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Abstract

CERN uses finite state machines organised in a hierarchical directed acyclic
graph structure for its Detector Control Systems (DCSes) of the experiments of
the Large Hadron Collider. These systems are huge and impossible to under-
stand. We identified seven potential static semantic errors in the language used
and located 182 errors in production systems; during the project 51 of these
were repaired.

We improved existing tools to check systems for local loops and pairwise
reachability of states, and provided the implementation to integrate the checks
into the development environment. Moreover, we identified non-local loops as
possible unwanted behaviour. For these non-local loops, we proved that, in some
cases, it is necessary to traverse the complete state space of a system, which can
be huge. Several reductions were introduced that reduce this state space. For
one of the four large experiments, CMS, the state space was reduced from 1026492
to 101189 and for ATLAS from 1059299 to 1035, We identified a special kind of
non-local loop that can be detected using bounded model checking. For the
DCSes of three of the four experiments checking for these loops is feasible.

Using the tools we provided, the DCS developers can find errors and un-
wanted behaviour, repairing them increases confidence in the detector control
systems.
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1 Introduction

The Large Hadron Collider (LHC) at the European Organization for Nuclear
Research (CERN) is a circular particle accelerator designed for the purpose of
colliding particles in its experiments. It is built in its 27 kilometre circumference
tunnel underneath France and Switzerland near Geneva. The Compact Muon
Solenoid (CMS), Large Hadron Collider Beauty (LHCb), A Toroidal LHC Ap-
paratus (ATLAS), and A Large Ion Collider Ezperiment (ALICE) experiments
are the four big experiments at the LHC. CMS is designed to ‘detect a wide
range of particles and phenomena produced in the LHC’s high-energy proton-
proton and heavy-ion collisionsﬂ LHCb is an experiment set up to ‘explore
what happened after the Big Bang that allowed matter to survive and build the
universe we inhabit todayﬂ ATLAS ‘will explore the fundamental nature of
matter and the basic forces that shape our Universeﬂ ALICE is ‘devoted to
research in the physics of matter at an infinitely small Scaleﬂ

In all experiments, a Detector Control System (DCS) monitors and controls
environment variables such as voltage, temperature and humidity within the de-
tector. It consists of many pieces of hardware that measure and control over a
million parameters concerning these environment variables. As the combination
of all these sensors cannot be monitored by operators, a DCS also consists of
software designed to a) gather information from its hardware sensors, b) sum-
marise it to human operators and c) send commands to the hardware. Human
operators monitor and control the DCS instead of the hardware.

The part of the software that we analysed performs the tasks b) and ¢). The
architecture of this part of a DCS is shown in Figure|[l.1} it consists of nodes or-
ganised in a hierarchical structure. Nodes are modelled as finite state machines.
Intuitively, nodes gather the states of their children, use that information to
move to a new state and notify their parents about the new state. Nodes also
receive and send commands to trigger activity in their children. Nodes are mod-
elled in the Finite State Machine language (FSM), being an abstraction of the
State Manager Language (SML), which runs on the State Management Interface
(SMI++) framework [FGO5] that is part of the Joint Control Project (JCOP)
framework [HGBGS05]. We introduce the term CERN Finite State Machines
(CFSM) to denote the combination of FSM, nodes, their architecture and their
implementation.

The complexity of single nodes is relatively low: on average a node contains
about 8 states in CMS and ALICE and 6 states in LHCb and ATLAS. The

Thttp://cms.web.cern.ch/news/cms-experiment-cerns-1lhc
%http://1lhcb-public.web.cern.ch/lhcb-public/
Shttp://www.atlas.ch/glossary
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Figure 1.1: Architecture of a Detector Control System

complexity of the system lies in the number of nodes and the communication
between them: the DCS of CMS consists of over 32000 nodes and in LHCb’s
and ATLAS’s DCSes there are even more: over 79500 nodes. Their systems
yield state spaces of about 102599 and 10°76%° states. Due to the sheer sizes
of the DCSes, getting and maintaining complete overview of a DCS is very
hard if not impossible for any human. A complicating factor is that parts of
the systems were written and are being maintained by several subgroups of the
experiments, probably having different design philosophies. This makes system
maintenance and error discovery hard to do by hand. As a result of this, the
DCSes sometimes behave differently than developers expect.

Sometimes the DCSes enter a livelock and report different states repeatedly.
This causes parts of the DCS to become unresponsive to commands, leaving
hardware without controller, possibly resulting in loss of potential physics data
and in extreme cases even in damage to expensive scientific equipment. For
example: if due to a livelock in the DCS it reports that it is off, no data will
be recorded, even though everything is working fine and the detector is in fact
ready for detection. Unexpected behaviour might have the same consequences,
potentially ruining difficult scientific experiments.

The goal of this project is to help developers of DCSes to improve their
software.

Before the start of this project, FSM and CFSM had been formalised by
providing an automated translation of the systems to the micro Common Rep-
resentation Language 2 (mCRL2) [GMRT09] process algebra. This translation
is described in [HWK™11], [HKK™11], and [HKWI2]. Using this translation,
several desirable properties were identified that can be automatically checked
using the mCRL2 toolsetﬂ IGKM™08|. Due to the large state spaces, verify-

Shttp://www.mCRL2.org
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ing those properties on complete systems is infeasible. Therefore, dedicated
lightweight detection tools were developed for two of the desirable properties:
local loops and pairwise reachability [HKK™11]. These verification tools ran
only on Linux and were not ready for developer use.

We contributed to the project in two ways: a) we improved the existing
verification tools and made them available to developers and b) we identified
new desirable properties. Moreover we extended and improved the mCRL2
translation in close collaboration with others. A summary of these changes is
given in Appendix [A]

Both existing verification tools were implemented in the ASF+SDF meta-
environment [BvDHT01]. We reimplemented them in Python, added reductions,
reduced the number of false-positives and integrated tools into the development
environment. We identified several static semantic issues the development en-
vironment does not detect and integrated checks for them in all verification
tools. The results of this are already visible: the number of issues in the DCS of
CMS dropped from 52 to 1. In addition to this, we identified a new kind of live-
lock: non-local loops. We reasoned Bounded Model Checking (BMC) [BCCT03|
could be applied to detect these loops, but detecting them in the DCSes would
be infeasible due to the state space sizes. We developed several reductions for
state space size, and identified a special case of the new non-local loops. For
this special case, we again developed state space reductions and developed a
detection tool. This detection tool actually found issues in CMS, ATLAS and
ALICE.

Outline The systems and language the nodes are written in are described in
Section 2] In Section [3] the static semantic issues we identified are described.
The first desirable property, pairwise reachability of states, and how we extended
it is described in Section Section [5| shows the second desirable property,
local loops, and how we extended it. In Section [6] we describe the potentially
unwanted behaviour we identified: non-local loops. We summarise our results
and conclude in Section [@






2 Preliminaries

In this section, we first give an overview of system structures and node be-
haviour, after that we give the semantics and syntax of the FSM language. We
finish with a description of the environment.

2.1 CFSM

Structure A system is the part of the software of a DCS that we analysed
and consists of nodes, that can have parents and children. At the start of the
project, we assumed the system had a tree structure, but later we discovered
that this assumption was too strict: the ‘tree’ has multiple roots and some nodes
have multiple parents. No nodes were found that are a direct or indirect parent
of itself, so the system is modelled as a directed acyclic graph. To make a clear
distinction, the nodes without parents are called sources in this report.

To illustrate size and structure of a system, Figure [2.I] gives an overview
of the detector control system structure of CMS as of May 2012. Appendix
shows the system structures of LHCb, ATLAS and ALICE. These images were
generated using software written by Sjoerd Cranen of the Eindhoven University
of Technology. In these images, a coloured dot represents a node and a black
line represents a parent-child relation. Colours represent node models.

A node without children is a leaf. Leaves usually provide an interface to
hardware: they gather sensor data and decide to move to a state based on sensor-
specific information. Moreover, leaves pass commands to hardware. Leaves are
partly modelled: only the states they can be in are modelled, not their other
behaviour. To include all possible behaviour, we assume they may change to
any state at any moment.

We assume all nodes are independent, except for the messages sent between
parents and children. In reality, this is not always the case: a lower level
language can be used to express behaviour like ‘move to state S if at least
60% of my siblings are in state Y’. As this behaviour cannot be expressed in
FSM, we do not model it, i.e., we assume only parent-child relationships exist.

Communication Nodes communicate using messages. A node can send state
update messages to its parents and command messages to its children. The
sources have no parents but can receive commands from other external control
systems or from human operators. In this report, these external entities are
referred to as grandparents. As leaves have no children, they cannot receive
state updates.



Figure 2.1: Detector control system structure of CMS (image generated using
software written by Sjoerd Cranen of the Eindhoven University of Technology)
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Figure 2.2: Phases of a CFSM node

Messages that cannot be processed immediately are queued. The queues
have a maximal capacity and if this is reached, new messages are dropped.

A node sends a state update in four situations: a) at initialization of the
system, b) if it changed state, ¢) if it received a command, or d) if it received a
state update.

Control flow In a node, WHEN clauses describe how the node reacts to the
states of its children and ACTION clauses describe how the node reacts to the
receipt of commands. Figure [2.2] gives a schematic view of the control flow of a
node. At every point in time, a node can be in either the WHEN phase or the
ACTION phase. In the WHEN phase, the node probes its WHEN clauses and acts
according to the first one that matches. If no WHEN clause matches, there is
nothing to do for the node and it moves to the ACTION phase. In the ACTION
phase, the node waits for commands and if one arrives, it is executed. If all
commands in the queue have been executed, the node sends a state update
message to its parents and moves to the WHEN phase.

2.2 FSM

In this section, we describe the language in which the nodes are described:
FSM. An EBNF grammar of FSM and a description of our parser are given
in Appendix [C] The syntax and semantics of FSM that are relevant for our
analyses are as follows:

CFSM class Every node is a finite state machine which can change state
according to the rules in its CFSM class. A CFSM class is a model of node
behaviour. Its concept is comparable to classes in object-oriented programming:
a CFSM class can be instantiated in several nodes. A CFSM class consists of
a non-empty list of states, the first being the initial state. Listing [1| contains
an example of a CFSM class: the CFSM class is called RPC and consists of two
states: ON and ERROR. State ON has a WHEN clause and an ACTION clause.

11



The WHEN clause makes sure that if any child is in state ERROR, the node will
move to state ERROR as well. If the node is in state ON and receives a RESET
command, it will execute the ACTION clause by sending an OFF command to all
of its children.

class: $FWPART_$TOP$RPC
state: ON
when ( $ANY$FwCHILDREN in_state ERROR ) move_to ERROR
action: RESET
do OFF $ALL$FwCHILDREN
state: ERROR
when ( $ANY$FwCHILDREN in_state ON ) move_to ON

Listing 1: Example of a CFSM class

States A node is always in exactly one state. A state in FSM describes the
behaviour of a node when it is in that state, and consists of a, possibly empty,
list of WHEN clauses and a, possibly empty, list of ACTION clauses.

when clauses A WHEN clause is a guarded instruction. WHEN clauses are
probed in the order in which they are given until one is found for which the
guard is true. The instruction of this clause, the referrer, is executed. The
possible referrers are MOVE_TO, DO and STAY _IN_STATE:

e MOVE_TO S makes the CFSM continue execution in state s.
e DO C executes action clause C.

e STAY_IN_STATE S, where S is a state, does nothing, except for prevent-
ing further evaluation and execution of WHEN clauses by moving to the
ACTION phase, regardless of the value of s (S is optional).

action clauses An ACTION clause is a non-empty list of instructions, called
statements. When the ACTION clause is executed, the statements are executed
in the order they are provided. An ACTION clause C is executed when a parent
sends a ¢ command, or when the node itself executes a DO C referrer. The
possible statements are MOVE_TO, DO, SLEEP, WAIT and IF:

e MOVE_TO S makes the node continue execution in state S.
e DO P CO sends command CO to all children matching child pattern p.
e SLEEP X halts execution for X seconds.

e WAIT P halts execution until all children matching child pattern P have
finished processing a previously sent command.

e IF G THEN S1 ELSE S2 ENDIF waits until all children mentioned in G have
finished processing a previously sent command. After that either s1 or s2
is executed, depending on whether G holds. The ELSE S2 part is optional.

12




Guards and child patterns A guard is a Boolean statement on the states
of children. A basic guard can have two shapes: a) P IN_STATE S, where P is
a child pattern and s is either a state or a set of states, or b) P EMPTY, where
P is a child pattern. A child pattern is a combination of a selector (ANY or
ALL) and the name of a CFSM class or the literal FwCHILDREN. Assuming the
child pattern targets children (there are nodes of the given CFSM class), the
semantics of a) are straightforward:

$ANY$FWwCHILDREN in_state ERROR
is true if and only if any child is in state ERROR, and
$ALLSRPC_HV in_state {READY, NOT_READY}

is true if and only if each child of CFSM class RPC_HV is either in state READY
or NOT_READY. The semantics of b) are straightforward as well: the guard

$RPC_HV empty

is true if and only if the node has no children of CFSM class RPC_HV.

More complex guards can be built using basic guards, brackets and the
Boolean operators AND, OR and NOT. Moreover, subclassing can be used: the
CFSM class CLASS__&SUBCLASS can be targeted in a guard by using either
CLASS or CLASS__&SUBCLASS as child pattern.

Guards use a three-valued logic instead of the common empty domain rules,
which disables (parts of) guards that do not refer to any children [Frall]. A
basic in_state guard of which the child pattern matches no children evaluates
to GHOST. The Boolean operators evaluate as follows:

T AND GHOST =
x OR GHOST =
GHOST ANDx =
GHOST OR x =
NOT GHOST = GHOST

If an entire guard evaluates to GHOST, it is treated as evaluating to false. For
instance, if a node has children, but not of CFSM class RPC_HV, the guard

$ALL$RPC_HV in_state {READY, NOT_READY} and
$ANY$FwCHILDREN in_state ERROR

is equivalent to
$ANYSFwCHILDREN in_state ERROR

Even though these rules are inconsistent with common Boolean reasoning
rules, see Appendix [D] for an example, the implementation works like this and

any formalization has to deal with it. Problems are avoided in practice by first
removing all GHOST values before applying any other Boolean rules.

13
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Figure 2.3: Environment overview

2.3 Environment

The development, simulation, and production environments use Siemens’ SCADA
software, called PVSS. During this project, version 3.8 service pack 2 of PVSS
was used, in combination with the JCOP framework version 4.3.0 [HGBGS05],
containing the SMI++ framework and FSM-ConfDB version 3.4.4. When this
report mentions the development environment, it refers to the combination of
these programs/plugins, used for developing CFSMs and modifying the system
structure. Figure [2.3]shows a schematic overview. The dashed box represents a
part of the JCOP framework, written at CERN and used by all experiments.

System structure and node models are stored in the development environ-
ment. Developers write CFSM classes that are compiled to executable code
automatically. Periodically, the system structure and node models are dumped
to a database for backup purposes. The development environment is slow in
retrieving all information, and the information is stored in an unstructured
manner. Therefore, we retrieve the information from a backup database to a
local directory and apply verification tools to this local copy. Each node model
is stored in its own file and the parent-child relations are stored in a Comma-
Separated Values (CSV) file, denoting the system structure. A second time the
system is retrieved from a database, only changed node models are saved to
enable caching based on filesystem timestamps.
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3 Static semantics

The development environment performs basic syntax checking when a CFSM
class is translated to production or simulation code. However, it does not check
for static semantic issues. In production systems, static semantic issues are
handled at runtime using fall-back mechanisms, causing possibly unexpected
behaviour. We identified two classes of static semantic issues: error, if the
semantics are unclear or ambiguous, and warning, if the semantics are clear but
the consequences are probably not as intended. Verification tools may crash
or, even worse, produce incorrect results when a CFSM class contains these
errors. Therefore, we defined and implemented static semantic checking for
CFSM classes.

Errors and warnings We identified the following possible static semantic
issues:

e A MOVE_TO referrer or statement mentions a state that is not declared;
This is an error, as there is no definition what should happen once this
construct gets executed. When encountered in a running production sys-
tem, the production environment will detect the error and move the node
to an unmodelled DEAD state. A human operator then needs to restart
the node manually. A newer version of the development environment is
said to catch this error more elegantly, but this version was not available
at time of writing.

e A DO referrer mentions an action that is not declared;
This is an error, as there is no definition of what should happen once this
construct gets executed. The development environment will do nothing if
this error occurs at runtime and continues as if a STAY_IN_STATE referrer
was executed.

e A STAY_IN_STATE referrer mentions a state different from the state it is in;
This is an error, as it is ambiguous whether the node must stay in its
current state or move to the given state. The development environment
allows it and stays in the current state.

e A MOVE_TO referrer mentions the state it is in;
This is a warning, since its meaning is well defined, but it is likely the
developer meant to use a STAY_IN_STATE referrer. On execution, the de-
velopment environment will remain in the same state and in the WHEN
phase.

15



e A CFSM class is declared more than once within a file;
This is an error, as it is ambiguous as which of the two CFSM classes a
node should behave. It cannot occur in practice as every CFSM class is
stored in a separate file. We found no occurences of this error, but add it
for sake of completeness and future use.

e A state is declared more than once within a CFSM class;
This is an error as it is ambiguous to which state to go when a MOVE_TO
construct pointing to the common state name is executed. We did not
find a way to enter two states having the same name within a class in the
development environment, but add this error for sake of completeness and
future use.

e An action is declared more than once within a state.
This is an error as it is ambiguous which action to execute when it is
called. We did not find a way to enter two actions having the same name
within a state in the development environment, but add this error for sake
of completeness and future use.

