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Abstract

Model checking is the problem of determining if a system, represented
by a model, satisfies a certain property. Parameterised Boolean equation
systems, or PBES for short can (among others) be used to encode model
checking problems. From the solution of a PBES the solution of the en-
coded model checking problem can be obtained. The solution of a PBES
is an assignement of Boolean values to its variables. It is undecidable
whether a variable has a specific value in the solution of a PBES. There-
fore, syntactic transformation and abstraction techniques are often used
to simplify PBES. Proving the soundness of such techniques is a labori-
ous and difficult process. The notion of consistent consequence has been
defined to simplify such soundness proofs.

Consistent consequence relations relate the solution of a variable from
one PBES, to the solution of a variable from another PBES. Showing
that variables are related via a consistent consequence relation is difficult.
This is because consistent consequence is a complicated notion based on
semantics. To gain greater insight in the notion of consistent consequence,
a proof system has been defined to derive a consistent consequence be-
tween variables. There was a small error in this proof system. In this
master thesis, we have fixed this error, and formalized the theory in the
proof assistant Coq to increase the confidence in the results. In this re-
port we present the new proof system and the theory which has been
formalized in Coq.
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Chapter 1

Introduction

Model checking refers to the following problem. Does a system, whose behavior
is encoded in a model (for example a transition system), satisfy some property.
For example consider the system of a railroad crossing. A property which we
wish to hold for this system, is that whenever a train is coming, the bars close
before the train has arrived, to prevent accidents. Furthermore, we wish that
cars can cross the crossing when it is safe to do so. Checking if these properties
are satisfied are typical examples of model checking problems. A way to do this,
is to encode the model checking problem as a Parameterised Boolean equation
system (PBES for short) [13], and then solve this PBES.

PBESs can be used to encode a variety of verification problems, including
(first-order) modal µ-calculus model checking problems [12], behavioral equiva-
lence problems such as bisimilarity, similarity and branching bisimilarity [4] and
model checking problems for real-time systems [25]. A PBES is a list of fixpoint
equations using variables and predicate formulas, for example:

(µX(n : Nat) = X(n+ 1))(νY (k : Nat) = even(k) ∨ (Y (k + 1) ∧X(k + 2)))

Solving this PBES means finding an assignment for the predicate variables
in the PBES, such that µX yields the smallest solution and νY yields the
largest solution satisfying the equations. By solving a PBES resulting from an
encoding of a particular verification problem, an answer to the encoded problem
is obtained. Advanced tool suites, such as mCRL2 [6] and CADP [9], rely on
the use of PBES for solving their verification problems.

The solution of a PBES is an assignement of Boolean values to its variables.
It is undecidable whether a variable has a specific value in the solution of a
PBES. However, the problem is decidable for certain fragments of PBES, such
as Boolean equation systems (BES for short)[18]. A common technique for
solving PBES, is to instantiate the PBES in BES, and solve the resulting BES.
However, this transformation process is not necessarily finite, and furthermore it
suffers from an exponential blow up similar to the state space explosion problem.

Therefore, abstraction and transformation techniques are often used to sim-
plify PBES. In [23], a method is presented for determining the soundness of
such techniques in the setting of BES. This method relies on identifying consis-
tent correlations between equation systems, and the decidability of consistent
correlation (i.e. determining if the solution of a specific equation is related via
consistent correlation to another equation) was addressed for a fragment of BES.
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The notion of consistent correlation was designed to simplify the sound-
ness proofs of transformation techniques. Soundness of a transformation can
be shown by showing that the equations in the resulting PBES are related via
a consistent correlation to the equations from the original PBES. However, a
limitation of the consistent correlations is that they can only be used for verify-
ing reflecting, solution preserving transformations, such as removing redundant
parameters [19]. (For example, in the example shown before, n is a redundant
parameter for the solution of X.)

Abstraction techniques often result in PBESs whose solutions are under- or
over-approximations of the original PBES’s solution. To accommodate these
techniques as well, the notion of consistent consequence has been defined. Con-
sistent consequence lies at the basis of consistent correlation. Intuitively, where
consistent correlation relates solutions of variables from PBES via bi-implication,
consistent consequence relates solutions of variables from PBES via implication.

Consistent consequence is itself a form of abstraction on PBES. Given two
PBES, we say that a variable from one PBES is a consistent consequence of a
variable from the other PBES, if there exists a consistent consequence relation
which relates these variables. However, showing that there exists such a consis-
tent consequence relation is complex. This is because consistent consequence is
a complicated notion based on the semantics of PBES. In [10], the notion of con-
sistent consequence has been studied for BES, and a complete and sound proof
system which would allow for syntactically deriving consistent consequences be-
tween variables was proposed. However, it was later discovered that this proof
system was unsound.

1.1 Contents of this report

In this report, we will show that by adjusting the proof system from [10], we
obtain a proof system which is sound and complete for deriving consistent con-
sequences. Furthermore, to increase the confidence in the results this has been
formalized in Coq. We also formalized some of the theory underlying the con-
sistent consequence relation. In particular, the relation between the solution of
variables in BES and notion of consistent consequence was formalized.

Considering that Coq is not a mainstream method for presenting such theo-
ries and proofs, in Chapters 2, 3, 4 and 5 we present the theory which has been
formalized in Coq, with references to their Coq counterparts (Chapter 6).

