⊆ Z1∪Z2 and since both are complete lattices, we know thatd
Z1 u

d
Z2 ∈ Z1 ∪ Z2. Since

d
(Z1 ∪ Z2) ≤ a for a ∈ Z1 ∪ Z2, we know

that
d

(Z1 ∪ Z2) ≤ d
Z1 u

d
Z2.

By definition of ∪, there does not exist an a ∈ Z1 ∪ Z2 that is not in Z1

or Z2. Since
d
Z1 ≤ a1 and

d
Z2 ≤ a2 for all a1 ∈ Z1 and a2 ∈ Z2, this

implies that there does not exist an a ∈ Z1∪Z2 such that a <
d
Z1u

d
Z2,

so
d

(Z1 ∪ Z2) ≥ d
Z1 u

d
Z2

(b) Is dual to the proof of a above.

(c) By definition of
d

,
d
Z1 ≤ a1 and

d
Z2 ≤ a2 for all a1 ∈ Z1 and a2 ∈ Z2.

Since Z1 ∩ Z2 ⊆ Z1 and Z1 ∩ Z2 ⊆ Z2, we also have that
d
Z1 ≤ a andd

Z2 ≤ a for all a ∈ Z1∩Z2, which implies that
d

(Z1∩Z2) ≥ d
Z1t

d
Z2.

(d) Is dual to the proof of c above.

The reason for the inequality in lemmas 2.2c and 2.2d is that the infimum (or
supremum) of Z1 and Z2 may not be contained in Z1 ∩ Z2, which is shown by
the example below.
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Example 2.2. Let Z = [0, 3], then 〈Z,≤〉 is a complete lattice. Let Z1 = [0, 2]
and Z2 = [0, 1] ∪ {3} and thus Z1 ∩ Z2 = [0, 1], then 〈Z1,≤〉, 〈Z2,≤〉 and
〈Z1∩Z2,≤〉 are complete lattices. Then

⊔
Z1 = 2 and

⊔
Z2 = 3 which both are

not elements of Z1 ∩ Z2. This results in the inequality (as lemma 2.2d states)⊔
(Z1 ∩ Z2) =

⊔
[0, 1] = 1 ≤ 2 = 2 u 3 =

⊔
Z1 u

⊔
Z2.

2.2.2 Fixpoints

Definition 2.13. Let f : Z → Z be a function. Then z ∈ Z is a fixpoint of f
iff f(z) = z.

In 1928 Bronis law Knaster and Alfred Tarski published their well known theorem
on fixpoints [KT28]:

Theorem 2.1. Let 〈Z,≤〉 be a complete lattice and let f : Z → Z be a
monotone function. Then the set of all fixpoints of f in Z is also a complete
lattice.

From this it follows that f has a unique least (µ) and a unique greatest (ν)
fixpoint:

µX.f(X) =
l
{z ∈ Z | f(z) ≤ z}

νX.f(X) =
⊔
{z ∈ Z | f(z) ≥ z}

where X ∈ Z is a variable. Note that 〈{z ∈ Z | f(z) ≤ z},≤〉 and 〈{z ∈
Z | f(z) ≥ z},≤〉 are complete lattices as well.
The least and greatest fixpoint can also be defined recursively. Let f0 = ⊥,
fα+1 = f(fα), fλ =

⊔{fα | α < λ}, f0 = >, fα+1 = f(fα) and fλ =d{fα | α < λ} for every limit ordinal λ then

µX.f(X) =
⊔
{fα | ordinal α}

νX.f(X) =
l
{fα | ordinal α}

This definition induces an iterative method of finding such fixpoints. When
looking for µX.f(X), starting with f0, we can iteratively compute the next fα.
When we reach a fβ such that fβ = fβ−1, we have found the fixpoint µX.f(X).
Similarly, we can compute νX.f(X) using fα. However, depending on the lat-
tice this iterative method may not terminate.
In this paper we will use the fixpoint sign σ to denote either µ or ν when in the
context of fixpoints if it does not matter which of the two it is.

As will prove useful later on, the least and greatest fixpoint have properties
similar to distributivity.

Lemma 2.3. Let 〈Z,≤〉 be a complete lattice, let f1, f2 : Z → Z be two
monotone functions and let X ∈ Z be a variable. Then the following four
(in)equalities hold:

(a) µX.(f1(X) u f2(X)) = µX.f1(X) u µX.f2(X)

(b) νX.(f1(X) t f2(X)) = νX.f1(X) t νX.f2(X)
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(c) µX.(f1(X) t f2(X)) ≥ µX.f1(X) t µX.f2(X)

(d) νX.(f1(X) u f2(X)) ≤ νX.f1(X) u νX.f2(X)

Proof. We will prove a and c. The others follow from duality.

(a)

µX.(f1(X) u f2(X)) =
l
{z ∈ Z | f1(z) u f2(z) ≤ z}

=
l
{z ∈ Z | f1(z) ≤ z ∨ f2(z) ≤ z}

=
l

({z ∈ Z | f1(z) ≤ z} ∪ {z ∈ Z | f2(z) ≤ z})

{lemma 2.2a} =
l
{z ∈ Z | f1(z) ≤ z} u

l
{z ∈ Z | f2(z) ≤ z}

= µX.f1(X) u µX.f2(X)

(b) Is dual to the proof of a above, but using lemma 2.2b instead.

(c)

µX.(f1(X) t f2(X)) =
l
{z ∈ Z | f1(z) t f2(z) ≤ z}

=
l
{z ∈ Z | f1(z) ≤ z ∧ f2(z) ≤ z}

=
l

({z ∈ Z | f1(z) ≤ z} ∩ {z ∈ Z | f2(z) ≤ z})

{lemma 2.2c} ≥
l
{z ∈ Z | f1(z) ≤ z} t

l
{z ∈ Z | f2(z) ≤ z}

= µX.f1(X) t µX.f2(X)

(d) Is dual to the proof of c above, but using lemma 2.2d instead.

In case we need the least or greatest fixpoint of multiple variables at once, we can
transform it into a nested fixpoint expression using Bekič’s theorem [BBH+84]:

Theorem 2.2. Let 〈Z1,≤〉 and 〈Z2,≤〉 be complete lattices and let f : Z1 ×
Z2 → Z1 and g : Z1 × Z2 → Z2 be monotone functions. Then

σ(X,Y ).(f(X,Y ), g(X,Y )) = (x, y)

where

x = σX.f(X,σY.g(X,Y ))

y = σY.g(x, Y )

In [AN01] this is also known as the Gauss elimination principle. The authors
also give a more general version for an arbitrary (finite) number of variables.

Theorem 2.3. Let n ∈ N+ be some natural number. Let 〈Z1,≤〉, . . . 〈Zn,≤〉
be complete lattices and let fi : Z1 × · · · × Zn → Zi be monotone functions for
1 ≤ i ≤ n. Then

σ(X1, . . . Xn).(f1(X1, . . . Xn), . . . fn(X1, . . . Xn)) = (x1, . . . xn)
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where x1, . . . xn can be computed by first computing

g1(X2, . . . Xn) = σX1.f1(X1, . . . Xn)

and then recursively computing

σ(X2, . . . Xn).(f2(g1(X2, . . . Xn), X2, . . . Xn), . . . fn(g1(X2, . . . Xn), X2, . . . Xn))

Note that the above computations will result in x1, . . . xn to be a tuple of huge
deeply nested fixpoint formulas.

2.2.3 The lattice over [0,1]

The lattice that we will mainly focus on is the lattice 〈[0, 1],≤〉. Apart from
the operators t and u on this lattice, we will also consider addition (+) and
subtraction (-) on R, product (·) on [0, 1] and the coproduct (�), truncated
cosum (	), truncated sum (⊕) and weighted sum (+λ) where λ ∈ [0, 1] on
[0, 1] as defined below:

Definition 2.14. Let x, y, λ ∈ [0, 1], then the operators �, 	, ⊕ and +λ are
defined as follows:

x� y = x+ y − x · y
x	 y = 0 t (x+ y − 1)

x⊕ y = 1 u (x+ y)

x+λ y = λ · x+ (1− λ) · y
Note that the operators t and u are equivalent to the operators max and min
respectively in this lattice. Since these operators can be distributed over each
other, the lattice 〈[0, 1],≤〉 is distributive. The following distributivities hold as
well:

Lemma 2.4. For any x, y, z ∈ [0, 1], we have that

x · (y u z) = (x · y) u (x · z) x · (y t z) = (x · y) t (x · z)
x� (y u z) = (x� y) u (x� z) x� (y t z) = (x� y) t (x� z)

x	 (y u z) = (x	 y) u (x	 z) x	 (y t z) = (x	 y) t (x	 z)

x⊕ (y u z) = (x⊕ y) u (x⊕ z) x⊕ (y t z) = (x⊕ y) t (x⊕ z)

x+λ (y u z) = (x+λ y) u (x+λ z) x+λ (y t z) = (x+λ y) t (x+λ z)

Proof. The above equations follow simply from the facts that the lattice [0, 1]
is distributive and that product, addition and subtraction are distributive over
minimum (u) and maximum (t).

All operators mentioned above except subtraction are monotone. The oper-
ator pairs (t,u), (·,�) and (	,⊕) are each other’s de Morgan duals where
the negation of some x ∈ [0, 1] equals 1 − x. The operator +λ is self dual:
1− (x+λ y) = (1− x) +λ (1− y).

We can turn the inequalities of lemmas 2.3c and 2.3d, namely that

µX.(f1(X) t f2(X)) ≥ µX.f1(X) t µX.f2(X)

νX.(f1(X) u f2(X)) ≤ νX.f1(X) u νX.f2(X)
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for monotone functions f1 and f2 over a complete lattice, into equalities when
in the context of the lattice [0, 1] if we put further restrictions on f1 and f2,
namely that the prefixpoints (and postfixpoints) of f1 and f2 are intervals that
overlap each other. Note that in the lemma below the assumption that we use
the lattice over [0, 1] is not used. The lemma also holds for lattices over real
intervals other than [0, 1], but we will only need it for this interval.

Lemma 2.5. Let f1, f2 : [0, 1] → [0, 1] be two monotone functions such that
{z ∈ [0, 1] | fi(z) ≤ z} = [xi, x

′
i] and {z ∈ [0, 1] | fi(z) ≥ z} = [yi, y

′
i] for some

xi, x
′
i, yi, y

′
i ∈ [0, 1] for i ∈ 1, 2 such that [x1, x

′
1] ∩ [x2, x

′
2] 6= ∅ and [y1, y

′
1] ∩

[y2, y
′
2] 6= ∅. Also, let X ∈ [0, 1] be a variable. Then the following two equations

hold:

(a) µX.(f1(X) t f2(X)) = µX.f1(X) t µX.f2(X)

(b) νX.(f1(X) u f2(X)) = νX.f1(X) u νX.f2(X)

Proof. We will prove a, b holds by duality.
We will first prove that

d
([x1, x

′
1] ∩ [x2, x

′
2]) =

d
[x1, x

′
1] t d

[x2, x
′
2]. Since

[x1, x
′
1] ∩ [x2, x

′
2] 6= ∅ we need to distinguishing four cases

• In case x1 ≤ x2 ≤ x′1 ≤ x′2 we can derive
d

([x1, x
′
1]∩[x2, x

′
2]) =

d
[x2, x

′
1] =

x2 = x1 t x2 =
d

[x1, x
′
1] td

[x2, x
′
2]

• In case x2 ≤ x1 ≤ x′2 ≤ x′1 we can derive
d

([x1, x
′
1]∩[x2, x

′
2]) =

d
[x1, x

′
2] =

x1 = x1 t x2 =
d

[x1, x
′
1] td

[x2, x
′
2]

• In case x1 ≤ x2 ≤ x′2 ≤ x′1 we can derive
d

([x1, x
′
1]∩[x2, x

′
2]) =

d
[x2, x

′
2] =

x2 = x1 t x2 =
d

[x1, x
′
1] td

[x2, x
′
2]

• In case x2 ≤ x1 ≤ x′1 ≤ x′2 we can derive
d

([x1, x
′
1]∩[x2, x

′
2]) =

d
[x1, x

′
1] =

x1 = x1 t x2 =
d

[x1, x
′
1] td

[x2, x
′
2]

With this information we can conclude that

µX.(f1(X) t f2(X)) =
l
{z ∈ [0, 1] | f1(z) t f2(z) ≤ z}

=
l
{z ∈ [0, 1] | f1(z) ≤ z ∧ f2(z) ≤ z}

=
l

({z ∈ [0, 1] | f1(z) ≤ z} ∩ {z ∈ [0, 1] | f2(z) ≤ z})

=
l
{z ∈ [0, 1] | f1(z) ≤ z} t

l
{z ∈ [0, 1] | f2(z) ≤ z}

= µX.f1(X) t µX.f2(X)
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3 Transition systems

A transition system consists of states and transitions between states and it can
be used to model the behaviour of a system. A state denotes a state of the sys-
tem and a transition denotes a possible change of the system that will cause it
to enter a (possibly) different state. It depends on the type of transition system
what requirements are made on these states and transitions.

The type of transition system that we will focus on is the Probabilistic La-
beled Transition System, or PLTS for short. This type of transition system has
been introduced by Segala in his PhD thesis [Seg95].

Definition 3.1. A Probabilistic Labeled Transition System (PLTS) is a tuple
〈S, s0, A, T 〉 where S is a set of states, s0 ∈ S is the initial state, A is a set of
actions and T ⊆ S×A× (S → [0, 1]) is the set of transitions, where (S → [0, 1])
is a valid probability distribution.

A PLTS has two types of choice: non-deterministic choice and probabilistic
choice. A non-deterministic choice is made in a state and a probabilistic choice
is made by the distribution in a transition. Note that two transitions in a
non-deterministic choice can have two different actions or the same action. See
figures 3a and 3b for an example PLTSs. The states in S are drawn as black
circles and the transitions are drawn using arrows and black dots for the prob-
ability distribution. The example PLTS models either throwing a 2-sided die A
or a 3-sided die B.
We assume that all probabilistic choices made according to the distributions in
the model are solely dependent on the state the model is in. This implies that
all such choices are independent. We will only consider PLTSs that have at
most countably many infinite states and transitions.

throwBthrowA

1
2

1
2 1

31
3

1
3

v1 v2 v31 1 1

(a) A PLTS where the choice between
die A or B is deterministic.

throwthrow

1
2

1
2 1

31
3

1
3

v1 v2 v31 1 1

(b) A PLTS where the choice between
die A or B is non-deterministic.

Figure 3: Two example PLTSs that model throwing either 2-sided die A or
3-sided die B. The actions vi denote the resulting value i. The initial state is
marked with a small incoming arrow.
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Figure 4: A PTS modeling the same behaviour as the PLTS shown in figure 3a.

throwB

throwB throwA

throwA

throwB

throwB throwA

throwA

1 1

11

Figure 5: An LTS (left) and a PLTS (right) that model the same behaviour.

The PLTS is a generalization of other well-known transition systems used to
model system behaviour. When we restrict a PLTS to not have any same-
action non-determinism, the model is also known as a Probabilistic Transition
System (PTS) (but in literature it is sometimes named as the PLTS) [NCI99].
When we restrict a PLTS such that all probability distributions are determinis-
tic, effectively removing all probabilistic behaviour, we have created a Labeled
Transition System (LTS) which is often used for qualitative model checking.

Definition 3.2. A Labeled Transition System (LTS) is a tuple 〈S, s0, A, T 〉
where S is a set of states, s0 ∈ S is the initial state, A is a set of actions and
T ⊆ S ×A× S is the set of transitions.

On the other hand, if we would restrict a PLTS to only have one outgoing
transition per state, effectively removing all non-deterministic behaviour, we
have created a (Labeled) Markov Chain or Markov Process [ASB95]. See figures
4 and 5 for some examples.
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4 Non-probabilistic model checking

Before we dive into model checking on probabilistic systems, we will first show
some methods often used in qualitative model checking on non-probabilistic
models.

4.1 Modal µ-calculus (Lµ)

The logic that is most often used in this setting is the modal µ-calculus by
Kozen [Koz83], which we will refer to as Lµ. With this logic one can verify
qualitative properties on LTSs. The reason that this logic is used that often
is because it subsumes many other logics like CTL [CE81] that can be used in
similar settings.

Definition 4.1. Let Var be a set of boolean variables. Then the syntax of an
Lµ-formula φ is:

φ ::= false | true | X | ¬φ | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ | µX.φ | νX.φ

where X ∈ Var is a variable and a is an action.

To preserve semantic monotonicity, which is required for the fixpoint operators,
each variable may only be preceded by an even number of negations.

Definition 4.2. Let 〈S, s0, A, T 〉 be an LTS and let JφKe ∈ 2S be the deno-
tational semantics of the µ-calculus, where e : V ar → 2S assigns values to
variables. Then JφKe is defined as follows:

JfalseKe = ∅
JtrueKe = S

JXKe = e(X)

J¬φKe = S \ JφKe
Jφ1 ∧ φ2Ke = Jφ1Ke ∩ Jφ2Ke
Jφ1 ∨ φ2Ke = Jφ1Ke ∪ Jφ2Ke

J〈a〉φKe = {s ∈ S | ∃s′∈S : (s, a, s′) ∈ T ∧ s′ ∈ JφKe}
J[a]φKe = {s ∈ S | ∀s′∈S : (s, a, s′) ∈ T ⇒ s′ ∈ JφKe}

JµX.φKe =
⋂
{S′ ⊆ S | JφKe[X:=S′] ⊆ S′}

JνX.φKe =
⋃
{S′ ⊆ S | S′ ⊆ JφKe[X:=S′]}

We call a variable X bound in a formula φ if X is preceded by a fixpoint operator
σX.φ′ in φ, else it is free.
More intuitively, one can see JφKe as the set of states where the formula φ holds.
The formulas false and true are always false and true respectively, independent
of the state. The formula ¬φ holds in a state if φ does not hold in this state.
The formula φ1 ∧ φ2 holds in a state if both φ1 and φ2 hold in that state and
dually φ1 ∨ φ2 holds in a state if at least one of φ1 and φ2 holds in that state.
The formula 〈a〉φ holds in a state if φ holds in at least one of its successor states
reached via an a-step and dually, [a]φ holds in a state if φ holds in all of its
successor states reached via an a-step.
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4.2 Fixpoint Equation Systems

As mentioned before, one can find the least and greatest fixpoints of a func-
tion f using an iterative approach. However, when applying this to functions
with nested fixpoints, as may occur in Lµ, this iterative method becomes quite
tedious. Therefore, in 1997, Angelika Mader defined the Fixpoint Equation Sys-
tem (FES) [Mad97], which is a representation of a fixpoint formula by means
of equations equipped with a least or greatest fixpoint symbol. In this section
we will discuss some of the work from Mader’s PhD thesis [Mad97] that will be
useful later on. The proofs of the lemmas in this section can be found in that
thesis.

Definition 4.3. Let 〈Z,≤〉 be a complete lattice, let Var be a set of variables
in Z and let Op(f1, ...fn) be some n-ary operator on Z. Then the syntax of a
FES over lattice 〈Z,≤〉 is defined as

E ::= ε | (µX = f) E | (νX = f) E

where ε denotes the empty FES, X ∈ V ar is a variable and f : Z |Var| → Z is a
function with the syntax

f ::= z | X | f u f | f t f | Op(f1, ...fn)

where z ∈ Z and X ∈ V ar.

Definition 4.4. Let 〈Z,≤〉 be a complete lattice and let Op(g1, ...gn) be some
n-ary operator on Z. Let g be some monotone formula on Z with the syntax

g ::= z | X | g u g | g t g | Op(g1, ...gn) | µX.g | νX.g

where z ∈ Z and X ∈ V ar. Then the FES E(g) of g is defined as:

E(z) = ε

E(X) = ε

E(g1 u g2) = E(g1) E(g2)

E(g1 t g2) = E(g1) E(g2)

E(Op(g1, ...gn)) = E(g1) . . . E(gn)

E(σX.g) = (σX = E′(g)) E(g)

E′(z) = z

E′(X) = X

E′(g1 u g2) = E′(g1) uE′(g2)

E′(g1 t g2) = E′(g1) tE′(g2)

E′(Op(g1, ...gn)) = Op(E′(g1), ...E′(gn))

E′(σX.g) = X

where z ∈ Z and X ∈ V ar.

The resulting FES is a list of equations of the form (σX = f) where f : Z |Var| →
Z for every variable X bound by a fixpoint operator in the original fixpoint for-
mula. Similarly as for fixpoint formulas, a variable X is bound in a FES E if
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E contains an equation of the form (σX = f), else it is free. If in an equation
(σX = f) f does not contain any free variables, we call this equation closed.
We call the FES closed if all equations in the FES are closed.

A FES can be solved by seeing each equation as its own fixpoint expression.