The ‘A MOVE_TO statement mentions the state it is in’ is considered neither
an error nor a warning, as its semantics are equivalent to letting the statement
block finish normally and there is no reason to assume the developer meant
something else.

3.1 Tool

Checks for these static semantic issues were integrated in our parser, so that
every verification tool automatically uses it. Please refer to Appendix [C] for
more details regarding the Python parser. Static semantic errors are treated in
the same way as parser errors: if the parser finds a static semantic error, it is
reported to the user and the tool exits after all CFSM classes have been checked.
The parser will report warnings, but will not exit if one was found. Hence, every
verification tool generates a syntax and static semantic issues report.

PVSS In order to assist developers in detecting and avoiding static semantics
issues, a checking ability was integrated in the development environment PVSS.
Figure shows a screenshot of the user interface (panel in PVSS terms). A
developer can either check all CFSM classes in the whole experiment, all CFSM
classes on her computer or a specific CFSM class. This integration is available to
all DCS developers within CERN and uses separate files in order not to interfere
with core functionality.

Web interface integration CMS Online is a web environment being devel-
oped allowing developers to walk through the system structure, see the statuses
of nodes and examine the FSM code. The PVSS integration requires instal-
lation before developers can use it and is not very suitable for checking large
numbers of nodes and CFSM classes. To avoid this, the checks for CMS were
added to the existing CMS online web environment. The checks are performed
on a snapshot of the CMS system and the results are stored in a database. As
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The following errors were found:
(TkControlGroup, ERROR,, LVMIXED) state ANALOG_OM mentioned in move_to statement but not dedared.
(TkControlGroup, DIGITAL_OMN_RED) action OFF_ON_CTRLERR mentioned in do referrer but not dedared.

Figure 3.1: PVSS panel showing result of static semantic check

can be seen in the screenshot in Figure developers can filter the results by
type, here errors or warnings, and by subdetector. We implemented the checks
and storage of the results, the web interface was implemented by a developer in
close collaboration with us.

3.2 Results

We performed static semantic checks on all experiments, see Table for the
results of these checks. As this project originates from CMS, we obtained its
system four times.

The static semantic checks have proven useful: when an engineer saw the
reported errors, he expressed the wish to have been able to use these checks
back in 2006 (when most CFSMs were developed). The data in Table [3.1| show
that the static semantic issues present in the DCS of CMS dropped drastically
during the project (from 52 to 1). To illustrate the errors and the reports the
verification tools generate, Table [3.2] shows three errors that were present in
CMS as of November 2011 and were confirmed to be fixed in January 2012.
Engineers confirmed this was a direct result of this project.

Other tools might be unable to work on CFSM classes containing errors. In
order for us to be able to use the verification tools on real data, and not having to
wait for developers to fix the errors, the errors reported were manually corrected
in our local copy in agreement with the developers. For instance, the error

state ANALOG_ON mentioned in move_to referrer but not declared.
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[Gitas, |

* Problems related to types

Filter by subdetector: *  ~+

Filter by type: =~

Context System Prio Type Description
ENDCAP_ALIGN_DCOPS cms_alig_dcs 03: 20  error | (ENDCAP_ALIGN_DCOPS, ERROR, RESET) state STANDBY mentioned in move_to statement but not declared.
TkBigPartition cms_trk_dcs_01: 20 emor | (TkBigPartition, ON_LV, OFF_ON_PLC_ERROR) state SW_SWITCHOFF mentioned in move_to statement but not declared.
TkBigPartition cms _trk_dcs 01 20 emor | (TkBigPartition, OFF, OFF_ON_PLC_ERROR) state SW_SWITCHOFF mentioned in move_to statement but not declared
TkBigPartition cms _trk_dcs 01 20 emor | (TkBigPartition, CTRLMIXED, OFF_ON_PLC_ERROR) state SW_SWITCHOFF mentioned in move_to statement but not declared
TkBigPartition cms_trk_dcs 01 20 emor | (TkBigPartition, ON_CTRL, OFF_ON_PLC_ERROR) state SW_SWITCHOFF mentioned in move_to statement but not declared
TkBigPartition cms _trk_dcs 01 20 emor | (TkBigPartition, LVMIXED, OFF_ON_PLC_ERROR) state SW_SWITCHOFF mentioned in move_to statement but not declared.
TkBigPartition cms trk dcs 01 20 emor | (TkBigPartition, HVMIXED, OFF_ON_PLC_ERROR) state SW_SWITCHOFF mentioned in move_to statement but not declared
TkBigPartition cms_trk_dcs 01 20 emor | (TkBigPartition, ON, OFF_ON_PLC_ERROR) state SW_SWITCHOFF mentioned in move_to statement but not declared.
TkBigPartition cms_trk_des_01: 20 emor | (TkBigPartition, ERROR, OFF_ON_PLC_ERROR) state SW_SWITCHOFF mentioned in move_to statement but not declared.
TkConfiguration cms _trk_dcs 04 20 emor | (TkConfiguration, LOADED) state CHANGED mentioned in move_to referrer but not declared

TkConfiguration cms_trk_dcs 02 20 emor | (TkConfiguration, LOADED) state CHANGED mentioned in move_to referrer but not declared.

Figure 3.2: Static semantic issues shown in CMS Online

errors in CFSM classes | warnings in CFSM classes

CMS  11-2011 52 22 of 571 (4%) 1 of 571
01-2012 48 19 of 571 (3%) 1 of 571
03-2012 43 17 of 566 (3%) 0 of 566
05-2012 1 1o0f 571 (0.2%) 0 of 571
LHCb  11-2011 68 30 of 1028 (3%) 6 of 1028
ATLAS  05-2012 19 7 of 1098 (0.6%) 3 of 1098
ALICE  05-2012 43 16 of 579 (3%) 5 of 579

LW oy © O~

Table 3.1: Results of static semantic checks

Error found in .\ECALfw_Dee(38909).fsm.
(ECALfw_Dee, OFF_LOCKED) action NEUTRALISE mentioned in
do referrer but not declared.

Error found in .\ECALfw_Supermodule(38738).fsm.
(ECALfw_Supermodule, OFF_LOCKED) action NEUTRALISE mentioned in
do referrer but not declared.

Error found in .\CMSfwLhcHandshakeCU(38562) .fsm.
(CMSfwLhcHandshakeCU, ADJUST_WARNING) action NOTFIY_STANDBY
mentioned in do referrer but not declared.

Table 3.2: Three static semantic errors that were fixed in CMS

18



was fixed by adding an empty state ANALOG_ON to the CFSM class.

For ALICE, this method was not sufficient. A small number of CFSM classes
contains low-level SML code that our parser and tools cannot handle. In order
to be able to perform the verification checks on ALICE, we removed this SML
code by hand. Based on manual inspection, we assume this did not significantly
change behaviour.

In the remainder of this report, we assume all CFSM classes are free of static
semantic errors. Appendix [F] shows the chain of verification tools, described
later on in this report, that we performed after the static semantic checks.
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4 Pairwise reachability

A desirable property of nodes is that all states in it should remain reachable at
all times during execution. Two states X and Y are pairwise reachable if and
only if it is possible to start in X, move to Y and move back to X again. It does
not matter how this is achieved: commands from parents, going through other
states, and state changes from children may be required to do so. If not all
states of a node are pairwise reachable, it is possible to get trapped in a subset
of states.

Pairwise unreachability can indicate disabled security mechanisms and nodes
unable to leave a state. However, pairwise unreachability does not imply error.
For instance, a CFSM class can be reused in a node with a different set of chil-
dren, where some states are not in use intentionally. In this section, we describe
the verification tool that existed before start of this project, we introduce a
combinations reduction to shorten computation time, introduce a state space
reduction for later use and conclude with a description of our improved tool and
its results.

Previous work Pairwise reachability as a desirable property for CFSM is
described in [HKW12|] and [HKK™'11]. Before the start of this project, a tool
checking for pairwise reachability was present, implemented in ASF+SDF. This
tool, given a combination of a parent and its children, computes pairwise reach-
ability and outputs the result in textual and graphical format. The tool lacked
support for several FSM constructs, for example the IF statement, and ran only
on Linux.

4.1 Checks

We first introduce some notation: a configuration c is a partial function that
maps nodes to states, denoting for each node the state in which it currently is.
For readability reasons, we use a tuple notation. For instance, a configuration
denoting node 1 and 3 being in state A and node 2 being in state B is denoted
as:

(1: A, 2: B, 3: A)

In this report, c¢[n — s| denotes the function ¢ in which element n maps to s.

Checking Pairwise reachability of states can be approximated using knowl-
edge of only the combination of a parent and its direct children: a parent-children
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combination. To calculate pairwise reachability for a parent-children combina-
tion ¢, we transform the problem to a graph problem. A directed graph is
constructed containing all states of the parent n. An edge is added from state
X to state Y if and only if there is a configuration c of ¢ such that n can move
from X directly to Y. In the resulting graph, strongly connected components are
computed. If there are multiple strongly connected components, by definition
not all states are pairwise reachable (X and Y are pairwise reachable if and only
if they are in the same strongly connected component).

Checking whether it is possible to move from state X to state Y is done by
generating a Boolean formula that is true if and only if it is possible to move
from state X to state Y in configuration c for ¢, assuming any command can be
received by n. Using a satisfiability (SAT) solver it is determined whether such
a configuration c exists. A quick check whether a MOVE_TO Y construct is even
present in state X reduces the number of SAT calls.

Images To enable developers to grasp the potential problems quickly, the
tool outputs images. The tool present before the start of this project generated
images; we redesigned them a bit. In these images, ellipses are states, rectangles
are strongly connected components, the initial state is coloured green and arrows
denote state changes that can happen in the node. Arrows that do not cross
strongly connected component bounds are coloured grey. Using this colour
coding, we highlight problems and hide everything else. Figure [1.1] shows an
example.

Further study Our pairwise reachability check assumes a node can receive
any command from its parents. In reality, this is not necessarily the case, as
a parent can never send a specific command. Hence, the pairwise reachability
checks can give false negatives. An interesting field of further study would be to
determine which commands could actually be received by a node and to resolve
the circular dependencies that arise from it. (It would also imply that knowledge
of parents is required, making the checks global instead of local)

4.2 Minimising combinations

Computing pairwise reachability for all pairs of states in all parent-children
combinations of a system is a lengthy computation. Therefore, we first introduce
a partial order relation between parent-children combinations and second, we use
the partial order relation to reduce the number of parent-children combinations
that needs to be checked.

4.2.1 Partial order

Say t is a parent-children combination of a parent and its direct children. Define
(p, f) to be a tuple representing ¢, where p is the CFSM class of the parent in
t and f is a function from CFSM classes to integers, denoting for each CFSM
class how many children in ¢ are of that CFSM class. Using this, we define a
partial order relation < on parent-children combinations:
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Figure 4.1: Output of pairwise reachability check, showing that state OFF is not
reachable

Definition 4.2.1 Given two parent-children combinations t; = (p1, f1) and
to = (p2, f2), define t1 < to to be true if and only if all of the following hold:

e The parent nodes are of the same CFSM class: p1 = pa;

o The frequencies of all CFSM classes in t1 are all smaller than or equal to
the corresponding frequencies in to, but the sets of used CFSM classes are
the same: for all c it holds that f1(c) < fa(c) and f1(c) =0 < fa(c) = 0.

Note that if ¢; < t2 one can transform ¢; into ¢5 by adding child nodes until
all frequencies match: duplicate((p, f),c) = (p, flc = f(c) + 1]), where (p, f) is
a parent-children combination and ¢ is a CFSM class, assuming f(c) # 0.

Example Observe two parent-children combinations = and y: z is a combi-
nation of a node of class Q with 2 children of class A and y is a combina-
tion of a node of class Q with 3 children of class A. Let us denote them by

T = (pz, fo) = (Q,(Ac.0)[A — 2]) and y = (py, fy) = (Q, (Ac.0)[A — 3]). Then
x < y since the class of both parents is Q, in both combinations only A is used
for the children and f,(A) < fy(A).

Using Definition [4.2.1] we prove that < is a partial order relation:

Lemma 4.2.2 < is a partial order relation
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Proof

e Reflexivity: (p1, f1) < (p1, f1)
It holds that p; = p; and for all ¢ it holds that f1(c) < fi(c) and fi(c) =
0< fi(c) =0, so < is reflexive.

e Anti-symmetry: if (p1, f1) < (p2, f2) and (p2, f2) < (p1, f1), then (p1, f1) =
(P2, f2)-
Assuming (p1, f1) < (p2, f2) and (p2, f2) < (p1, f1) then by the first clause
of the definition p; = py, and for all ¢ it holds that fi(c) < fa(c) and
fa(e) < fi(c). By anti-symmetry of < on integers, < is anti-symmetric.

o Transitivity: if (p1, f1) < (p2, f2) and (p2, f2) < (ps, f3) then (p1, f1) <
(p3, [3)-
Assuming (p1, f1) < (p2, f2) and (p2, f2) < (ps3, f3) then p; = p3 by tran-
sitivity of equivalence on CFSM classes.

(Ve: fi(e) < fale) A (fi(e) =0 < fa(c) =0)) A
(V' 2 o) < f3() A (fald) = 0 & f3() = 0))

= {dummy transferring}
ve: fie) < fale) < fa(e) A (file) = 0 & fac) = 0)A
(fa(c) = 0 & f3(c) = 0)

By transitivity of < and <, < is transitive.

As < is reflexive, anti-symmetric and transitive, < is a partial order relation. B

4.2.2 Combinations reduction

Using the partial order <, the number of parent-children combinations that
needs to be checked can be reduced. To prove this, we use a rephrased version
of [HKK ™11, Lemma 2]:

Lemma 4.2.3 Given two children of the same CFSM class that are both in the
same state, removing one of these children will not affect any decision that a
parent takes in the WHEN phase.

We first prove that the reachability graph of ¢; is a subgraph of the reacha-
bility graph of to if t; < ts.

Lemma 4.2.4 Suppose two parent-children combinations t; and to such that
t1 < to. Then the reachability graph of t1 is a subgraph of the reachability graph

Of t2.

Proof The reachability graph of ¢; contains an edge from state A to state B if
and only if there is a configuration of the children in ¢; such that a MOVE_TO B
statement or referrer in state A can be executed. Say n is a child of ¢;. Add one
child n', of the same CFSM class as n, to t; to obtain #}: t] = duplicate(t1,n).

Consider an edge (A, B) in the reachability graph of ¢;. Then there is a
configuration c of children in ¢; such that a MOVE_TO B statement or referrer
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is executed in state A of the parent. Choose ¢’ to be a configuration in ¢} such
that it is a copy of ¢, with the addition of n’/, which is in the same state as n:
d =c[n — c(n)].

By Lemma no guard of the parent can distinguish between ¢ and ¢'.
Hence, there is a configuration in ¢ in which the MOVE_TO B statement or
referrer is executed in state A of the parent and edge (A, B) is present in the
reachability graph of ¢} as well. As no edge can disappear by adding nodes of
which the CFSM class was already present, the reachability graph of ¢; is a
subgraph of the reachability graph of tj. More general, the reachability graph
before applying duplicate is a subgraph of the reachability graph after applying
duplicate. As ty can be obtained from t; by applying duplicate repeatedly and
by transitivity of <, the reachability graph of ¢; is a subgraph of the reachability
graph of t,. |

If we have a t; and ¢ such that ¢; < t5, then by Lemma[4.2.4] the reachability
graph of t; is a subgraph of the reachability graph of ¢t5. Hence, the graph of
to can be obtained from the graph of t; by adding edges. By monotonicity
of strongly connected components, adding edges to a graph can only cause
merging of strongly connected components. If ¢; does not contain multiple
strongly connected components, to does not contain multiple strongly connected
components either. If ¢; contains strongly connected components, to can only
contain the strongly connected components of ¢1, but some might be merged.

By default we only check ¢1, the smallest combination, to save computation
time. For instance, given the two parent-children combinations
(Q,(Ac.0)[A — 2]) and (Q, (Ac.0)[A — 3]), only (Q, (Ac.0)[A — 2]) would be
checked. To prevent engineers deciding not to fix the multiple connected com-
ponents based on information about ¢; only, reports mention both ¢; and t,.
Users of the tool can choose not to apply this reduction, by checking thoroughly.
Checking thoroughly only reduces two parent-children combinations ¢; and ¢ if
they are equal up to renaming.