In Chapter 2 we present definitions for propositional formulas, logical and rel-
ative consequence, relations on propositional variables and some of their proper-
ties, as well as BES and their semantics. In Chapter 3 we present the consistent
consequence relation, and show the relation between the notion of consistent
consequence and the semantics of BES. In Chapter 4, we present a proof system
for deriving consistent consequences, and discuss why the version from [10] was
unsound and what we did to fix this problem. In Chapter 5, we prove that the
proof system is sound and complete for deriving consistent consequences.

In each of these chapters, the most important lemmas will contain references
to Chapter 6. Chapter 6 starts with an introduction to Coq, and then continues
with a documentation of the Coq files containing the formalization, which can
be found in an SVN repository: [7]. It discusses the types and definitions as
defined in Coq and the choices that have been made in the formalization, as
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well as explaining the theorems and lemmas which were proven in Coq.
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Chapter 2

Definitions of consequence

In this chapter, we present definitions for Boolean Equation systems, as well
as some auxiliary definitions. Furthermore, we will present some examples and
useful properties of these definitions.

2.1 Propositional formulas and consequences

We assume some infinite set X of propositional variables. These variables are
typically indicated with a capital X, Y or Z. We will indicate the domain of the
Booleans with B. Boolean values will be written as true and false.

Using propositional variables and some standard connectives, we can define
the syntax of propositional formulas.

Definition 2.1.1. Propositional formulas are recursively defined by the follow-
ing grammar.

f ::= > | ⊥ | X | f ∧ f | f ∨ f

Propositional formulas will typically be indicated by a lowercase f or g.
Given a propositional formula f , the set of variables occurring in f is V(f). If
a propositional formula follows a certain pattern, then we say that the formula
is in disjunctive normal form (DNF), or that it is a DNF.

Definition 2.1.2. Let f be a propositional formula. If f is >, ⊥ or some
propositional variable then f is a singleton. Furthermore, f is a clause if it is
a singleton or a conjunction of clauses. Finally, f is in disjunctive normal form
(it is a DNF) if it is a clause or a disjunction of DNFs.

Given a propositional formula f in DNF, the set of clauses occurring in
disjunctions in f is indicated by C(f).

We will use the term environment to indicate a function which interprets
propositional variables, by assigning a Boolean value to every variable. Typi-
cally, we will use θ : X → B, or simply θ, to indicate environments. Given two
environments, the union of these environments is defined as follows.

Definition 2.1.3. Given two environments θ1, θ2, the union of θ1 and θ2,
written θ1||θ2, is defined as the environment assigning true to any variable X
iff θ1 or θ2 assigns true to this variable.

4



We can use an environment θ to define another environment which differs
from θ in (at most) one variable.

Definition 2.1.4. Given an environment θ and propositional variable X, we
will write θ[X := b] for some b ∈ B to indicate that θ has been redefined in X
to b, defined as follows.

θ[X := b](Y ) :=

{
b if X = Y

θ(Y ) otherwise

By lifting the notion of environment in the natural way, we obtain the se-
mantics of propositional formulas.

Definition 2.1.5. Given an environment θ : X → B, the semantics (or mean-
ing) of a propositional formula f is defined as follows.

J>Kθ = true

J⊥Kθ = false

JXKθ =

{
true if θ(X) = true

false otherwise

Jf ∧ gKθ =

{
true if both JfKθ = true and JgKθ = true

false otherwise

Jf ∨ gKθ =

{
true if JfKθ = true or JgKθ = true

false otherwise

A basic concept on the semantics of propositional formulas is the logical
implication, which relates propositional formulas based on their semantics. We
will refer to this concept as logical consequence in this text.

Definition 2.1.6. Given two propositional formulas f, g. If, for all environ-
ments θ, we have JfKθ = true implies JgKθ = true, then we say that g is a logical
consequence, or consequence of f . We may write f ⇒ g to indicate that g is a
logical consequence of f .

Given two propositional formulas f, g, if both f is a consequence of g, and
g is a consequence of f , then the two are equivalent.

Definition 2.1.7. Given two propositional formulas f, g, if both f is a con-
sequence of g, and g is a consequence of f , then we say that f is logically
equivalent, or equivalent, to g. We may write f ⇔ g to indicate that f and g
are equivalent.

Since we are dealing with positive propositional formulas, we can derive a
few interesting properties which would not hold on propositional formulas which
allow negation. We end this section with a few of these properties. The first is
that, given a clause f not equivalent to ⊥ and a propositional g, g is a logical
consequence of f iff g is assigned true to the environment assigning false to all
variables except for the variables which occur in f .
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Lemma 2.1.8. For any clause f not equivalent to ⊥ and propositional formula
g, f ⇒ g iff g is true under the environment assigning false to all variables
except for the variables from V(f).

Proof. Take a clause f which is not equivalent to ⊥, and let θf be the environ-
ment assigning false to all variables except for the variables from V(f). Note
that JfKθ = true.

→ Take any propositional formula g such that f ⇒ g. Then since JfKθf =
true also JgKθf = true.

← Take any propositional formula g such that JgKθf = true. We proceed by
induction on the structure of g.