Definition 4.5. Let E be a FES over the complete lattice 〈Z,≤〉 and let e :
V ar → Z be an environment, which assigns a value to each variable in the FES.
Then [E ]e is the solution of E with respect to e defined as:

[ε]e = e

[(µX = f) E ]e = [E ]e[X := µX.f([E ]e)]

[(νX = f) E ]e = [E ]e[X := νX.f([E ]e)]

where

µX.f([E ]e) =
l
{z ∈ Z | f([E ]e[X := z]) ≤ z}

νX.f([E ]e) =
⊔
{z ∈ Z | f([E ]e[X := z]) ≥ z}

The “with respect to e” can be dropped when the FES E is closed, since then
the solution is unique for all (bound) variables.

Most importantly, Mader shows that this solution of a FES encodes the solution
of the original fixpoint expression.

Lemma 4.1. Let 〈Z,≤〉 be a complete lattice, f : Z → Z a monotone function
and e an arbitrary environment. Then

JσX.fKe = ([E(σX.f)]e)(X)

where JσX.fKe is the value of σX.f with respect to environment e.

Mader also describes an alternate definition of the solution of a FES.

Definition 4.6. Let E be a FES. Then we define a lexicographical ordering on
environments with respect to E , denoted as ≤E , for environments e1 and e2 such
that e1 ≤E e2 iff

• if E = ε, then e1 = e2.

• if E = (µX = f) E ′, then e1(X) < e2(X) or both e1(X) = e2(X) and
e1 ≤E′ e2.

• if E = (νX = f) E ′, then e1(X) > e2(X) or both e1(X) = e2(X) and
e1 ≤E′ e2.

Lemma 4.2. Let E be a FES and e an environment. If E = ε, then [E ]e = e.
If E = (σX = f) E ′ then [E ]e is the lexicographically least (with respect to E)
environment e′ such that:

• f(e′) = e′(X) and

• [E ′]e[X := e′(X)] = e′
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From this lemma we can derive the following:

Lemma 4.3. Let E = (σX1 = f1) ... (σXn = fn) be a FES and let E i =
(σXi = fi) ... (σXn = fn) for 1 ≤ i ≤ n. Then [E ]e = e′ implies [E i]e′ = e′ for
1 ≤ i ≤ n.

Another useful definition is the equivalence on FESs.

Definition 4.7. Two FESs E1 and E2 are equivalent, denoted by E1 ∼ E2, iff
for all environments e it holds that [E1]e = [E2]e.

Lemma 4.4. Let E , E1 and E2 be FESs. Then E1 ∼ E2 implies EE1 ∼ EE2.

Note that the ordering of equations in a FES is important: the less deeply nested
a fixpoint expression is, the higher (more to the left) its corresponding equation
occurs. However, it is allowed to swap consecutive equations as long as they
have the same fixpoint sign.

Lemma 4.5. If

e1 = [E1 (σX1 = f1) (σX2 = f2) E2]e

e2 = [E1 (σX2 = f2) (σX1 = f1) E2]e

then e1 = e2.

4.2.1 Boolean Equation Systems

In practice the FES is used in model checking in the form of a Boolean Equation
System (BES), which is an instance of a FES over the lattice 〈B,≤〉 where
false ≤ true. A BES can be used to solve the model checking problem of Lµ
on an LTS. See below for the translation of an Lµ model checking problem to a
BES.

Definition 4.8. Let M = 〈S, s0, A, T 〉 be an LTS and σX.φ an Lµ-formula.
Then the BES EB(σX.φ) of σX.φ on M is defined as follows:

EB(false) = ε

EB(true) = ε

EB(X) = ε

EB(φ1 ∧ φ2) = EB(φ1)EB(φ2)

EB(φ1 ∨ φ2) = EB(φ1)EB(φ2)

EB(〈a〉φ) = EB(φ)

EB([a]φ) = EB(φ)

EB(σX.φ) = ((σXs = E′B(s, φ)) for each s ∈ S) EB(φ)
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E′B(s, false) = false

E′B(s, true) = true

E′B(s,X) = Xs

E′B(s, φ1 ∧ φ2) = E′B(s, φ1) ∧E′B(s, φ2)

E′B(s, φ1 ∨ φ2) = E′B(s, φ1) ∨E′B(s, φ2)

E′B(s, 〈a〉φ) =
∨

(s,a,s′)∈T

E′B(s′, φ)

E′B(s, [a]φ) =
∧

(s,a,s′)∈T

E′B(s′, φ)

E′B(s, σX.φ) = Xs

Note that this translation EB is slightly different than the translation E as in
definition 4.4. The translation E creates a FES over the same lattice as the
original formula, whereas translation EB translates a formula over the lattice
〈2S ,⊆〉 to a the BES over the lattice 〈B,≤〉. This is because the fixpoint operator
is translated to |S| equations instead of only one. Due to this, there are |S|
times more variables. Let Var be the set of variables in the Lµ model checking
problem, then the set of variables Var′ in the resulting BES equals {Xs | X ∈
V ar, s ∈ S}.
Because of the change in lattice it is necessary to prove correctness of the solution
again, which is done in [Mad97].

Theorem 4.1. Let 〈S, s0, A, T 〉 be an LTS, σX.φ an Lµ-formula, Var a set of
boolean variables, σX.φ an Lµ-formula and e : Var → 2S and e′ : Var′ → B
environments such that s ∈ e(Y ) iff e′(Ys) = true for all Y ∈ Var that are free
in σX.φ. Then

s ∈ JσX.φKe ⇔ ([E(σX.φ)]e′)(Xs)

As Mader shows in [Mad97], a (closed) BES E = (σX1 = φ1) ... (σXn = φn) can
be solved by means of an algorithm similar to Gauss-elimination, see algorithm
1. The algorithm consists of two parts: the elimination step (lines 2 to 6) and
the substitution step (lines 7 to 9).

Algorithm 1 GaussElimination(E)

1: for i := n downto 0 do
2: if Xi is bound by a least fixpoint then
3: φi = φi[Xi := false]
4: else
5: φi = φi[Xi := true]
6: end if
7: for j := 0 to i− 1 do
8: φj = φj [Xi := φi]
9: end for

10: end for

The operations in the algorithm can be carried out in polynomial time, but due
to the substitution step the formulas can grow exponentially, requiring an ex-
ponential number of substitutions. Therefore, the GaussElimination algorithm
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has an exponential worst case running time.
However, one can improve the running time somewhat by applying simplifica-
tions on the altered formulas after elimination and substitution. Some examples
of such simplifications are

• absorbing element: φ ∧ false = false and φ ∨ true = true,

• identity: φ ∧ true = φ and φ ∨ false = φ,

• idempotence: φ ∧ φ = φ and φ ∨ φ = φ,

• absorption: φ1 ∧ (φ1 ∨ φ2) = φ1 and φ1 ∨ (φ1 ∧ φ2) = φ1.
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5 Previous work

In the past there has been quite a lot of work done on verification on probabilistic
systems. In this section we will summarize most of this work. We will first
shortly look into approaches that precede the use of a quantitative µ-calculus.
Afterwards we will focus on the work done in the field of using a quantitative
µ-calculus. Lastly, we will look shortly into existing tool-sets that can do model
checking on probabilistic models.

5.1 Approaches before quantitative µ-calculus

Temporal logic

One of the first attempts of doing model checking using temporal logic on prob-
abilistic systems is done in [Var85]. Here it is shown how to prove a property φ
expressed in temporal logic on a labeled Markov chain Π, by first creating the
Büchi automaton Bφ of φ. In this paper the notions probabilistic universality
and emptiness are defined, which denote the properties whether the probability
that there is a path in Π that is accepting in Bφ equals 1 and 0 respectively. It
is shown that this problem can be reduced to checking non-probabilistic univer-
sality and emptiness.
In 1995 the temporal logic pCTL* and its sublogic pCTL were devised [ASB95],
which extend the state formula of CTL* (and CTL) with probabilistic threshold
operators. These operators are P<pψ and P>pψ, where p is a real number in
the interval [0, 1]. The meaning of these operators is “the probability to take a
path from s where ψ holds is less/greater than p” when evaluated in a state s.

Qualitative µ-calculi

In [LS89] the first attempt is made to use a µ-calculus to apply to probabilistic
systems. Their µ-calculus for PTSs however does not contain negation, fixpoint
operators or the box operator when compared to Lµ. The diamond operator
has changed to 〈a〉pφ, which is true in a state iff there exists an a-transition
from this state with probability at least p to a state where φ holds. To still be
able to test for deadlocks, the ∆a operator is added, which is true in a state
iff there is no a-action possible in this state. Also, in this paper the notion of
probabilistic bisimilation is defined.
A qualitative adaptation of Lµ for probabilistic systems including fixed point
operators is defined in [NCI99]. Similar to pCTL, their logic GPL distinguishes
between state (φ) and path (ψ) formulas and adds probabilistic threshold oper-
ators Æ>pψ and Æ≥pψ, which are true iff the measure of ψ is greater than (or
equal to) p. The authors also show that GPL is a generalization of pCTL.

Theorem proving

The first attempt to get a quantitative answer in the verification on probabilistic
models is done in [MMS96, MM97]. They interpret temporal logic operators as
programming statements and use the weakest precondition approach to calculate
the expected value of a variable of a program. Probability is added to these
programs by the s ⊕p t operator, meaning that statement s will be executed
with probability p or else t (with probability 1− p).
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5.2 Quantitative µ-calculi

The first adaptation of Lµ that returns a quantitative answer when applied to
a probabilistic system is the µ-calculus defined by Huth and Kwiatkowska in
[HK97]. The model used in this paper is the PTS. The syntax of this µ-calculus
is the same as that of Lµ; it is the semantics where the differences reside. Instead
of returning a function from states to booleans (or a set of states for which the
formula is true), these semantics return a function from states to probabilities.
The semantics of a formula φ given some environment e is again given by JφKe.
Then a formula φ checked in a state s (JφKe(s)) gives the probability that φ will
happen in state s.
The booleans true and false are mapped to 1 and 0 respectively. The negation
¬φ of a formula φ corresponds to 1− JφKe. For the formulas φ∧ψ and φ∨ψ the
authors propose multiple possible semantics. This has to do with a situation we
sketched earlier in section 2.1. We know the probabilities JφKe(s) and JψKe(s) for
some state s and environment e, but we also need the dependence between these
two to be able to know the exact values of Jφ ∧ ψKe(s) and Jφ ∨ ψKe(s). Since
we do not know this dependence, a range of values is possible. For Jφ ∧ ψKe(s)
the authors propose three options:

• min(JφKe(s), JψKe(s)), which is the upper bound,

• JφKe(s) ·JψKe(s), which is the exact probability if φ and ψ are independent,

• max(0, JφKe(s) + JψKe(s)− 1), which is the lower bound.

Similarly, there are three options for Jφ ∨ ψKe(s) which are the duals of the
options above.
The diamond operator 〈a〉φ acts as a weighted average of all transitions a where
the weights are the probabilities to go to a state with an a-action. The box
operator [a]φ is simply the dual of the diamond operator. Note that since same-
action non-determinism is not possible in a PTS the diamond and box operators
〈a〉φ and [a]φ are actually equal when checked on a state with at least one out-
going a-transition.
The fixpoint operators also exist in the logic of Huth and Kwiatkowska, but
over the lattice 〈[0, 1]S , ≤̇〉 of functions from states to probabilities.
Huth and Kwiatkowska also give an algorithm to solve formulas, which directly
uses the semantics and solves fixpoint formulas σX.φ by computing JφK = X,
but it does not allow nested fixpoint operators.

One year later, Baier and Clarke take the quantitative µ-calculus to a more
general level in [BC98]. By allowing any real number and any arithmetical op-
erator their algebraic µ-calculus allows much more quantitative properties than
those based on probabilities. Also, the underlying model does not need to be
probabilistic. For example, the authors also mention applications such as solv-
ing graph problems and doing operations on matrices. They also give a way of
computing the resulting values of formulas expressed in this µ-calculus, which
uses Multi-Terminal Binary Decision Diagrams (MTBDDs).

De Alfaro [dAM01, dA03], inspired by the µ-calculus of Huth and Kwiatkowska,
creates a quantitative game µ-calculus applied in the context of concurrent game
structures. In his µ-calculus this is reflected by having the operators Pprei(φ)
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for i ∈ {1, 2} instead of the diamond and box operator. These new operators
simulate player i trying to maximize its own value while trying to minimize the
other’s.

Lluch-Lafuante and Montanari take a more theoretical approach by defining
a µ-calculus on constraint semirings [LM05]. As Baier and Clarke, the authors
aim for a more general setting than probabilistic systems. They focus mainly on
Quality of Service properties, such as network availability, bandwidth, perfor-
mance and access rights. They also give a variation on CTL based on constraint
semirings and for both semiring logics the authors give algorithms to solve them.

After their work on quantitative verification on probabilistic systems using the
weakest precondition, McIver and Morgan also come up with a quantitative
adaptation of the µ-calculus [MM07, MM06], independently of the work of Huth
and Kwiatkowska. The logic of McIver and Morgan, called pLµ, is very similar
to the logic of Huth and Kwiatkowska. One of the differences is that for the ∨
and ∧ the options t (maximum) and u (minimum) are chosen respectively. Also
McIver and Morgan use the more expressive PLTS as model instead, but then
without action labels. The diamond and box operators are therefore changed
to accept a set of possible transitions instead of an action. Their semantics are
changed such that the diamond operator takes the maximum resulting value
over all the given transitions and dually the box operator takes the minimum.
In [MM06], the authors give a translation from their logic pLµ to a 2 1

2 -player
parity game.

The latest work is done by Mio. In his PhD thesis [Mio12] he extends the
logic pLµ of McIver and Morgan to the quantitative µ-calculus pLµ�⊕, which
adds the other options proposed by Huth and Kwiatkowska and an additional
weighted sum operator. He also defines a new type of parity game that fits this
logic. In the following sections of this paper, we will focus on understanding
this logic and using it to solve quantitative model checking problems on PLTSs.

5.3 Practical application

In the theoretic work above, except for the work by Huth and Kwiatkowska
[HK97] and Baier and Clarke [BC98], no algorithm or procedure is given to
solve quantitative µ-calculus formulas (except for some specific examples). How-
ever, there are tool-sets available, namely PRISM [KNP02] and MRMC [KKZ05]
that are able to qualitative model checking using pCTL for labeled discrete time
Markov chains and CSL for labeled continuous time Markov chains. They also
have extensions on both logics so that they can answer quantitative questions
such as “what is the probability that ...” or “what is the expected number of
transitions to get to a state where ...”.
The PRISM tool-set also specializes in models that include time information.
With this time information, one can check for instance the probability of some-
thing happening within a unit of time.
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6 Syntax, semantics and intuitive meaning of
pLµ�⊕-formulas

In this section we will look into the meaning of pLµ�⊕-formulas, both formally
and intuitively. This will be done by relating the pLµ�⊕-formulas back to prob-
ability theory and by going through practical examples.
First we shortly look into the resulting value of a pLµ�⊕-formula. Afterwards the
syntax of pLµ�⊕ is given, followed by both the semantical and intuitive meaning
of each element of this syntax. Then we analyze the meaning of combinations
of these elements (formulas) by focusing on subjects like dependence, fixpoint
formulas and the difference between probabilistic and non-deterministic choice.
This will be summarized by giving some guidelines on how to create meaningful
formulas. Afterwards we will dive into additional subjects surrounding pLµ�⊕ as
given in Mio’s PhD thesis [Mio12], which are model checking qualitative prop-
erties using pLµ�⊕ and an alternative representation of a pLµ�⊕ model checking
problem, namely the 2 1

2 -player meta-parity game.

6.1 The resulting value

In Lµ the resulting value of a formula φ is either true or false. When checking
such a formula on a state s, it will return whether φ holds in state s or rather
whether behaviour that adheres to φ will happen when starting in state s. In
pLµ�⊕ however, the resulting value of a pLµ�⊕-formula φ lies within the interval
[0, 1] of real numbers. When checking such a formula on a state s, it will return
the expected probability that φ holds in state s or rather the (expected) proba-
bility that behaviour that adheres to φ will happen when starting from state s.
More formally, let [0, 1]S be the set of all mappings S → [0, 1], which is a com-
plete lattice under the pointwise order ≤̇ as shown in [Mio12]. Let 〈S, s0, A, T 〉
be a PLTS and Var be a set of variables. Then we define JφKe ∈ [0, 1]S to be
the denotational semantics of some pLµ�⊕-formula φ, where e : V ar → [0, 1]S is
an environment that assigns values to variables.

Now we would like to relate the resulting value JφKe(s) of a pLµ�⊕-formula
checked on a state s in a PLTS to probability theory. As done in [Sto02] and
[AW06], we can introduce a scheduler σ to remove the non-determinism. We
can then define a probability space 〈Ω,F , P 〉 where

• Ω is the set of maximal paths through a PLTS under the scheduler σ,

• F contains a cylinder set of maximal paths for each finite path in the
PLTS,

• P is the product of all probabilistic choices made in the finite path that
corresponds to the cylinder set.

This will give a well defined probability space for the model, but we would like
to associate this to the semantics of a pLµ�⊕-formula φ. To do so, we want to
find an event that corresponds to φ. However, since F contains sets of linear
paths and pLµ�⊕ is a branching time logic, this is not possible.
So we could instead decide to keep the branching behaviour of the PLTS by
defining a “branching path”, which is a path that fully branches in case of
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non-probabilistic choice (but still only branches once in case of probabilistic
choice). However, using such (maximal) branching paths as outcomes it is not
sure whether we can come up with a well defined probability space.
Even if we would be able to do so, this probability space would only capture
the probabilistic behaviour of the model. As will be shown later on, it is also
possible for a pLµ�⊕-formula to contain some probabilistic behaviour.

All in all it does not seem to be possible to make a relation between the se-
mantics and pLµ�⊕ and probability theory using the concepts of outcomes and
events although the resulting value JφKe(s) of a pLµ�⊕-formula φ checked in a
state s does share some properties with a probability function P , such as dual-
ity and dependence. Nevertheless, in the coming sections we will try to create
intuition for the pLµ�⊕-formulas themselves, but first we will elaborate on the
atoms and operators that make up pLµ�⊕.

6.2 Atoms and operators

The syntax of a pLµ�⊕-formula φ is given by

φ ::= X | φ∧φ | φ∨φ | φ·φ | φ�φ | φ	φ | φ⊕φ | φ+λφ | 〈a〉φ | [a]φ | µX.φ | νX.φ

where X ∈ Var is a variable, λ ∈ [0, 1] a probability and a ∈ A an action. We
will however consider more atoms as mentioned in [Mio12], namely 0, 1 and
λ, which are defined as µX.X, νX.X and 1 +λ 0 respectively. Also, we will
sometimes refer to sublogics of pLµ�⊕:

• pLµ, which is pLµ�⊕ without the operators ·, �, 	 and ⊕,

• pLµ�, which is pLµ�⊕ without the operators 	 and ⊕ and

• pLµ⊕, which is pLµ�⊕ without the operators · and �.

We will go through all syntactic elements one by one, giving their formal def-
inition and their intuitive meaning. Let 〈S, s0, A, T 〉 be a PLTS, let s ∈ S be
an arbitrary state in this PLTS and let e : V ar → (S → [0, 1]) be an arbitrary
environment.

Atom 0

Semantically, the atom 0 is defined as

J0Ke(s) = 0

It is the probability value 0 independent of the state it is checked on. If a
(sub)formula φ0 ends with 0, the behaviour that is expressed in φ0 by the
operators that precede 0 is undesired: we aim for the probability that this
behaviour does not happen.

Atom 1

Semantically, the atom 1 is defined as

J1Ke(s) = 1
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It is the probability value 1 independent of the state it is checked on. If a
(sub)formula φ1 ends with 1, the behaviour expressed in φ1 by the operators
that precede 1 is desired: we aim for the probability that this behaviour happens.

Atom λ

Semantically, for any λ in the interval [0, 1] the atom λ is defined as

JλKe(s) = λ

It is the probability value λ independent of the state it is checked on. If a
(sub)formula φλ ends with λ, the behaviour that is expressed in φ1 by the
operators that precede 1 is desired to a certain degree λ.

Atom X

Semantically, the atom X, representing a variable, is defined as

JXKe(s) = e(X)(s)

It corresponds to the probability value as given by the environment. If the atom
X is within the scope of a corresponding fixpoint operator (σX.), we say that
the variable is bound, else it is free. We will only consider pLµ�⊕-formulas that
do not contain free variables, which are called closed formulas. We will also
assume that each variable will only occur at most once in a pLµ�⊕-formula.