4.3 Reachability reduction

With an under-approximation of the states that are unreachable in a node, a
state space reduction is possible. Consider a node n with an initial state s; and
another state s,,. If s, is unreachable from s;, s,, can be removed from n without
altering the possible behaviour of n. Obviously, s; itself is always reachable. As
no MOVE_TO s, construct is ever executed, they are replaced with a random
statement: MOVE_TO s;. This last step is necessary to prevent introducing a
static semantic error. The complete procedure reachability reduction is shown
in Listing [2]

Reachable states are computer on parent-children combinations. The CFSM
class of the parent might be in use in other parent-children combinations. To
distinguish the reduced and the original CFSM class, our implementation makes
a copy of the CFSM class and gives it a new unique identifier.
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function REACHABILITYREDUCTION(t)
reachableStates < reachabilityCheck(t)
str <— string representation of t.parent.CFSMClass
initial State + t.parent.CFSMClass.states|0]
for state € t.CFSMClass.states do
if i ¢ reachableStates then

replace “move_to state 7 with “move_to initialState ” in str
remove state state from str
end if
end for

t.parent. CFSMClass + parse(str)
end function

Listing 2: Reachability reduction, where ¢ is a parent-children combination,
reachabilityCheck() is a function taking a parent-children combination ¢ and
returning the reachable states of the parent of ¢, and parse is our FSM parser

4.3.1 Restrictions

One should take care not to apply reachability reduction before a procedure
that alters the system structure, as reachability of states might change: observe
the WHEN clause with guard in Listing [3] Assume that the MOVE_TO Y is the
only MOVE_TO Y construct in the CFSM class, that Y is not the initial state and
that CFSM class CLASS2 has a reachable state X. The guard is never satisfiable
when there is a child of CFSM class cLASS1 present. Therefore, reachability
reduction will remove state Y. After that, suppose a reduction R removes all
children of cLASS1. Then by the used three-valued logic, the first two conjuncts
of the guard are ignored, the guard becomes satisfiable, Y becomes reachable
and hence should not have been removed.

Hence, reachability reduction should not be applied before any test or re-
duction that changes the system structure without further study of the conse-
quences.

when (
$ALL$CLASS1 in_state X and
$ALL$CLASS1 not_in_state X and
$ANY$CLASS2 in_state X )
move_to Y

Listing 3: A possibly unsatisfiable guard in a WHEN clause

Another restriction is that the combinations reduction described in Sec-
tion [4.2] cannot be used before reachability reduction: consider two parent-
children combinations ¢; and to, such that ¢; < t5. Then by Lemma the
reachability graph of ¢y is a subgraph of the reachability graph of ¢;. To illus-
trate this, Figure shows two possible reachability graphs of ¢; and ¢5. If the
combinations reduction as described is applied before reachability reduction,
states are removed in t; and t5 based on the reachability graph of t;. In our ex-
ample in Figure |4.2] state OFF is removed. In t; however, state OFF is reachable
and should not be removed. Hence, combinations reduction as described cannot
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(a) Reachability graph of parent- (b) Reachability graph of parent-
children combination ¢ children combination to

Figure 4.2: Reachability graphs

be used before reachability reduction. However, as the reachability graph of ¢;
is a subgraph of the reachability graph of t5, we can safely remove states based
on the reachable states of 5.

4.4 Tool

The existing pairwise reachability tool was written in the ASF+SDF meta-
environment, which only runs on Linux, while most developers of CFSM use
Windows. Therefore, we had to replace the ASF+SDF meta-environment and
we chose Python in combination with Picoparse. For more details about this
see Appendix [E] We reimplemented the existing verification tool in Python and
made it work on both Linux and Windows. Moreover, we extended the tool to
accept a complete system and to support all FSM constructs. The tool checks
all parent-children combinations of the system, using multiple threads to speed
up the process.

Generating reports and reducing the system cannot use the same combina-
tions reduction. Therefore, the user must choose between either only generating
a report, only reducing the system or do both but thoroughly.

To limit the number of reports, equal pairwise-reachability problems are
grouped in post-processing. Two reports are considered equal if and only if all
of the following hold:

e The parents that contain the problems are of the same CFSM class;
e Both problems contain the same sets of strongly connected components;

e In both problems, the same connections between strongly connected com-
ponents exist.

We added an option to generate an HTML report, which can be seen in
Figure It shows that the parent (RPC_DEVICE) cannot return to the OFF
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Not all states of this parent are always pairwise reachable:
parent RPC_Device (39134)

The parent can walk through its states as described in the image,
while starting in the green state. In some combinations, there

are states where you cannot make a roundtrip to.

This might happen in the following nodes:

combination parent nodes
1*RPC_Device (39134), 1*RPC_Boards (39641), RPC_ENDCAP_HWUSC
1*RPC_BC (39647), 1*RPC_MAO (39649), (cms_rpc_dcs_06:,
1*RPC_SY1527 (39651) 120264)

-

PARTIALLY ON

TRIPPED

Figure 4.3: Pairwise reachability report
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Problems related to nodes

Filter by subdetector: *  ~

Filter by type: painvise reachability problem +
Conxt Srom Foo e VR
LINK_LDm cms_alig_des_01: |10 | painwise
reachability
View all occurences of this problem ¥
& STANDBY

ERROR

N/

Figure 4.4: Pairwise reachability results shown in CMS Online

state once it has left it. It can also never reach the ON state. The report also
shows that this can happen in only one node: RPC_LENDCAP_HWUSC.

4.4.1 Development environment integration

In order to give developers access to pairwise reachability checks, results were
added to CMS Online. The developers considered the images self-explanatory,
so the explanations from the HTML reports were left out. See Figure [£.4] for
a screenshot of the web integration of pairwise reachability. Users can filter
the results to show only potential problems of nodes within their own part of
the detector. The combinations reduction potentially produces false positives
in exchange for computation time. As the computation time is in the order of
minutes for all experiments, combinations reduction was disabled: all checks are
thorough.

We want the web interface application to accept systems that contain er-
rors: if it does not, useful results would be hidden from developers if only one of
the CFSM classes used contains a static semantic error. Pairwise reachability
detection checks parent-children combinations, so any parent-children combina-
tion in which no erroneous CFSM classes are used can be checked safely. We
do not want to change the pairwise reachability tool itself, so we come up with
a pre-processing step: consider a parent p, having two children n and n’, such
that n is of an erroneous CFSM class. If n is removed, the behaviour of p might
change. Therefore, the tool disconnects all children from p, making it a leaf.
The same is done for n: all its children are disconnected from it. Finally, n
is removed. If any of the disconnected nodes has no parents left, it is made a
source. This procedure, shown in Figure [4.5] is applied for all erroneous nodes
n, such that the system contains no erroneous nodes and we can use the pairwise
reachability checks without any modifications.

4.5 Results

Combinations reduction results We performed the pairwise reachability
checks twice: once with the combinations reduction using the partial order
<, and once thoroughly. Table shows the results of the combinations re-
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Figure 4.5: Removal of erroneous nodes: node 6 cannot be parsed and is re-
moved. A circle with a number is a node, a line is a parent-child relation, where
the topmost node is the parent. Dashed lines mean that the node is included in
the set. Left: situation before, center: node 6 is removed, right: situation after.

Combinations checked  Nodes reported
thoroughly - reduced thoroughly - reduced
CMS 11-2011 568 - 402 927 - 927
01-2012 568 - 401 1353 - 1353
03-2012 564 - 398 1313 - 1313
05-2012 578 - 409 903 - 903
LHCDb 11-2011 1106 - 883 430 - 430
ATLAS 05-2012 1746 - 985 2089 - 2096
ALICE  05-2012 410 - 356 1836 - 1836

Table 4.1: Results of combinations reduction before pairwise reachability (re-
ports in ATLAS: thoroughly: 187, reduced: 184)

duction. Applying combinations reduction only altered the output in ATLAS,
where seven (2089 - 2096) false positive nodes were reported as a result of the
reduction and three reports were incorporated in other reports. Due to the sig-
nificant reduction of combinations checked and the minimal impact on results,
we suggest applying the combinations reduction.

Check results Pairwise reachability check results, with combinations reduc-
tion, are shown in Table As the behaviour of leaves is not modelled and
therefore unknown, the number of nodes in the results is taken not counting
leaves.

All of the tested experiments contain nodes with multiple strongly connected
components. It is remarkable that the number of reports (62 to 75 (+17%))
and nodes with possible strongly connected components (927 to 1353 (+30%))
increased from November 2011 to January 2012 in CMS. A possible explanation
is that developers had no access to reachability reports during these months and
during this time there was a technical stop, meaning that all experiments at the
LHC were stopped and that hardware upgrades, software updates and system
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reports nodes with pairwise unreachable states
CMS 11-2011 | 62 927 of 9038  (10%)
01-2012 | 75 1353 0of 9038  (15%)
03-2012 | 74 1313 of 9045  (15%)
05-2012 | 50 903 of 9064  (10%)
LHCb 11-2011 | 78 430 of 16139 (2.7%)
ATLAS 05-2012 | 184 2096 of 12963 (16%)
ALICE 05-2012 | 95 1836  of 4623  (40%)

Table 4.2: Results of pairwise reachability checks

states removed rounds state space before - after
CMS 11-2011 | 451 5 1026438 _ 1(26400
01-2012 | 485 5 1026227 _ 126186
03-2012 | 469 5 1026315 _ 1()26276
05-2012 | 397 5 1026402 _ 1()26368
LHCb  11-2011 | 410 6 1098363 _ 158325
ATLAS 05-2012 | 3125 11 1099209 _ 158922
ALICE 05-2012 | 2310 6 1012158 _ 112052

Table 4.3: Results of reachability reduction

changes were carried out.

Reachability reduction results We applied reachability reduction with com-
binations reduction repeatedly, until the reduction stabilised. After that, we
applied reachability reduction thoroughly until that stabilised. Table shows
the results of these reductions. We compute the state space by taking the prod-
uct of the number of states in all nodes (including leaves). In no experiment
except ATLAS, the thorough reachability reduction removed states after reach-
ability reduction with combinations reduction stabilised. In ATLAS, thorough
reachability reduction removed seven extra states in two rounds. We conclude
that even though a reduction factor of 1019 (ALICE, 102158 to 10'29%2) is huge,
we conclude that impact on state space sizes is small.
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5 Local loops

A desirable property of nodes is that they are free of livelocks. A local loop is
a kind of livelock in which a node traverses through some of its states, while
its children do not change state. In each state, the node executes WHEN clauses
and moves to a next state. While doing this, a node will remain in the WHEN
phase. Therefore, it will not process any commands and is out of control.
Unless the children change their state such that the local loop ends, the only
way for operators to end a local loop is to reboot the node, or manually order
its subsystems to change state. Moreover, looping behaviour can propagate to
higher level nodes, so that in the control room operators observe flickering of
several lights. Engineers and operators sometimes jokingly call this a Christmas
tree.

In this section, we first give an example of a local loop. After that, we
describe the work that had been done before start of this project, introduce a
parent-children combinations reduction, describe how our tools work and give
the results of it.

Example Figure[5:I]shows an example of a local loop: node 1 is of the CFSM
class given in the figure and has two children: node 2 and node 3. Suppose this
combination reaches the following configuration:

(1: ON, 2: ERROR, 3: ON)
Then the WHEN clause of state ON is enabled, so node 1 moves to state ERROR:
(1: ERROR, 2: ERROR, 3: ON)

After that, the first WHEN clause of state ERROR is enabled, so node 1 moves to
ON again, completing the loop:

(1: ON, 2: ERROR, 3: ON)

Previous work Local loops were described in [HKW12], [HKK™11], and
[Kusid]. A local loop being present in a parent-children combination means
that given some configuration, the parent keeps changing state while the chil-
dren do not change state. Usually, a local loop is a chain of WHEN clauses having
MOVE_TO referrers that point to each other in a circular manner.

A tool that checks a system for local loops, implemented in ASF+SDF,
was already present before the start of this project. It used a theoretical up-
per bound on the number of children per CFSM class to avoid checking of
all parent-children combinations. In [HKKT11, Section 5.1] and [KusI1] it is
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ON ERROR
~

ON ERROR

Where node 1 consists of the following FSM code:

state: ON

when ( $ANY$FwCHILDREN in_state ERROR ) move_to ERROR
state: ERROR

when ( $ANY$FwCHILDREN in_state ON ) move_to ON

Figure 5.1: Example of a local loop: node 1 loops between states ON and ERROR

proven that if a certain artificial parent-children combination is local loop free,
all parent-children combinations (covered by the artificial combination) are lo-
cal loop free as well. This reduces the number of combinations that have to be
checked, but the downside is that some reported local loops are false positives.
For instance, we found a local loop that could only occur in a parent-children
combination having at least two children of class X. However, there were no
parent-children combinations having two children of class X in the system and
hence the loop could not occur. This might, as stated in [HKK™11], ultimately
result in developers ignoring the output of the tool.

Therefore, the tool written during this project only checks combinations
actually present in the system. This reduces the number of false positives being
reported, but requires a recheck if the system is changed whenever the number
of children changes. We believe that this last problem is solved by the running
time of our tools: our tool usually takes less than a minute to check CMS.

In the local loops described in [HKW12|, during the loops commands can be
sent. During this project, a developer encountered an example in which such a
command intentionally caused a child to change state, preventing the local loop
from happening. To avoid reporting these false positives, we consider loops in
which a command is sent non-local. Non-local loops are described in Section [6}

Checking To detect local loops, a parent-children combination t is translated
to a Boolean formula that is true if and only if the children of ¢ are in a fixed
configuration and the parent of ¢ can start in a state, run and end up in the
start state again. This formula is satisfiable if and only if there is local loop in
the parent-children combination. The formula is checked using a SAT solver.
If the formula is satisfiable, the solver provides evidence consisting of a list of
configurations. Using these configurations, it is determined which states of the
parent are traversed during the loop and which WHEN clause is enabled in each
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state. Using this information, developers confirmed they can easily trace and
understand the local loop.

Restrictions Local loop detection as we described it finds at most one local
loop in each parent-children combination. However, several local loops might
be present. There are ways to detect all local loops in a parent-children combi-
nation. One of them is to use a satisfiability solver that provides all satisfying
assignments to a formula, another one is to adapt the formula whenever a local
loop is found, by adding clauses excluding the local loops found. This procedure
is repeated as long as new local loops are found. We suggest implementation of
this latter procedure.

5.1 Minimising combinations

In order to minimise the number of parent-children combinations that need to be
checked for local loops, the partial order relation <, as described in Section [4.2.1]
can be used. We first prove that given two parent-children combinations ¢; and
to, such that t; < to and to is local loop free, then t; is local loop free as well.
Second, we introduce a reduction based on this. This reduction is similar to the
reduction mentioned in [HKW12], but guarantees that if a local loop is reported,
it is present in at least one node in the system.

Theorem 5.1.1 Assume two parent-children combinations t; and to such that
t1 < to. If to contains no local loop, then t1 contains no local loop either.

Proof Suppose that t; = (p1, f1) contains a local loop. Then there is a config-
uration ¢, such that the parent p; can loop through some of its states. Say n is
a child in ¢;. Add one child n’, of the same CFSM class as n, to t; to obtain ¢}:
1 = duplicate(t1,n). Construct a new configuration ¢’ on ¢} by copying ¢ and
adding child n’ in the same state as child n: ¢ = ¢[n’ — ¢(n)].

By Lemma[4:2.3no guard in p; can distinguish between configurations ¢ and
¢’ and hence t} contains a local loop as well. As applying duplicate preserves
local loops and to is derivable from ¢; by applying duplicate repeatedly, to
contains a local loop as well. By contraposition, if ¢t contains no local loop, t;
cannot contain a local loop either. [ |

The choice was made to only check ¢5 and, in case of a local loop, assume
that the local loop is present in both ¢; and t;. This saves computing time
and potentially reports. Moreover, if an engineer fixes to, t; is fixed as well.
The downside is that an engineer might decide not to fix the local loop based
on information about ts only, leaving a possible local loop in ¢; unnoticed. To
address this, both ¢; and ¢, are mentioned in the report as potentially containing
a local loop. The developer can also choose to skip this optimization by applying
the checks thoroughly. When checking thoroughly, only equal parent-children
combinations are checked together.

Future work The artificial parent-children combinations reduction proven
in [KusIi] is an upper bound: only a limited number of children that are of
a certain CFSM class needs to be considered to prove local loop presence or
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absence. Applying this upper bound to existing parent-children combinations
might reduce the number and complexity of parent-children combinations to be
checked. We suggest further study and implementation.

5.2 Tool

Motivated by the same reasons as described in Section[4.4] we reimplemented the
local loop tool in Python. It collects all parent-children combinations, selects the
parent-children combination to check using combinations reduction and checks
them for local loops. To speed up the process, it uses multiple threads to execute
this last step.

This procedure produces seemingly duplicate reports. To limit the number
of reports, equal loops are grouped in post-processing. Two loops are considered
equal if and only if all of the following hold:

e The parents that contain the loops are of the same CFSM class;
e Both loops run through the same state names in the same order;
e In both loops, in the same state, the same when clauses are enabled.

These requirements ensure that developers do not get duplicate reports, while
the grouping ensures still all information is shown. The information shown in the
report was determined in close cooperation with developers. Figure [5.2] shows
an example of a report: it gives the CFSM class of the parent (CmsBrmCuType),
the states the local loop runs through (ERROR and STANDBY), the configuration
of the children that enable the local loop, the WHEN clauses that are enabled
and all nodes in which this local loop can occur (CMS_BRM).