> In this case trivially f ⇒ g.

⊥ In this case JgKθf = false, which contradicts our assumptions.

Y In this case, since θf only assigns true to variables from V(f), we
have that Y ∈ V(f). Take any environment θ such that JfKθ = true.
This is only the case if for all variables X ∈ V(f) we have that
θ(X) = true, and therefore also θ(Y ) = true and thus f ⇒ g.

g1 ∧ g2 In this case we have the following induction hypotheses:
IH1: If Jg1Kθf = true then f ⇒ g1.
IH2: If Jg2Kθf = true then f ⇒ g2.

Since JgKθf = true, both Jg1Kθf = true and Jg2Kθf = true, and thus
from the induction hypotheses both f ⇒ g1 and f ⇒ g2 hold. Take
any environment θ such that JfKθ = true. We need to show that also
JgKθ = true. This is the case if both Jg1Kθ = true and Jg2Kθ = true,
which follows from the fact that both f ⇒ g1 and f ⇒ g2 hold.

g1 ∨ g2 In this case we have the following induction hypotheses:
IH1: If Jg1Kθf = true then f ⇒ g1.
IH2: If Jg2Kθf = true then f ⇒ g2.

Since JgKθf = true, we have that Jg1Kθf = true or Jg2Kθf = true. The
cases are symmetrical, so we will only consider Jg1Kθf = true. In this
case from IH1 we have that f ⇒ g1. Take any environment θ such
that JfKθ = true. Then also Jg1K = true, and thus Jg1 ∨ g2K = true,
therefore f ⇒ g.

An interesting consequence of this property is that for a propositional for-
mula g1 ∨ g2 which is a logical consequence of some clause, at least one of g1

and g2 is also a logical consequence of this clause.

Lemma 2.1.9. For any clause f and propositional formulas g1, g2 such that
f ⇒ (g1 ∨ g2), we have that f ⇒ g1 or f ⇒ g2.

Proof. Take a clause f and propositional formulas g1, g2 such that f ⇒ (g1∨g2).
If f is equivalent to ⊥ then trivially f ⇒ g1 (and f ⇒ g2).

Assume that f is not equivalent to ⊥, and consider the environment θf
which assigns false to all variables except for the variables from V(f). Then
since f ⇒ (g1 ∨ g2), we have Jg1Kθf = true or Jg2Kθf = true. Therefore, from
Lemma 2.1.8, we have that f ⇒ g1 or f ⇒ g2.
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If we are dealing with DNFs, then we have an even stronger property; if a
DNF g is a logical consequence of a DNF f , then for all clauses in f there exists
a clause in g such that the clause from g is a logical consequence of the clause
from f .

Lemma 2.1.10. For any DNFs f, g such that f ⇒ g we have that, for all
clauses cf ∈ C(f), there exists a clause cg ∈ C(g) such that cf ⇒ cg.

Proof. Take a DNF g, we proceed by induction on the structure of g.

>,⊥, X, cg Take a DNF f such that f ⇒ g. In these cases, there is only one clause
cg ∈ C(g). Let cf be a clause from C(f). Now take any environment θ
such that Jcf Kθ = true. Then, since f is in DNF, also JfKθ = true and
thus also JgKθ = true. Therefore, cf ⇒ g. Since g = cg also cg ∈ C(g),
also cf ⇒ cg.

g1 ∨ g2 In this case we have the following induction hypotheses:
IH1: For all DNF’s f ′ such that f ′ ⇒ g1 then for all clauses cf ∈ C(f ′)
there exists a clause cg ∈ C(g1) such that cf ⇒ cg.
IH2: For all DNF’s f ′ such that f ′ ⇒ g2 then for all clauses cf ∈ C(f ′)
there exists a clause cg ∈ C(g2) such that cf ⇒ cg.

Take a DNF f such that f ⇒ g. Let cf be a clause from C(f). Now take
any environment θ such that Jcf Kθ = true. Then, since f is in DNF, also
JfKθ = true and thus also JgKθ = true. Therefore, cf ⇒ g.

Now consider the environment θf which assigns false to all variables except
for the variables from V(cf ). The, since cf ⇒ g, we have that Jg1Kθf =
true or Jg2Kθf = true. The cases are symmetrical, so we will only consider
the case Jg1Kθf = true.

If Jg1Kθf = true, then from Lemma 2.1.8 we know that cf ⇒ g1. Since
cf is a clause, cf is also a DNF, and thus from IH1 we have that there
must be a clause cg ∈ C(g1) such that cf ⇒ cg. Take this clause cg, then
since cg ∈ C(g1) also cg ∈ C(g1 ∨ g2), and therefore there exists a clause
cg ∈ C(g1 ∨ g2) such that cf ⇒ cg.

2.2 Relations and relativizations

We use I to denote the identity relation. Furthermore, given a relation R ⊆
X ×X on propositional variables, we may write X R Y instead of (X,Y ) ∈ R.

A relation on propositional variables can be lifted to a relation on proposi-
tional formulas, using the following notion of consistent environments.

Definition 2.2.1. Given a relation on propositional variables R and an envi-
ronment θ, we say that θ is consistent with R if, for all (X,Y ) ∈ R, θ(X) = true
implies θ(Y ) = true. The set of all environments consistent with R is ΘR, and
we may write θ ∈ ΘR if an environment θ is consistent with R.