Operators ∧, ∨, ·, �, 	 and ⊕
Semantically, the operators ∧ (and), ∨ (or), · (product), � (coproduct), 	
(truncated cosum) and ⊕ (truncated sum) are defined as

Jφ1 ∧ φ2Ke(s) = Jφ1Ke(s) u Jφ2Ke(s)
Jφ1 ∨ φ2Ke(s) = Jφ1Ke(s) t Jφ2Ke(s)
Jφ1 · φ2Ke(s) = Jφ1Ke(s) · Jφ2Ke(s)

Jφ1 � φ2Ke(s) = Jφ1Ke(s) � Jφ2Ke(s)
Jφ1 	 φ2Ke(s) = Jφ1Ke(s) 	 Jφ2Ke(s)
Jφ1 ⊕ φ2Ke(s) = Jφ1Ke(s) ⊕ Jφ2Ke(s)

The formulas φ1∧φ2, φ1 ·φ2 and φ1	φ2 correspond to the probability that both
φ1 and φ2 happen and the formulas φ1 ∨ φ2, φ1� φ2 and φ1⊕ φ2 correspond to
the probability that φ1 or φ2 happens. The reason that here are three operators
per situation is the same as observed by Huth and Kwiatkowska [HK97]. If we
know the probabilities that φ1 and φ2 happen, we also need to know the depen-
dence between φ1 and φ2 to be able to compute the probability that both φ1

and φ2 happen and the probability that φ1 or φ2 happens. If this dependence
is unknown, there is a range of values possible.
For the probability that both φ1 and φ2 happen φ1 ∧ φ2 gives the upper bound
of this range, φ1 · φ2 gives the exact value in case of independence and φ1 	 φ2

gives the lower bound of this range. For the probability that φ1 or φ2 happens
φ1∨φ2 gives the lower bound of this range, φ1�φ2 gives the exact value in case
of independence and φ1 ⊕ φ2 gives the upper bound of this range.
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In section 2.1 we sketched a similar situation. If we know P (A) and P (B)
for events A and B but not the dependence between the two, there is a range
of values possible for P (A∩B) (and P (A∪B)). In case of the lower and upper
bounds of this range we said that A and B are maximally dependent. We can
apply the same to pLµ�⊕-formulas.
For the formulas φ1 ∧ φ2 and φ1 ∨ φ2 it is assumed that φ1 and φ2 are maxi-
mally positively dependent. In the corresponding cases shown figures 2a and 2b
(A ⊆ B and B ⊆ A), the semantics of the operators ∧ and ∨ are reflected. For
instance, if we want to know φ1∧φ2, we take the minimum of the two. Similarly
in figure 2a we have that P (A ∩ B) = P (A) which is smaller than P (B) since
A ⊆ B.
For the formulas φ1 	 φ2 and φ1 ⊕ φ2 it is assumed that φ1 and φ2 are maxi-
mally negatively dependent. In the corresponding cases shown figures 2c and 2d
(A∩B = ∅ and A∪B = Ω), the semantics of the operators 	 and ⊕ are reflected.
For instance the formula φ1⊕φ2 equals the sum of the two if it does not exceed
1, else it is 1. Similarly in figure 2c we have that P (A∪B) = P (A)+P (B) which
cannot exceed 1 since A ∩ B = ∅ and in figure 2d we have that P (A ∪ B) = 1
since A ∪B = Ω which causes P (A) + P (B) to be at least 1.

Operator +λ

Semantically, for any λ in the interval [0, 1] the operator +λ is defined as

Jφ1 +λ φ2Ke(s) = Jφ1Ke(s) +λ Jφ2Ke(s)

The formula φ1 +λ φ2 corresponds to a probabilistically weighted sum between
the behaviours expressed by φ1 and φ2. With probability λ we check for the
behaviour expressed by φ1 and with probability 1−λ we check for the behaviour
expressed by φ2. Note that this adds another layer of probabilistic behaviour
on top of the probabilistic behaviour of the model.

Operators 〈a〉 and [a]

Semantically, for any action a ∈ A the operators 〈a〉 and [a] are defined as

J〈a〉φKe(s) =
⊔

(s,a,δ)∈T

{
∑
s′∈S

δ(s′) · JφKe(s′)}

J[a]φKe(s) =
l

(s,a,δ)∈T

{
∑
s′∈S

δ(s′) · JφKe(s′)}

where
d

and
⊔

are defined over the lattice 〈[0, 1],≤〉.
These are the only operators that actually use the probabilistic behaviour of
the model. Both the diamond operator 〈a〉φ and the box operator [a]φ calcu-
late the probabilistically weighted sum over all successor states for the proba-
bilistic behaviour of a transition, but they differ in the non-deterministic be-
haviour. Whereas the diamond operator picks the maximum for all outgoing
a-transitions, the box operator picks the minimum.
Intuitively, the formula 〈a〉φ is optimistic: it returns the maximum probability
that after an a-step the behaviour desired by φ will happen. Dually, the formula
[a]φ is pessimistic: it returns the minimum probability that after an a-step the
behaviour desired by φ will happen.
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Operators µX. and νX.

Semantically, for any variable X ∈ V ar the operators µX. and νX. are defined
as

JµX.φKe(s) =
l
{f ∈ [0, 1]S | JφKe[X:=f ] ≤̇ f}(s)

JνX.φKe(s) =
⊔
{f ∈ [0, 1]S | f ≤̇ JφKe[X:=f ]}(s)

where
d

and
⊔

are defined over the lattice 〈[0, 1]S , ≤̇〉.
Apart from the difference in lattice, the definitions of the fixpoint operators µX.
and νX. for pLµ�⊕ are the same as for Lµ. In [Mio12] it is proven that the least
(µ) and greatest (ν) fixpoints exist for pLµ�⊕-formulas of the form σX.φ by the
Knaster-Tarski theorem (theorem 2.1), since all other operators are monotone.

Since the fixpoints exist we could use the iterative method to calculate the
fixpoint, where we start with λs.0 for the least fixpoint and λs.1 for the great-
est fixpoint. However, unlike the lattice used for Lµ, the lattice [0, 1]S used for
pLµ�⊕ has an infinite size due to the infinite nature of the set of real numbers,
even within an interval. Because of this, termination of the iterative method is
often not the case. In section 6.4.1, we will look into this in more detail.

6.2.1 Duality

Every syntactic element (except the variable) has its dual. We define φ to be

the dual of a formula φ, such that φ ≡ φ. See below for the dual of each element.
Proof of each duality is given in [Mio12].

0 = 1

1 = 0

λ = 1− λ
X = X

φ1 ∧ φ2 = φ1 ∨ φ2

φ1 ∨ φ2 = φ1 ∧ φ2

φ1 · φ2 = φ1 � φ2

φ1 � φ2 = φ1 · φ2

φ1 	 φ2 = φ1 ⊕ φ2

φ1 ⊕ φ2 = φ1 	 φ2

φ1 +λ φ2 = φ1 +λ φ2

〈a〉φ = [a]φ

[a]φ = 〈a〉φ
µX.φ = νX.φ[X := X]

νX.φ = µX.φ[X := X]

For any pLµ�⊕-formula φ and state s we have that JφKe(s) = 1− JφKe(s).
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6.3 Dependence

As mentioned before, it is not really possible to determine a probability space
such that we can correspond events to pLµ�⊕-formulas. Nevertheless, it is pos-
sible to get some indication of dependence between formulas, especially in case
of a maximal dependency.
For instance consider the formulas φ1 = 〈a〉1 and φ2 = 〈a〉〈b〉1 checked in the
same state s. One can say that φ2 expresses a stricter property than φ1 does,
since φ2 does not only require an a-step but also a b-step afterwards. This
suggests that φ1 and φ2 are maximally positively dependent. Therefore it only
makes sense to use the operator ∧ instead of · or 	 or the operator ∨ instead
of � or ⊕. A more trivial case would be the case where φ1 ≡ φ2.
We can do a similar thing with maximal negative dependence. For instance
consider the formulas φ1 = 〈a〉〈a〉1 and φ2 = [a]0 checked in the same state s.
These two formulas express mutually exclusive properties: either we can do two
a-steps or no a-step at all. This suggests that φ1 and φ2 are maximally nega-
tively dependent. Therefore it only makes sense to use the operator 	 instead
of ∧ or · or the operator ⊕ instead of ∨ or �. A more trivial case would be the
case where φ1 ≡ φ2.

However, dependency is usually not only derived from the formulas. Take for
instance the formulas φ1 = 〈a〉1 and φ2 = 〈b〉1. The properties expressed by
the formulas seem to be independent, but this dependence actually depends on
the model these formulas are checked on. If in each state where an a-action
is possible, a b-action is also possible or vice versa, φ1 and φ2 are maximally
positively dependent. On the other extreme, if in each state it’s impossible to
do both an a and a b-action or in each state it’s possible to do at least one of
the two, φ1 and φ2 are maximally negatively dependent.
It is also possible that it does not matter what operator to use to combine for-
mulas φ1 and φ2. This is true when Jφ1Ke(s) = 0, Jφ1Ke(s) = 1, Jφ2Ke(s) = 0 or
Jφ2Ke(s) = 1 for a state s. In these cases it always holds that Jφ1 ∨ φ2Ke(s) =
Jφ1 · φ2Ke(s) = Jφ1 	 φ2Ke(s) and Jφ1 ∧ φ2Ke(s) = Jφ1 � φ2Ke(s) = Jφ1 ⊕ φ2Ke(s).

Note that the examples shown above are rather simple and intuitive. For arbi-
trary formulas and models the degree of dependency is usually not easy to see,
especially since both the formula and the model play a role in determining the
dependence.
However, if one knows what formulas φ1 and φ2 intuitively mean, it is some-
times possible to find the right operator. For instance, consider the PLTS in
figure 3a. Let φ1 = 〈throwA〉〈v2〉1 and φ2 = 〈throwB〉〈v2〉1. As shown before,
Jφ1Ke(s0) = 1

2 and Jφ2Ke(s0) = 1
3 . Intuitively, φ1 denotes the probability of

throwing a 2 with die A and φ2 denotes the probability of throwing a 2 with die
B. Realistically, we can say that the result of throwing die A is independent of
the result of throwing die B. Therefore, it makes sense to use the operator · for
the probability that both happen, resulting in a probability of 1

6 . We conclude
that it is not always as easy to know whether to use the operator ∧, · or 	
for and whether to use the operator ∨, � or ⊕. However, one can always get
the upper bound using the operators ∧ or ⊕ and the lower bound using the
operators ∨ or 	 to get the range of possible values. Optionally, the operator
+λ can then be used to select a certain spot within this range.
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6.4 Fixpoints

As mentioned before, the fixpoint operators µX. and νX. for some variable X
are defined similarly as those in Lµ. Therefore they have a similar intuitive
meaning: the least fixpoint operator µX. concerns finite behaviour or eventu-
ality, whereas the greatest fixpoint operator νX. concerns infinite behaviour or
globality. For instance, the formula νX.〈a〉X gives the probability of an infinite
a-path, µX.(〈a〉X ∨ 〈b〉1) gives the probability that there is an a-path where
eventually a b-step is possible and the formula νX.([a]X ∧ 〈b〉1) gives the prob-
ability that in any a-path it is globally (in any state of the path) possible to do
a b-step. In this section we will use examples of least fixed points only, but the
reasoning and results hold for the greatest fixpoint dually.

6.4.1 Computation of fixpoints

The main difference between the fixpoint operators used in pLµ�⊕ and Lµ is the
lattice that is used, which for pLµ�⊕ is [0, 1]S where S is the set of states. Since

the interval [0, 1] has the same cardinality as R, the size of the lattice 〈[0, 1]S , ≤̇〉
is infinite. Consequently, computing a fixpoint with the iterative method may
not terminate. This however does not imply that it is impossible to get the
exact solution. We will show this using an example.

Example 6.1. Again, let A be a two-sided die and B be a three-sided die and
assume that we would like to use die B, but we have lost it. Fortunately, we can
model a three sided die using die A, as seen in the PLTS in figure 6. Now to be
sure that this model is correct, we want to assert that throwing a value i (in the
PLTS represented by the action vi) happens with probability 1

3 . Let us focus
on the probability of throwing the value 1. This can be computed from the
formula µX.(〈throwA〉X ∨ 〈v1〉1), which denotes the probability of eventually
having value 1 after a finite number of throws. We will try to do this iteratively.
Let f(U) = J〈throwA〉X ∨ 〈v1〉1Ke[X:=U ] where U ∈ [0, 1]S . Since we are looking
for the least fixpoint, let f0 = λs.0. See the below table for the values of fα for
a number of iterations α.

α 0 1 2 3 4 5 6 7 8 9

fα(s0) 0 0 0 1
4

1
4

5
16

5
16

21
64

21
64

85
256

fα(s1) 0 0 1
2

1
2

5
8

5
8

21
32

21
32

85
128

85
128

fα(s2) 0 0 0 0 0 0 0 0 0 0

fα(s3) 0 1 1 1 1 1 1 1 1 1

fα(s4) 0 0 0 0 0 0 0 0 0 0

fα(s5) 0 0 0 0 0 0 0 0 0 0

We do not show all iterations simply because this does not terminate. However,
since the least fixpoint exists, we know that there is an ordinal β such that
fβ(s) = fγ(s) for any state s and any ordinal γ where β < γ.
Note that a repeating pattern occurs in the table. Due to the probabilistic
transitions and the loop in the PLTS, we have that fα+2(s0) = (1

2 ·fα(s0)+ 1
2 )· 12 .
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1
2

1
2

v1 v2 v31 1 1

1
2

1
2

1
2

1
2

throwA

throwA
throwA

s0

s1 s2

s3 s4 s5

Figure 6: A PLTS that models a three sided die with a two sided die. Each
state is given a name si so that they can be referred to.

Again let β be the ordinal such that fβ is the fixpoint, then we know that
fβ(s0) = fβ+2(s0) = ( 1

2 · fβ(s0) + 1
2 ) · 1

2 . Solving this equation will result in
fβ(s0) = 1

3 , which is the desired result. In a similar way, one can verify that
throwing a 2 and throwing a 3 both happen with probability 1

3 . Note that it

does not matter whether we use the operator ∨, � or ⊕ in the pLµ�⊕-formula
in this case, since J〈v1〉1K(s) can only be 0 or 1 for any state s.

The above example shows a rather repetitive behaviour. Every other iteration
either the value of fα(s) does not change since it is waiting for a successor
to change or fα(s) does change, but less than the last time it changed. This
behaviour however is not representative. For instance, the value of fα(s) may
also change more compared to the previous iteration it changed. This mainly
depends on the model, which will be shown in the below example.

Example 6.2. See figure 7 for an example PLTS that contains two linear se-
quences of states which we will refer to as arms. We want to check the prob-
ability of eventually a b-step, which for this model can be described with the
pLµ�⊕-formula φ = µX.(〈a〉X ∨ 〈b〉1). Then let f(U) = J〈a〉X ∨ 〈b〉1Ke[X:=U ]

where U ∈ [0, 1]S for which we want to know the least fixpoint. Using the it-
erative method in each arm the value 1 is propagated to the left one state per
iteration. Assuming n < m, the value from the upper arm will have its effect
on fα(s0) first, resulting in fn(s0) = µ. Later when α = m is reached, we will
have that fn(s0) = 1. Now if we pick µ > 1

2 , the second increase of fα(s0) is
smaller than the first increase, but if we would pick µ < 1

2 , the second increase
is greater instead.

6.4.2 Infinite behaviour

In the dice example above, we mentioned that the probabilities of eventually
reaching states s3, s4 and s5 are all equal to 1

3 , summing to 1 as expected for a
three sided die. However, one could say that it is also possible to loop through
states s0 and s1 indefinitely, never reaching any of the aforementioned states.
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s0

s1 s2 snsn−1

t1 t2 tm−1 tm

a

a a b

a a b

µ

1− µ

1 1 1

111

Figure 7: A PLTS that depending on µ ∈ [0, 1] probabilistically branches into
two finite arms of length m,n ∈ N.

λ

1− λ

a

a

a1

1

Figure 8: Two similar PLTSs except for the choice concerning the action a.
The left PLTS has a probabilistic choice whereas the right PLTS has a non-
deterministic choice.

To show why this behaviour appears to be negligible, we will use the two PLTSs
as shown in figure 8. Both are the same except that one chooses the state after
an a-action probabilistically whereas the other does this non-deterministically.
Let us consider the pLµ�⊕-formula φ1 = µX.[a]X and the syntactically equivalent
Lµ-formula φ2 = µX.[a]X. Both formulas require all a-paths to be finite, but φ1

is concerned with the probability that this is the case whereas φ2 is concerned
with whether it is true. On the right PLTS Jφ1Ke(s0) = 0 because it is possible
to non-deterministically choose to take an infinite a-loop. Converting the PLTS
to an LTS we have that Jφ2Ke(s0) = false for the same reason. When φ1 is
applied to the left PLTS however, it returns the value 1, while there is still an
infinite a-loop possible.
The main difference that causes this is how the different choices are handled.
In case of non-deterministic choice, we can’t say anything about the likeliness
the two possibilities, so we either choose to be optimistic using the diamond
operator or pessimistic using the box operator. In the above example we chose
to be pessimistic, which resulted in 0 since an infinite a-path is possible. In
case of probabilistic choice however we do know how likely the two possibilities
will appear. In pLµ�⊕ we use this to our advantage. The probability of the
only outcome that is undesired by the given formula, namely the infinite a-loop,
equals λ∞, which approaches 0.
From this example we can see that a resulting value of 1 does not always mean
that the property specified will always happen. There may be an outcome
undesired by the property, but its measure is infinitesimal. Therefore, this value
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1 is usually interpreted as that it almost always happens. Dually, we can apply
the same reasoning for the value 0, interpreting it as that a property almost
never happens.

6.4.3 Dependence and non-determinism in fixpoints

In the reachability properties in section 6.4.1 it didn’t matter whether we used
the operator ∨, � or ⊕, since formulas of the form 〈b〉1 always result in either
0 or 1. However if this is not the case, the resulting values using different oper-
ators may differ.

In Lµ a formula µX.(〈a〉X ∨ φ), which expresses whether possibly eventually
φ will hold, consists of two parts: the possibility of getting to a state via a-
steps and question whether φ holds on this state. Similarly, the pLµ�⊕-formula
µX.(〈a〉X O φ) where O ∈ {∨,�,⊕}, which expresses the probability that pos-
sibly eventually φ happens, consists of two parts: the probability of going to a
state using a-steps and the probability of φ in that state. Intuitively, one can
say that these two parts are independent, so we should use O = �. However,
the subformula 〈a〉X does not only contain the probability of getting to a state
using a-steps.
Formally, as described in theorem 2.1 the least fixpoint of a function f can
be expressed as

⊔{fα | ordinal α} where f0 = ⊥, fα+1 = f(fα) and fλ =⊔{fα | α < λ} for all limit ordinals λ. For the fixpoint formula above we can
define the corresponding function f(U) = J〈a〉X O φKe[X:=U ] where U ∈ [0, 1]S .
In Lµ, where ⊥ = ∅, we can interpret the value of fα(X) as the set of states that
are capable of reaching a state where φ holds within α− 1 a-steps. Similarly in
pLµ�⊕, where ⊥ = λs.0, we can interpret the value of fα(X) as the probability
of possibly eventually φ within α− 1 a-steps.
For an ordinal α, the subformula 〈a〉X corresponds to 〈a〉fα−1, which expresses
the probability of doing an a-step to a state times the probability that possibly
eventually φ happens within α − 2 a-steps from that state. So actually, the
dependence between 〈a〉X and φ is the dependence between the event that pos-
sibly eventually φ happens in at least 1 (and at most α) a-steps from a state s
and the event of φ in s.
In case O = ∨, the maximum of the two options is picked. In case O = ⊕, the
probabilities of the two options are summed. In case O = �, the two options
are assumed to be independent of each other.
Sometimes however, one does not only want to check for eventuality via a single
action but via multiple actions, such as with the formula µX.(〈a〉X O 〈b〉X O′ φ).
Here a similar thing holds as above: O = ∨ takes the path resulting in the high-
est probability, O = ⊕ sums the possible paths and O = � chooses the paths
independently.

To show the difference of effect on the values of fα between using ∨, � or
⊕ in a fixpoint formula we will use the example below.

Example 6.3. We define a WxH game board of squares. One starts at the
bottom row on the middle square and from each square one can choose to move
left (action moveLeft) or right (action moveRight). When moving left, with
probability 1

2 one will actually move to the square on the left, with probability
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Figure 9: The 3x3 board the game is played on.