5.2.1 Development environment integration

PVSS integration We added local loop checking to the same panel as the
static semantic issues checker, so that developers can access it easily. On this
panel, developers can either check a single node for local loops or check all nodes
on her computer. Needless to say, this integration checks and reports for static
semantic errors and warnings first. A screenshot of the PVSS panel is shown in

Figure [5.3]

Web interface integration Local loop checks have been added to the web
integration in CMS Online, that was described in Section [4.4.1} The combi-
nations reduction described saves time but potentially produces false positives.
As a database dump takes in the order of hours and the combinations reduc-
tions usually saves less than a minute, this reduction was disabled by checking
thoroughly. Before applying local loop detection, erroneous nodes are removed
and the system is reduced using reachability reduction, both are described in
Section [3.1] Figure is a screenshot of the web integration of local loops.
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This parent contains a local loop:
CmsBrmCuType (39133, cms_brm_dcs_01:)

The parent can walk through states ERROR, STANDBY and ERROR in
some parent-children combinations. For instance, the parent will
loop if it has the following children in states:
CmsBrmBcm1CuType (39192) in state ERROR

CmsBrmBSCCuType(39516) in state OFF

CmsBrmBcm1CuType (39192) in state ERROR

CmsBrmBcm2CuType (39468) in state STANDBY

When clauses involved in this loop:
state: ERROR
when (($ALL$CmsBrmBcm2CuType in_state {STANDBY})
and ($ALL$CmsBrmBSCCuType in_state {0FF})) move_to STANDBY
state: STANDBY
when ($ANY$FwCHILDREN in_state {ERROR}) move_to ERROR

This might happen in the following parent-children combinations:
combination parent nodes

1*%CmsBrmBSCCuType (39516) 120266: CMS_BRM
2*CmsBrmBcm1CuType (39192)

1*CmsBrmBcm2CuType (39468)

Figure 5.2: Local loop report
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|| Module Panel Scale Help

|z o8 c@mal@ws « o|la & £ 1a[amsmms o

—Errors

Check all types for errors |

Check local types for errars |

Check one type for errors | I

—Local loops

Check local nodes for local Ioopsl

Check one node for local loops | ICMS_BRM

The following possible local loop was found:

Parent CmsBrmCuType (0) loops trough states ERROR, STANDEY and ERROR if its children are in the configuration:
CmsBrmBSCCuType (1) in state OFF

CmsBrmBem 1CuType (2) in state ERROR

CmsBrmBem2CuType (3) in state STANDBY

CmsBrmBecm 1CuType (4) in state ERROR

When dauses involved in this loop:
State ERROR:
when ({SALLSCmsBrmBcm2CuType in_state {STANDEY}) and ($ALLSCmsBrmBSCCuType in_state {OFF})) move_to
STANDBY
State STANDEY:

when (SANYSFWCHILDREN in_state {ERROR}) move_to ERROR

Figure 5.3: PVSS integration: panel with result of local loop detection

Problems related to nodes

Filter by subdetector: * -
Filter by type: local loop ~
Context, System Prio Type Description
CMS_CS_T2_MINUS cms_cs_dcs 01: 15 local | Node loops through states ERROR, ON if its children are in the configuration
loop | 2xIR_Sensor
View all accurences of this 3 xIR_Sensor : OFF
problem 11 xIR_Sensor : ERROR

When clauses imvolved in the loop
State ERROR: when (SANYSFWCHILDREN in_state (ON}) move_to ON
State ON: when (SANYSFWCHILDREN in_state {(ERROR}) move_to ERROR
CMS_CS_HFR_PLUS_ELMB  cms_cs_dcs_01: 15  local  Node loops through states ERROR, STANDBY if its children are in the configuration
loop | 5x FwEImbAi : ON
View all occurences of this 1 % FwElmbNode - STANDBY
problem 56 x FwElmbAi : ERROR
1x FwElmbNode - ERROR
3 x FwEImbAi - OFF

‘When clauses involved in the loop:

State ERROR: when ((SALLSBeckhofinode in_state {ON)) and ((SALLSFwDo in_state {OFF}) and ((SANYSBeckhoffnode in_state

{STANDBY)) and (SANYSFwElmbNode in_state (STANDBY}) and (SANYSFWCHILDREN not_in_state {(ERROR))))) move_to
ANDBY

State STANDBY: when ((SANYSBeckhofinode in_state (ERRORY) or (SANYSFwElmbNode in_state (ERROR})) move_to ERROR
DT_HV_WP1_MB2_S09_SL3  cms_ci_dcs 03 15 local  Node loops through states EM_OFF, ERROR if ts children are in the configuration
loop | 4 diLayerGroup - EM_OFF
rewial eccit ety 1% FwDevMajortty : MAJORITY_ERROR
proplem

When clauses imvolved in the looy

State EM_OFF: when ((SANYSFwDevMajority in_state [MAJORITY_ERROR}) or (SANYSdtLayerGroup in_state (INVALID})
move_to ERROR

State ERROR: when (SALLSdtLayerGroup in_state (EM_OFF)) mave_to EM_OFF

Figure 5.4: Local loop check results in CMS Online
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Combinations checked  Nodes with local loops
thoroughly - reduced thoroughly - reduced
CMS 11-2011 568 - 406 1695 - 1698
01-2012 458 - 405 1659 - 1662
03-2012 564 - 402 1546 - 1547
05-2012 578 - 413 1302 - 1303
LHCb 11-2011 1113 - 899 33 -33
ATLAS 05-2012 1757 - 1009 107 - 107
ALICE  05-2012 414 - 361 701 - 701

Table 5.1: Results of combinations reduction before local loop detection

reports nodes with local loops
CMS 11-2011 | 24 1698 0of 9038  (19%)
01-2012 | 24 1662 of 9038  (18%)
03-2012 | 22 1547 of 9045  (17%)
05-2012 | 19 1303 of 9064  (14%)
LHCb 11-2011 | 8 33 of 16139 (0.2%)
ATLAS 05-2012 | 8 107 of 12963 (0.8%)
ALICE 05-2012 | 45 701 of 4623  (15%)

Table 5.2: Results of local loop checks

5.3 Results

We applied the local loop verification tool to the systems of all four large LHC
experiments. We first describe the results of combinations reduction, after which
we describe the results of the local loop checks themselves. We finish the results
with a local loop that happened in practice.

Combinations reduction results Table [5.1] shows the results of combina-
tions reduction. The number of reports did not change in any of the tested
experiments, probably because the loops would be equal anyway and filtered
out in post-processing. We observe that the combinations reduction reduces
the number of combinations to be checked in all experiments by between 12
and 43%. The reduction causes no change in reports and introduces at most
three false positives (CMS 11-2011: 1695 to 1698 nodes). Therefore, we applied
combinations reduction before the local loop detection.

Check results As described in [HKK™11], local loops can be proven present
or absent by the tool very quickly. In at most a few minutes (uncached: 28s
sec, cached: 19 sec for CMS May 2012), the necessary parent-children combina-
tions are checked and the reports are generated. Table gives an overview of
local loop search results. Starting point was the systems as reduced by reach-
ability reduction. We can safely use reachability reduction before local loop
detection, as reachability reduction only removes states that are unreachable.
It implies however that we will not find local loops in states that are removed
by reachability reduction.
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Wed Feb 22 12:07:05 2012 - [CMS_BRM] in state [STANDBY]
Wed Feb 22 12:07:05 2012 - [CMS_BRM] in state [ERROR]
Wed Feb 22 12:07:05 2012 - [CMS_BRM] in state [STANDBY]
Wed Feb 22 12:07:05 2012 - [CMS_BRM] in state [ERROR]

Wed Feb 22 12:07:05 2012 - [CMS_BRM] in state [STANDBY]
Wed Feb 22 12:07:05 2012 - [CMS_BRM] in state [ERROR]
Wed Feb 22 12:07:05 2012 - [CMS_BRM] in state [STANDBY]
Wed Feb 22 12:07:05 2012 - [CMS_BRM] in state [ERROR]

Figure 5.5: Log file of a local loop in CMS

Local loops in production A manual search of the log files of CMS revealed
that some of the reported local loops had actually occurred in its production
system. For instance, the local loop of which Figure shows the report,
happened in February 2012 in CMS. The log file belonging to this problem is
shown in Figure It shows that the node cMS_BRM looped between states
ERROR and STANDBY, exactly as predicted by our tool. The log file as we
gathered it was incomplete, but shows that the node changed state at least 38
times per second. The local loop was confirmed to be fixed in March 2012.
Moreover, another local loop was confirmed to be fixed, that was present in 112
nodes.

The local loop described in Appendix [G] happened in at least three nodes
in November 2011. An inspection of the CFSM class involved resulted in the
discovery of a copy-paste error. As of March 2012, the node in which it happened
does not contain a local loop anymore.

LHCDb confirmed that a reported local loop had happened in their DCS, the
report saved time needed to search for the cause of the loop. Unfortunately, we
did not obtain a log of this local loop. The discovery of these reported local
loops happening in practice increased confidence in and support for this project.

As no systematic log search tools are available, searching for occurrences of
loops in log files has to be done in a web environment while making use of search
terms and intuition. It is very time consuming. Developing tools to automate
this task might be an interesting field of further study.
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6 Non-local loops

Local loops are livelocks within a single node. In this section, we introduce
another kind of loop, that involves multiple nodes: non-local loops. We first
give an example, an informal definition and explanation why non-local loops
are undesirable. We give a formal definition of non-local loops in Section [6.1}
In Section[6.2] we argue that checking real systems for non-local loops is infeasible
due to state spaces sizes. To reduce these state spaces, we describe reductions
in Section In Section we describe a subclass of non-local loops, state-
keeping non-local loops, for which we developed a check that is feasible on CMS,
ATLAS and ALICE.

A non-local loop is a serialised infinite trace of messages, that contains every
message sent between nodes of a system s, so that the sources of s receive
no commands and the leaves of s do not change state infinitely often without
infinitely often receiving a command.

Annotated configurations Before we give an example, we extend the con-
cept of configurations with message queues to obtain annotated configurations.
An annotated configuration is a configuration extended with a message queue
for each node. For instance, the annotated configuration

(1: (A, [, 2: (B, [YD), 3: (4, [Y])

denotes the configuration (1: A, 2: B, 3: A), extended with an empty com-
mand queue for node 1 and command queues containing one Y message for both
node 2 and 3. The commands in the queue have been received by the node, but
have not yet been executed.

For the sake of feasibility of the analyses, we abstract from message queuing:
for non-local loops we assume that each node can queue one command message
and that state update messages are handled immediately. We expect this ab-
straction to exclude a limited amount of behaviour. For instance: suppose that
a node is able to send a command Y, but only after sending command X. As
all nodes are independent, we are allowed to postpone sending of command Y
until command X is processed, avoiding the queue size limitation. We presume
that by postponing sending of commands, only a minimal amount of behaviour
is excluded.
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Figure 6.1: Two times system s with a non-local loop: node 1 keeps sending
GO_ON and GO_OFF commands

Example Observe the system described in Figure [6.1} a system s consisting
of node 1 of class PARENT, given in Listing 4] having one child: node 2. Node
2 is of class CHILD2, that is given in Listing When node 2 is in state ON,
node 1 sends a GO_OFF command. Upon receipt of this command, node 2 moves
to state OFF. When node 2 is in state OFF, node 1 sends a GO_ON command,
upon which node 2 moves to state ON. Obviously, this can be repeated infinitely
often.

class: $FWPART_$TOP$parent
state: ON
when ( $ANY$CHILD2 in_state ON ) do SWITCH_OFF
when ( $ANY$CHILD2 in_state OFF ) do SWITCH_ON
action: SWITCH_ON
do GO_ON $ALL$CHILD2
action: SWITCH_OFF
do GO_OFF $ALL$CHILD2

Listing 4: Class PARENT

class: $FWPART_$TOP$CHILD2
state: ON
action: GO_OFF
move_to OFF
state: OFF
action: GO_ON
move_to ON

Listing 5: Class CHILD2

Before we formalise this non-local loop, we describe the loop in more detail:
suppose that s starts in annotated configuration

(1: (oN, [1), 2: (on, [1)

As the first WHEN clause of node 1 is enabled, node 1 executes action SWITCH_OFF
by sending a GO_OFF command to node 2:

(1: (ON, [1), 2: (ON, [GOD_OFF]))
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Node 2 processes this command and moves to state OFF:
(1: (on, [1), 2: (OFF, [1))

Then, the second WHEN clause of node 1 is enabled, so node 1 executes action
SWITCH_ON by sending a GO_ON command to node 2:

(1: (oN, [1), 2: (OFF, [GOD_ON1))

Node 2 processes this command and moves to state ON, bringing the system
back in the initial annotated configuration:

(1: (on, [1), 2: (ON, [1))

6.1 Formal

Notation Before we give a formal definition of non-local loops, we introduce
some formal notation to describe the system structure. Say s is a system and n
is a node.

n € s denotes that n is a node (not a grandparent) of s;

S(s) is the set of sources of s;
L(s) is the set of leaves of s;
P(n) is the set of parents of n. In case n € S(s), P(n) is the

set of grandparents of s;
CH(n) is the set of children of n;
(co,n,n’,com) denotes node or grandparent n sending a command mes-
sage to node n’ giving command com.
(st,m,n’, sta) denotes node n sending a state update message to node
or grandparent n’ announcing node n is in state sta.

Using these notations, we express some requirements on messages, where m
is a trace of messages sent in a system s:

e A node can only receive commands from its parents or, in case the node
is a source, the system’s grandparents:

Vo com ((co,n',n, com) € m = n' € P(n))

e A node can only receive state updates from its children:

Vit sta ((st,n',n, sta) € m =n' € CH(n))

Using these notations, our non-local loop example produces the following
message trace (we added the annotated configurations again for clarity):

(1: (ON, [1), 2: (ON, [I0D
(co, 1, 2, GO_OFF)

(1: (ON, [1), 2: (ON, [GOD_OFF]))
(st, 2, 1, OFF)

(1: (oN, [1), 2: (OFF, [1))
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[(co, 1,2, GO_OFF)]

\ \‘
(_a:oNm20ND) ) ((1: (ON, ), 2: (ON, [GO_OFFJ)) )
[(st,2,1, ON)] T l [(st, 2, 1, OFF)]
((1:(ON, 1), 2: (OFF, [GO_ONJ) ) ( (:ON0),2:OFF D) )
L
[(co, 1,2, GO_ON)]

Figure 6.2: Part of a labelled transition system, denoting the non-local loop of
our example

(co, 1, 2, GO_ON)

(1: (ON, [1), 2: (OFF, [GO_ON]))
(st, 2, 1, ON)

(1: (onN, [1), 2: (ON, [1))

As the initial and last annotated configuration are equal, node 1 receives no
commands and node 2 does not change state infinitely often without infinitely
often receiving a command, the trace denotes a non-local loop in s. A non-local
loop will flood the system with messages, filling up queues and possibly causing
parts of the system to become unresponsive. A non-local loop might also report
different states repeatedly: the christmas tree (mentioned in the introduction

of Section .

Labelled transition system To formalise non-local loops, we model the
behaviour of a system s as a labelled transition system. A labelled transition
system is a four-tuple (¥, S, sg, —), where X is a set of labels, S is a set of states,
So is the initial state and — is a labelled transition relation between states. A
labelled transition system starts in state sy and uses the relation — to move
between states in S.

We define a labelled transition system L(s) for each system s, where S is
the set of all possible annotated configurations of s, ¥ is the set of all lists
of messages and sg is the initial annotated configuration of s (i.e. the initial
configuration combined with an empty command queue for every node). We
define the labelled transition relation such that acy —=s ac; holds if and only
if system s can start in annotated configuration acgy, run, thereby sending all and
only the messages in message list mg, and end up in annotated configuration

acy. We define ac L) ac to hold for all annotated configurations ac. Figure
shows a graphical representation of a part of I of our example.
Then obviously every non-local loop is a cycle

mi m2 Mn
acy — acty — acCy ...AaACy, — AC1

in the labelled transition system L. We summarise this path to a tuple (acy, m),
where ac; is an annotated configuration on the circular path and m is the list
of messages sent on the cycle, starting in acy: m = my +H mo +H -+ +Hmy,.
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An annotated configuration ac is valid for a system s if it is a complete and
correct function. Le. ac(n) is defined for all nodes n € s and if ac(n) denotes
a state sta for a node n, the CFSM class of n has state sta. A trace m is valid
and complete for a system s and a configuration ac; if IL(s) has a path

mi ma Mn
acy — aCy —> ac3...AaCy—1 — ACp

for some acs . ..ac, such that m = m; + mo +-- - ++m,,, i.e., such that s can
run and send all messages in m (valid), not sending anything else (complete),
while starting in ac; .

Connection with mCRL2 These labelled transition systems are a manual
abstraction from the mCRL2 translation of CFSM, that is briefly described in
Appendix[A] In the mCLR2 translation a system s is described using a labelled
transition system. To obtain our labelled transition systems, we abstract from
all transitions and state parameters except those relevant to non-local loops:
states, command queues and messages.

Formal Formally stated, a non-local loop ¢ is represented by a tuple (acy,m),
where ac; is an initial annotated configuration and m is a non-empty finite list
of messages, denoted by the tuples introduced earlier.