The environment assigning true to all variables is indicated with θν , the
environment assigning false to all variables is indicated with θµ. For any relation
R, both θν and θµ are consistent with R.

Lemma 2.2.2. For any relation R, both θν and θµ are consistent with R.
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Proof. Let R be some relation on propositional variables, and take some propo-
sitional variables (X,Y ) ∈ R. Then, θσ(X) = θσ(Y ) for σ ∈ {µ, ν}, and thus
θσ is consistent with R for both σ = µ and σ = ν.

Given two environments consistent with R, their union is also consistent.

Lemma 2.2.3. For any relation R and environments θ1, θ2. θ1||θ2 is consistent
with R if both θ1 and θ2 are consistent with R.

Proof. Let R be some relation on propositional variables, and take environ-
ments θ1, θ2 consistent with R. Furthermore, take some propositional variables
(X,Y ) ∈ R such that (θ1||θ2)(X) = true. We need to show that (θ1||θ2)(Y ) =
true. If (θ1||θ2)(X) = true then θ1(X) = true or θ2(X) = true.

The cases are symmetrical, so we will only consider θ1(X) = true. In this
case, since θ1 is consistent with R, also θ1(Y ) = true. Therefore, from the
definition of the union of environments, (θ1||θ2)(Y ) = true.

The notion of consistency between an environment and a relation can be
used to lift relations on propositional variables to relations on propositional
formulas, via the following definition.

Definition 2.2.4. Given a relation R on propositional variables and proposi-
tional formulas f and g. We say that g is a consequence of f relative to R if, for
all environments θ ∈ ΘR, JfKθ = true implies JgKθ = true. If g is a consequence

of f relative to R then we may write f
R
=⇒ g.

Relative consequence is a weaker form of logical consequence, i.e. if we have a
relative consequence between propositional formulas, then we also have a logical
consequence between these formulas.

Lemma 2.2.5. For any propositional formulas f, g, if f ⇒ g then for any

relation R on propositional variables, f
R
=⇒ g.

Proof. Take propositional formulas f, g such that f ⇒ g. Then, for any envi-
ronment θ we have JfKθ = true implies JgKθ = true. Thus this is also the case

for all environments consistent with R, and therefore f
R
=⇒ g.

However, the other direction of the previous lemma is not true. Consider
the following examples.

Example 2.2.6. For any propositional variables X and Y , we have X ∧ Y ⇒ X.

Also, obviously, for any relation R on propositional variables, X ∧ Y R
=⇒ X.

However, X ∨ Y ⇒ X does not hold. Consider an environment θ with
θ(Y ) = true and θ(X) = false. Then JX ∨ Y Kθ = true but JXKθ = false,
thus X ∨ Y ⇒ X does not hold. However, if we consider some relation R on
propositional variables such that (Y,X) ∈ R, then any environment consistent
with R which assigns true to either X or Y , must (also) assign true to X (since

it is consistent with R), and therefore X ∨ Y R
=⇒ X.

Given a relation R on propositional variables, we will use R∗ to indicate the
reflexive transitive closure of R, and R+ to indicate the transitive closure of R.
Given a relation R and propositional variable X, we can find the variables Y
such that (X,Y ) is in the transitive closure of R using the following definition.

8



Definition 2.2.7. Given a relation R on propositional variables and proposi-
tional variables X,Y . We say that Y is reachable from X through R if there
exist variables X0, · · · , Xn for some n > 0 such that X0 = X, Xn = Y and for
all i < n we have Xi R Xi+1.

There is a one to one correspondence between membership of a pair of vari-
ables in the transitive closure of a relation, and reachability between these vari-
ables through this relation.

Lemma 2.2.8. For all relations R on propositional variables and propositional
variables X,Y , Y is reachable from X through R if and only if (X,Y ) ∈ R+.

Proof. This follows trivially from the definition of the transitive closure of a
relation.

For any relation R, the set of environments consistent with R is the same as
the set of environments consistent with R+.

Lemma 2.2.9. For all relations R on propositional variables we have ΘR =
ΘR+ .

Proof. Take some relation R on propositional variables and environment θ. We
need to show that θ ∈ ΘR iff θ ∈ ΘR+ .

→ Assume that θ ∈ ΘR. Furthermore, take some variable X such that
θ(X) = true. We need to show that for all variables Y such that (X,Y ) ∈
R+, θ(Y ) = true. If for some variable Y we have (X,Y ) ∈ R+, then
there exist n + 1 variables X0, · · · , Xn such that X0 = X, Xn = Y and
Xi R Xi+1 for all i < n.

We will show that, for all variables X0, · · · , Xn such that X0 = X and
Xi R Xi+1 for all i < n, we have θ(Xn) = true. We prove this by induction
on n.

n = 1 In this case θ(Xn) = true trivially holds.

n = k + 1 In this case we have the following induction hypothesis. For all vari-
ables X0, · · · , Xk such that X0 = X and Xi R Xi+1 for all i < k, we
have θ(Xk) = true.

Take some set of variables X0, · · · , Xn such that X0 = X and
Xi R Xi+1 for all i < n. Then, by the induction hypothesis, θ(Xk) =
true. Thus, since Xk R Xn, and θ ∈ ΘR, we can conclude that also
θ(Xn) = true.