1
3 to the square in front and otherwise to the square to the right. Moving to the
right is symmetric. If one moves off the board on the side the game is lost and
if one moves off the board on the top the game is won. See figure 9 for a 3x3
board and see figure 10 for the corresponding PLTS. The layout of the states of
the PLTS is the same as layout of the tiles on the board.
The probability to win the game can be expressed by

φO = µX.((〈moveLeft〉X O 〈moveRight〉X) ∨ 〈won〉1)

where O can be either ∨, � or ⊕. Let

fO(U) = J(〈moveLeft〉X O 〈moveRight〉X) ∨ 〈won〉1Ke[X:=U ],

then fOα expresses the probability of eventually winning the game within α− 1
steps. See figure 11 for the values of f∨α for a few iterations α. The values per
state are given in the same layout as the states in figure 10, except for the state
slost. Applying fOα to slost results in 0 for any α, therefore it is omitted.
From these values, we can indeed see that f∨α expresses the probability of reach-
ing the winning state within α− 1 moves given a state when choosing the move
that gives the best result. Since the operator ∨ only allows us to take one choice,
we can assign each state a move that will lead to the best result (a strategy).
For states stl, sl and sbl this is moveRight, for states str, sr and sbr this is
moveLeft and for states st, sm and sb it does not matter due to symmetry of
the two actions. Note that if we would change one of the two actions such that
going forward has a greater probability, this action is likely the best move for
states st, sm and sb.
As example of this we will look at the state st for which f∨3 (st) = 5

9 as shown
in figure 11c. Note that f∨3 denotes the probability of reaching the winning
state within two steps. Due to the probabilistic choices this leaves us with three
possible paths: going up, going left and then up or going right and then up. Let
moveLeft be the strategy in this state st. Then the path going up occurs with
probability 1

3 , the path going left and then up occurs with probability 1
2 · 1

3 = 1
6

and the path going right and then up occurs with probability 1
6 · 1

3 = 1
18 . If

we sum these probabilities (by definition of the diamond operator), we get the
probability of 5

9 as is given by f∨3 (st).
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Figure 10: The PLTS of a 3x3 board game described in section 6.4.3. The
actions moveLeft and moveRight are abbreviated to L and R respectively. The
state slost is given twice to make it visually more pleasing.
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Figure 11: Values of f∨α for the first few α arranged like the states in the PLTS
in figure 10. The two losing states are left out since their value is always 0.
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Figure 12: Values of the least fixpoint of f∨, f� and f⊕ respectively.

See figure 12 for the values of the least fixpoint of fO, which are also the re-
sulting values of JφOKe when checked in each state. When we take O = ∨, the
probability to win the game making optimal choices equals 19

36 . This shows that
choosing the optimal moves really helps: although the winning edge is further
away than the losing edges, the probability to win is greater than a half. When
using the operators � or ⊕ the probabilities are far greater. This is because,
as mentioned before, all possible deterministic choices are explored and used in
the result.

All in all, using the operators ∨, � and ⊕ we can alter how we want to in-
terpret the non-deterministic choice in reachability formulas. However, this
only applies to non-deterministic choice between different actions. Same-action
non-deterministic choice is handled by the diamond (or box) operator which
always only picks the optimal choice like the operator ∨ does. So if we would
change the above 3x3 board game example such that the actions moveLeft and
moveRight are changed to the same action move and then use the pLµ�⊕-formula
φ1 = µX.(〈move〉X ∨ 〈won〉1), we will end up with the same values as for φ∨.
On the other hand, we could choose the worst move possible at every non-
deterministic choice using the pLµ�⊕-formula φ2 = µX.(([move]X ∨ 〈won〉1) ∧
[lost]0). Note the added term ∧[lost]0: this is to make sure that φ2 evaluates to
0 when checked in slost. Like with φ1, we can make a formula φO that is similar
to φ2 by taking O = ∧.

6.5 Guidelines for quantitative properties

Before moving on to subjects not related to pLµ�⊕-formulas expressing quanti-
tative properties, we will summarize what is discussed above by giving a few
guidelines for creating meaningful formulas. See the table below for these guide-
lines, which maps pLµ�⊕-formulas to their intuitive meaning. Note that this table
is not complete in the sense that every possible pLµ�⊕-formula is covered. Also
note that these guidelines are recursively defined, by using φ, φ1 and φ2 as sub-
formulas. For instance, combining rows 1 and 7 from the table below can give
the formula 〈a〉1 · 〈b〉1, which intuitively means “the probability that the system
can do both an a-step and a b-step, assuming both happen independently”.
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pLµ�⊕-formula Intuitive meaning: The probability that...
〈a〉1 the system can do an a-step
[a]0 the system cannot do an a-step
〈a〉φ φ after an a-step
[a]φ φ after any a-step
φ1 ∧ φ2 both φ1 and φ2, assuming both are maximally

positively dependent
φ1 ∨ φ2 φ1 or φ2, assuming both are maximally posi-

tively dependent
φ1 · φ2 both φ1 and φ2, assuming both are independent
φ1 � φ2 φ1 or φ2, assuming both are independent
φ1 	 φ2 both φ1 and φ2, assuming both are maximally

negatively dependent
φ1 ⊕ φ2 φ1 or φ2, assuming both are maximally nega-

tively dependent
φ1 +λ φ2 φ1 with weight λ plus φ2 with weight 1− λ
µX.[a]X there is a finite a-path while choosing pessimally
νX.〈a〉X there is an infinite a-path, while choosing opti-

mally
µX.(〈a〉X ∨ φ) eventually φ after a path of a-actions while

choosing optimally
µX.((〈a〉X ∨ 〈b〉X) ∨ φ) eventually φ after a path of a and b-actions while

choosing optimally
νX.([a]X ∧ φ) globally φ along a path of a-actions while choos-

ing pessimally
νX.(([a]X ∧ [b]X) ∧ φ) globally φ along a path of a and b-actions while

choosing pessimally

6.6 Qualitative properties

As Mio shows in [Mio12], pLµ�⊕ is a generalization of Lµ. When we do not
use the atom λ or the operator +λ, pLµ�⊕ can be used to check qualitative
formulas on non-probabilistic PLTSs (LTSs) by using 0 for false and 1 for true.
It does not matter whether one uses the operator ∧, · or 	 to represent the
logical operator ∧. As mentioned before, all three operators are semantically
equal when applied to values that are 0 or 1, which is always the case in this
context. Similarly, it does not matter whether one uses the operator ∨, � or ⊕
to represent the logical operator ∨.

Qualitative threshold modalities

The logic pLµ�⊕ is not only a generalization of Lµ, but also of PCTL. As shown
in [Mio12], it is possible to translate any PCTL-formula to a pLµ�⊕-formula. To
this end, Mio introduces some qualitative operators on formulas that concern
probability thresholds.
The property whether a pLµ�⊕-formula φ has some positive probability, denoted
by P>0(φ), and the property whether a pLµ�⊕-formula φ almost always happens,
denoted by P=1(φ), are defined as follows:

P>0(φ) = µX.(φ�X) = µX.(φ⊕X)

P=1(φ) = νX.(φ ·X) = νX.(φ	X)
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Although both options of the above operators are mathematically equivalent,
the rightmost option converges more quickly when using the iterative method.
Semantically, for any state s the operators can be defined as:

JP>0(φ)Ke(s) =

{
1 if JφKe(s) > 0
0 else

JP=1(φ)Ke(s) =

{
1 if JφKe(s) = 1
0 else

The duals of these operators, P=0(φ) and P<1(φ), can be expressed as P=1(φ)
and P>0(φ) respectively. To compare the probabilities of two pLµ�⊕-formulas,
Mio introduces the operators ≥ and > on pLµ�⊕-formulas defined as:

φ1 ≥ φ2 = P=1(φ1 ⊕ φ2)

φ1 > φ2 = P>0(φ1 	 φ2)

Semantically, for any state s they are defined as:

Jφ1 ≥ φ2Ke(s) =

{
1 if Jφ1Ke(s) ≥ Jφ2Ke(s)
0 else

Jφ1 > φ2Ke(s) =

{
1 if Jφ1Ke(s) > Jφ2Ke(s)
0 else

If we take φ2 = λ, we can write the operators as P≥λ(φ1) and P>λ(φ1) respec-
tively instead, which are very similar to the operators that PCTL adds. Since
all introduced operators in this section can be considered as qualitative as they
return either 0 (false) or 1 (true), we can say that a formula φ that has such a
qualitative operator as topmost operator either holds in a state s if JφKe(s) = 1
or does not hold in a state s if JφKe(s) = 0.

However, these operators need not be the topmost operator. For instance, the
formula µX.(〈a〉X ∨P=1(φ)) expresses the probability that in a path of a-steps
eventually φ will hold. Another interesting example is the comparison between
the formulas φ1 = P≥λ(νX.〈a〉X) and φ2 = νX.P≥λ(〈a〉X).
The formula φ1 holds in a state s if the probability of an infinite a-path start-
ing in s is at least λ. The meaning of φ2 is somewhat more involved. Let
f(X) = JP≥λ(〈a〉X)Ke, from which follows that fα = JP≥λ(〈a〉fα−1)Ke for some
ordinal α. Then fα(s) for some state s can only hold if there is an a-step pos-
sible from s such that with probability at least λ fα−1(s′) holds for successor
state(s) s′. This shows that φ2 holds iff there is an infinite a-path where each
step occurs with probability at least λ. Note that the formula φ1 is stricter than
φ2, since φ1 requires the product of all probabilistic choices to be at least λ.
See figure 13 for some examples PLTSs where either φ2 holds or both φ1 and
φ2 hold.

6.7 Game semantics of pLµ�
⊕

In the past subsections we have tried to find the intuition of pLµ�⊕ by looking
at the logic itself, but it is also possible to transform a pLµ�⊕ model checking
problem to another type of problem. In Mio’s PhD thesis [Mio12], a great part
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(a) A PLTS for which both φ1 and φ2
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(b) A PLTS for which only φ2 holds.

a
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(c) A PLTS for which only φ2 holds. The constant µ is a value in the interval [0, 1].

Figure 13: Some example PLTSs that show the semantics of φ1 and φ2 as defined
in section 6.6 and the difference between the two.

of the work consists of defining a type of parity game that corresponds to a
model checking problems in pLµ�⊕. This type of parity game is called the 2 1

2 -
player meta-parity game and is a generalisation of the 2 1

2 -player parity game
[Zie04]. We will explain this type of parity game and give a translation from a
pLµ�⊕ model checking problem which can both be found in [Mio12].
A 2 1

2 -player meta-parity game is a game played between two players named even
(�) and odd (�) and a third ”player” called nature (◦). The game is played on a
graph of vertices and edge by placing a token on a vertex and then moving this
token around. How this token is moved depends on what vertex it is on. There
are five types of vertices.

• Regular vertices owned by player even or odd. If the token is on such a
vertex, the player that owns the vertex may move the token to a successor
vertex.

• Vertices owned by nature. If the token is on such a vertex, the token
moves to a successor vertex depending on a probability distribution.

• Branching vertices owned by player even or odd. If the token is on such a
vertex, the token is copied to each successor vertex, resulting in a number
of independent subgames.

Each vertex also has a priority, which will be explained later.
Formally, let V� be the set of regular vertices owned by player even, V� be the
set of regular vertices owned by player odd, V◦ be the set of vertices owned by
nature (◦), B� be the set of branching vertices owned by player even, B� be the
set of branching vertices owned by player odd and V = V� ∪ V� ∪ V◦ ∪B� ∪B�.
Then a 2 1

2 -player meta-parity game is defined as follows:
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Definition 6.1. A 2 1
2 -player meta-parity game is a graph defined as a tuple

〈V�, V�, V◦, B�, B�, P r, E,E◦〉 where Pr : V → N assigns a priority to a vertex,
E : V \ V◦ → 2V assigns to a vertex owned by a player its successors where
E(v) 6= ∅ for every v ∈ V and E◦ : V◦ → (V → [0, 1]) assigns to a vertex owned
by nature a probability distribution over its successors.

A play in this game is the path that the token takes through the graph. A play
is winning for a player according to the parity condition:

Definition 6.2. Let π be a play and let infp(π) be the set of priorities that occur
infinitely often in π. Then a play π is winning for player even if min(infp(π)) is
even. A play π is winning for player odd if min(infp(π)) is odd.

Both players even and odd can form a strategy σ� and σ� that says, given a
vertex, to what successor vertex they will move the token. If we only look at
plays that follow these strategies, we could say that a strategy is winning in a
vertex if all plays from the vertex are winning.
However, a play may also cross vertices owned by nature. Since nature moves
the token according to a probability distribution, such a play (following a strat-
egy) can only happen with a certain probability. Therefore instead of a winning
strategy we have an optimal strategy: the strategy that results in the greatest
probability of winning in a vertex. For branching vertices however this works
differently. The probability that a player wins in a branching vertex owned
by him/herself equals the probability that player even wins any subgame. The
probability that a player wins in a branching vertex owned by the other player
equals the probability that player even wins all subgames.
For the formal definitions of plays, strategies and winning we refer to [Mio12].

Mio also gives a translation from a pLµ�⊕ model checking problem to a 2 1
2 -

player meta-parity game. This translation is based on the translation of McIver
and Morgan from the sublogic pLµ to a 2 1

2 -player parity game [MM06].
Th translation is as follows. Every vertex v ∈ V \ V◦ owned by a player is a
tuple (s, φ′) where s ∈ S is a state and φ′ is a subformula of φ. Every vertex
v ∈ V◦ owned by nature is either a tuple (s, φ′) or a tuple (δ, φ′) where s ∈ S is
a state, δ : S → [0, 1] is a probability distribution over states and φ′ is a sub-
formula of φ. In the resulting 2 1

2 -player meta-parity game player even aims to
maximize the probability that φ happens whereas player odd aims to minimize
the probability that φ happens.
The translation below will be somewhat informal; for a more formal translation
see Mio’s PhD thesis [Mio12].

Let φ be a closed pLµ�⊕-formula and M = 〈S, s0, A, T 〉 a PLTS. Then we can
create a 2 1

2 -player meta-parity game by creating a vertex for every s ∈ S and
every subformula of φ. Below we will give the properties of each vertex (s, φ′)
in a case distinction on φ′. Note that in case a vertex owned by a player only
has one successor vertex it does not matter which player owns the vertex.

• If φ′ = 0, the vertex (s, φ′) is a regular vertex won by player odd. This
can be modeled by giving it an odd priority and by giving it itself as its
only successor.

• If φ′ = 1, the vertex (s, φ′) is a regular vertex won by player even. This
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can be modeled by giving it an even priority and by giving it itself as its
only successor.

• If φ′ = λ, the vertex (s, φ′) is owned by nature. From this vertex the
token moves to vertex (s, 1) with probability λ and to vertex (s, 0) with
probability 1− λ.

• If φ′ = X, the vertex (s, φ′) is a regular vertex with only one successor,
namely the vertex (s, σX.φ′′) where σX.φ′′ is a subformula of φ.

• If φ′ = φ1 ∧ φ2, the vertex (s, φ′) is a regular vertex owned by player odd,
who can choose to move the token to (s, φ1) or (s, φ2).

• If φ′ = φ1∨φ2, the vertex (s, φ′) is a regular vertex owned by player even,
who can choose to move the token to (s, φ1) or (s, φ2).

• If φ′ = φ1 · φ2, the vertex (s, φ′) is a branching vertex owned by player
odd, who can move the token to create two subgames starting in (s, φ1)
and (s, φ2).

• If φ′ = φ1 � φ2, the vertex (s, φ′) is a branching vertex owned by player
even, who can move the token to create two subgames starting in (s, φ1)
and (s, φ2).

• If φ′ = φ1	φ2, the vertex (s, φ′) is a branching vertex owned by player odd,
who can move the token to create subgames starting in additional vertices
(s,Bφ1,φ2

n ) for all n ∈ N, where Aφ1,φ2

0 = φ′, Bφ1,φ2

0 = φ′′, Aφ1,φ2

i+1 = Ai�Bi
and Bφ1,φ2

i+1 = Ai ·Bi for i ∈ N.

• If φ′ = φ1 ⊕ φ2, the vertex (s, φ′) is a branching vertex owned by player
even, who can move the token to create subgames starting in additional
vertices (s,Aφ1,φ2

n ) for all n ∈ N, where Aφ1,φ2

0 = φ′, Bφ1,φ2

0 = φ′′, Aφ1,φ2

i+1 =

Ai �Bi and Bφ1,φ2

i+1 = Ai ·Bi for i ∈ N.

• If φ′ = φ1 +λ φ2, the vertex (s, φ′) is a vertex owned by nature. From this
vertex the token moves to vertex (s, φ1) with probability λ and to vertex
(s, φ2) with probability 1− λ.

• If φ′ = 〈a〉φ′′, we distinguish between two cases. If there is no a-step
possible from s, the vertex (s, φ′) is the same as the vertex (s, 0). Else, the
vertex (s, φ′) is a regular vertex owned by player even, who can choose to
move the token to any of the additional vertices (δ, φ′′) for all (s, a, δ) ∈ T .
These vertices (δ, φ′′) are owned by nature and from such a vertex the
token moves to vertex (s′, φ′′) with probability δ(s′).

• If φ′ = [a]φ′′, we distinguish between two cases. If there is no a-step
possible from s, the vertex (s, φ′) is the same as the vertex (s, 1). Else, the
vertex (s, φ′) is a regular vertex owned by player odd, who can choose to
move the token to any of the additional vertices (δ, φ′′) for all (s, a, δ) ∈ T .
These vertices (δ, φ′′) are owned by nature and from such a vertex the
token moves to vertex (s′, φ′′) with probability δ(s′).

• If φ′ = µX.φ′′, the vertex (s, φ′) is a regular vertex with an odd priority
and only one successor, namely (s, φ′′).
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• If φ′ = νX.φ′′, the vertex (s, φ′) is a regular vertex with an even priority
and only one successor, namely (s, φ′′).

The priorities can then be given to the vertices such that Pr((s, φ)) ≤ Pr((s, φ′))
if φ′ is a subformula of φ for any s ∈ S, while adhering to the odd/even restric-
tions for 0, 1, µX.φ′′ and νX.φ′′.
Note that if we would take a finite PLTS, the resulting 2 1

2 -player meta-parity
game may be countably infinite due to the translation for the operators 	 and
⊕. If these operators are not present in φ however, the resulting 2 1

2 -player
meta-parity game is finite too.
In Mio’s PhD thesis, he shows the equivalence between the result of checking
a pLµ�⊕-formula φ on a PLTS 〈S, s0, A, T 〉 and the probability that player even
wins vertex (s0, φ) when using optimal strategies in the 2 1

2 -player meta-parity
game that results from the above translation.
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7 An equation system approach for solving pLµ�⊕
model checking problems

Let 〈S, s0, A, T 〉 be a PLTS and Var a set of variables in S → [0, 1]. As men-
tioned before, the syntax of a pLµ�⊕-formula is given by

φ ::= λ |X | φ∧φ | φ∨φ | φ·φ | φ�φ | φ	φ | φ⊕φ | φ+λφ | 〈a〉φ | [a]φ | µX.φ | νX.φ

where λ ∈ [0, 1] is a probability, X ∈ Var is a variable and a ∈ A is an action.
The semantics JφKe(s) of a pLµ�⊕-formula φ checked on state s ∈ S given an
environment e : Var→ (S → [0, 1]) is defined as

JλKe(s) = λ

JXKe(s) = e(X)(s)

Jφ1 ∧ φ2Ke(s) = Jφ1Ke(s) u Jφ2Ke(s)
Jφ1 ∨ φ2Ke(s) = Jφ1Ke(s) t Jφ2Ke(s)
Jφ1 · φ2Ke(s) = Jφ1Ke(s) · Jφ2Ke(s)

Jφ1 � φ2Ke(s) = Jφ1Ke(s) � Jφ2Ke(s)
Jφ1 	 φ2Ke(s) = Jφ1Ke(s) 	 Jφ2Ke(s)
Jφ1 ⊕ φ2Ke(s) = Jφ1Ke(s) ⊕ Jφ2Ke(s)

Jφ1 +λ φ2Ke(s) = λ · Jφ1Ke(s) + (1− λ) · Jφ2Ke(s)

J〈a〉φKe(s) =
⊔

(s,a,δ)∈T

{
∑
s′∈S

δ(s′) · JφKe(s′)}

J[a]φKe(s) =
l

(s,a,δ)∈T

{
∑
s′∈S

δ(s′) · JφKe(s′)}

JµX.φKe(s) =
l
{f ∈ [0, 1]S | JφKe[X:=f ] ≤̇ f}(s)

JνX.φKe(s) =
⊔
{f ∈ [0, 1]S | f ≤̇ JφKe[X:=f ]}(s)

From these semantics we can easily derive a procedure that recurses over the
structure of the formula and directly applies the semantics of the formula to the
model. See algorithm 2 for pseudo code.