Definition 6.1.1 (acy,m) is a non-local loop for a system s if and only if all
of the following hold:

e acy is a valid annotated configuration for s and m is a valid and complete
trace for s starting in acy.

o The trace is infinite and indivisible: s is back in the initial annotated
configuration acy if and only if all messages in m have been sent:

acy LN aci N\
Ving moa ((m =my +H m2Aac; — ac; —2 ac1) = (mp =[] Vmy = []))
e No source receives a command:

!
vnGS(s)_'Eln/,com(CO, n,n, Com) eEm

e No leaf changes state during the loop without receiving a command:
Vier(s)((Fz,ar stazstar (st,m, 2, sta) € m A (st,n, x', sta’) € m) =
(3 com(co,n’,n, com) € m))

As aci — acy, every node must be in the same state before and after
execution of m. Hence if a node changes state in m, it must change back
to the initial state in m as well. By current implementation of CFSM,
if a node changes state it sends a state update. Hence, we can detect
a node changing state during the loop by looking for two state updates
sent by that node announcing different states. Moreover, as m is repeated
infinitely often, a node that eventually stabilises cannot change state in
m at all.
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The following properties hold for non-local loops in the current implemen-
tation:

e A node n only sends a state update at initialization, if it changed state,
it received a command or it received a state update. As m is repeated
infinitely often, the initialization is excluded. Therefore, if there is a state
update from node n in m, then there must be a state change of n in m, n
must receive a command or n must receive a state update:

vs;nés((zln/,sta(Sta n, ’I”L/, Sta) € m) =
((Bn 7 statstar (styn, 0, sta) € m A (st,n,n", sta’) € m)v (6.1)
(3’ com(co,n’,n, com) € m)V ’

E|n’,sta(Sta n/a n, Sta) S m))

e As a leaf cannot receive state updates, it only sends a state update if it
changed state or it received a command:

vs;nEL(s)((En/,stCL (st,n, n, sta) € m) =
((3nr i stazstar ((st,n, 1’ sta) € m A (st,n,n”, sta") € m))v (6.2)

Jn/ com(co,n’,n, com) € m)

Reachability abstraction We abstract from whether the initial annotated
configuration ac; is reachable. If the tools report a system to be non-local loop
free, it is non-local loop free with and without this abstraction. Moreover, this
eases the use of SAT solvers to find non-local loops. Reachability reduction,
that was described in Section might reduce the possibility of unreachable
non-local loops being reported.

Local loops In Section[5 we described local loops. A local loop is not guaran-
teed to be a non-local loop as well: consider a system as described in Figure|6.3
Suppose that in this system, node 2 has a local loop that is only present if node
3 is in state ON. Node 1 could prevent the local loop from happening by sending
a command to node 3 such that node 3 changes its state. Then, the local loop
is not a non-local loop, as the trace it would produce cannot happen and hence
is not valid.

Using the local loop tool, as described in Section[5.2} local loops can be found
quickly. Therefore it is safe to assume all nodes are local loop free without hiding
problematic behaviour and it is hence not necessary to include local loops in
the analysis of non-local loops:

Assumption 6.1.2 When studying non-local loops in a system s, assume all
nodes of s are local loop free.

A local loop in a node n means that n changes state infinitely often without
receiving or sending a command, or the children of n changing state. Consider
an infinite message trace m’ in which n contains no local loop, n receives finitely
many commands, n sends a finite number of commands and n’s children change
state finitely often. Then there exists a point p on m’ after which n receives
no commands, n sends no commands and no child of n changes state. As n is
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ON

ON OFF

ON

Figure 6.3: A system with a local loop but possibly without a non-local loop:
node 2 has a local loop, but node 1 might send a command to node 3 kicking it
out of state ON

local loop free, n will change state finitely many times after p in m’. Hence, n
will eventually stabilise. This implies that if there is a finite message trace m
that is repeated infinitely often and a node n changes state in m, n must either
receive a command, send a command, or a child of n must change state in m.
Formally stated:

Vi (3,07 stazstar ((st,n, 2, sta) € m A (st,n, 2, sta’) € m) = (
(37 com(co,n’, n, com) € m)V (6.3)
(3’ .com(co,n,n', com) € m)V ’

TnrecH(n),stagstar ((st,0/, 1, sta) € m A (st,n’, n, sta’) € m)))
where m is a finite trace that is repeated infinitely often. Using this, we prove

that every non-local loop consists of infinitely many command messages and
infinitely many state update messages.

Commands Using the formal definition of non-local loops and the assumption
that all nodes are free of local loops, we prove that in every non-local loop at
least one command is sent.

Lemma 6.1.3 FEvery non-local loop £ = (aci, m) contains a command message:
I 7 com(co,n’,n'" com) € m.

Proof We prove 3,/ com(co,n’,n"”,com) € m by contradiction: suppose
there is a system s having a non-local loop ¢ = (ac1,m) such that m contains
no commands:

ﬁan’,n”,com (CO7 n/, n”, COm) eEm (64)

Let k be a list containing all nodes of s. Assume k is sorted in reverse topological
order: if node n is a parent of node n’/, then n’ must appear in k before n. As
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s is a directed acyclic graph, such an ordering exists. Define ¢() to hold if and
only if the node n at position 7 in k£ sends no state update:

q(i) = =3 sta(st,n,n’, sta) € m

We prove by induction on k that no node sends a state update; i.e. V;q(4).

48

Base case: ¢(0).
Let n be the node in k at position 0. Observe that n does not have any
children and hence is a leaf: n € L(s).

Asn € L(s), by definition of £, n will eventually stabilise unless it receives
a command in m:
(Fa 2 stagstar (styn, T, sta) € m A (st,n,2’, sta’) € m) = (6.5)

Jz.com(cO, x, M, com) € m

Node n is a leaf and does not change state in m without receipt of a
command in m. It was assumed n receives no commands, so n does not
change state. Leaves only send a state update on receipt of a command
or after a state change. Hence, n sends no state updates in m. Formally

stated, by (6.2)), (6.5) and (6.4), » sends no state update:

=3 sta(st,n,n’, sta) € m
Hence, ¢(0) holds.

Induction step: assume as induction hypothesis that for all j smaller than
i, q(j) holds. Let n be the node in k at position ¢ + 1. Perform a case
distinction on whether n is a leaf:

— Case: n is a leaf: n € L(s):
Analogous to the proof of the base case: g(i + 1).

— Case: n is a node with children: n ¢ L(s):
By the ordering of k, all children of n are in k at positions j with
j < i. By the induction hypothesis, no child of n sends a state
update:

Ve Hn) " 3ns sta(st,n', 0", sta) € m) (6.6)

n can only receive state updates from its children:

_‘Eln’géCH(n)7sta (Sta Tl/, n, Sta’) em (67)
By and (6.7, n receives no state updates:
=37 sta(st,n',n, sta) € m (6.8)

It was assumed no node receives a command:

=3 com(co,n’ 0" com) € m (6.9)



By , 6.3) and , n does not change state during m:

=3y 0 stazstar (6,0, T, sta) € m A (st,n, 2, sta’) € m)  (6.10)

By , a node only sends a state update if it changed state, it
received a command or it received a state update.
By Assumption and , n is local loop free, so if there is a
state change of n in m, then there must also be a command to or
from n in m or a state update of a child of n in m.

By (6.1)), (6.8). and (6.10)), n sends no state updates:

=3 sta(st,n,n’, sta) € m
Hence, ¢(i + 1) holds.

Hence we can conclude that no node sends a state update: for all i, ¢(¢) holds,
meaning that there are no n/, n” and sta such that (st,n’,n” sta) € m. If
there are neither commands nor state update messages in m, m is empty, which
contradicts the assumption that there is a non-local loop ¢ with a non-empty
m. Hence, every non-local loop contains at least one command:

/ 1
3y 7 com(co,n’, " com) € m
|

Note that in the current CFSM implementation, after a node receives a
command, it always sends back a state update. Hence, if there is a command
in m, then there is a state update in m as well:

(Fnn7 com(co,n’,n, com) € m)) = Fg4(st,n,n', sta) € m

6.2 General non-local loops

To detect non-local loops, bounded model checking can be used. Bounded model
checking (BMC) [BCCT03] is a technique in which the possible behaviour of a
system is unfolded and then checked for a violation of the property to be checked
within a number, say 7, of steps. If no violation is found, r is increased up to
a certain upper bound u. If one proves that if a violation is possible it must
occur within u steps, and the system cannot violate the property in u steps,
the violation is not possible and the property holds. BMC is often implemented
using SAT tools.

Unfortunately, a general upper bound w to the number of steps is the size
of the complete CFSM state space of a system. To prove this claim, we give an
example of a state-changing non-local loop that traverses the entire state space
before reaching the initial configuration again.

Example Consider a system s as shown in Figure[6.4} consisting of n nodes in
a chain structure. The source node 1 is node of CFSM class A and has a chain
of children of class B. Node n is a leaf of class ¢. The CFSM classes are shown
in Listing[6] [7] and [§] where i is an integer variable and m is an integer constant.
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Intuitively, these systems behave as endless analog counters, where each of the
n — 1 digits traverse its m states, before getting reset by its parent.

We construct a non-local loop for s by starting in the configuration in which
every node is in state L1 except node n, that is in state L

(1: L1, 2: L1, ..., n-2: L1, n-1: L1, n: Lm)

In the entire system, only the WHEN clause in node n — 1 is enabled, so node
n — 1 moves to state L2:

(1: L1, 2: L1, ..., n-2: L1, n-1: L2, n: Lm)
We skip a few steps in which n — 1 traverses all its states, and ends in state LM.
(1: L1, 2: L1, ..., n-2: L1, n-1: Lm, n: Lm)

The only WHEN clause in s that is enabled is in node n — 2, so node n — 2 sends
a RESTART command to node n — 1 and waits:

(1: L1, 2: L1, ..., n-2: L1, n-1: (Lm, [RESTART]), n: Lm)

Node n — 1 processes the command by sending a RESTART command to node n
and moves to state L1. This releases node n — 2 from waiting, so it completes
its action by moving to state L2:

(1: L1, 2: L1, ..., n-2: L2, n-1: L1, n: Lm)

We skip the steps in which nodes 2 to n — 1 traverse all their states, progressing
when their child is in state LM. Finally s reaches the configuration where all
nodes are in state LM:

(1: Lm, 2: Lm, ..., n-2: Lm, n-1: Lm, n: Lm)

In this configuration, only the WHEN clause in node 1 is enabled. Every node
sends a RESTART command to its child, waits for confirmation and moves to
state L1 again. This brings s back to the intitial configuration:

(1: L1, 2: L1, ..., n-2: L1, n-1: L1, n: Lm)

Because in this trace node 1 receives no commands, node n does not change
state without receipt of a command, and the initial configuration is not encoun-
tered twice, the trace denotes a non-local loop. Every possible configuration
appears in this trace, so the non-local loop it denotes traverses the entire state
space.

This proves that there are loops that traverse the complete state space and
hence there are systems that require the whole state space to be traversed while
checking for non-local loops using bounded model checking. Even our smallest
system, ALICE, has a state space of 1012952, A usable implementation of a
BMC check for general non-local loops on these state spaces is infeasible. To
decrease the size of the state spaces, we apply reductions.

1For readability reasons, we ommit command queues when they are empty
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class A

class B

° class C

Figure 6.4: A system s, consisting of a chain of nodes 1---n

6.3 Reductions

In this section, we describe how we reduced state space sizes. We first describe
a reduction that uses absence of certain FSM constructs to remove nodes: top
bouncer reduction. Several separate systems can result from applying this re-
duction. Therefore, we describe another reduction to remove duplicates from
separate systems: duplicate system reduction.

6.3.1 Top bouncer reduction

top bouncer

bottom bouncer

Figure 6.5: Schematic overview of two necessaries for non-local loops: a top
bouncer ‘bounces’ a state update back as a command and a bottom bouncer
bounces a command back as a state update.
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class: A
state: Li !(for 1 <= i < m)
when ($ALL$FwCHILDREN in_state Lm) do TICK
action: TICK
do RESTART $ALL$FwCHILDREN
wait ( $ALL$FwCHILDREN )
move_to L(i+1)

state: Lm
when ($ALL$FwCHILDREN in_state Lm) do RESTART
action: RESTART
do RESTART $ALL$FwCHILDREN
wait ( $ALL$FwCHILDREN )
move_to L1

Listing 6: Class A

class: B
state: Li !(for 1 <= i < m)
when ($ALL$FwCHILDREN in_state Lm) do TICK
action: TICK
do RESTART $ALL$FwCHILDREN
wait ( $ALL$FwCHILDREN )
move_to L(i+1)

state: Lm
action: RESTART
do RESTART $ALL$FwCHILDREN
wait ( $ALL$FwCHILDREN )
move_to L1

Listing 7: Class B

Top bouncers In a CFSM system, commands go down the graph from the
sources and state updates go up the graph towards the sources. If all nodes in
the graph are free of local loops, the only way an infinite sequence of commands
and state updates, a non-local loop, can happen, is when a command somehow
triggers a state update and a state update somehow triggers a command. This
can happen in top and bottom bouncers. Figure [6.5|shows an intuition.

Definition 6.3.1 A candidate top bouncer is an FSM construct that upon re-
ceipt of a state update might send a command: an action clause containing a
DO statement mentioned in a DO referrer.

The example below shows such a construct:

Example
state: ON
when ( $ANY$FwCHILDREN in_state OFF ) do GO_OFF
action: GO_OFF
do OFF $ALL$FwCHILDREN
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class: C
state: Lm

Listing 8: Class C

Note that a language construct of the described shape is not guaranteed to
actually send a command, as the DO statement might be inside an IF statement
or the guard of the WHEN clause might be false in some configurations.

Definition 6.3.2 A candidate top bouncer is a top bouncer when it, in a pro-
duction or simulated system, actually sends a command.

Say the example above is present in a node n. Then the candidate top bouncer
becomes a top bouncer if, in a running system, n is in state ON and has a child
that is in state OFF. Notationwise, ¢T'B(n) holds if and only if node n has a
candidate top bouncer, and T'B(n, £) holds if and only if a top bouncer in node
n sends a command during non-local loop £. Obviously, for all nodes n and
non-local loops ¢ it holds that TB(n, £) implies ¢cT'B(n).

Given a non-local loop ¢, no way was found to determine whether TB(n,{)
holds for a certain node n without requiring knowledge of the system involved
and a behaviour reconstruction. However, in the analyses following, TB(n, ¢) is
shown to be required for non-local loops. We first prove that a node only sends
a command if it received a command or a top bouncer is active.

Lemma 6.3.3 For every node n, n cannot send a command to one if its chil-
dren unless either:

e n received a command from one of its parents

e n received a state update from one of its children and after that a top
bouncer in n sent a command

Proof by inspection of FSM constructs:

The only FSM instruction that can send a command is a DO statement. The
only place a DO statement can appear is in an action clause, which is executed
upon receipt of a command or by a DO referrer. We apply case distinction over
these two options:

e n can send a command if it received a command from one of its parents.

e A DO referrer is only called if the when clauses are evaluated. Evaluation
of a when clause only happens when n receives a state update from one of
its children. By definition, a top bouncer sends a command upon receipt
of a state update.

Hence, node n only sends a command to one of its children if n received a
command from one of its parents or it received a state update from one of its
children and after that a top bouncer in n sent a command. [ |

From this lemma, it follows that for every non-local loop ¢ and for all nodes
n, n only sends a command if it receives a command, or receives a state update
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and a top bouncer is active:

vE:(acl,m),n((Hn/GCH(n),com (C07 n, nl7 CO?TL) € m) =
(B epmn),com(co,n’,n,com) € m)v
(BwecHm),stalst,n',n, sta) € m ATB(n, (ac1,m)))))
where / is a non-local loop.

Using the lemma, we can prove that in every non-local loop a top bouncer
is active.

Theorem 6.3.4 For every non-local loop ¢, there is a node n such that TB(n,{)
holds: ¥¢3,TB(n, ), where £ is a non-local loop.

Proof Towards contradiction, suppose there is a system s having a non-local
loop ¢ = (acy,m), such that there is no top bouncer active in £:

=3, TB(n',0) (6.11)

Let k be a list containing all nodes of s. Assume k is sorted in a topological
order: if node n is a parent of node n’, then n must appear in k before n’. As
s is a directed acyclic graph, such an ordering exists. Define 7(i) to be true if
and only if the node n at position ¢ in k£ sends no commands during £:

(i) = =3 com(co,n,n’,com) € m
We prove by induction that (i) holds for all nodes in k.

Base case: 7(0).
Let n be the node in k at position 0. Observe that n cannot have parents
and therefore is a source: n € S(s).

As n € S(s), by definition of ¢, n will not receive a command:

=3’ com(co,n’,n, com) € m (6.12)

By Lemma [6.3.3] (6.12]) and (6.11]), n sends no commands:

!
=3/ com(co,n,n', com) € m

Hence, r(0) holds.

Induction step: assume as the induction hypothesis that (j) holds for all
7 smaller than or equal to ¢. Let n be the node referenced in k at position
i+ 1. Perform a case distinction on whether n is a source:

— Case: n is a source: n € S(s)
Analogous to the proof of the base case: (i + 1).

— Case: n has at least one parent: n ¢ S(s)
By the ordering of k, all parents of n are referenced in k at positions
j with j < i. By the induction hypothesis, no parent of n sends a
command:

Ve P(n) " 3n com(co,n’, 0", com) € m) (6.13)
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n can only receive commands from its parents:

= 3n¢ P(n),com(cO, 0, n, com) € m (6.14)
By (6.13) and (6.14)), n receives no commands:
=37 com(co,n',n, com) € m (6.15)

By Lemma [6.3.3] (6.15) and (6.11]), n sends no commands:

=3/ com(co,n,n’, com) € m
Hence, r(i + 1) holds.

It hence follows that r(i) holds for all 4, which means that there exist no n,
n' and com such that (co,n,n’,com) € m. This contradicts Lemma S0
¢ cannot be a non-local loop or there must be a top bouncer is s. This proves
that for every non-local loop ¢, there is a node n such that TB(n,¢) holds. N

Reduction By definition a top bouncer is a language construct that upon
receipt of a state update sends a command. By Theorem [6.3.4] in every non-
local loop at least one top bouncer is active. We prove a stronger version, stating
that a source without top bouncer can be removed without altering non-local
loop presence in the other parts of the system, and use that to reduce the system.