← Assume that θ ∈ ΘR+ . Furthermore, take some variable X such that
θ(X) = true. Now take any variable Y such that (X,Y ) ∈ R. Since
(X,Y ) ∈ R, also (X,Y ) ∈ R+. Therefore, since θ ∈ ΘR+ , also θ(Y ) =
true. Thus θ ∈ ΘR.

Given a propositional variable X and propositional relation R, we wish to
define an environment which assign true to X and is also consistent with R.
Not all environments satisfy this condition, if there exists a variable Y such
that (X,Y ) ∈ R, then the environment assigning false to all variables except
for X is not consistent with R. On the other hand, the empty environment
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is consistent with R, but it does not assign true to X. However, using the
notion of reachability we can define an environment which is consistent with
some relation R, and (at least) assigns true to some propositional variable X.

Definition 2.2.10. Given a relation R on propositional variables, and proposi-
tional variable X. The minimal environment θ under R such that X is assigned
true, written θR,X , is the environment assigning true to X and all variables
reachable from X through R, and false to all other variables.

This definition is such that for any relation R and propositional variable X,
θR,X is consistent with R.

Lemma 2.2.11. For any relation R on propositional variables and propositional
variable X, θR,X is consistent with R.

Proof. Let R be a relation on propositional variables, and let X,Y, Z be propo-
sitional variables such that (Y,Z) ∈ R and θR,X(Y ) = true. We need to show
that θR,X(Z) = true.

If Y = Z then this is obviously the case. If Y = X then Z is reachable from
X and thus θR,X(Z) = true.

Now assume that Y 6= Z and Y 6= X. In this case, from the definition of
minimal environment for variables, Y is reachable from X through R. Thus,
there exist variables X0, · · · , Xn for some n > 0 such that X0 = X, Xn = Y
and for all i < n we have Xi R Xi+1. But then, Z is reachable from X through
R, since we have X0, · · · , Xn+1, with X0 = X and Xn+1 = Z such that for all
i < n+ 1 we have Xi R Xi+1. Therefore, θR,X(Z) = true.

The minimal environment for some variable X under some relation R gives
us a simple tool for determining relative consequences between X and other
variables thanks to the following property.

Lemma 2.2.12. For any relation R on propositional variables, variable X and

propositional formula f , X
R
=⇒ f iff JfKθR,X = true.

Proof. Take some relation R on propositional variables, variable X and propo-
sitional formula f .

→ Assume that X
R
=⇒ f . We need to show that JfKθR,X = true. From the

definition of the minimal environment for a variable under R, θR,X(X) =
true. Furthermore, from Lemma 2.2.11 θR,X is consistent with R, and

since X
R
=⇒ f , we have JfKθR,X = true.

← Assume that JfKθR,X = true. We need to show that X
R
=⇒ f . We proceed

by induction on the structure of f .

> In this case, obviously for any environment θ consistent with R such

that θ(X) = true we have J>Kθ = true, and thus X
R
=⇒ f .

⊥ In this case, JfKθR,X = false which contradicts our assumption that
JfKθR,X = true.
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Y In this case, JY KθR,X = true, and thus either Y is equal to X, or
(from the definition of θR,X) Y is reachable from X through R. If Y

is equal to X then obviously X
R
=⇒ Y .

If Y is reachable from X through R then there exist variables
X0, · · · , Xn, with X0 = X and Xn = Y , such that for all i < n we
have Xi R Xi+1. We will prove that, for any n > 0 and any set of
variables variables X0, · · · , Xn such that X0 = X and Xi R Xi+1 for

all i < n, we have X
R
=⇒ Xn. We prove this by induction on n.

n = 1 In this case, X R Xn and thus for any environment θ consistent
with R, we have that θ(X) = true implies θ(Xn) = true, and

thus X
R
=⇒ Xn.

n = k + 1 We have the following induction hypothesis: For any k + 1 vari-
ables X0, · · · , Xk such that X0 = X and Xi R Xi+1 for all i < k,

we have X
R
=⇒ Xk.

Given some set of variables X0, · · · , Xn such that X0 = X and

Xi R Xi+1 for i < n, we need to show that X0
R
=⇒ Xn.

Take any environment θ consistent with R such that θ(X0) =
true. We need to show that θ(Xn) = true. By the induction

hypothesis X0
R
=⇒ Xk, and thus θ(Xk) = true. But then, since

Xk R Xn, also θ(Xn) = true. Thus we can conclude X0
R
=⇒ Xn.

f1 ∧ f2 In this case, the induction hypothesis gives us that if Jf1KθR,X = true

then X
R
=⇒ f1, and similarly for f2.

Since JfKθR,X = true, both Jf1KθR,X = true and Jf2KθR,X = true.

Thus, from the induction hypothesis we have X
R
=⇒ f1 and X

R
=⇒ f2.

Take any environment θ consistent with R such that θ(X) = true.
Then also Jf1Kθ = true and Jf2Kθ = true, and thus JfKθ = true.

Therefore X
R
=⇒ f .

f1 ∨ f2 In this case, the induction hypothesis tells us that if Jf1KθR,X = true

then X
R
=⇒ f1, and similarly for f2.