For solving a fixpoint formula this procedure uses the iterative method. This
method however does not terminate in the worst case due to the interval [0, 1]
being infinite. To tackle this we set a maximum number of iterations MAX-
ITER, but this will lead to an approximation of the real answer. By adjusting
this maximum number of iterations we can trade precision for running time. The
precision of this approximation however is not easy to determine. As shown in
section 6.4.1, the progression of the function values during the iterative method
can vary a lot, strongly dependent on the operators used on the pLµ�⊕-formula
and on the model the formula is checked on.
In the rest of this section we will introduce a way of solving pLµ�⊕ model checking
problems exactly inspired by the work of Mader [Mad97].
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Algorithm 2 naiveChecker(s, φ)

if φ == λ then
return λ

else if φ == X then
return e(X)(s)

else if φ == φ1 ∧ φ2 then
return naiveChecker(s, φ1) u naiveChecker(s, φ2)

else if φ == φ1 ∨ φ2 then
return naiveChecker(s, φ1) t naiveChecker(s, φ2)

else if φ == φ1 · φ2 then
return naiveChecker(s, φ1) · naiveChecker(s, φ2)

else if φ == φ1 � φ2 then
return naiveChecker(s, φ1) � naiveChecker(s, φ2)

else if φ == φ1 	 φ2 then
return naiveChecker(s, φ1) 	 naiveChecker(s, φ2)

else if φ == φ1 ⊕ φ2 then
return naiveChecker(s, φ1) ⊕ naiveChecker(s, φ2)

else if φ == φ1 +λ φ2 then
return naiveChecker(s, φ1) +λ naiveChecker(s, φ2)

else if φ == 〈a〉φ′ then
if ¬∃δ : (s, a, δ) ∈ T then

return 0
else

return
⊔

(s,a,δ)∈T
{ ∑
s′∈S

δ(s′) · naiveChecker(s′, φ′)}

end if
else if φ == [a]φ′ then

if ¬∃δ : (s, a, δ) ∈ T then
return 1

else
return

d

(s,a,δ)∈T
{ ∑
s′∈S

δ(s′) · naiveChecker(s′, φ′)}

end if
else if φ == µX.φ′ or φ = νX.φ′ then

if φ == µX.φ′ then
newV alues = λs.0

else
newV alues = λs.1

end if
i = 0
while e(X) 6= newV alues and i < MAXITER do
e(X) = newV alues
for s′ ∈ S do
newV alues(s′) = naiveChecker(s′, φ′)

end for
i = i+ 1

end while
end if
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7.1 Real equation systems

Since the lattice 〈[0, 1],≤〉 is a complete lattice and since all operators we have
defined on this lattice are monotone, we can create an instance of a FES on
this lattice. We will call such a FES over the lattice 〈[0, 1],≤〉 a Real Equation
System (with independent product and truncated sum), denoted as RES�⊕.

Definition 7.1. Let Var be a set of variables in [0, 1], then the syntax of a
RES�⊕ E is defined as

E ::= ε | (µX = f) E | (νX = f) E

where ε denotes the empty RES�⊕, X ∈ V ar and f : [0, 1]|V ar| → [0, 1] is a real
formula generated by the syntax

f ::= λ | X | f u f | f t f | f · f | f � f | f 	 f | f ⊕ f | f +λ f

where λ ∈ [0, 1] and X ∈ V ar.

For simplicity of notation we will denote multiple applications of f u f , f t f
and f +λ f as

d

i

fi,
⊔
i

fi and
∑
i

ci · fi respectively. Note that for the latter∑
i

ci = 1 by definition of +λ. Since the RES�⊕ is an instance of the FES, all

definitions and lemmas on FESs defined in section 4.2 also hold for the RES�⊕.
A RES�⊕ can be used to represent a model checking problem in pLµ�⊕, just like
a BES can be used to represent a model checking problem in Lµ. See below
for the translation from a model checking problem in pLµ�⊕ to a RES�⊕. Note
that we will define this translation only for pLµ�⊕-formulas of the form σX.φ.
However, any pLµ�⊕-formula can be given in this form while keeping equivalent
semantics by prepending a fixpoint operator with a fresh variable.

Definition 7.2. Let M = 〈S, s0, A, T 〉 be a PLTS and σX.φ a pLµ�⊕-formula.

Then the RES�⊕ ER(σX.φ) corresponding to the model checking problem of
σX.φ on M is created as follows:

ER(λ) = ε

ER(X) = ε

ER(φ1 ∧ φ2) = ER(φ1) ER(φ2)

ER(φ1 ∨ φ2) = ER(φ1) ER(φ2)

ER(φ1 · φ2) = ER(φ1) ER(φ2)

ER(φ1 � φ2) = ER(φ1) ER(φ2)

ER(φ1 	 φ2) = ER(φ1) ER(φ2)

ER(φ1 ⊕ φ2) = ER(φ1) ER(φ2)

ER(φ1 +λ φ2) = ER(φ1) ER(φ2)

ER(〈a〉φ) = ER(φ)

ER([a]φ) = ER(φ)

ER(σX.φ) = ((σXs = E′R(s, φ)) for each s ∈ S) ER(φ)
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E′R(s, λ) = λ

E′R(s,X) = Xs

E′R(s, φ1 ∧ φ2) = E′R(s, φ1) uE′R(s, φ2)

E′R(s, φ1 ∨ φ2) = E′R(s, φ1) tE′R(s, φ2)

E′R(s, φ1 · φ2) = E′R(s, φ1) ·E′R(s, φ2)

E′R(s, φ1 � φ2) = E′R(s, φ1) � E′R(s, φ2)

E′R(s, φ1 	 φ2) = E′R(s, φ1) 	 E′R(s, φ2)

E′R(s, φ1 ⊕ φ2) = E′R(s, φ1) ⊕ E′R(s, φ2)

E′R(s, φ1 +λ φ2) = E′R(s, φ1) +λ E′R(s, φ2)

E′R(s, 〈a〉φ) =
⊔

(s,a,δ)∈T

{
∑
s′∈S

δ(s′) ·E′R(s′, φ)}

E′R(s, [a]φ) =
l

(s,a,δ)∈T

{
∑
s′∈S

δ(s′) ·E′R(s′, φ)}

E′R(s, σX.φ) = Xs

Similar to the translation EB to a BES as in definition 4.8, the translation ER

creates |S| equations for each fixpoint operator. This is because we create a
RES�⊕ over the lattice 〈[0, 1],≤〉 from a logic over the lattice 〈[0, 1]S , ≤̇〉. This
will also introduce a new set of variables V ar′ of type [0, 1], such that V ar′ =
{Xs | X ∈ V ar, s ∈ S}. Since this translation does not completely adhere to
the usual translation E as in definition 4.4, we cannot use lemma 4.1 to claim
the correctness of the solution. Instead, we claim the correctness of the solution
of a RES�⊕ with the theorem below.

Theorem 7.1. Let 〈S, s0, A, T 〉 be a PLTS and σX.φ be a pLµ�⊕-formula. Then
for any variable X ∈ V ar, state s ∈ S and environments e : V ar → (S → [0, 1])
and e′ : V ar′ → [0, 1]

JσX.φKe(s) = ([ER(σX.φ)]e′)(Xs)

if e(Y )(t) = e′(Yt) for all free variables Y ∈ V ar in σX.φ and all t ∈ S.

Proof. We will take a similar approach as Mader used to prove theorem 5.1
in her PhD thesis on the correctness of the solution of the BES (in this thesis
theorem 4.1). We will first translate a pLµ�⊕ model checking problem to a FES

on the lattice 〈[0, 1]S , ≤̇〉 which we will then to a RES�⊕.
Let σX.φ be a pLµ�⊕-formula and M = 〈S, s0, A, T 〉 a PLTS. Then we first
translate the model checking problem of σX.φ on M to a FES on the lattice
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〈[0, 1]S , ≤̇〉 using translations Eµ and E′µ as defined below:

Eµ(λ) = ε

Eµ(X) = ε

Eµ(φ1 ∧ φ2) = Eµ(φ1) Eµ(φ2)

Eµ(φ1 ∨ φ2) = Eµ(φ1) Eµ(φ2)

Eµ(φ1 · φ2) = Eµ(φ1) Eµ(φ2)

Eµ(φ1 � φ2) = Eµ(φ1) Eµ(φ2)

Eµ(φ1 	 φ2) = Eµ(φ1) Eµ(φ2)

Eµ(φ1 ⊕ φ2) = Eµ(φ1) Eµ(φ2)

Eµ(φ1 +λ φ2) = Eµ(φ1) Eµ(φ2)

Eµ(〈a〉φ) = Eµ(φ)

Eµ([a]φ) = Eµ(φ)

Eµ(σX.φ) = (σX = E′µ(φ)) Eµ(φ)

E′µ(λ) = λ

E′µ(X) = X

E′µ(φ1 ∧ φ2) = E′µ(φ1) ∧E′µ(φ2)

E′µ(φ1 ∨ φ2) = E′µ(φ1) ∨E′µ(φ2)

E′µ(φ1 · φ2) = E′µ(φ1) ·E′µ(φ2)

E′µ(φ1 � φ2) = E′µ(φ1)�E′µ(φ2)

E′µ(φ1 	 φ2) = E′µ(φ1)	E′µ(φ2)

E′µ(φ1 ⊕ φ2) = E′µ(φ1)⊕E′µ(φ2)

E′µ(φ1 +λ φ2) = E′µ(φ1) +λ E′µ(φ2)

E′µ(〈a〉φ) = 〈a〉E′µ(φ)

E′µ([a]φ) = [a]E′µ(φ)

E′µ(σX.φ) = X

Note that this translation is the same as the usual translation E as in definition
4.4. Therefore, we can use lemma 4.1 to see that JσX.φKe(s) = ([Eµ(σX.φ)]e)(X)(s).
Next we translate from this FES to a RES�⊕ using translations EM and E′M as
defined below

EM (ε) = ε

EM ((σX = f) E) = ((σXs = E′M (s, f)) for each s ∈ S) EM (E)
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E′M (s, λ) = λ

E′M (s,X) = Xs

E′M (s, f1 ∧ f2) = E′M (s, f1) uE′M (s, f2)

E′M (s, f1 ∨ f2) = E′M (s, f1) tE′M (s, f2)

E′M (s, f1 · f2) = E′M (s, f1) ·E′M (s, f2)

E′M (s, f1 � f2) = E′M (s, f1) � E′M (s, f2)

E′M (s, f1 	 f2) = E′M (s, f1) 	 E′M (s, f2)

E′M (s, f1 ⊕ f2) = E′M (s, f1) ⊕ E′M (s, f2)

E′M (s, f1 +λ f2) = E′M (s, f1) +λ E′M (s, f2)

E′M (s, 〈a〉f) =
⊔

(s,a,δ)∈T

{
∑
s′∈S

δ(s′) ·E′M (s′, f)}

E′M (s, [a]f) =
l

(s,a,δ)∈T

{
∑
s′∈S

δ(s′) ·E′M (s′, f)}

Let Eµ be an equation system created using the translation Eµ. What is left to
prove is the correctness of the translation EM . To do so, we first prove that the
translation E′M preserves the semantic value of a formula f checked on a state
s as shown below.

Lemma 7.1. For any formula f that can occur as the right hand side in an
equation in Eµ, any state s ∈ S, any environment e : V ar → (S → [0, 1]) and
any environment e′ : V ar′ → [0, 1]:

JfKe(s) = JE′M (s, f)Ke′

if e(X)(s′) = e′(Xs′) for all variables X ∈ V ar in f and all states s′ ∈ S.

Proof. We will prove this using structural induction on f with the induction
hypothesis (IH) that the above holds for the subformulas fi of f .

• If f = λ: JfKe(s) = λ = JE′M (s, f)Ke′

• If f = X: JfKe(s) = e(X)(s) = e′(Xs) = JE′M (s, f)Ke′

• If f = f1∧f2: JfKe(s) = Jf1Ke(s)uJf2Ke(s)
IH
= JE′M (s, f1)Ke′uJE′M (s, f2)Ke′ =

JE′M (s, f)Ke′

• If f = f1∨f2: JfKe(s) = Jf1Ke(s)tJf2Ke(s)
IH
= JE′M (s, f1)Ke′tJE′M (s, f2)Ke′ =

JE′M (s, f)Ke′

• If f = f1 ·f2: JfKe(s) = Jf1Ke(s)·Jf2Ke(s)
IH
= JE′M (s, f1)Ke′ ·JE′M (s, f2)Ke′ =

JE′M (s, f)Ke′

• If f = f1�f2: JfKe(s) = Jf1Ke(s)�Jf2Ke(s)
IH
= JE′M (s, f1)Ke′�JE′M (s, f2)Ke′ =

JE′M (s, f)Ke′

• If f = f1	f2: JfKe(s) = Jf1Ke(s)	Jf2Ke(s)
IH
= JE′M (s, f1)Ke′	JE′M (s, f2)Ke′ =

JE′M (s, f)Ke′

• If f = f1⊕f2: JfKe(s) = Jf1Ke(s)⊕Jf2Ke(s)
IH
= JE′M (s, f1)Ke′⊕JE′M (s, f2)Ke′ =

JE′M (s, f)Ke′
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• If f = f1 +λ f2: JfKe(s) = Jf1Ke(s) +λ Jf2Ke(s)
IH
= JE′M (s, f1)Ke′ +λ

JE′M (s, f2)Ke′ = JE′M (s, f)Ke′

• If f = 〈a〉f1: JfKe(s) =
⊔

(s,a,δ)∈T
{ ∑
s′∈S

δ(s′)·Jf1Ke(s′)} IH=
⊔

(s,a,δ)∈T
{ ∑
s′∈S

δ(s′)·

JE′M (s, f1)Ke′} = JE′M (s, f)Ke′

• If f = [a]f1: JfKe(s) =
d

(s,a,δ)∈T
{ ∑
s′∈S

δ(s′)·Jf1Ke(s′)} IH=
d

(s,a,δ)∈T
{ ∑
s′∈S

δ(s′)·

JE′M (s, f1)Ke′} = JE′M (s, f)Ke′

To prove the correctness of the translation EM we need to prove that for all
bound variables X ∈ V ar in Eµ, states s ∈ S and environments e : V ar → (S →
[0, 1]) and e′ : V ar′ → [0, 1]

([Eµ]e)(X)(s) = ([EM (Eµ)]e′)(Xs)

if e(Y )(t) = e′(Yt) for all free variables Y ∈ V ar in Eµ and all t ∈ S.
We will prove this using structural induction.
Base case: Since there are no bound variables in the empty equation system, it
trivially holds that

([ε]e)(X)(s) = ([EM (ε)]e′)(Xs)

Inductive step: Let all states in S be indexed by an 0 ≤ i ≤ n where n = |S|−1.
Then we need to prove for bound variables X ∈ V ar in (σY = f) E that

([(σY = f) E ]e)(X)(si) = ([EM ((σY = f) E)]e′)(Xsi)

if e(Z)(t) = e′(Zt) for all free variables Z ∈ V ar in (σY = f) E and all t ∈ S.
The corresponding induction hypothesis (IH) is

([E ]e)(X ′)(si) = ([EM (E)]e′)(X ′si)

for all bound variables X ′ if e(Z)(t) = e′(Zt) for all free variables Z ∈ V ar in E
and all t ∈ S.

Applying the semantics of the solution (definition 4.5) gives

([(σY = f)E ]e)(X)(si) = ([E ]e[Y := σY.f([E ]e)])(X)(si)

Now let Proj be a projection function that given a tuple (x0, . . . xn) returns a
function that maps state si to xi for all i such that Proj(x0, . . . xn)(si) = xi.
Then we vectorize the fixpoint formula σY.f([E ]e), creating a variable of type
[0, 1] for every state, which results in:

σY.f([E ]e) = Proj(σ(Ys0 , . . . Ysn).(f([E ]e)(s0), · · · f([E ]e)(sn)))

Note that with f([E ]e)(si) we mean the same as JfK[E]e(si). Then to be able to
apply lemma 7.1, we need to have that ([E ]e)(X)(s′) = ([EM (E)]e′)(Xs′) for all
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variables X ∈ V ar in f and all states s′ ∈ S, which is true by the induction
hypothesis. This means that we can apply lemma 7.1 to transform the above to

Proj(σ(Ys0 , . . . Ysn).(E′M (s0, f)([EM (E)]e′), · · ·E′M (sn, f)([EM (E)]e′)))

Applying theorem 2.3 will create fixpoint formulas y0, . . . yn such that the above
is equivalent to Proj((y0, . . . yn)). When we fill this in in the original problem
we get:

([E ]e[Y := Proj((y0, . . . yn))])(X)(si)

Then to be able to apply the induction hypothesis, we need to find an environ-
ment e′′ such that e(Z)(t) = e′′(Zt) for all free variables Z ∈ V ar in E and all
t ∈ S. By assumption, we already know this is the case for all free variables
except Y if we pick e′′ to be e′. To make this true for Y too, we adjust e′ to
e′[Ys0 := y0, . . . Ysn := yn]. Then applying the induction hypothesis with this
adjusted e′ we get

([EM (E)]e′[Ys0 := y0, . . . Ysn := yn])(X)(si)

which is equivalent to the desired ([EM ((σY = f)E)]e′)(Xsi). Since it is very
tedious work to show this last step in the general case, we will show how it
works using an example:

Example 7.1. Let S = {s0, s1}. For simplicity of notation, let f ′i = E′M (si, f).
Then

([E ]e[Y := Proj(σ(Ys0 , Ys1).(f ′0([EM (E)]e′), f ′1([EM (E)]e′)))])(X)(si)

{Thrm 2.3} = ([E ]e[Y := Proj((y0, y1))])(X)(si)

where

y1 = σYs1 .f
′
1([EM (E)]e′[Ys0 := σYs0 .f

′
0([EM (E)]e′)])

{Def 4.5} = σYs1 .f
′
1([(σYs0 = f ′0) EM (E)]e′)

y0 = σYs0 .f
′
0([EM (E)]e′[Ys1 := y1])

= σYs0 .f
′
0([EM (E)]e′[Ys1 := σYs1 .f

′
1([(σYs0 = f ′0) EM (E)]e′)])

Then applying the induction hypothesis gives

([EM (E)]e[Ys0 := y0, Ys1 := y1])(X)(si)

{Def 4.5} = ([(σYs0 = f ′0) EM (E)]e[Ys1 := y1])(X)(si)

{Def 4.5} = ([(σYs1 = f ′1) (σYs0 = f ′0) EM (E)]e)(X)(si)

{Lemma 4.5} = ([(σYs0 = f ′0) (σYs1 = f ′1) EM (E)]e)(X)(si)

= ([EM ((σY = f) E)]e)(X)(si)

which is the desired result.

Since we have proven correctness of both translations, we know that JσX.φKe(s) =
([EM (Eµ(σX.φ))]e)(Xs). Since EM (Eµ(σX.φ)) = ER(σX.φ), we can therefore
conclude that JσX.φKe(s) = ([ER(σX.φ)]e′)(Xs).

Since closed pLµ�⊕-formulas do not contain any free variables, we can simplify
the above theorem for such pLµ�⊕-formulas.
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Corollary 7.1. Let 〈S, s0, A, T 〉 be a PLTS and σX.φ be a closed pLµ�⊕-
formula. Then for any variable X ∈ V ar, state s ∈ S and environments
e : V ar → (S → [0, 1]) and e′ : V ar′ → [0, 1]

JσX.φKe(s) = ([ER(σX.φ)]e′)(Xs)

7.2 Solving a RES�
⊕

As described in [Mad97] and in section 4.2.1, a BES can be solved by means of
an algorithm similar to Gauss elimination. We can apply the same method for
RES�⊕’s, but with a solving step instead of an elimination step. See algorithm
3 for the pseudo code given a RES�⊕ E = (σX1 = f1) ... (σXn = fn).

Algorithm 3 SolveRES(E)

1: for i := n downto 0 do
2: solve Xi = fi for Xi

3: for j := 0 to i− 1 do
4: fj = fj [Xi := fi]
5: end for
6: end for

The correctness of substitution in SolveRES follows from the correctness of sub-
stitution in GaussElimination for BESs (algorithm 1) as described in [Mad97]
as lemma 6.3, since the corresponding proof does not rely on the lattice used.
We will give this lemma and its proof below

Lemma 7.2. Let E1, E2 and E3 be RES�⊕’s, let σ1X1 = f , σ1X1 = f ′ and
σ2X2 = g be real equations such that f ′ = f [X2 := g] and let e be some
environment. Then

[E1 (σ1X1 = f) E2 (σ2X2 = g) E3]e = [E1 (σ1X1 = f ′) E2 (σ2X2 = g) E3]e

Proof. Using lemma 4.4 it is only necessary to check that

[(σ1X1 = f) E2 (σ2X2 = g) E3]e = [(σ1X1 = f ′) E2 (σ2X2 = g) E3]e

We define

[E ]e = [(σ1X1 = f) E2 (σ2X2 = g) E3]e = e1

[E ′]e = [(σ1X1 = f ′) E2 (σ2X2 = g) E3]e = e2

We will first show that e1 fulfills both conditions of lemma 4.2 for the solution
of E ′ to show that e1 ≤E′ e2 since e2 is the solution of E ′.
Condition 1: show that f ′(e1) = e1(X1). By definition of the solution we already
know that f(e1) = e1(X1) and g(e1) = e1(X2). Using this we can derive that

e1(X1) = f(e1)

= f(e1[X2 := e1(X2)])

= f(e1[X2 := g(e1)])

= f ′(e1)
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Condition 2: show that [E2 (σ2X2 = g) E3]e1 = e1. This follows from lemma
4.3 using that [E ]e = e1.
In the same way we can prove that e2 fulfills both conditions of lemma 4.2 for
the solution of E , from which it follows that e2 ≤E e1. Since E and E ′ have
the same sequence of fixpoint signs, we can say that e2 ≤E e1 iff e2 ≤E′ e1 by
definition 4.6.
Since we have shown that both e1 ≤E′ e2 and e2 ≤E′ e1, we can conclude that
e1 = e2.