Theorem 6.3.5 Assume two systems s and s’, such that s’ is obtained from
s by removing a source n. Suppose n cannot have top bouncers: there exists
no non-local loop " such that TB(n,¢"). Then there exists a non-local loop
¢ = (aci,m) in s if and only if there exists a non-local loop ¢ = (acy,m’) in s'.

Proof We prove both directions of the bi-implication separately:

e Assume system s’ has a non-local loop ¢ = (acj,m'). Then a non-local
loop (acy, m) for s can be constructed by replaying m’ in system s. If node
n is both a source and a leaf, and is therefore not connected to the other
nodes, this construction is trivial. Therefore, in the following assume that
n is not a leaf.

Before we give the construction, we prove that node n sends no commands
during any non-local loop ¢’ = (acy,m”) for system s. As n € S(s), n
receives no commands:

=357 com(co,n’, n, com) € m"” (6.16)

By (6.16)), =T'B(n,£¢") and Lemmal6.3.3] n sends no command during m”:
=357 com(co,n,n’, com) € m" (6.17)

Hence, n sends no commands during any non-local loop ¢”.

By construction, each child n’ of n is present in both s and s’. By ,
n' receives no commands from n when in s. Moreover, if n’ € S(s'), by
n' receives no commands either. Therefore no child of n receives a
command from n in s nor s’. Hence, no node in s’ can distinguish between
being in s and s’ and hence every node can perform the same behaviour
in s’ as in s. With this, we construct the non-local loop ¢:
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1. Start with s in annotated configuration acj. This leaves node n,
which is put in an arbitrary state. Asn receives no commands, choose
the command queue empty. Now system s is in a valid annotated
configuration. Call this annotated configuration acxg:

acxy = aci[n — (stag, [])]

where stag is an arbitrary state of n.
2. Set i =0.

3. Replay m/’ in s, recording all sent messages in m;. Call the resulting
annotated configuration acx;4q:

my
acT; —— ACTit1

As all nodes, except n, can perform the same behaviour in s and s,
this replay is possible. As ac] LN ac) and n receives no commands,
acz;q is equal to aci[n — (sta;11,[])] for some state sta;;1.

4. Repeat this last step, increasing ¢, until a resulting annotated con-

figuration is encountered a second time. Formally stated: until an a
and b exist, such that a < b and acx, = acxp. This will happen in at
most |n.states| steps.
Then a non-local loop for s is (acxq, [mq +H -+ +H mp—1]), as s can
start in annotated configuration acx,, run and produce the messages
in m, to mp_1 without passing through acz,, and end up in acz,
again.

By construction, no leaf in s’ changes state infinitely often in ¢ without
receipt of a command infinitely often. We assumed that n is not a leaf, so
no leaf in s changes state infinitely often without receipt of a command.
Hence, ¢ is a non-local loop.

Given an arbitrary non-local loop ¢ for s’, a non-local loop ¢ for s can
be constructed. Hence, if s’ contains a non-local loop, then s contains a
non-local loop.

To prove the other direction of the bi-implication, assume towards con-
tradiction that s’ has no non-local loop and s has a non-local loop ¢ =
(acy,m).

n € S(s), so by definition of ¢, n receives no command in m:
=3’ com(co,n’,n, com) € m (6.18)

By (6.18)), =T'B(n,¢) and Lemma n sends no command in m:

=3’ com(co,n,n’, com) € m (6.19)

As the children of n receive no commands from n, these children cannot
distinguish between being in s and s’. Therefore, no node in s’ can dis-
tinguish between being in s and s’. As there is no repeatable m’ for s,



there is no repeatable m for these nodes in s either. Hence, there is no
command sent to or from any of these nodes in m:

Vinres' ™ 3ns com ((co,n’,n" com) € mV (co,n”,n'com) e m)  (6.20)

By (6.18), (6.19) and (6.20), m does not contain any commands, which
contradicts Lemma [6.1.3]

Hence, if s contains a non-local loop, then s’ contains a non-local loop.

Hence, s contains a non-local loop if and only if s’ contains a non-local loop. H

To make the reduction more powerful, we prove that a system consisting of
a single node cannot have a non-local loop.

Theorem 6.3.6 A system s consisting of a single node n cannot have a non-
local loop.

Proof Towards contradiction, suppose s has a non-local loop ¢ = (acy,m).
As n has neither parents nor children, n is both a source and a leaf: n €
S(s) An € L(s). By definition of ¢, n receives no commands:

=3’ com(co,n’,n, com) € m (6.21)

As CH(n) =0, by (6.21) and Lemma n sends no commands:
=37 com(co,n,n', com) € m

If n receives and sends no commands, m contains no commands, which contra-
dicts Lemma Hence, a system consisting of a single node cannot contain
a non-local loop. [ |

As for all n it holds that —=¢T'B(n) = —-3,TB(n,{), Theorem can be
applied by searching for sources without candidate top bouncers and removing
them. This procedure can be repeated as long as there are sources without
candidate top bouncers left. If a source is encountered that has no children,
Theorem [6.3.6] allows it to be removed.

If a source is removed, its subsystems might become independent. It is ad-
vantageous to check for independence and store the independent subsystems
separately for further analyses, as the state spaces of the subsystems then are
summed instead of multiplied, yielding a significantly smaller state space. This
independency check is performed by converting the system structure to an undi-
rected graph, where two nodes are connected if and only if they have a parent-
child relation. The resulting graph is then checked for connected components
using a standard library. Then each connected component is an independent
system, since no node in it has a parent-child relation with any node in any
other connected component.

Tool Top bouncer reduction is the procedure of applying the two mentioned
reductions and splitting the resulting independent subsystems. A tool was writ-
ten that performs top bouncer reduction, its pseudocode is given in Listing [0}
Given a list of sources, the algorithm performs the reductions. It keeps a set
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queue of sources that need to be processed, and a set result of unreducable
sources. Invariant is that queue|Jresult remains a list of all sources of the
((partially) reduced) system. In each step, a source is either removed or moved
to result. Figure [6.6] summarises what happens when a node is encountered
that can be reduced: node 2 is removed, node 3 remains a child of node 4 and
node 2 becomes a source . Node 2 could be reducable and is added to queue.
Figure shows what happens when a node is encountered that cannot be
reduced: it is simply moved from queue to result. Theorem [6.3.6] allows us to
remove any source that has no children.

The algorithm ends when queue = (). An empty queue implies that there are
no more nodes that can be removed. Finalisation is easily proven by using as
a variant function the number of nodes reachable from the sources in queue by
only following parent-child relations downwards. Top bouncer reduction finishes
by separating the independent subsystems. The result of this last function is
put in resultSystems.

function TOPBOUNCERREDUCTION(sources)
queue, result < sources, []
while pick a node € queue and remove it from queue do
if node has children then

if node has a candidate top bouncer then > Figure [6.7
result < result | J{node}
else > Figure

for child € node.children do
Remove node as a parent of child
if child has no parents left then
queue < queue | J{child}
end if
end for
end if
end if
end while
resultSystems < getIndependentSystems(result)
end function

Listing 9: Top bouncer reduction, where getIndependentSystems() is a function
that given a list of sources, provides the longest list of systems, such that every
system is independent of all the others.

Results Table shows the results of top bouncer reduction. As ’before’, we
took the systems as reduced by reachability reduction. The number of nodes
here includes leaves, as leaves contribute to state space. We conclude from the
data that top bouncer reduction can make a huge difference: in CMS and in
particular ATLAS, state spaces are drastically reduced. Investigation of the
ATLAS system revealed that only one CFSM class in the ATLAS DCS has a
top bouncer. ATLAS told us they avoid using the constructs that we defined
as top bouncers.

58




result queue result queue result queue

Figure 6.6: Top bouncer reduction: node 2 gets removed. Node 1 has no parents
left and is added to queue. Left: situation before, middle: node 2 is removed
from all its parents and children, right: situation after.

result queue result queue result queue

Figure 6.7: Top bouncer reduction: node 2 cannot be removed. It is moved
from queue to result. Left: situation before, middle: node 2 is removed from
queue, right: situation after.

Nodes State space systems
before -after before -after after
CMS 11-2011 | 32356 - 15243 1026100 _10T™T 488
01-2012 | 32388 - 15245 1026186 _ 101194 488
03-2012 | 32480 - 15245 1026276 _ 10194 488
05-2012 | 32724 - 15245 1026368 _ 101192 488
LHCb  11-2011 | 79519 - 78203 10°8325 . 10°7477 3
ATLAS 05-2012 | 76683 - 736 1058922 _ 1036 16
ALICE 05-2012 | 14996 -9980  10'2052 _ 103351 212

Table 6.1: Results of top bouncer reduction
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6.3.2 Children-specific top bouncer reduction

In a CFSM system structured as a tree, commands go down the graph from the
sources and state updates go up the graph towards the sources. After applying
TBR, every source contains a candidate top bouncer. However, if the definition
of top bouncers is extended with the information to which children the top
bouncer sends a command, the reduction can be extended as well: if a child ¢
receives no commands and its subsystem is non-local loop free, it will eventually
stabilise. This is the same behaviour as if ¢ and all its children would be replaced
by a leavified version of ¢. A leavified version of node ¢ is a leaf containing
the states of ¢, without their WHEN and ACTION clauses. To summarise: if a
subsystem receives no commands, it can be replaced by a leavified version of its
source and checked for non-local loops in isolation.

This idea of children-specific top bouncer reduction was implemented for tree-
structured systems. As we discovered the systems were structured like directed
acyclic graphs, determining whether children-specific top bouncer reduction is
applicable to directed acyclic graphs needs to be subject of further study.

6.3.3 Duplicate system reduction

Top bouncer reduction can produce independent systems. Node names and
identifiers have no influence on behaviour of nodes (no guard can select on node
names or identifiers), so if two systems are equal up to renaming of nodes, only
one of them needs to be checked for non-local loops.

Consider two independent systems s and s’. Then they can be determined
to be equal as follows: Construct a directed acyclic graph G, having as nodes
the nodes of s, coloured with the CFSM class they are instances of. A directed
edge (n,n’) is added to G if and only if n’ € CH(n). Do the same for
constructing G’. Then s and s’ can perform the same behaviour if G and
G’ are isomorphic respecting colours. The isomorphism test used in the tool is
provided by the NetworkX package for Python, version 1.6. As the isomorphism
test is expensive, in particular when the two graphs are not isomorphic, the tool
generates a simple hash of the two systems. If the two hashes are different,
the isomorphism test is not applied. In the systems tested, this filters out all
isomorphic tests that would have returned non-isomorphism. Listing [10| shows
the straightforward pseudocode of duplicate system reduction.

Results The results of this duplicate system reduction tool on the systems
of CMS, LHCb and ATLAS are in Table [6.2] ‘Before’ refers to the systems
remaining after top bouncer reduction. The data show that state space does
not decrease much by applying duplicate system reduction, but the number of
systems to be checked decreases by roughly a factor 10 in most experiments.

6.4 State-keeping non-local loops
Even though bottom bouncer reduction and duplicate system reduction reduce
the state spaces, even a non-local loop check on the system of ATLAS, with its

reduced state space of 1037, is infeasible. Therefore, we identified a special case
of a non-local loop that can be detected using bounded model checking with an
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function DUPLICATESYSTEMREDUCTION(systems)
graphs = ||
for system € systems do > Create a graph for each system
graphs|system] < create a new directed graph
for node € system do
add node as a node to graphs[system)
end for
for node € system do
for child € node.children do
add edge (node, child) to graphs[system]
end for
end for
end for
result < {} > Get graphs without duplicates
for system € systems do
found < false
for system?2 € result do
if hash(systeml) = hash(system2) then
if isomorphic(graphs|system|, graphs[system2]) then
found < true
break
end if
end if
end for
if = found then
result < result| J{system}
end if
end for
end function

Listing 10: Duplicate system reduction, where isomorphic() is a function that
given two graphs returns whether they are isomorphic respecting colouring,
where colours represent CFSM classes. hash(s), given a system s, returns a
hash based on the structure of s.

upper bound of one round: the state-keeping non-local loop. This is a non-local
loop during which no node changes state.

Definition 6.4.1 A non-local loop ¢ = (acy,m) is a state-keeping non-local loop
if and only if

=3y 0 stazstar ((st,n, 0, sta) € m A (st,n,n’, sta’) € m) (6.22)

As no node is allowed to change state during the loop, obviously no leaf is
allowed to change state during the loop either. This happens often in practice:
hardware might need some time to change its state after receipt of a command.
Meanwhile, the CFSM control system could loop and flood the computing net-
work with messages, filling up queues and possibly causing genuine command
messages to be dropped. Therefore, in this section it is assumed leaves do not
change state during the loop:
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Nodes Systems State space
before -after before -after  before -after
CMS 11-2011 | 15243 - 5591 488 - 49 T TV
01-2012 | 15245 - 5593 488 - 49 101194 _ 101194
03-2012 | 15245 - 5593 488 - 49 101194 _ 101194
05-2012 | 15245 - 5593 488 - 49 101192 _ 101192
LHCb 11-2011 | 78203 - 78203 3 -3 1037477~ 1057477
ATLAS 05-2012 736 - 46 16 -1 1036 - 103
ALICE 05-2012 9980 - 7522 212 - 16 103351 - 103351

Table 6.2: Results of duplicate system reduction

Assumption 6.4.2
“IneL(s)n’ statsta (5,1’ sta) € m A (st,n,n', sta’) € m)

where s is a system and ¢ = (acy, m) is a non-local loop in s.

6.4.1 Translation

To detect state-keeping non-local loops, we introduce a translation from a sys-
tem to a satisfiability problem. In this section we give this translation and prove
that it is correct.

By Theorem [6.3.4] in every non-local loop at least one top bouncer is in-
volved, so assume a system s having a non-empty set of nodes having candidate
top bouncers topBouncers. In this section, several properties are used as ob-
jects and given in dot-notation. For instance state.whenClauses points to the
list of WHEN clauses belonging to state. The set of names of all states of all
nodes in s is allStates and allCommands is the set of all command names.

Variables
e nodelnState, s denotes whether node n is in state sta.

o commandSentcom n,n denotes whether command com is sent from node
n to node n’.
By definition of non-local loops, sources receive no commands. Therefore,
in contrast to the (co,n,n’,com) tuples used before, we can safely require
both n and n’ to be nodes, and not grandparents.
Note that this abstracts from how many times a command is sent. This is
fine as no node changes its state, so a command sent twice will have the
same effect twice. This also renders the message queue size abstraction in
Section [ irrelevant.

Helper functions

o checkW henClauses(node, whenClauses) produces a formula that is equiv-
alent to true if and only if both:
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— If a WHEN clause is enabled, execution of neither its referrer nor the
statements it points to change the state of node
(statelsKept(node, whenClause.referrer) is true)

— If a WHEN clause is enabled, for every command that is sent by it,
the corresponding commandSent variable must be true.
(commandsAreSent(node, whenClause.referrer) is true)

o statelsKept(node, constructs) produces a formula that is equivalent to
true if and only if node does not change its state when the constructs are
executed. If constructs is a DO referrer, the statements in the ACTION
clause it points to are considered.

e commandsAreSent(node, constructs) produces a formula that is equiva-
lent to true if and only if for every command that is sent by constructs,
the corresponding commandSent variable is true. If constructs is a DO
referrer, the statements in the ACTION clause it points to are considered.

e oneCommandSent(node, statements) produces a formula that is equiva-
lent to true if and only if at least one command is sent when the statements
are executed according to the CFSM specification.

Formula First, the possible behaviour of the system is modelled.
For every node n:

e 1 is in one defined state:

V

sta€n.states

(6.23)
( ( /\ ﬁnodelnStatenysm) A nodeInStatenysm>

sta’€allStates\{sta}

e The WHEN clauses of n do not change the state of n and commands are
sent correctly:

/\ (nodeInStatenysm =
sta€En.states (624)

checkW henClauses(n, sta.whenClauses))

e When 7 is not a source]] n does not change state as a result of a com-
mand received. Moreover, on receipt of a command, commands are sent

2This is ensured by the translation tool.
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f

correctly:

/\ (nodelnStaten,sta =

sta€En.states

< /\ \/ commandSentq | = (6.25)

ac€sta.actions n’En.parents

(statelsKept(n,a.statements)A

commandsAreSent(n, a.statements)) ) )

Second, at least one top bouncer tb must be enabled:

e The node that contains the candidate top bouncer, is in the state of the
candidate top bouncer:

nOdeInStatetb.node,tbAState (626)

e The guard of the candidate top bouncer is true and all preceding guards
are false:

th.guard A /\ —g (6.27)

g€Etb.state.guardsAg precedes tb.guard

e At least one command is sent by the action clause of the candidate top
bouncer:

oneCommandSent(tb.node, th.action.statements) (6.28)

The complete formula f is the combination of the formulae mentioned here:

= A ((6:23) A (6:29) A (6:25)) A \/ ((6-26) A (6.27) A (6.28))

neEs.nodes tb€topBouncers

f is translated to SMT by a straightforward script. This SMT can then be solved
by a SMT solver, such as Yices [DMdMO06]. In case f is satisfiable, evidence is
generated consisting of an assignment to all variables. Using this evidence, we
show that s has a state-keeping non-local loop if and only if f is satisfiable.