Since JfKθR,X = true, either Jf1KθR,X = true or Jf2KθR,X = true.

Thus, from the induction hypothesis we have either X
R
=⇒ f1 or X

R
=⇒

f2. The cases are symmetrical, so we will only discuss X
R
=⇒ f1.

Take any environment θ consistent with R such that θ(X) = true.

Then also Jf1K = true and thus Jf1 ∨ f2Kθ = true. Therefore X
R
=⇒

f .

A natural question is whether we can lift this notion of minimal environments
for propositional variables to minimal environments for propositional formulas,
and if such an environment has the same or similar properties. The minimal
environment for a propositional formula under some relation is obtained by sim-
ply taking the union of the minimal environments for all propositional variables
occurring in the formula.

Definition 2.2.13. Given a relation R on propositional variables, and propo-
sitional formula f . The minimal environment θ under R for f is the union of
the minimal environments of all variables from V(f) under R.

11



Observe that, if no variables occur in f , then θR,f = θµ.

Obviously, for any formula f and relation R, if f is not equivalent to ⊥ then
θR,f assigns true to f .

Lemma 2.2.14. For any propositional formula f not equivalent to ⊥ and re-
lation R on propositional variables, θR,f is consistent with R.

Proof. Take some propositional formula f and relation R such that f is not
equivalent to ⊥. If f is equivalent to >, then for all environments θ we have
that JfKθ = true.

Otherwise, θR,f assigns true to all variables X ∈ V. Therefore θR,f must also
be true, since there is no negation in the syntax of propositional formulas.

Furthermore, since the union of environments consistent with a relation R
is also consistent with R, for any propositional formula f we have that θR,f is
consistent with R.

Lemma 2.2.15. For any relation R on propositional variables and propositional
formula f , θR,f is consistent with R.

Proof. If f does not contain any variables, then θR,f = θµ, and thus from
Lemma 2.2.2, θR,f is consistent with R. Otherwise, θR,f is equivalent to the
union of the minimal environments for all variables occurring in f under X, and
thus from Lemma 2.2.3, θR,f is consistent with R.

The minimal environment on propositional variables gives us a simple way
for determining relative consequences; a variable is assigned true by the minimal
environment of another variable, iff it is a relative consequence. We would like
to also have this same property for the definition of the minimal environment of
propositional formulas. However, in general this is not the case. Consider the
following example.

Example 2.2.16. Take propositional variables X,Y and let R be the empty
relation. Let f = X ∨ Y and g = Y . Then JgKθR,f = true. However, consider
θR,X . This environment is consistent with R. Furthermore, since θR,X(X) =
true, we have JfKθR,X = true. However, JgKθR,X = false, and thus we do not

have f
R
=⇒ g.

For clauses not equivalent to ⊥, we do have this property. Given a clause f
not equivalent to ⊥, and relation on propositional variables R, a propositional
formula evaluates to true under the minimal environment for f under R iff it is
a consequence of f relative to R.

Lemma 2.2.17. For any relation R on propositional variables, clause f not

equivalent to ⊥ and propositional formula g, JgKθR,f = true iff f
R
=⇒ g.

Proof. Take some relation R on propositional variables, clause f not equivalent
to ⊥ and propositional formula g.

→ Assume that JgKθR,f = true. We need to show that f
R
=⇒ g. We proceed

by induction on the structure of g.

> In this case trivially f
R
=⇒ g.

12



⊥ This contradicts with our assumption that JgKθR,f = true.

Y In this case, JgKθR,f = θR,f (Y ) = true. Thus, either Y ∈ V(f), or
there is some variable X ∈ V(f) such that Y is reachable from X

through R. In the first case f ⇒ Y , and thus f
R
=⇒ Y . In the second

case, X
R
=⇒ Y , and therefore since f

R
=⇒ X also f

R
=⇒ Y .

g1 ∧ g2 In this case we have the following induction hypotheses; if Jg1KθR,f =

true then f
R
=⇒ g1, and similarly for g2.

Furthermore, both Jg1KθR,f = true and Jg2KθR,f = true. Take any
environment θ consistent with R such that JfKθ = true. We need to
show that Jg1 ∧ g2Kθ = true. This is the case if both Jg1Kθ = true
and Jg2Kθ = true, which follows from the induction hypotheses.

g1 ∨ g2 In this case we have the following induction hypotheses; if Jg1KθR,f =

true then f
R
=⇒ g1, and similarly for g2.

Furthermore, either Jg1KθR,f = true or Jg2KθR,f = true. The cases
are symmetrical: Take any environment θ consistent with R such
that JfKθ = true. We need to show that Jg1 ∨ g2Kθ = true. This is
the case if Jg1Kθ = true resp. Jg2Kθ = true, which follows from the
induction hypotheses.

← Assume that f
R
=⇒ g. We need to show that JgKθR,f = true.

From Lemma 2.2.15, θR,f is consistent with R. Furthermore, from the def-
inition of θR,f , since f is not equivalent to ⊥, JfKθR,f = true. Therefore,
JgKθR,f = true.