With solving X = f for X we mean that we want to find a function f ′ such
that X = f ′ and f ′ does not contain X. If f already did not contain X, we
simply have that f ′ = f . If f does contain X, we need to do some additional
steps. For this case we will discuss two possibilities.

The straightforward way, directly taken from the definition of a RES�⊕, is by
fixpoint iteration. Let σX = f , then we can “solve” it by computing σX.f(X)
iteratively. However, as was the case in the naive algorithm, this will not al-
ways terminate due to the infinite size of the interval [0, 1] of real numbers. For
instance, while computing the solution of the equation νX = X + 1

2
0 the ap-

proximated solution will be halved every iteration, starting at 1, never actually
reaching the fixpoint 0. The iterative method is also very inefficient, since the
syntactic representation of the approximands may grow every iteration due to
variables that remain in the solution.

However, since f is a function on [0, 1], one can see f as a function on the
field of reals. Then computing the fixpoints of f is the same as finding all in-
tersections of f with the line f(X) = X. This is done by solving the equation
X = f(X) for X. By theorem 2.1, the collection of intersections is a complete
lattice. In case σ = µ, the desired solution of X = f(X) is the bottom of this
lattice of intersections, otherwise it is the top.
Actually solving the equation X = f(X) is however not always so trivial, espe-
cially when the operators ·, �, 	 and ⊕ are involved. Below we will discuss
solving methods for sub-equation systems of a RES�⊕:

• RES which is a RES�⊕ without the operators ·, �, 	 and ⊕

• RES� which is a RES�⊕ without the operators 	 and ⊕

• RES⊕ which is a RES�⊕ without the operators · and �

Note that translating a pLµ-formula results in a RES, a pLµ�-formula in a
RES� and a pLµ⊕-formula in a RES⊕.
The solving method for RES�⊕’s is a combination of the described methods.

Solving a RES-equation

To solve X = f(X), rewrite each normal formula to a normal form.

Lemma 7.3. Let E be a RES. Then for each equation (σX = f) in E the real
formula f can be rewritten to the following normal form:⊔

i

{
l

j

{
∑
k

pijk ·Xijk + pij}}
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Proof. We will prove this using structural induction on f .
Base case: If f = λ for some λ ∈ [0, 1] or if f = X for some x ∈ V ar then f is
in normal form.
Inductive step assuming that f1 and f2 are real formulas in normal form:

• If f = f1 t f2 then f is in normal form.

• If f = f1 u f2 then by the induction hypothesis f1 =
⊔
i

fi and f2 =
⊔
j

fj .

Then by distributivity of u over t we can change f to
⊔
i

⊔
j

(fiufj), which

is in normal form.

• If f = f1 +λ f2 then by the induction hypothesis f1 =
⊔
i

d

j

fij and f2 =⊔
k

d

l

fkl. Then by lemma 2.4 we can change f to
⊔
i

⊔
k

d

j

d

l

(fij +λ fkl)

which is in normal form.

In practice we may also consider the possibility that the multiary operators
⊔

and
d

are unary, which allows normal forms from which these operators can be
omitted.
As mentioned before, the solution of X in the equation σX = f equals σX.f(X).
If we first rewrite f to normal form, we can use lemmas 2.3a, 2.3b and 2.5 to
conclude that

σX.f(X) =
⊔
i

{
l

j

{σX.fij(X)}}

where all fij are of the form∑
k

pijk ·Xijk + pij .

where
∑
k

pijk + pij ≤ 1 for all i and j.

The reason that we can use lemma 2.5 is as follows. This lemma requires
functions f1 and f2 in µX.(f1(X) t f2(X)) and νX.(f1(X) u f2(X)) to have
intervals as prefixpoints and postfixpoints such that both prefixpoints intervals
overlap and both postfixpoints intervals overlap. In the case where it is used
above the functions f1 and f2 are either of the form

∑
k

pijk · Xijk + pij or
d

j

{∑
k

pijk ·Xijk + pij}. For both forms we can use the same argument. Both f1

and f2 are total and they only intersect the fixpoint line (f(X) = X) once. Due
to this, the prefixpoints are intervals that always start at 0 and the postfixpoints
are intervals that always end at 1 and are therefore sure to overlap.
Now all that is left to get the solution of X is to solve σX.fij(X) for every i
and j. We differentiate between two cases, which are visualized in figure 14:

• fij(X) = X: In this case every p ∈ [0, 1] is a fixpoint. Therefore if σ = µ
the solution equals 0, else if σ = ν the solution equals 1.
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(b) Case fij(X) 6= X

Figure 14: The two cases for fij(X). The dashed line is the line of all fixpoints.

• fij(X) 6= X: Since fij(X) is linear only one fixpoint can exist. If fij(X)
does not contain X, the solution is simply fij(X). If fij(X) does contain
X we can solve X = fij(X) using simple linear algebra. Let fij(X) =∑
k

pijk · Yijk + p ·X + pij , then the solution f ′ij equals
∑
k

pijk
1−p · Yijk +

pij
1−p .

After resolving the fractions the solution f ′ij is in the same form as fij .

Now we can replace every fij with its solution f ′ij resulting in⊔
i

{
l

j

{σX.fij(X)}} =
⊔
i

{
l

j

{f ′ij}}

which is the solution of the original equation σX = f .

Solving a RES�-equation

If we want to create a normal form while the operators · and � are included
we need to flatten them according to their definitions, since both operators
do not distribute over one another. If we do this, the right hand side of an
equation may contain products of variables. This may cause the solution of this
equation to be a fraction with variables in the denominator. Since this solution
will be substituted, we need to be able to solve equations with variables in
the denominator as well. However, the solution(s) of such an equation may
contain square roots, so similarly we need to be able to solve square roots with
variables inside as well. Now already the problem arises that most operators
on real numbers do not distribute over the square root or vice versa, so it is
not possible to come up with a normal form. Other than that, it is not clear
whether the conclusion of lemma 2.5 also holds in this situation.
Therefore, the solving method for RES’s cannot be used when considering the
operators · and �. The solution of an equation does still exist, but to find it
one might need external equation solving libraries. Even then, the definition
of a RES� has to be altered to allow operators as division and square root for
the equations system to remain a well-defined RES� during execution of the
SolveRES algorithm.
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Solving a RES⊕-equation

If we want to create a normal form while the operators 	 and ⊕ are included
we need to flatten them according to their definitions too, since both operators
do not distribute over one another. But then a different problem arises. If we
would create a normal form of the form

⊔d
fij like we did for RES’s, the range

of the formulas fij may not be [0, 1]. One application of the operator 	 results
in a fij = f1 + f2 − 1, which has the range [−1, 1]. Similarly, one application of
the operator ⊕ results in a fij = f1 + f2, which has the range [0, 2]. Multiple
applications of these operators will create fij ’s with further increased ranges.
These subformulas fij with increased ranges may not have a fixpoint in the
domain [0, 1].
It could even be that a fij does not have a fixpoint at all. For instance the
equation µX = X ⊕ f = (X + f) u 1 would result in solving µX.(X + f), but
this only has a solution if f = 0.
Therefore, the solving method described for RES’s cannot be used when con-
sidering the operators 	 and ⊕. The solution of an equation does still exist,
but again one might need to use external equation solving libraries to find it.

Worst case running time complexity

The worst case running time complexity of SolveRES is similar to the worst
case running time complexity of Gauss-elimination for BESs. Every equation
σX = f needs to be solved only once, which for RES’s can be done in polynomial
time in the size of f when using the method explained above. A substitution
can be done in constant time, but substitutions will make real formulas grow
exponentially in size in the worst case. Therefore, the number of substitutions
may be exponential in the size of the RES�⊕, which causes the whole SolveRES
algorithm to be exponential in the worst case.

However, like with Gauss-elimination, we can improve the absolute running
time of SolveRES by applying simplifications to the real formulas to make them
smaller. Such simplifications can be done after bringing a formula to normal
form and after substituting. Possible simplifications are for instance:

• Resolve zero values, such as 0 · f = 0.

• Resolve unit values, such as 0 + f = f and 1 · f = f .

• Apply operators, for instance 1
2 · 1

4 = 1
8 or 1

2X + 1
4X = 3

4X.

• Remove terms from min and max that are definitely worse, for instance
min( 1

2X + 1
3 ,

1
4X + 1

3 ) = 1
4X + 1

3 .

The latter is done as follows. Let f1 =
∑
aiXi +

∑
bjYj + c and f2 =∑

diXi +
∑
ejZj + f be real formulas, where the Xi represent the variables

f1 and f2 have in common and the Yj and Zj represent variables f1 and f2 do
not have in common. Then f1 is definitely less than f2 if both ai ≤ di for all i
and

∑
bj + c ≤ f .

See below for an example of using this equation system approach to solve a
model checking problem.

56



1
3

R

1
3

1
2

1
2

1
6

L

1
3

R

1
3

1
2

1
2

1
6

1
6

L

1
3

R

1
3 1

21
2

1
6

L

lost lost

won

11

1

1
6

1
6

s t u

v vw

Figure 15: The PLTS of a 3x1 board game as described in section 6.4.3. The
actions moveLeft and moveRight are abbreviated to L and R respectively. Note
that the state u occurs twice. These are the same state, but split into two to
make it visually more pleasing.

Example 7.2. As an example for the creation and solving of a RES we will
pick the board game example as described in section 6.4.3, but then with a
3x1 board. The corresponding PLTS is shown in figure 15, which we will refer
to as M. Again we want to check the formula φ = µX.((〈moveLeft〉X ∨
〈moveRight〉X)∨ 〈won〉1), which checks what the probability is of winning the
game when playing optimally.
When we apply the translation ER as in definition 7.2 to formula φ and model
M, we get the following RES after applying the simplifications described above:

µXs = max(
1

6
Xt +

1

2
Xv +

1

3
Xw,

1

2
Xt +

1

6
Xv +

1

3
Xw)

µXt = max(
1

2
Xs +

1

6
Xu +

1

3
Xw,

1

6
Xs +

1

2
Xu +

1

3
Xw)

µXu = max(
1

2
Xt +

1

6
Xv +

1

3
Xw,

1

6
Xt +

1

2
Xv +

1

3
Xw)

µXv = 0

µXw = 1

Now we can extract the solution by applying the SolveRES algorithm as de-
scribed in algorithm 3 combined with the solving method for RES’s. After each
solving and substitution step we will apply the simplifications described above.
The equation of Xw does not contain Xw on the right-hand side, so we only need
to do the distribution step. The same can be said for Xv. After substituting
both we get the following RES:

µXs =
1

2
Xt +

1

3

µXt = max(
1

2
Xs +

1

6
Xu +

1

3
,

1

6
Xs +

1

2
Xu +

1

3
)

µXu =
1

2
Xt +

1

3
µXv = 0

µXw = 1
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Likewise, the right-hand side of the equation of Xu does not contain Xu, so we
only need to do the can substitute upwards resulting in the following RES:

µXs =
1

2
Xt +

1

3

µXt = max(
1

2
Xs +

1

12
Xt +

7

18
,

1

6
Xs +

1

4
Xt +

1

2
)

µXu =
1

2
Xt +

1

3
µXv = 0

µXw = 1

The right-hand side of the equation for Xt does contain Xt itself, so we will need
to solve it. Using the solving method for pLµ, we need to solve the equations

Xt =
1

2
Xs +

1

12
Xt +

7

18
which results in Xt =

6

11
Xs +

14

33

Xt =
1

6
Xs +

1

4
Xt +

1

2
which results in Xt =

2

9
Xs +

2

3

Substituting these solutions in the equation gives µXt = max( 6
11Xs+ 14

33 ,
2
9Xs+

2
3 ). Then after the substitution step we get the following RES:

µXs = max(
3

11
Xs +

18

33
,

1

9
Xs +

2

3
)

µXt = max(
6

11
Xs +

14

33
,

2

9
Xs +

2

3
)

µXu =
1

2
Xt +

1

3
µXv = 0

µXw = 1

Lastly, we need to solve the equation for Xs. Again using the solving method
for pLµ, we have to solve the equations

Xs =
3

11
Xs +

18

33
which results in Xs =

3

4

Xs =
1

9
Xs +

2

3
which results in Xs =

3

4

Substituting these solutions back in the equation gives µXs = 3
4 . Note however

that state s in the given PLTS M is actually not the initial state. To get the
value for the initial state t, we can substitute the solution of Xs downwards.
This is allowed since this solution does not contain any variables. If we would
do this iteratively from top to bottom for every variable we will end up with
the following RES:

µXs =
3

4

µXt =
5

6

µXu =
3

4
µXv = 0

µXw = 1
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which gives the solution of φ for every state. Since t is the initial state, we can
conclude that the probability of winning the game on a 3x1 board equals 5

6 .
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8 Experiments and improvements

In this section we will evaluate the performance of the RES�⊕ solving algorithm
SolveRES (algorithm 3 in section 7.2) by applying it to some use cases and re-
flect on these results and the algorithm itself. Afterwards we will try out some
changes to the SolveRES algorithm to improve the running time. Lastly we will
shortly experiment with a small addition to the logic to let the algorithm be
able to return more than a probability.
Most models will be represented in the mCRL2 format [GM14]. The mCRL2
models can be found in appendix A and using the mCRL2 tool-set [CGK+13]
they can be transformed to PLTSs. Note that some actions in these models
carry data parameters. If such an action appears in a pLµ�⊕-formula without
parameters, we mean to check for this action with any values for its parameters.
We will apply and analyze both the naive (algorithm 2) and the SolveRES al-
gorithm (algorithm 3), which have been implemented in Python. The source
code of the implementation can be found at https://github.com/Valo13/

plmuChecker. The naive algorithm is set to have an unlimited number of iter-
ations so that it stops when the difference between two iterations is less than
Python is able to represent with a double. Therefore the resulting value of the
naive algorithm may be an approximation, although with a difference to the
exact result that is not respresentable. For the SolveRES algorithm we will
only consider pLµ-formulas, since we have not given a complete solving method
when the operators ·, �, 	 and/or ⊕ are involved.
The timing results will be given in seconds unless appended by a letter (m for
minutes, h for hours) and rounded to a significance of two. Every timing is the
average of 10 runs, except when the timing surpasses 1 hour in which case it is
only run once. The timings of the RES approach are split into two timings: the
running time of the creation of the RES denoted by CreateRES and the running
time of the SolveRES algorithm.
The resulting values are taken from the result of the SolveRES algorithm. They
are rounded to a significance of three, except when the answer can be repre-
sented exactly in fewer digits.
The experiments are run on a PC running Windows 10 with a i7-7700K (4.2GHz)
processor and 16 GB DDR4 RAM.

8.1 Use cases

Below we introduce five use cases and show the results of applying the naive and
the SolveRES algorithm to check meaningful pLµ-formulas on these use cases.

Ant on a grid

The ant on a grid problem [Ant13] is as follows. We have a grid of 8 by 8 lines,
with an ant located on the intersection of the third horizontal and fifth vertical
line. The ant takes a step to a neighbouring intersection (either up, down left
or right) where all possibilities have equal probability ( 1

4 ). If the ant moves to
a horizontal boundary line it survives, if the ant moves to a vertical boundary
line it dies. Then the question is “What is the probability that the ant will
survive?”. See figure 16 for a visualization of the starting point of the ant on
grid problem.
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Figure 16: The starting point of the ant on grid problem where the ant is
denoted with a red dot. Note that it actually does not matter whether the ant
starts from the third horizontal line from the top or bottom and from the fifth
vertical line from the left or right.

The mCRL2 model of this problem is taken from the mCRL2 tool-set and is
given in appendix A.1. The action step models the ant making a step, the ac-
tion live models that the ant has survived and the action dead models that the
ant has died. The question “What is the probability that the ant will survive?”
can be answered by the formula φs = µX.(〈step〉X ∨ 〈live〉1). Similarly the
question “What is the probability that the ant will die?” can be answered with
the formula φd = µX.(〈step〉X ∨ 〈dead〉1). The probability of the remaining
option for the ant, namely never reaching a boundary line, can be answered
with the formula φi = νX.([step]X ∧ [live]0 ∧ [dead]0). See the table below for
the timings and resulting values.

Naive CreateRES SolveRES Result

φs 0.20 0.024 2.2 0.586
φd 0.20 0.023 2.2 0.414
φi 0.77 0.026 2.2 0

As one can see from the timings, the SolveRES algorithm is quite a lot slower
than the naive algorithm, which is something that we will see more often. An-
other interesting thing to note is that while the naive algorithm has a greater
running time for φi compared to the other formulas, The SolveRES algorithm
does not have this difference at all (except slightly in CreateRES ). This shows
that the naive algorithm’s running time heavily depends on the size of the for-
mula, whereas this is not the case for SolveRES. The latter can be explained by
the fact that one can only do one action in a state, which makes it possible to
simplify the semantics of the box operators of the other actions already during
CreateRES.
The probability for the ant to survive is greater than the probability to die which
makes sense when looking at the initial position: the ant is closer to a boundary
where it survives than to a boundary where it dies while the probability to move
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in any of the four directions is uniformly distributed. The probability for the
ant to reach no border equals 0. This is due to the fact that the steps are made
probabilistically and that all traces that do not reach a border are infinite. The
probability of any such trace happening is ( 1

4 )∞ = 0 that is, it will almost never
happen that the ant will not end up at a border.
The dual of φi, the probability that the ant will reach any border, can also be
created using φs and φd by saying that φs or φd should happen. Since surviving
and dying are two mutually exclusive events this combination should be made
with the ⊕ operator, resulting in φi ≡ φs ⊕ φd.

Airplane seats

In the airplane seats problem, a number N of people need to board a plane with
N seats. The first passenger however has forgotten his seat number, so he/she
decides to sit on a random seat. The following passengers, one by one, will
sit on their own seat, but if it is already taken they will sit on a random seat
instead. Now the question is “What is the probability that the last passenger
will sit on his own seat?”.
The mCRL2 model of this problem is taken from the mCRL2 tool-set and is
given in appendix A.2. The action enter models arriving at the plane, the
action enter plane models entering the plane and picking a seat and the ac-
tion last passenger has his own seat shows whether the last passenger has his
own seat using a boolean argument. The pLµ-formula that answers the above
question is

µX.(〈enter〉X∨〈enter plane〉X∨〈last passenger has his own seat(true)〉1)

See the table below for the size of the PLTS 〈S, s0, A, T 〉, the timings and the
resulting value for different values of N .

N |S| |T | Naive CreateRES SolveRES Result

2 8 7 0.00014 0.00038 0.00041 0.5
5 32 31 0.0013 0.0020 0.0083 0.5

10 72 71 0.0056 0.0049 0.039 0.5
25 192 191 0.036 0.013 0.27 0.5
50 392 391 0.15 0.027 1.1 0.5
75 592 591 0.33 0.041 2.5 0.5

100 792 791 0.59 0.055 4.5 0.5

The generated PLTS is a linear acyclic chain where every shackle is a passenger
arriving and picking a seat. This linearity can be seen in the number of states
and transitions shown in the above table where |S|, |T | = Θ(N) (|S| and |T | are
linear in N) and |T | = |S| − 1 (one transition for each state except the final
state). Note that due to these properties, the naive algorithm will terminate
within Θ(|S|) iterations with an exact result. Also, as we order the states from
start to end, the SolveRES algorithm will only substitute solutions without
variables. Because of this no equation will grow during solving, which is very
beneficial for the running time.
The running times of the two algorithms are also shown as plots in figure 17.
This data shows that although the sizes of the PLTSs are linear in N , the run-
ning time complexity of both algorithms on these PLTSs seems to be quadratic
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Figure 17: Running times of the naive and the SolveRES algorithm on the
airplane seats use case for different number of passengers N .

in N . For the naive algorithm this is because every iteration a new value for X
is calculated for each state. For the SolveRES algorithm this is likely due to the
substitution step that for each solved equation tries to substitute the result in
all equations above. The running time of CreateRES seems to behave linearly
in N .
Note that the resulting probability is independent of N : the probability that the
last passenger will sit on his own seat is independent of the number of passengers
that need to board the plane and it equals 0.5.

Board game

We had already defined the board game example in section 6.4.3, but we will
repeat it here again.
The game is played on a WxH board of squares. One starts at the bottom row
on the middle square and from each square one can choose to move left or right.
When moving left, with probability 1

2 one will actually move to the square on
the left, with probability 1

3 to the square in front and otherwise to the square
to the right. Moving to the right is symmetric. If one moves off the board on
the side the game is lost and if one moves off the board on the top the game
is won. Note the similarity to the ant on grid problem. In the board game
example however the player has a choice that influences the result. See figure 9
in section 6.4.3 for a board where W = H = 3.
See figures 10 (section 6.4.3) and 15 (section 7.2) for some example PLTSs that
model this board game. The action moveLeft models moving left, the action
moveRight models moving right, the action won models winning the game and
the action lost models losing the game. The states are ordered from left to right,
bottom to top except that the losing and the winning state are the second last
and last state respectively.
We will consider two pLµ-formulas. The formula

φw = µX.(〈moveLeft〉X ∨ 〈moveRight〉X ∨ 〈won〉1)
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answers “What is the probability to win when choosing optimally?” and the
formula

φi = νX.([moveLeft]X ∧ [moveRight]X ∧ 〈moveRight〉1)

answers “What is the probability to be always able to do a step when choosing
optimally?”. Note that in the latter formula the part 〈moveRight〉1 is enough
to test whether a step is possible, since if the action moveLeft is possible the
action moveRight is possible as well (and vice versa). See the tables below for
the timings and resulting values for different W and H for the formulas φw and
φi respectively.