Theorem 6.4.3 f is satisfiable if and only if there is a state-keeping non-local
loop in the system s.

Proof We prove both directions of the bi-implication separately:
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e Suppose f is satisfiable.
Clause of f guarantees that for every node n in s, there is exactly one
sta of the states of n for which nodeInState,, st holds. Combining these
gives a configuration ¢; for s. The variables commandSent om n.n’ denote
whether a com command is sent. The number of command messages sent
was abstracted from and the order in which the commands are sent is not



known, so constructing a message list m requires a simulation of s, but
it is obvious this is possible. The same holds for transforming the valid
configuration ¢; into an annotated configuration ac;.

Having a valid and complete annotated configuration ac; and a valid mes-
sage trace m, in order to prove (aci,m) to be a state-keeping non-local
loop, there is left to prove:

— No node changes state.
By Clauses ((6.24)) and (6.25)), no node changes state during the loop:

=3y 0 statstar ((st,n, 1, sta) € m A (st,n,n’, sta’) € m)  (6.29)

— The sources of s receive no commands.
When we defined the commandSent o n,n variable, we excluded
grandparents from sending commands. Sources receiving commands
from other nodes is excluded by a correct implementation of the
commandsAreSent(node, statements) helper function. Hence, the
sources of s receive no commands.

— The leaves of s do not change state during the loop without receiving
a command in the loop.

This is implied by (6.29)).
Hence, if f is satisfiable, there is a state-keeping non-local loop in s.

Suppose there exists a state-keeping non-local loop £ = (ac;, m) for system
s.
By 7 no node in s changes state during . Hence, system s is in only
one configuration ¢; during ¢. This ¢; can be straightforwardly translated

to an assignment of the variables nodeInState, st,. The same holds for
translating trace m into an assignment to the variables commandSentcom nn’-
Call the resulting assignment a. Left to prove: a satisfies f.

As acy is a valid annotated configuration for s, Clause holds for
all nodes n. For every node n, Clause [6.27] consists of two parts: the
state of n does not change as a result of executing a WHEN clause (which
is implied by (6.22)), and the commands that should be sent by execut-
ing this WHEN clause are correctly denoted in the commandSent vari-
ables (which is implied by a correct implementation of the helper function
commandsAreSent). For every node n, Clause consists of two
parts: n does not change as a result of a command (which is implied by
(6.22), and the commands that should be sent on receipt of a command
are correctly denoted in the commandSent variables (which is implied
by a correct implementation of the helper function commandsAreSent).
Hence, the first part of f holds for a:

A (623) A E29) A (6:23))

nes.nodes

As ¢ is a non-local loop, by Theorem there exists a node n such that
TB(n,£) holds, meaning that there is a top bouncer in ¢. It is not hard
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to reason that this implies that the second part of f holds for a:

\/ (B2 62D A B2

tbetopBouncers

Hence, if there is a state-keeping non-local loop in s, then f is satisfiable.

Hence, f is satisfiable if and only if there is a state-keeping non-local loop in
s. |

Before we give a description of the tool we used to verify the DCS software
systems of the LHC, we introduce a reduction.

6.4.2 Bottom bouncer reduction for state-keeping non-
local loops

We introduced top bouncer reduction in Section [6.3.1] and briefly mentioned
bottom bouncers. In this section, we give a definition of bottom bouncers and
use a special kind of bottom bouncer to reduce the state space.

Bottom bouncers A candidate bottom bouncer is similar to a candidate top
bouncer: an FSM construct in a node that upon receipt of a command sends
a state update. A bottom bouncer is a candidate bottom bouncer in a running
system that actually sends a state update. In the CFSM implementation, a
node always sends a state update upon receipt of a command, so every node
has candidate bottom bouncers. Therefore, we make a distinction: a state-
changing bottom bouncer is a bottom bouncer that upon receipt of a command
not only sends a state update, but also changes state. A state-keeping bottom
bouncer is the opposite: it does not change state.

Define a candidate state-changing bottom bouncer to be an FSM construct
that upon receipt of a command might send a state update and change state. It
is not hard to find the only shape a candidate state-changing bottom bouncer
can have: a MOVE_TO statement in an action clause.

Having the definition of state-changing bottom bouncers, we introduce the
reduction.

Reduction Consider a parent-children combination of a node n with, as its
children, some leaves. If the behaviour of n is indistinguishable from the be-
haviour of a leaf having the same states as n, we might as well replace n with
a leaf having the same states as n; a leavified version of n.

Theorem 6.4.4 Assume two systems s and s', such that s’ is obtained from s
by replacing a parent-children node combination n(ly .. .l;) with a single leavified
version of n: n'. Suppose n(ly ...lx) contains no state-keeping non-local loop,
suppose that n has no candidate state-changing bottom bouncer and suppose
that nodes ly ...l are leaves having no other parents than n. Then s contains a
state-keeping non-local loop if and only if s' contains a state-keeping non-local
loop.
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Proof As n contains no state-changing bottom bouncers, n will not change
state on receipt of a command. By Assumption m n’ and [y ...l do not
change state at all.

We prove the directions of the bi-implication separately:

e Assume s has a state-keeping non-local loop. As n(ly...l;) contains no
state-keeping non-local loop, there must be a top bouncer active in one
of the other nodes of s. We are in a state-keeping non-local loop, so n
does not change state. Therefore, the other nodes of s cannot distinguish
between being in s or in s’. Hence, s’ contains a state-keeping non-local
loop.

e Assume s’ has a state-keeping non-local loop. We first prove that n can-
not change state during the loop often by examining the FSM MOVE_TO
constructs:

— MOVE_TO statement
As n contains no candidate state-changing bottom bouncers, there is
no MOVE_TO statement that can be executed.

— MOVE_TO referrer
All children of n are leaves, so by Assumption they will not
change state. By Assumption n contains no local loops, im-
plying that there is no endless sequence of state changes caused by
MOVE_TO referrers.

Hence, n does not change state during the loop, so the other nodes in s
cannot distinguish between being in s or in s’. Therefore, s contains a
state-keeping non-local loop.

We conclude that s contains a state-keeping non-local loop if and only if s’
contains a state-keeping non-local loop. [ |

Tool Theorem can be applied to all nodes n for which it holds that a)
n has no candidate state-changing bottom bouncers, b) n is not a sourceﬂ c)
n has children, d) all children of n are leaves with exactly one parent and e) n
with its children contains no state-keeping non-local loop. Our tool, described
in Listing keeps a list of candidate nodes for which b), ¢) and d) hold; for an
example, see Figure For each candidate node n, the tool verifies whether
a) holds and if so, performs a reduction on n as shown in Figure n is
replaced by a leavified version n’ of itself. This reduction step might introduce
new candidate nodes which are added to the candidate nodes list.

To satisfy e), that states that the combination of n and its children must be
state-keeping non-local loop free, n must be checked for state-keeping non-local
loops. Our tool makes n and its children a separate system and, as it could be
reducible again, adds this system to the queue of top bouncer reduction.

This procedure, bottom bouncer reduction, is repeated as long as there are
candidate nodes left. As every node can be added to the candidates list once,
run time is linear in the number of nodes of s.

3The reduction states that we can reduce n if n with its children is state-keeping non-local
loop free in isolation. If n is a source, this leads to circular reasoning.
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Figure 6.8: Bottom bouncer reduction: a system, of which the candidate nodes
are filled black

candidates queue candidates queue candidates queue

Figure 6.9: Bottom bouncer reduction: node 2 gets leavified. A leavified copy
2" is created, node 2 and its children are checked in isolation. After this, node
1 is a candidate. Left: situation before, middle: node 2 is removed from all its
parents, right: situation after.
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function BOTTOMBOUNCERREDUCTION(sources: {node})
candidates < all nodes for which isCandidate() holds
queue  {}
while pick a node € candidates and remove it from candidates do
if node has no state-changing bottom bouncers then > Figure
queue < queue | J{node}
node’ + leavified version of node
while pick parent, a parent of node do
Remove parent as a parent of node
Add parent as a parent of node’
if isCandidate(parent) then
candidates < candidates | J{parent}
end if
end while
end if
end while
end function

Listing 11: Bottom bouncer reduction, where isCandidate() is a function that
given a node n returns whether all: a) n is not a leaf, b) n is not a source, c)
every child of n is a leaf and has only one parent.

Nodes Systems State space
before - after  before - after  before - after
CMS 11-2011 | 5591 - 4872 49 - 45 1019t _ 101189
01-2012 5593 - 4874 49 - 45 101194 _ 101191
03-2012 5593 - 4874 49 - 45 101194 _ 101191
05-2012 5593 - 4874 49 - 45 101192 _ 1pl189
LHCb 11-2011 | 78203 - 78015 3 -3 1057477~ 1057386
ATLAS 05-2012 46 - 46 1 -1 10%% - 10%°
ALICE 05-2012 7522 - 6912 16 -15 103351 _ 102848

Table 6.3: Results of bottom bouncer reduction

Results Table[6.3] shows the results of bottom bouncer reduction. The start-
ing points are the systems as left by the duplicate system reduction tool. The
results show that bottom bouncer reduction does not reduce state space drasti-
cally, but saves a bit in some systems.

6.4.3 Tool

A tool was developed that performs state-keeping non-local loop detection on
a set of reduced systems resulting from bottom bouncer reduction. This tool
translates the system to an SMT formula, by applying the method described in
Section[6.4.1] If a state-keeping non-local loop is found, the SMT solver provides
evidence, consisting of a configuration and the commands that are sent. Using
this configuration, the tool determines which top bouncers are enabled and
shows this to the user, in combination with the entire configuration. Multiple
threads are used to speed up the process.
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There is a state-keeping non-local loop in this system:
Racks_X2_S_X2S21 (cms_cent_dcs_01:, 141753)

of type CMSfw_RackGeneric (39599) in state DSS_LOCK
RCA/PLC_UX55/X2S521 (cms_cent_dcs_01:, 141784)

of type FwRackDevicePDType_109CMS (39600) in state OFF
RCA/PLC_UX55/X2521_B_LV (cms_cent_dcs_01:, 141847)

of type FwRackDevicePDType_104CMS (39601) in state DSS_LOCK
RCA/PLC_UX55/X2821_A_LV (cms_cent_dcs_01:, 141818)

of type FwRackDevicePDType_104CMS (39601) in state DSS_LOCK
In this stable configuration, a top bouncer is enabled.

If no leaf changes state, it keeps sending commands.

Enabled top bouncers in this state-keeping non-local loop:
node Racks_X2_S_X2S21 (cms_cent_dcs_01:, 141753), state DSS_LOCK:
when ($ANY$FwRackDevicePDType_109CMS in_state {0FF})
do TURBINE_ON
action: TURBINE_ON
do TURBINE_ON $ALL$CMSfw_RackGeneric
do TURBINE_ON $ALL$CMSfw_RackAux
do ON $ALL$FwRackDevicePDType_109CMS

Table 6.4: A report of a state-keeping non-local loop, generated by our tool

If a state-keeping non-local loop is found, our tool outputs a report, of which
an example is given in Table It first gives an overview of the system struc-
ture, in our example the system consists of four nodes, and a configuration. After
that, it prints the top bouncers that are enabled: the node the top bouncer is in
(RACKS_X2_5-X2521), the WHEN clause that is enabled and the ACTION clause
that is called. From the given FSM code, it follows that as long as any child of
type FWRACKDEVICEPDTYPE_109CMS remains in state OFF, RACKS_X2_S_X2s21
will keep sending ON commands.

6.4.4 Results

We applied state-keeping non-local loop detection on the systems as resulted
after bottom bouncer reduction. The results are shown in Table [£.5l These
results were computed on a blade having an Intel Xeon X5660 processor and
48GB of RAM, running a 64 bit version of Windows 7.

We tried to perform the state-keeping non-local loop checks to LHCb, two of
the three systems contained no state-keeping non-local loop. When applying the
checks to the third system, the satisfiability tool Yices exited without providing
any output. We used the tool to generate an SMT file (3GB, 107389 states)
and applied Yices directly to it. Unfortunately, even the blade we used could
not compute an answer within two and a half days. The run time is a single
measure, giving an indication.

Table [6.4] shows an example of a reported state-keeping non-local loop our
tools found in CMS. A closer look at the systems of CMS revealed that in two
of the 31 systems of CMS with state-keeping non-local loops, two top bouncers
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systems with state-keeping non-local loops run time

CMS 11-2011 | 31 of 45 74 sec

01-2012 | 31 of 45 67 sec

03-2012 | 31 of 45 69 sec

05-2012 | 31 of 45 83 sec
LHCb 11-2011 | 0 of 2 checked >2.5 days
ATLAS 05-2012 | 1 of 1 2 sec
ALICE 05-2012 | 13 of 15 8:41 min

Table 6.5: Results of state-keeping non-local loop detection

are enabled. In the other systems, only one.

We conclude that even though we are unable to detect general non-local
loops in the systems of the experiments, the reductions combined enabled us to
find state-keeping non-local loops in three out of the four main experiments of
the LHC. CMS, LHCb and ALICE contain state-keeping non-local loops, LHCb
remains too big to compute.
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7 Conclusion

Our contributions to the project were twofold: we improved existing tools and
gave developers access to them, and we introduced a new desirable property:
non-local loop freeness.

We implemented our own parser of FSM and identified seven possible static
semantic issues that are reported on by our tools. In all the LHC experiments,
static semantic errors were found: in LHCb 68, in ATLAS 19 and in ALICE 43.
As a direct result of this project, the number of static semantic errors in CMS
decreased from 52 to 1.

The pairwise reachability tool was re-implemented and improved, such that
developers can access it from their development environment PVSS and from
the website CMS Online. We made the tool more efficient by introducing reduc-
tions that limit the parent-children combinations checked. Nodes with pairwise
unreachable states varied between 2.7% in LHCDb to 40% in ALICE. Moreover,
reachability reduction was introduced to remove unreachable states.

The local loop detection tool was re-implemented and improved as well. In
CMS, some local loops were fixed as a direct result of this project, but still
14% of the nodes having modelled behaviour in CMS contains a local loop. We
proved LHCb almost completely local loop free: 0.4% of the nodes contains a
local loop. In ATLAS 0.8% of the nodes contain local loops, in ALICE 15%.

We defined a new kind of loop, the non-local loop, and introduced reductions
that reduce the state space that has to be traversed while searching for these
non-local loops. We identified a special case of a non-local loop, the state-
keeping non-local loop, for which we defined and implemented a translation to
a satisfiability problem. Using this translation, we were able to check CMS,
ATLAS, ALICE, and a part of LHCb and find several state-keeping non-local
loops. For the other non-local loops, we proved that there are systems for which
no further reduction is possible.

We integrated the verification tools in PVSS and the CMS Online website
to give developers access to them. Using these integrations, developers can and
did check their code for errors, local loops and pairwise reachability problems,
enabling them to avoid unwanted behaviour and increasing confidence in CFSM
and FSM.
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Suggestions for further research Several suggestions for further research
have been given before:

|[Extend reachability checks with command knowledge]. . . . . . .. .. .. 22

|!mplement detection of all local loops in parent-children combinations| . . 35

tudy and implement upper bound to parent-children combinations for
local loops ([Kuslll)| . . . . . . ... o 35
[Automatic problem detection from logs| . . . . . ... .. ... ... 40
[Detect general non-local loops using bounded model checking| . . . . . . . 49

|[nvestigate children-specific top bouncer reduction| . . . . ... ... ... 60
[Support systems with multiple sources in mCRL2 translation] . . . . . . . 77

Besides these, we suggest further research or implementation into the following
fields:

1. Several subdetectors use their own design guidelines. It would be interest-
ing to investigate whether violations of these guidelines can be detected
and whether the guidelines can be used to reduce state spaces.

2. Experts can take control of any node in the production system, thereby
disconnecting the node from its parents, making it a source, and transfer-
ring control to the expert. This is done in emergency situations for exam-
ple. However, this changes the structure of the system and can therefore
affect its behaviour. It would be interesting to research the effects of these
takeovers.

3. Local loops can be detected using the tools described in this report. In
some cases, repairing of the CFSM class is easy. For instance, an $ANY$
might need to be replaced with $ALL$. An interesting field of further
study would be to investigate whether it is possible to propose the devel-
oper a solution to eliminate the local loop, such that the impact of the
solution is minimal and such that it does not introduce new local loops.

4. The detection tools for non-local loops that are described in this report
only work on complete systems. It is not possible to check a subsystem
for non-local loops and conclude anything about the complete system. An
interesting field of further research would be to find an efficient method
or approximation to check whether a non-local loop in a subsystem is
present in the complete system and to check whether a non-local loop free
subsystem is non-local loop free in the complete system.
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A

mCRL2 translation

The micro Common Representation Language 2 (mCRL2) [GMR™09] process
algebra is used to describe concurrent systems and properties on those systems.
In order to formalise CFSM and SML, in earlier projects [HWK™11| [HKK™11]
[HKW12] an automatic translation of CFSM systems to mCRL2 processes was
described. Using the mCRL2 toolsetH IGKM™ 08| a mCRL2 specification can be
translated to a labelled transition system. Moreover, the mCRL2 toolset offers
several tools to reduce those transition systems and to check whether certain
properties hold on the systems.

During this project, language constructs were added that were not in the
translation before and some were improved, in close collaboration with others:

At start of this project, the translation tool had to be supplied with a
manually written CFSM system structure, which made it difficult and
labour intensive to apply it to large systems. This step was automated,
making use of the libraries written for the other verification tools. Goal
of this was to enable a user, and ourselves, to obtain a correct mCRL2
translation by only calling this tool and not having to enter anything by
hand.