We used the notion of consistency on environments to lift relations on propo-
sitional variables to relations on propositional formulas. For this we introduced
the notion of relative consequence. One could wonder how this notion of relative
consequence behaves on propositional variables compared to propositional for-
mulas. A nice property to have, would be a one to one correspondence between
relative consequence on propositional variables, and membership in a relation;

i.e. given some relation R on propositional variables, can we derive X
R
=⇒ Y

from (X,Y ) ∈ R and/or vice versa? One direction is obvious; given a rela-
tion on propositional variables R and variables (X,Y ) ∈ R, we then also have

X
R
=⇒ Y . However, the converse stating that if X

R
=⇒ Y then we can conclude

(X,Y ) ∈ R does not hold. Consider the following example.

Example 2.2.18. Let R = {(X,Z), (Z, Y )}, then X
R
=⇒ Y (for any environment

consistent with R, if X is a assigned true then so is Z, and if Z is assigned true
then so is Y ). However, we do not have (X,Y ) ∈ R.

Despite the fact that we cannot derive membership in a relation from relative
consequence between variables, we do have a weaker property. For propositional

variables X,Y and relation on propositional variables R, we have that X
R
=⇒ Y

iff X,Y is in the reflexive, transitive closure of R.

Lemma 2.2.19. For all propositional variables X,Y and relations on proposi-

tional variables R, X
R
=⇒ Y if and only if X R∗ Y .

Proof. Take some relation R on propositional variables.
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→ Take some X,Y such that X
R
=⇒ Y . Then, from Lemma 2.2.12 we have

that θR,X(Y ) = true. But then, either X = Y or Y is reachable from X
through R. In the first case trivially (X,Y ) ∈ R∗. In the second case,
(X,Y ) ∈ R+, and therefore also (X,Y ) ∈ R∗.

← Take some (X,Y ) ∈ R∗. If X = Y then obviously X
R
=⇒ Y . Assume

that X 6= Y . We need to show that X
R
=⇒ Y . In this case, (X,Y ) ∈ R+

and thus according to Lemma 2.2.8 we know that Y is reachable from X
through R. But then by definition of θR,X , θR,X(Y ) = true, and thus

from Lemma 2.2.12 we know X
R
=⇒ Y .

2.3 BES

Boolean equation systems, or BES for short, are a formalism for encoding model
checking problems and other decision problems [18]. BES are usually defined as
lists of fixed point equations, though we will use a slightly different definition
in terms of lists of blocks, where a block is a lists of Boolean equations and a
fixpoint symbol.

Definition 2.3.1. A Boolean equation is a pair of a propositional variable X
and propositional formula f , written as (X = f).

Given a list of Boolean equations B, we will write bndB to indicate the set
of all propositional variables occurring on the left-hand side of equations in B.
If for each variable X ∈ bndB there exists only one Boolean equation in B with
X at the left hand side, then we say that B is well-formed. Furthermore, for
well-formed B and any variable X ∈ bndB , we will write fX to indicate the
right-hand side of the equation (X = f) in B. Finally, if no confusion is possible
then we may write bnd instead of bndB .

As mentioned, we will define BES as lists of blocks. A block is a non-empty
lists of Boolean equations paired with a fixpoint symbol.

Definition 2.3.2. A block B is defined as a pair of a non-empty list of Boolean
equations B and a fixpoint symbol (either µ or ν).

The following is an example of a block.

Example 2.3.3.
(µ〈(X = A ∧B)(Y = X ∨ (Y ∧ >))〉)

We will typically write σB to indicate a block, where σ ∈ {µ, ν}.
A Boolean Equation System (or BES ) is a list of blocks with alternating

fixpoint symbols.

Definition 2.3.4. We recursively define a BES as

E ::= Eν | Eµ

Where Eν and Eµ are defined as

Eµ ::= ε | (µB)Eν
Eν ::= ε | (νB)Eµ

14



With ε being the empty list, and B being a non-empty list of Boolean equa-
tions.

In this text, we will typically use E to indicate a BES. For an arbitrary
equation system E , we lift the definition of bnd, fX and well-formed in the
natural way from lists of Boolean equations to blocks and lists of blocks. From
now on, we will only consider well-formed BES in this text.

Given a BES, variables can be grouped together based on their rank, which
is a measure of the nesting depth of the variable.

Definition 2.3.5. Let E be a BES and let X be some variable. The rank of X
in E , written rankE(X) is 0 if X is not in bndE . Otherwise, it is equal to the
number of blocks up to and including the block in which X is bound, counting
from 1 if the first block in E has a least fixpoint symbol and 2 otherwise.

Given a variable X and BES E , if no confusion is possible then we will write
rank(X) instead of rankE(X). The following is an example of the ranks of
variables in a BES.

Example 2.3.6. Consider the following BES:

(ν〈(X = fX)(Y = fY )〉)(µ〈(Z = fZ)〉)

Then the ranks of A,X, Y, Z are as follows:

rank(A) = 0 rank(X) = 2 rank(Y ) = 2 rank(Z) = 3

2.3.1 The semantics of BES

We start this section with some fixpoint theory. A poset (A,≤), is a set A
paired with a binary relation on the set ≤⊆ A × A, such that ≤ is reflexive,
antisymmetric and transitive. A poset (A,≤) is a complete lattice if all subsets
of A have both a supremum (least upper bound) and an infimum (greatest lower
bound).