W H Naive CreateRES SolveRES Result

1 1 0.000040 0.00032 0.000088 0.333
1 3 0.00012 0.000089 0.00031 0.0370
1 5 0.00024 0.0015 0.00056 0.00412
3 1 0.0018 0.0013 0.0028 0.833
5 1 0.0033 0.0022 0.014 0.968
3 3 0.0053 0.0039 0.020 0.528
5 5 0.019 0.010 2.7 0.771

W H Naive CreateRES SolveRES Result

1 1 0.000040 0.00037 0.000076 0
1 3 0.00015 0.00093 0.00029 0
1 5 0.00027 0.0016 0.00054 0
3 1 0.020 0.0013 0.0018 0
5 1 0.042 0.0022 0.0044 0
3 3 0.053 0.0040 0.010 0
5 5 0.19 0.011 0.079 0

From the timing results we can see a few interesting things. Although the
PLTSs for the vertical (1x3, 1x5) and horizontal (3x1, 5x1) boards have the
same amount of states (respectively), solving the above formulas for a verti-
cal board is around 8 times faster than for a horizontal board. This has to do
with the transitions between the states: In case of a vertical board the states are
connected linearly, while the horizontal board has transitions back and forth be-
tween the states, allowing cyclical behaviour. These extra dependencies cause
the naive algorithm to need more iterations and the SolveRES algorithm to
create bigger equations while substituting. Note that for φi with the naive al-
gorithm it is even around 100 times slower. This however mainly has to do with
how doubles are represented in Python and with the resulting value. When
the program is approaching 0 it represents the value in the form x · 10y, which
makes it possible to show even smaller changes than when approaching 0.5 for
instance. As example, for the 5x1 board the value of X in the initial state in
the second last iteration equals 5 · 10−324.
Due to this the SolveRES algorithm is faster than the naive algorithm. However
when the board becomes bigger, as can be seen for the 5x5 board, the running
time of the SolveRES algorithm increases faster than the running time of the
naive algorithm likely due to the exponential worst case running time of the
SolveRES algorithm.
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In the resulting values one can see what effect it has to be able to choose what
direction to go. For the 3x3 and the 5x5 board the starting position is closer
to the losing sides than to the winning side. Also, when making a move there
is a higher probability to move towards a losing side than to the winning side.
Nevertheless, the probability of winning is greater than 0.5, because by choosing
the optimal moves, which are to move towards the losing side that is furthest
away, the player can try to stay away from the losing sides as much as possible.

Yahtzee

Another type of game we will look into is a simplified version of the yahtzee
game. This yahtzee game is played with three three-sided dice. A basic turn
consist of two steps: throw the dice and write down a score. One can choose
three options when writing down a score, one for each possible outcome of a die
(1, 2 or 3), where the value of the score is the sum of the dice of the chosen
value. For instance, if one throws 〈2, 3, 3〉 he/she can choose to write down a
score of 0 for number 1, a score of 2 for number 2 or a score of 6 for number 3. It
is not allowed to fill in a score for a number that already has a score. Therefore,
the game consists of three turns. The final score is the sum of all three filled in
scores. Note that the minimum possible score is 0 and the maximum possible
score is 18.
However, we may also allow the player to hold and rethrow after a throw, which
means that the player is allowed to put some dice to the side and rethrow the
others. This helps the player to get a more favorable score.
In appendix A.3 one can find two mCRL2 models: a model M0 of the yahtzee
game without hold and rethrow and a modelM1 that allows to hold and rethrow
once per turn. The number of states |S| of the resulting PLTS is 2550 and 4899
respectively and the number of transitions |T | is 3042 and 21834 respectively.
Note that both resulting PLTSs are tree structured (acyclic). All states are
ordered in a breadth first search manner. The action throw models throwing
the dice, the action write models writing down a score, the action hold models
holding dice, the action label labels the final states of the game with the final
score and the action endOfGame shows that we have reached such a final state.
The question we are interested in is ”What is the probability that a player will
end up with a final score of i to j when choosing optimally?”. The choices for
the player in this game are for what number to fill in the score and which dice
to hold. The pLµ-formula φi,j that answers the above question is defined as

µX.(〈throw〉X ∨ 〈write〉X ∨ 〈hold〉X ∨
j∨
k=i

〈label(k)〉1)

See the tables below for the timings and resulting values of φi,j for different i, j
when checked on the models M0 and M1 respectively.

Naive CreateRES SolveRES Result

φ18,18 0.10 0.26 71 0.000305
φ17,18 0.12 0.29 71 0.00213
φ0,0 0.10 0.27 71 0.128
φ1,18 0.47 0.61 71 1
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Naive CreateRES SolveRES Result

φ18,18 1.1 31 9.8h 0.0168
φ17,18 1.1 30 9.9h 0.0519
φ0,0 1.1 31 9.9h 0.585
φ1,18 2.2 32 9.9h 1

When looking at the timings, one can see the influence of the size of the formula.
When increasing j − i from 0 to 1 (φ18,18 to φ17,18) there is a small increase in
running time for the naive algorithm. When increasing j− i from 0 to 17 (φ18,18

to φ1,18), which effectively results in 5 times more ∨-operands, the running time
at least doubles.
The resulting values seem to contradict if one looks at the last two formulas:
the sum of the probability to end up with a score of zero and a non-zero score
add up to something greater than one. This however does not contradict, be-
cause ”choosing optimally” is different between the formulas. With choosing
optimally is meant that one chooses such that the resulting value of the formula
is maximized. That means that for φ1,18 the player makes the choices to avoid
a final score of 0 whereas for φ0,0 the player makes the choices to actually get a
final score of 0.
When one compares the resulting values between the different models, one can
see how much the ability to hold and rethrow improves the probability of achiev-
ing the score the player is aiming at. FromM0 toM1, the probability of getting
the maximum score is more than 50 times greater and the probability of getting
the minimum score is more than 4 times greater.

Bounded retransmission protocol

The bounded retransmission protocol is a protocol used to send a file through
lossy channels. The file is first split in N chunks, which will be sent separately.
Each chunk is sent from the sender to the receiver over a channel K, which has
a probability of 1

10 to lose the chunk. When the receiver receives a chunk, it
will send the sender an acknowledgement via channel L, which has a probability
of 1

20 to lose the acknowledgement. When either one of the losses occurs, the
sender will retry sending the chunk. However, the sender will only retry sending
a chunk up to M number of times. If this M is exceeded, the transmission has
failed and the transmission will start over again from scratch.
The mCRL2 model of this protocol is taken from the mCRL2 tool-set and is
given in appendix A.4. Note that a number of actions has been hidden by
renaming them to tau. Out of the actions that are not hidden the action c aF
models the sender sending a chunk to channel K (the start of a send attempt),
the action success frame models that a chuck has been successfully sent and
acknowledged, the action c success file models that the complete file has been
sent successfully and the action fail transmission models that the maximum
number of tries has been reached and thus that the process starts over. In the
mCRL2 model the number M is represented by MAX.
There are three formulas that we will check on this model. The formula

φ1 = 〈tau〉〈c aF〉µX.(〈tau〉X ∨ 〈success frame〉〈c aF〉X ∨ 〈c success file〉1)
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answers “What is the probability that the file will be sent successfully without
losing any chunk?”, the formula

φ2 = µX.(〈tau〉X ∨ 〈success frame〉X ∨ 〈c aF〉X ∨ 〈c success file〉1)

answers “What is the probability that the file will be sent successfully without
losing a chunk more than M times?” and the formula

φ3 = µX.νY.(〈fail transmission〉X ∨ 〈tau〉Y ∨ 〈success frame〉Y
∨ 〈c aF〉Y ∨ 〈c success file〉1)

answers “What is the probability that the file will be sent successfully after a
finite number of times starting over?”. See the tables below for the number of
states |S|, the number of transitions |T |, the timings and resulting values for
different values of N and M for φ1, φ2 and φ3 respectively. Note that |S| = |T |
since all states in this model only have a single outgoing transition.

N M |S| = |T | Naive CreateRES SolveRES Result

2 4 79 0.0050 0.0058 0.081 0.731
3 4 117 0.011 0.0087 0.18 0.625
4 4 155 0.019 0.012 0.31 0.534
4 3 127 0.015 0.0095 0.20 0.534
4 2 99 0.012 0.0074 0.12 0.534

N M |S| = |T | Naive CreateRES SolveRES Result

2 4 79 0.016 0.0052 0.038 1.00
3 4 117 0.036 0.0077 0.082 1.00
4 4 155 0.055 0.010 0.14 1.00
4 3 127 0.041 0.0084 0.094 0.998
4 2 99 0.025 0.0065 0.056 0.988

N M |S| = |T | Naive CreateRES SolveRES Result

2 4 79 5.4 0.0062 0.15 1
3 4 117 16 0.0092 0.43 1
4 4 155 32 0.012 0.95 1
4 3 127 27 0.0099 0.66 1
4 2 99 21 0.0078 0.41 1

The timings per algorithm when compared to the state space do not come as
a surprise. More states implies a higher running time. However, it does seem
that the size of the file N has a greater effect on the state space (and therefore
the running time) than the maximum number of retransmissions M .
What is quite interesting however is that for formula φ3 the running time of the
naive algorithm is far greater than the running time of SolveRES. This is due
to the nested alternating fixpoint that occurs in φ3. The naive algorithm needs
to (iteratively) compute a new value for Y for every iteration of X, while the
SolveRES algorithm only needs to solve one equation per variable and state.
The resulting values of φ2 when compared to those of φ1 show the impact of
allowing a chunk to be retransmitted. In all given examples the probability
that the file will arrive successfully is almost equal to 1. The resulting values
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of φ3 show that if we would also allow complete retries after failed attempts to
send the file, then the probability of the file never arriving at the receiver equals
zero. The only behaviour that makes that the file can never arrive is infinite
and contains probabilistic behaviour and therefore it happens with probability
0. However, since this behaviour does exist, we should say that it will almost
never happen that the file will never arrive at the receiver.

8.2 Improvements to the RES approach

As one can see in the above tests, the naive algorithm is usually faster than
the SolveRES algorithm. However, the naive algorithm is quite unpredictable
because sometimes it (theoretically) will need an infinite number of iterations.
Practically, this will lead to an approximation of the solution within a finite
number of iterations (although the difference with the exact solution is not
representable on the system). Since the SolveRES algorithm gives the exact
solution and has a more predictable running time, we would rather make use of
this algorithm. In this section we will give some improvements to the SolveRES
algorithm that may lower its running time. Note however that these do not
change the worst case running time complexity.

8.2.1 Locality

The SolveRES algorithm computes the global solution: it solves all equations.
However, it is not always the case that all equations need to be solved in a RES
to get the solution you are looking for. If so, we can instead solve the local
solution by only solving the equations in the RES that are required for the final
solution to the model checking problem.
We will give two examples based on the use cases where computing the local
solution is favorable. The local RES is created iteratively by creating an equa-
tion for each variable in a queue. Each variable that occurs on the right-hand
side of the resulting equation is put in the queue if it wasn’t already. Initially,
the queue contains the variable Xs0 when checking pLµ-formula σX.φ on PLTS
〈S, s0, A, T 〉. To properly compare the solving times of the global and local RES,
the local RES will be sorted with the same ordering as the global RES after
creation. The sorting time is excluded from the timing results. In the timing
tables we will denote with CreateRES-L the creation of the local RES and with
SolveRES-L the SolveRES algorithm that computes the solution of the local
RES.

For the first example we will consider the board game. The pLµ formula that
will be checked on the board game is

µX.(〈moveLeft〉〈moveLeft〉X ∨ 〈moveLeft〉〈moveRight〉X
∨〈moveRight〉〈moveLeft〉X ∨ 〈moveRight〉〈moveLeft〉X ∨ 〈won〉1)

which answers the question “What is the probability to win with an even num-
ber of steps when choosing optimally?”. The requirement about an even number
of steps is enforced in the formula by only checking the winning condition after
every two steps. Because the game board has square tiles, the player cannot
stop on all squares when always doing two steps at a time. Therefore, only
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Figure 18: A 3x3 and a 5x5 board of the board game example. The player is
not able to stop on any of the squares coloured grey if the player always takes
two steps at a time.

about half of all states (and thus only about half of all equations) need to be
considered. See figure 18 for some examples that show what squares cannot be
stopped on. See the table below for the timings and resulting values.

Naive CreateRES SolveRES CreateRES-L SolveRES-L Result

3x3 0.013 0.034 0.024 0.016 0.0067 0.226
5x5 0.043 0.11 0.32 0.057 0.12 0.287

As the second example we consider the yahtzee game. When we introduced this
use case we created a formula φ0,0 with which one can check the probability of
having a final score of zero. However, we can check this differently. To get a
score of zero, the write actions should write a score of 0 for each number. This
way of checking can be done with the pLµ-formula

µX.(〈throw〉X∨〈write(1, 0)〉X∨〈write(2, 0)〉X∨〈write(3, 0)〉X∨〈hold〉X∨〈endOfGame〉1)

By using parameters for the write action, we enforce that only paths are taken
that write a score of 0. Therefore, a big part of the state space, namely the
trees of states after write actions with a nonzero score, does not need to be
considered when model checking the above formula. Whereas the global RES’s
of the above formula checked on the modelsM0 andM1 have respectively 2550
and 4899 equations, the local RES’s have respectively 286 and 556 equations,
which is about 9 times less. See the table below for the timings and resulting
values.

Naive CreateRES SolveRES CreateRES-L SolveRES-L Result

M0 0.14 0.26 53 0.031 0.70 0.128
M1 2.5 31 9.8h 3.7 9.2m 0.585

As would be expected, the running time of both the CreateRES-L and the
SolveRES-L algorithm are a lot faster than the CreateRES and the SolveRES
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algorithm respectively. Actually, since the SolveRES and SolveRES-L algo-
rithms are worst case exponential in the size of the RES, the ratio between the
running times of both algorithms is far greater than the ratio between the size
of the global RES and the local RES. The creation of the RES’s on the other
hand is linear to the number of states, so the ratio between the running times
of CreateRES and CreateRES-L is about equal to the ratio between the size of
the created global RES and the created local RES.

8.2.2 Dependency graph

The substitution step in the SolveRES algorithm is rather simplistic. If an
equation (σX = f) is solved, it searches in all equations (σY = g) above for any
appearance of the variable X in g to substitute it for f . However, usually only a
small number of these equations actually has a g that contains the variable X. If
such a g contains X, we say the Y depends on X. We can make the substitution
step more efficient if we would create a dependency graph beforehand. Then we
can query the dependency graph to immediately get all equations where substi-
tutions are possible.
Note however that this dependency graph needs to be maintained while solving
the RES. Whenever an equation (σX = f) is solved, X is no longer dependent
on itself. More importantly, if for an equation (σY = g) the variable(s) X in g
are substituted by f , Y no longer depends on X and instead Y now additionally
depends on all variables that occur in f . Also, it is possible for dependencies to
disappear due to simplifications.
To show the improvement in running time this method brings, we will use the
ant on grid and the airplane seats examples. The CreateRES algorithm that also
computes the dependency graph is denoted with CreateRES-D. The SolveRES
algorithm using the dependency graph is denoted with SolveRES-D. See the ta-
ble below for the timings of both the SolveRES and the SolveRES-D approach
for the ant on grid problem.

CreateRES SolveRES CreateRES-D SolveRES-D

φs 0.024 2.2 0.025 1.4
φd 0.023 2.2 0.026 1.4
φi 0.026 2.2 0.027 1.4

See the table below for the timings of both the SolveRES and the SolveRES-D
approach for the airplane seats problem. See also figure 19 for a plot of the
running times of SolveRES-D.

N CreateRES SolveRES CreateRES-D SolveRES-D

2 0.00014 0.00041 0.00039 0.00019
5 0.0020 0.0083 0.0021 0.0016

10 0.0049 0.039 0.0056 0.0041
25 0.013 0.27 0.014 0.011
50 0.027 1.1 0.029 0.022
75 0.041 2.5 0.043 0.033

100 0.055 4.5 0.058 0.045

Since the CreateRES-D algorithm now additionally creates a dependency graph
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Figure 19: Running times of the SolveRES-D algorithm on the airplane seats
use case for different number of passengers N .

when compared to CreateRES, the running time of CreateRES-D is slightly
higher. However, when comparing the running times of SolveRES-D with
SolveRES, one can see that this bit of extra creation time is certainly worth
it. For the solving algorithms the ant on grid problem shows that using the
dependency graph results in a 1.5 times lower running time. The airplane seats
problem, where the substitution step dominated the running time complexity,
shows that this complexity has reduced by a factor of N making it linear in N
instead.

8.2.3 Ordering of equations

As mentioned before, the worst case running time complexity stems from the
possible exponential growth of equations due to substitutions. Something that
heavily influences the growth of equations is the order in which the equations
are solved. We will illustrate this with an example.

Example 8.1. We will use the board game example where we want to check the
formula φw (probability of winning when choosing optimally) on a 3x3 board.
We consider two equivalent RES’s to solve this problem as shown in figure 20:

• The RES that is created using the global approach, ordering the equations
by variable and then state number.

• A RES that is created using the local approach without sorting afterwards,
ordering the equations in a breadth first search manner.

The running time for solving the first RES is already given in section 8.1, namely
0.2 seconds. The time needed by SolveRES for solving the second RES however
exceeds half a day. This is mainly caused by the position of equation µX9 = 0.
In the first RES, this equation is one of the first equations to be substituted
upwards, which results in quite some reductions in equation size early on in the
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solving process. Actually, the size of each equation never surpasses the size it
started with.
In the second RES however, the equation µX9 = 0 appears halfway. Before this
equation is reached, the equations below and above have already grown greatly.
When substituting the solution of X5 upwards, which is a maximum of 16 terms
each consisting of 3 summands, the right-hand side of X4 is a maximum of 124
terms each consisting of 4 summands. Each maximum term in this right-hand
side contains the variable X5, which needs to be substituted for the solution of
X5.

This example shows how important the ordering of equations is for the running
time. In this section we will give a method of ordering the equations such that
the RES can be solved more efficiently. For this method we will also use the
two improvements mentioned previously.
However, we are not free to order all equations any way we would want. Using
lemma 4.5, we may only swap consecutive equations with the same fixpoint sign.
Therefore, we will divide the equations into blocks, such that if two consecutive
equations have the same fixpoint sign, they are in the same block. Then using
lemma 4.5 we are allowed to order all equations within a block any way we want.

The creation of the local RES, including the partitioning into blocks and the cre-
ation of the dependency graph of all equations in the RES is done by CreateRES-
O. The ordering and solving of the RES is done by SolveRES-O. The pseudo
code of SolveRES-O is given in algorithm 4, where E and depGraph are the
RES and dependency graph created by CreateRES-O respectively. The func-
tion tarjan(G) refers to Tarjan’s algorithm [Tar72] on graph G and the function
ROBFS(G, I) orders all vertices in G on descending depth by assigning a depth
to all vertices in a breadth first search fashion, where all vertices in I have depth
0. We will explain the ordering method below.

Due to the limitations on how we can order the equations, we order the equa-
tions per block, from the last block to the first. The ordering is done in two
layers.
First we create the dependency graph of all equations in this block. Then using
Tarjan’s algorithm [Tar72], we partition the vertices of this graph into strongly
connected components (SCC’s), such that if two vertices u and v are in an SCC,
there is a path from u to v and a path from v to u such that only vertices in the
SCC are visited. Due to this circular dependency within a SCC, it is possible
to completely solve all equations within the SSC if there are no dependencies
going out of the SSC. Such an SCC always exists, because if we would make
a graph with the SCC’s as vertices, this graph is always acyclic. By ordering
the SCC’s in reverse topological order, we will always consider an SCC when all
its outgoing dependencies have already been processed. Fortunately, Tarjan’s
algorithm will return the SCC’s in this order.
Secondly, the equations within the SCC are ordered using breadth first search,
where either the vertex corresponding to the initial equation has depth 0 or the
vertices in the SCC that have an incoming dependency from vertices outside
this SCC have depth 0. Note these two cases cannot overlap. Since we use the
local RES, the initial variable will be in the very last SCC that we will consider,
which cannot have incoming dependencies. The equations in the SCC are then
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Figure 20: Two equivalent RES’s that solve φw on a 3x3 board.
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Algorithm 4 SolveRES-O(E , depGraph)

1: for block in reversed(E .blocks) do
2: blockDepGraph := dependency graph of all equations in block
3: sccs := tarjan(blockDepGraph)
4: for scc in sccs do
5: if block is the last block and scc the last SCC to consider then
6: scc := ROBFS(scc, initialV ertex)
7: else
8: scc := ROBFS(scc, vertices in scc that have an incoming depen-

dency in depGraph from a vertex outside scc)
9: end if

10: for v in scc do
11: (σX = f) := v.equation
12: if v has a self loop in depGraph then
13: f := solve f for X
14: update depGraph
15: end if
16: for u in parents of v in depGraph do
17: (σ′Y = g) := u.equation
18: substitute all X in g with f
19: update depGraph
20: end for
21: remove v from depGraph
22: end for
23: end for
24: end for
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Figure 21: The graph on the left is the dependency graph of the RES given in
figure 20. Each equation has a vertex represented by the variable on its left
hand side. The graph on the right shows the SCC’s of this graph in red. In
both graphs the vertex X9 is given twice to make it visually more pleasing.

solved and substituted in order of descending depth. This way the equations
within the SCC are solved in order towards the final solution, which keeps the
number of substitutions low.
Note that we remove a vertex from the dependency graph when it has been
processed. If we would keep them in, there may still remain dependencies to
this vertex from vertices that have not been processed yet. This would lead to
extra substitutions that are not of any use for the answer to the original problem.