The translation was designed for tree structured systems. This was changed
to support all directed acyclic graphs having a single source. Further study
is needed to support directed acyclic graphs having multiple sources.

A grandparent was added, modelling operators or other control systems
that can send commands to the sources at any time.

Several ASF+SDF traversal functions were not complete. They would
not collect all things, like states or commands, they were supposed to
collect. This manifested itself when, for instance, a command was sent
by a node, but its children did not have this command defined. As the
traversal functions did not discover this command, the resulting mCRL2
model would not have this command defined.

DO referrers were not translated correctly: the actions they pointed to
could not be executed. This was fixed by pointing the program counter
to the statements directly.

Support for DO statements with parameters were added. The translation
ignores the parameters as they have no useful semantics for our purposes.

Thttp://www.mCRL2.org
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A child is busy if it has received a command but has not responded yet
with a state update message. IF statements are supposed to wait until all
children that are mentioned in their guard are not busy. To verify, this
behaviour was tested and confirmed in the simulation environment. The
implementation was such that a node would wait for all its children. This
was fixed.

Support for the WAIT statement was added, implementation is similar to
the waiting part of the IF statement.

The NOT operator was not supported in expressions, support was added.

The SLEEP statement was not supported and delays execution of a state-
ment block, but has influence on neither the behaviour nor the order in
which steps of the system can happen. Therefore it is translated as an
mCRL2 action without further semantics.

mCRL2 does not support all characters that CFSM allows in its names.
The translation translates these unsupported characters to mCRL2-safe
ones by using an encoding.

In the translation of a MOVE_TO statement, phase = whenPhase was miss-
ing in the self-invocation, causing false deadlocks. This was fixed.

As described earlier, nodes drop commands if the queue to store them is
full. In the translation, for sake of feasibility of the analyses, we abstract
from queue sizes greater than one. This implies that during certain loops
nodes cannot receive commands. This behaviour was verified to conform
to reality.

The possibility of targeting subclasses in guards was added. For example:
the CFSM class CL__&SUB can be targeted in a guard by targeting either
CL or CL__&SUB. This is implemented in the Python tool that calls the
ASF+SDF translation instead of in the ASF+SDF translation itself.



B System structure images

Figure shows the detector control system structure of LHCb as of November
2011, Figure [B:2]of ATLAS as of May 2012 and Figure of ALICE as of May
2012. These images were generated using software written by Sjoerd Cranen of
the Eindhoven University of Technology.
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Figure B.1: Detector control system structure of LHCb (image generated using
software written by Sjoerd Cranen of the Eindhoven University of Technology)
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Figure B.2: Detector control system structure of ATLAS (image generated using
software written by Sjoerd Cranen of the Eindhoven University of Technology)
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Figure B.3: Detector control system structure of ALICE (image generated using
software written by Sjoerd Cranen of the Eindhoven University of Technology)
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C FSM syntax and parser

This appendix gives the Extended Backus-Naur Form (EBNF)[Sco96] grammar
of the FSM syntax relevant for this report. White space and comments are left
out of this grammar but are allowed at every comma (,) in the grammar, except
if indicated otherwise. Comments in FSM are embraced with an exclamation
mark (!) and a line end. The start symbol is specification.

specification = class, {class};
class = ’class:’, ’$FWPART_$TOP$’, identifier, state,

{state};
state = ’state:’, identifier, {when clause},
{action clause};
when clause = ’when’, expression, referrer;

expression = (paren expression | not expression |
base expression),
[and expression | or expression];
base expression = child pattern, ( ’empty’ |
( state operator, state specification ) );

state operator = ’in_state’ | ’not_in_state’;
not expression = ’not’, ’(’, expression, ’)’;
paren expression = ’(’, expression, ’)’;
and expression = ’and’, expression;
or expression = ’or’, expression;

child pattern = ’$’, [’all$’ | ’any$’], identifier;
state specification =
identifier |
(’{’, {identifier, ’,’}, identifier, ’}’);
referrer = referrer do | referrer move_to |
referrer stay_in_state;
referrer do ’do’, identifier;
referrer move_to = ’move_to’, identifier;
referrer stay_in_state =
’stay_in_state’, [identifier];
action clause = ’action:’, [action parameter], identifier,
statement, {statement};
>(?, [ action parameter single, {’,’,
action parameter single} 1, ’)’;
action parameter single =
’string’, identifier, ’=’, string literal;
string literal = ’"’, {7 any charachter but " 7}, ’"’;

action parameter
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statement = statement do | statement move_to |
statement if | statement set |
statement wait | statement sleep;
’do’, identifier,
[’(’, statement parameter, ’)’],
child pattern;
statement parameter =
[’string’], identifier, ’=’,
(string literal | identifier |
statement parameter object);
statement parameter object =
’$’>, identifier, {’.’, identifier};
statement move_to =
’move_to’, identifier;

statement do

statement if = ’if’, expression, ’then’,
statement, {statement},
[’else’, statement, {statement}], ’endif’;
’set’, statement parameter;
‘wait?’, (),
child pattern, {’,’, child pattern}, ’)’;
statement sleep = ’sleep’, integer;

identifier = character, {character};
(*in an identifier, no white space or comment is allowedx)
(xafter an identifier, no ’character’ is allowed*)

integer = digit, {digit | ’0’};

(*in an integer, no white space or comment is allowedx*)

statement set
statement wait

character = ’a’ | ’b> | ¢’ | ’d’ | ’e’ | ’£’> | ’g’ |
'h? | 140 | ;j) | Tk | 1] | ‘m? | ‘n’ |
’0? | ;pz | :q7 | ry? | ’g? | 0 | ‘u? |
0 | ‘w’ I rx? | 7y7 | 1z | TN I B’ |
ekl | D | B | B | ekl | TH | 10 |
30 | K | L | M | 3\ | 0 | po |
;Q; | R | g | T | A | ARl | W |
X | Yy | 170 | P | 147 | )’ | °0? |
digit;

digit = ’1’ | 2> | 37 | ’4> | ’5> | 6’ |

77) I )8) I )97;

The parser parses and and or expressions left-associative.

Observe the following rule from the grammar:
statement stay_in_state = stay_in_state [identifier]

Using the CFSM classes we obtained in November 2011, we learned the identifier
part was optional. Making it optional however, we had introduced a production
rule that makes the grammar LL(2).

The follow set of stay_in_state is:

{EOF, ’state:’, ’class:’, ’when’, ’action:’, identifier}
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where EQOF is the end of file. As both identifier and ’when’ are in the follow
set, an LL parser would need at least 2 tokens to determine which symbol an
encountered when is.

We use the Picoparser package, which provides recursive descent parsers using
backtracking. However, if stay_in_state action: is encountered, the greedy
parser will parse it as stay_in_state action and raise a syntax error on the
semicolon. To solve this, we use the differences in the follow sets:

The follow set of an identifier that was intended as an identifier is:

{’class:’, ’state:’, ’when’, ’action:’, EOF}
The follow set of an identifier that was not intended as an identifier is:
{::7’ :(7’ :#7’ )$J}

After parsing the identifier, the parser checks whether the next character is
in this last set of characters and, if that is the case, it fails, backtracks, ignores
the choice and parses the stay_in_state correctly without an identifier.
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D Inconsistency of ghost rules

The GHOST rules in combination with the common Boolean reasoning axioms
yield an inconsistent system, assuming CFSM operator NOT maps to the Boolean
operator —, OR maps to V, and AND maps to A. In this system, it can be shown
that true equals false:

true

By the complement rule, for every y:
=yV-y

By the rule of idempotence:

=@WV-y)AlyV-y)
If we apply this for y = GHOST:

= (GHOST V —GHOST) A (GHOST V —GHOST)

Apply twice the rule that GHOST OR z is equal to x:

= —GHOST A =GHOST
By the rule that NOT GHOST is equal to GHOST:

= GHOST A =GHOST

By the complement rule:
= false
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E Verification tools environment

A parser for CFSM classes based on the ASF+SDF meta-environment [BvDHT01]
was constructed in earlier projects [HWK™11] [HKK™11] [HKWT12]. This en-
vironment takes a grammar specification in the Syntax Defnition Formalism
(SDF) and generates a parser, syntax checker and compilers. These compilers
are specified in the Algebraic Specification Formalism (ASF). The most recent
release of ASF+SDF dates from 2008 and development has been limited to bug
fixes by its authorsﬂ The compilers it produces are not very fast: for instance
the local loop tool needs several hours when written in ASF+SDF, while written
in a more general language, it takes a few minutes. Moreover, ASF+SDF does
not run on the Windows operating system which is frequently used by develop-
ers. For these three reasons, we searched for a replacement of ASF+SDF. We
identified the following requirements for a replacement:

e Widely used, implying a website with documentation;

e Generated code works on Windows and preferably Linux;

Actively maintained, meaning at least an update after 2008;
o Free;

e Code written in it must be easily maintainable.

From [MHSO03] and own knowledge, a list of 24 parser generators, general pro-
gramming language libraries and language development systems was obtained,
see Table[E.2] We performed a quick selection to obtain a short list, consisting
of Rascal, Stratego/XT, TXL and Picoparse. We would recommend Rascal,
once it has had a production release. Therefore for now, we choose Picoparse,
a parsing library for Python. Python runs on several operating systems and is
actively maintained, the library Picoparse is small and uses intuitive recursive
parsers, so the need for updates and documentation, which is sparse, is low.
When properly written the underlying grammar is clearly visible due to a func-
tional programming like structure, but Python does not force the structure of
the code as SDF does. Therefore, this visibility and the maintainability depends
on the discipline of the parser developer.

Thttp://www.meta-environment .org/
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http://www.meta-environment.org/

POPART
LaCon
smgn
Kodiyak
Draco
Metatool
InfoWiz
JTS

Khepera
Sprint

Gem-Mex
LISA

SPARK
DMS
metafront
AsmL
ASF+SDF

Eli

pure Python

SmartTools

RascalMPL
Stratego/XT

Picoparse
TXL
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No website found.
No website found.
No website found.
No website found, published in 1988.
No website found, published in 1983.
No website found, said to be commercial product.
craigc.com/cs/resume.html
No website found, but patented and assumed commercial prod-
uct. http://www.patentgenius.com/patent/6425119.html
No website found, not even a reference on authors’ website.
http://www.cs.utexas.edu/users/schwartz/
Only available through ftp site, no website found
Not available for download: http://phoenix.labri.fr/wiki/
doku.php?do=export_xhtml&id=sprint
Last update in 2003. http://www.tik.ee.ethz.ch/~montages
Last update in 2006. http://labraj.uni-mb.si/lisa/index.
html
Last update in 2002.
~aycock/spark/
Commercial  product. http://www.semdesigns.com/
products/DMS/DMSToolkit.html
Only a prototype is available, no documentation. References
list updated up to 2008. http://www.brics.dk/metafront/
Not platform independent. http://research.microsoft.
com/en-us/projects/asml/
Not platform independent, maintainance ended. http://wuw.
meta-environment.org/
Consists of C code that does not run on Windows. Gener-
ated code is said to be ’highly portable’, but the FAQ sug-
gest the authors did not even test this themselves. |http:
//eli-project.sourceforge.net/elionline
Too general, Picoparse and SPARK are Python libraries more
dedicated to parsing.
Not a parser generator, but a SOA oriented helper
tool. http://www-sop.inria.fr/members/Didier.Parigot/
SmartTools/eclipse/documentation/
On shortlist. We suggest to use RASCAL if a production version
is released. http://www.rascal-mpl.org/
On shortlist. Too buggy: crashed Eclipse often and produced
invalid C-code. http://strategoxt.org/
On shortlist. https://github.com/brehaut/picoparse/
On shortlist. Requires a single grammar for all intermediate
results. http://www.txl.ca/

Table E.2: Verification tools environments

http://

http://pages.cpsc.ucalgary.ca/


http://craigc.com/cs/resume.html
http://craigc.com/cs/resume.html
http://www.patentgenius.com/patent/6425119.html
http://www.cs.utexas.edu/users/schwartz/
http://phoenix.labri.fr/wiki/doku.php?do=export_xhtml&id=sprint
http://phoenix.labri.fr/wiki/doku.php?do=export_xhtml&id=sprint
http://www.tik.ee.ethz.ch/~montages
http://labraj.uni-mb.si/lisa/index.html
http://labraj.uni-mb.si/lisa/index.html
http://pages.cpsc.ucalgary.ca/~aycock/spark/
http://pages.cpsc.ucalgary.ca/~aycock/spark/
http://www.semdesigns.com/products/DMS/DMSToolkit.html
http://www.semdesigns.com/products/DMS/DMSToolkit.html
http://www.brics.dk/metafront/
http://research.microsoft.com/en-us/projects/asml/
http://research.microsoft.com/en-us/projects/asml/
http://www.meta-environment.org/
http://www.meta-environment.org/
http://eli-project.sourceforge.net/elionline
http://eli-project.sourceforge.net/elionline
http://www-sop.inria.fr/members/Didier.Parigot/SmartTools/eclipse/documentation/
http://www-sop.inria.fr/members/Didier.Parigot/SmartTools/eclipse/documentation/
http://www.rascal-mpl.org/
http://strategoxt.org/
https://github.com/brehaut/picoparse/
http://www.txl.ca/

F Tool chain

Figure shows the chain of reductions as we applied it. The grayed out part
of the chain was not implemented by us. The right column shows what tool to
call to perform a task.
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import

|

static semantics check

pairwise reachability check

C pairwise reachability reduction

|

C pairwise reachability reduction (thoroughly)

\> local loop detection

\) top bouncer reduction

duplicate system reduction

v

non-local loop detection

Y
top bouncer reduction

Ly

bottom bouncer reduction

|

duplicate system reduction

|

state-keeping non-local loop detection

tool

get_system_from_database

all

dir_pairwise_reachability

dir_pairwise_reachability -r

dir_pairwise_reachability -r -t

dir_local_loop

dir_reduce_bouncers

dir_state_keeping_non_local_loop

Figure F.1: Chain of tools and reductions
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G Local loop in production

In this appendix, a selection of a log file of the CMS system is shown. This
log shows that a node with name PIXELBARREL_BMI_S7 looped through states
ANALOG_ON_RED and LVMIXED for about 15 minutes, before one of its children
changed state to ON_Lv. Section [G.2]shows the loop report of the corresponding
CFSM class.

G.1 Log

Sun Nov 06 15:23:57 2011

[PIXELBARREL_BMI_S7]

in state [LVMIXED]
[PIXELBARREL_BMI_S7]

in state [ANALOG_ON_RED]
[PIXELBARREL_BMI_S7]

in state [LVMIXED]
[PIXELBARREL_BMI_S7]

in state [ANALOG_ON_RED]

Sun Nov 06 15:23:58 2011

Sun Nov 06 15:23:58 2011

Sun Nov 06 15:23:58 2011

... 42 times per second ...

Sun Nov 06 15:38:08 2011

[PIXELBARREL_BMI_S7]
in state [LVMIXED]
Sun Nov 06 15:38:08 2011 - [CMS_TRACKER:PIXELBARREL:
PIXELBARREL_BMI:PIXELBARREL_BMI_S7:PIXELBARREL_BMI_S7_LAY1]
in state [ON_LV]
Sun Nov 06 15:38:08 2011 - [CMS_TRACKER:PIXELBARREL:
PIXELBARREL_BMI:PIXELBARREL_BMI_S7:PIXELBARREL_BMI_S7_LAY3]
in state [ON_LV]
Sun Nov 06 15:38:08 2011 - [PIXELBARREL_BMI_S7]
in state [ANALOG_ON_RED]
Sun Nov 06 15:38:08 2011 - [PIXELBARREL_BMI_S7]
in state [LVMIXED]
Sun Nov 06 15:38:08 2011 - [PIXELBARREL_BMI_S7]
in state [ON_LV]

G.2 Report

Please note that generation of these reports was not yet finished at time of
discovery, so the report is not as informative as more recent reports (node names
are not displayed).
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This parent contains a local loop:
TkControlGroup (38772)

The parent can walk through states ANALOG_ON_RED, LVMIXED and
ANALOG_ON_RED in some parent-children combinations. For instance,
the parent will loop if it has the following children in states:
TkOffEmergencySwitcher(38651) in state 0K

FwCaenChannelCtrl (38804) in state ON

TkDistinguishCg(38822) in state OFF

TkPowerGroup (38842) in state ANALOG_ON_RED
TkPowerGroup (38842) in state ANALOG_ON_RED
TkPowerGroup (38842) in state ANALOG_ON_RED
TkPowerGroup (38842) in state ANALOG_ON_RED
TkPowerGroup (38842) in state ANALOG_ON_RED
TkPowerGroup (38842) in state ANALOG_ON_RED

When clauses involved in this loop:
state: ANALOG_ON_RED
when ($ANY$TkPowerGroup not_in_state {DIGITAL_ON_RED})
move_to LVMIXED
state: LVMIXED
when (($ALL$FwCaenChannelCtrl in_state {0ON}) and
($ALL$TkPowerGroup in_state {ANALOG_ON_RED}))
move_to ANALOG_ON_RED

The copy-paste error was present in the first when clause, which should have
been:

when ($ANY$TkPowerGroup not_in_state {ANALOG_ON_RED})
move_to LVMIXED
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