As an example of the ordering method, we will use the RES of the 3x3 board
as shown in figure 20. The dependency graph that corresponds to this RES is
shown in figure 21 on the left. When we partition this graph in SCC’s, we get
the SCC’s as shown in figure 21 on the right. The final ordering of the equations
will then be as follows, where every equation is represented by its left hand side
and the symbol | is used to group equations for which their respective ordering
does not matter:

µX9|µX10 µX6|µX7|µX8 µX3|µX4|µX5 µX0|µX2 µX1

Since the ordering method uses both the locality and dependency graph improve-
ments, we will compare CreateRES-O and SolveRES-O with CreateRES-LD and
SolveRES-LD respectively, which use both locality and the dependency graph.
We will show this comparison for the ant on grid problem and the bounded
retransmission protocol. It does not have much use to test this for the airplane
seats and the yahtzee problem, since the order that arises from the ordering
method described in this section applied to these problems is the same ordering
as if we would not use an ordering method.

For the ant on grid problem the ordering method may not seem better than
the standard ordering, but due to the way the state space is generated some of
the edge states (where the ant lives or dies) are closer to the initial state than
some states that are dependent on these states. The timing comparisons are
given in the table below.
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CreateRES-LD SolveRES-LD CreateRES-O SolveRES-O

φs 0.025 1.4 0.025 1.1
φd 0.026 1.4 0.025 1.1
φi 0.026 1.4 0.027 1.1

For the bounded retransmission protocol the ordering method is beneficial due
to the nature of the model. There are multiple paths possible (retransmissions)
to the same state (successful transmission), which have different lengths. Using
the standard breadth first search order from mCRL2, some equations that be-
long to states in the longer paths are solved before the equation that belongs to
the state all paths lead to. The timing comparisons are given in the table below
for N = M = 4.

CreateRES-LD SolveRES-LD CreateRES-O SolveRES-O

φ1 0.0017 0.0015 0.0017 0.0011
φ2 0.010 0.0091 0.011 0.0058
φ3 0.012 0.030 0.012 0.040

As could be expected, the running times for most of the model checking prob-
lems are lower when using the ordering method. Only for φ3 for the bounded
retransmission protocol this is not the case. When looking at the RES of this
problem during the solving problem, it seems that the average size of each equa-
tion when substituting it is slightly greater on average when using SolveRES-O
(however, the maximum equation size between the two options is equal).
This can be explained as follows. The dependency graph for the νY -block is
acyclic, so every vertex is its own SCC, while the complete dependency graph
is actually cyclic. When solving the νY -equations in reverse topological or-
der, most substitutions are made with a real formula that contains X-variables.
When using the breadth first search order as used by SolveRES-LD, some equa-
tions in the νY -block may be substituted before their dependencies are pro-
cessed. Since most of these equations only have a single dependency, the sub-
stitution that is done is very small. In the SolveRES-O ordering however these
equations are handled later, causing a bigger substitution due to theX-variables.

8.3 Reflection on results

Although the naive algorithm theoretically has no guarantee to terminate, it
is usually quite faster in practice than the RES approach when limited by the
precision of float representation of the programming language. This especially
holds for larger systems due to the worst case exponential running time of the
RES approach. However, with the improvements listed in the above section we
have brought the running time closer or sometimes even below the running time
of the naive algorithm.
The locality improvement has shown a great reduction in running time because
it reduces the size of the RES, but the power of this improvement depends
on the model checking problem and does not always help. The improvement
that uses a dependency graph for substitutions has given a great reduction in
running time independent of the given problem. The improvement that orders
the equations may not have shown great reductions in running time, but this is
because the order of states of most models was already in an order that leads
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to rather efficient solving of the RES. Using this improvement results in an
efficient order independently of how the model is defined.

There is of course still room for more improvement. The ordering method used
is not optimal and as shown for the bounded retransmission protocol sometimes
even worse than a simple breadth first search order. Another possible ordering
method that may be more beneficial would be for instance to (dynamically)
order the equations on the number of dependencies they have (per block).
A part of the algorithm that we have not paid that much attention to is the sim-
plification of the real formulas, while performance profiling indicates that this
amounts for at least half of the running time, often at least 80%. Especially
finding and removing terms from

d
and

⊔
formulas that are definitely worse

than another term takes much time.
Now the algorithm tries to simplify the complete right-hand side of an equation
after the creation of the RES, each solving step and each substitution step. The
simplification time could be reduced by only considering subformulas of this
right-hand side that have actually changed after the solving and substitution
steps. The simplification step can also be strengthened. For instance, removing
definitely worse terms from

d
and

⊔
formulas does not use the fact that we

only work with values within the interval [0, 1].

When looking at the models and formulas instead of the algorithms, there could
have been more variation in them. The models are mostly only grid or tree like
with final (desirable) states, with slight exception of the bounded retransmission
protocol. Also, almost all formulas describe reachability properties. However,
it seems to be rather difficult to come up with different types of models and dif-
ferent types of formulas that result in interesting and meaningful pLµ�⊕ model
checking problems. Especially when one looks into infinite behaviour, the result
of the model checking problem is often equal to 0 or 1, which can usually be
easily seen from the model itself.
One type of formula that should be investigated more is the pLµ�⊕ formula with
alternating fixpoint operators. The bounded retransmission protocol use case
contains one such formula and it already shows quite different results compared
to the other formulas. The running time of the SolveRES algorithm is quite
better than the naive algorithm and when using the ordering improvement the
running time actually increases. However, since we only tested one formula with
alternating fixpoint operators, this behaviour may not be very representative.

8.4 Experimental addition: Mean value

The model checking problems that one can specify with pLµ�⊕ always returns
a probability. This probability can be seen as the mean probability that the
behaviour expressed by a pLµ�⊕-formula happens in a system. However, when
analyzing probabilistic systems one can also be interested in the mean value of
some attribute, which can be outside of the scope of the interval [0, 1]. In this
section we will shortly propose how to tackle this by making a slight alteration
to the logic of pLµ�⊕. Since this idea is somewhat out of the scope of this paper,
we will leave the proof or other ideas for this matter as future research.

The idea to tackle this is by adding a so-called label atom, which we will de-

77



1
2

1
2

1

1
2

1
2

1
2

1
2

throwA

throwA
throwA

s0

s1 s2

s3 s4 s5

end
1

l(1)
1
end

1
l(2)

1
end

1
l(3)

Figure 22: A PLTS that models a three sided die using a two sided die. The
action label is shortened to l.

note with L. Given a PLTS 〈S, s0, A, T 〉, the semantics of this label atom is as
follows:

JLKe(s) =

{
v if (s, label(v), s) ∈ T
0 else

where v ∈ R+ is a positive real number. Note that this requires that each state
only has at most one self loop with the action label.
Officially adding such an operator would formally force a revision of the under-
lying definitions and proofs, since this brings the value of a formula outside of
the lattice 〈[0, 1],≤〉. However, as we only allow positive values for labels, we
can first divide all label values with the maximum label value M beforehand
such that all labels fall within [0, 1]. After the value of the model checking
problem with altered labels has been computed, we multiply the result with M
to get the desired mean value. This way the label atom could simply be seen as
the atom λ, except that it is dependent on the state.
Note that the operators ·, �, 	 and ⊕ do not have an intuitive meaning in this
context, so we will not consider them. The intuitive meaning of the operators ∧
and ∨ are now ”pick the lowest value” and ”pick the highest value” respectively.
We will show results of adding this operator with two examples. First we will
use the model as shown in figure 22, which models a three sided die using a
two sided die. Note that we used such a model before, but this model has more
(self-loop) actions. The final states of this model are labeled with the value of
the modeled three sided die. With the formula µX.(〈throwA〉X ∨ 〈end〉L) we
can get the mean value of the three sided die. Checking this formula results in
2, which is expected since 1

3 · 1 + 1
3 · 2 + 1

3 · 3 = 2.
Secondly we will use the yahtzee example. With the formula

µX.(〈throw〉X ∨ 〈write〉X ∨ 〈hold〉X ∨ 〈endOfGame〉L)
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we can get the mean value of the yahtzee game when the player chooses opti-
mally (to maximize his/her score). The timings and resulting values are shown
in the table below.

Naive CreateRES-O SolveRES-O Result

M0 0.10 0.033 0.67 8.97
M1 1.1 35 85 12.3

Since the maximum score for the yahtzee game is 18, it makes sense that the
mean final score of the yahtzee game is close to 9. As expected the mean fi-
nal score of the yahtzee game increases when allowing the player to hold and
rethrow once, since the player has better capabilities to maximize his/her score.
Although not shown here, solving a pLµ-formula with label atoms has the same
running time as solving the same pLµ-formula but with lambda atoms instead
of label atoms for both the naive and SolveRES algorithm (and variants), as
could be expected from the semantics of the label atom.
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9 Conclusion

We have given the logic pLµ�⊕ defined in [Mio12]. With this logic one can check
quantitative properties that answer questions of the form “what is the probabil-
ity that ...?” on Probabilistic Labeled Transition Systems, a type of transition
system that allows both non-deterministic and probabilistic behaviour.
We have created some intuition (combinations of) atoms and operators in this
logic, with the aim to be able to create formulas that express meaningful prop-
erties. One main issue in this is dependence. Since it is generally hard to extract
the dependence between two formulas φ1 and φ2 given a model, it is not easy
to know what operator to use to express the probability that both φ1 and φ2

happen (∧, · and 	) or at least one of the two happens (∨, � and ⊕). However,
when preceded by a fixpoint operator, the operators ∧ and ∨ seem to be the
better choices.

To solve a pLµ�⊕ model checking problem, we have given an approximation

algorithm that directly applies the semantics. Also we have defined a RES�⊕, a
type of fixpoint equation system over the lattice 〈[0, 1],≤〉 inspired by the work
of Mader [Mad97], and a translation from a pLµ�⊕ model checking problem to a

RES�⊕. Also, we have given an algorithm SolveRES based on Gauss elimination
that can be used to solve a RES�⊕, which consists of an equation solving step
and a substitution step. However, we have only been able to give a method for
the equation solving step when applied to a RES, which is strict substructure
of the RES�⊕ that does not allow the operators ·, �, 	 and ⊕.

Fortunately, using the corresponding sub-logic pLµ we have been able to spec-
ify a number of meaningful use cases. On these use cases we have compared
SolveRES with a naive algorithm that recurses over the pLµ-formula and uses
fixpoint iteration to solve fixpoint operators. Although the latter algorithm
has an infinite worst case running time, it is usually faster than the SolveRES
algorithm in practice due to SolveRES ’s exponential worst case running time
complexity.
To reduce the running time of the SolveRES algorithm we have given a num-
ber of improvements to the algorithm. One can compute the local RES which
only considers equations that are needed for the solution. Using a dependency
graph, one can immediately extract what equations are eligible for substitution.
Since the ordering of the equations is quite important for the running time, we
have also given a method to order the equations in a beneficial way. However,
as these improvements do not change the worst case running time complexity,
the approximation algorithm is still often faster than the improved SolveRES
algorithm.

9.1 Future research

As discussed in section 6.1, a probability space over paths in a PLTS with a
scheduler to remove non-deterministic behaviour cannot be used to create events
that correspond to pLµ�⊕-formulas or formulas of a sub-logic. Whether other
probability spaces exist for the PLTS for this end however is unknown.
What sets the µ-calculus approach apart from other verification logics like CTL
is its expressiveness. Most pLµ�⊕-formulas that we have considered however are
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reachability properties, which can also be expressed in CTL-like logics. For-
mulas that cannot be expressed by such logics, such as formulas with multiple
(alternating) fixpoints operators, are not much represented in this thesis. This
is because it is quite difficult to come up with such formulas that can be checked
on a concrete model such that both the formula and the solution are meaningful.

Mio has shown in his PhD thesis [Mio12] that one can represent a pLµ�⊕-model
checking problem as a 2 1

2 -player meta-parity game. We on the other hand have

shown that one can represent a pLµ�⊕-model checking problem as a RES�⊕. It

could be interesting whether and if so how one can translate from a RES�⊕ to
a 2 1

2 -player meta-parity game or vice versa such that the solutions correspond,
similar as to one can translate a Boolean Equation System to a 2-player parity
game [Kei06] (in the context of an Lµ model checking problem).

The algorithm SolveRES is practically only capable of solving a RES, which
is a strict substructure of a RES�⊕. We have discussed that the equation solving
method for RES’s cannot be applied when the other operators in RES�⊕’s are
added, but that does not mean it is impossible to solve such equations. It could
also be investigated whether other algorithms than Gauss elimination that are
used to solve BES’s could be adapted to solve RES�⊕’s.
We have given a number of methods to improve the running time of the SolveRES
algorithm, but more improvements are possible. As mentioned in the reflection,
especially the simplification of real formulas can be improved upon. Also, other
improvements could be explored, such as ordering the equations in the order of
least dependencies first or removing the need of a normal form.
When we would translate a RES to a 2 1

2 -player meta-parity game, the result-
ing game is also a (less general) 2 1

2 -player parity game which does not contain
any branching nodes. Very little number of algorithms are known to solve such
2 1

2 -player parity games [CH06, HSTZ17]. It could be interesting to see how the
SolveRES algorithm competes with these algorithms.

Formulas in the logic of pLµ�⊕ always returns a probability when checked on
a model. However, in the context of probabilistic systems one can also be inter-
ested in the mean value of some property of the system. An idea to tackle this
was proposed in section 8.4, which allowed us to calculate the mean final score
of a yahtzee game. Another type of mean value that might be interesting is the
mean number of transitions needed to satisfy some property.
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A mCRL2 models

A.1 Ant on a grid

act dead,live,step;

proc X(x,y:Pos)=

(x==1 || x==8) -> dead.X(x,y) <>

(y==1 || y==8) -> live.X(x,y) <>

(

step.dist b1,b2:Bool[1/4].

(( b1 && b2) -> X(x+1,y)+

( b1 && !b2) -> X(max(1,x-1),y)+

(!b1 && b2) -> X(x,y+1)+

(!b1 && !b2) -> X(x,max(1,y-1))

) );

init X(5,3);

A.2 Airplane seats

map N:Pos;

eqn N=100;

act last_passenger_has_his_own_seat:Bool;

enter_plane:Bool#Bool;

enter;

proc Plane(everybody_has_his_own_seat:Bool, number_of_empty_seats:Int)=

(number_of_empty_seats==0)

-> last_passenger_has_his_own_seat(everybody_has_his_own_seat).delta

<> (enter.dist b0:Bool[if(everybody_has_his_own_seat,if(b0,1,0),

if(b0,1-1/number_of_empty_seats,1/number_of_empty_seats))].

b0 -> enter_plane(true,false)

.Plane(everybody_has_his_own_seat,number_of_empty_seats-1)

<> dist b1:Bool[if(b1,1/number_of_empty_seats,1-1/number_of_empty_seats)].

enter_plane(false,b1).

Plane(if(number_of_empty_seats==1,everybody_has_his_own_seat,b1),

number_of_empty_seats-1));

init enter.dist b:Bool[if(b,1/N,(N-1)/N)].Plane(b,N-1);
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A.3 Yahtzee

No holding dice

act

throw;

write: Pos # Nat;

label: Nat;

endOfGame;

proc

P(filled: List(Pos), value: Nat) =

(#filled < 3) -> (

throw.dist d1, d2, d3: Pos[if(d1 < 4 && d2 < 4 && d3 < 4, 1/27, 0)]

.sum c: Pos.(c < 4 && !(c in filled)) ->

sum sc: Nat.(sc == if(d1 == c, c, 0) + if(d2 == c, c, 0) + if(d3 == c, c, 0)) ->

write(c, sc).P(c |> filled, value + sc))

<>

(label(value).P(filled, value) + endOfGame.P(filled, value));

init P([], 0);

Holding and rethrowing dice once

act

throw;

write: Pos # Nat;

hold: Bool # Bool # Bool;

label: Nat;

endOfGame;

proc

P(filled: List(Pos), value: Nat) =

(#filled < 3) -> (

throw.dist d1, d2, d3: Pos[if(d1 < 4 && d2 < 4 && d3 < 4, 1/27, 0)]

.sum b1, b2, b3: Bool.hold(b1, b2, b3)

.dist d11, d22, d33: Pos[if(b1, if(d1 == d11, 1, 0), if(d11 < 4, 1/3, 0))

*if(b2, if(d2 == d22, 1, 0), if(d22 < 4, 1/3, 0))

*if(b3, if(d3 == d33, 1, 0), if(d33 < 4, 1/3, 0))]

.sum c: Pos.(c < 4 && !(c in filled)) ->

sum sc: Nat.(sc == if(d11 == c, c, 0) + if(d22 == c, c, 0)

+ if(d33 == c, c, 0)) ->

write(c, sc).P(c |> filled, value + sc))

<>

(label(value).P(filled, value) + endOfGame.P(filled, value));

init P([], 0);
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A.4 Bounded retransmission protocol

map N:Pos;

MAX:Pos;

eqn N=4;

MAX=2;

act new_file;

fail_transmission;

success_frame;

send_aF; read_aF; c_aF;

read_aB; send_aB; c_aB;

read_aA; send_aA; c_aA;

read_aG; send_aG; c_aG;

read_TO_Ack; send_TO_Ack; c_TO_Ack;

read_TO_Msg; send_TO_Msg; c_TO_Msg;

send_success_file; read_success_file; c_success_file;

send_sync; read_sync; c_sync;

proc sender(s:Int, srep:Int, nrtr:Int, i:Int)=

%idle

(s==0)->new_file.sender(1,0,nrtr,1)+

% next frame

(s==1)->send_aF.sender(2,srep,nrtr,i)+

% wait ack

(s==2)->read_aB.sender(4,srep,nrtr,i)+

(s==2)->read_TO_Msg.sender(3,srep,nrtr,i)+

(s==2)->read_TO_Ack.sender(3,srep,nrtr,i)+

% retransmit

(s==3 && nrtr<MAX)->send_aF.sender(2,srep,nrtr+1,i)+

(s==3 && nrtr==MAX && i<N)->fail_transmission.sender(5,1,nrtr,i)+

(s==3 && nrtr==MAX && i==N)->fail_transmission.sender(5,2,nrtr,i)+

% success

(s==4 && i<N)->success_frame.sender(1,srep,0,i+1)+

(s==4 && i==N)->send_success_file.sender(5,3,0,i)+

% resync

(s==5)->send_sync.sender(0,srep,0,i)

;

receiver(r:Int)=

% new file

(r==0)->read_aG.receiver(1)+

(r==1)->send_aA.receiver(0)+

read_success_file.receiver(0)+

read_sync.receiver(0)

;
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channelK(k:Int)=

% idle

(k==0)->read_aF.( dist b:Bool[9/10].

b-> channelK(1)

<> channelK(2)

)+

% sending

(k==1)->send_aG.channelK(0)+

% lost

(k==2)->send_TO_Msg.channelK(0)

;

channelL(l:Int)=

% idle

(l==0)->read_aA.( dist b:Bool[1/20].

b-> channelL(2)

<> channelL(1)

)+

% sending

(l==1)->send_aB.channelL(0)+

% lost

(l==2)->send_TO_Ack.channelL(0)

;

init

hide({c_sync, c_aB, c_aA, c_aG, c_TO_Ack, c_TO_Msg, new_file},

allow({new_file, fail_transmission, success_frame, c_aF,

c_aB, c_aA, c_aG, c_TO_Ack, c_TO_Msg, c_success_file,

c_sync},

comm({read_aF | send_aF -> c_aF,

read_aB | send_aB -> c_aB,

read_aA | send_aA -> c_aA,

read_aG | send_aG -> c_aG,

read_TO_Ack | send_TO_Ack -> c_TO_Ack,

read_TO_Msg | send_TO_Msg -> c_TO_Msg,

send_success_file | read_success_file -> c_success_file,

send_sync | read_sync -> c_sync},

sender(0,0,0,0)||

channelK(0)||

channelL(0)||

receiver(0)

)));
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