Take some arbitrary complete lattice (A,≤) with least and greatest elements
Aν and Aµ, t for determining the supremum and u for determining the infimum.
Furthermore, let f : A→ A be a function on A. A fixed point of f is an element
a ∈ A such that f(a) = a. The least fixed point of f , indicated with µf , is the
fixed point of f such that, for all other fixed points a of f , µf ≤ a. The greatest
fixed point of f , written νf , is the fixed point of f such that, for all other
fixed points a of f , a ≤ νf . Furthermore, we say that f is monotone iff, for all
elements a, b ∈ A, if a ≤ b then also f(a) ≤ f(b). According to Tarski’s Theorem
[22], if f is monotone then least and greatest fixed points of f are guaranteed
to exist, namely µf = u{a ∈ A | f(a) ≤ a} resp. νf = t{a ∈ A | f(a) ≥ a}.
Furthermore, the least and greatest fixed points of f can be obtained using a
transfinite approximation; to this end, we define the approximant terms of f
(see also [21]).

Definition 2.3.7. For ordinal α and limit ordinal λ, the approximant σαf is
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defined by transfinite induction as follows.

σ0f = Aσ

σα+1 = f(σαf)

σλf =

{
f(tα<λσαf) if σ = µ

f(uα<λσαf) if σ = ν

The following is a method for determining the least and greatest fixpoint of
a monotone function.

Lemma 2.3.8. Let Ord be the class of all ordinals. Then we can obtain the
least and greatest fixpoints of a monotone function as follows.

µf = tα∈Ord(µαf) νf = uα∈Ord(ναf)

We are interested in the following posets. Take some natural number n, and
consider (Bn,vn), with vn: Bn → Bn such that for any b̄1, b̄2 ∈ Bn, b̄1 vn b̄2
if and only if, for all 1 ≤ i ≤ n, (b̄1)i (the i-the element of b̄1) implies (b̄2)i.
Then (Bn,vn) is a complete lattice, with minimal and maximal elements the
n-tuples with all elements false resp. true (which we will call b̄µ resp. b̄ν).
Furthermore, for any monotone function f : Bn → Bn, since elements from
tuples from Bn can only take one of two values, and there are always n elements
in tuples from Bn, a fixed point of f is always reached within n iterations of f ,
and thus σf = fn(b̄σ), where fn(b̄) is defined as follows.

Definition 2.3.9. Given a function f : A→ A, repeatedly applying f n times
to a and n times to some element a ∈ A is defined as follows.

f0(a) = a

fk+1(a) = f(fk(a))

The syntax of BES is usually defined as a list of fixpoint equations, where a
fixpoint equation is a Boolean equation paired with a least or greatest fixpoint
symbol, see also [18].

In this text however, we have defined the syntax of BES as lists of blocks.
Rephrasing the semantics of BES defined using lists of fixpoint equations, to
BES defined using lists of blocks (with alternating signs) is standard. It relies
on Bekič theorem [2] for converting nested fixed points to simultaneous fixed
points.

Definition 2.3.10. For any BES E and environment θ, we recursively define
the semantics of E , written LEMθ, as follows.

LεMθ = θ

L(σB)E ′Mθ = LE ′M(θ[〈Xi〉ni=1 := σ(F(E ′, B, θ))])

Where B = 〈Xi = fXi
〉ni=1 and F is defined as follows.

F(E ′, B, θ) := λ〈bi〉ni=1 ∈ Bn.〈JfXi
K(LE ′M(θ[〈Xj := bj〉nj=1)])〉ni=1
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Now, for any BES E = (σB)E ′, with B a list of n Boolean equations,
F(E ′, B, θ) is monotone in (Bn,vn), and therefore least and greatest fixed points
are guaranteed to exist. In fact, σ(F(E ′, B, θ)) = (F(E ′, B, θ))n(bσ).

In Coq, the type of F would be Bn → Bn. However, the type of Bn is
dependent on parameter n (see also [1] for more on dependent types), and
dependent types are somewhat more complex to work with. Instead, we will
present a semantics for BES which uses a function F : (X → B) → (X → B)
on environments instead of tuples of Booleans, which we have obtained via a
simple conversion from n tuples to environments, and we will show that this
semantics is equivalent to the standard semantics.

Before we introduce this alternative semantics of BES we first introduce a
short hand for unfolding a block within an environment.

Definition 2.3.11. Let B = 〈Xi = fXi
〉ni=1 be a list of n of Boolean equations.

Given an environment θ, we define the unfolding of B in θ, written ||B||θ, as
follows.

||B||θ = θ[(X1, · · · , Xn) := (JfX1Kθ, · · · , JfXnKθ)]

Here, (X1, · · · , Xn) := (JfX1
Kθ, · · · , JfXn

Kθ) denotes the simultaneous re-
defining of θ in X1, · · · , Xn to the values JfX1Kθ, · · · , JfXnKθ.

Given an environment θ and a block B = 〈Xi = fXi
〉ni=1 with for all 0 ≤

i, j ≤ n such that i 6= j we have Xi 6= Xj . Then we can obtain an n-tuple of
Booleans b̄, by defining the value of each of its indexes i: b̄i = θ(Xi). Conversely,
given an n-tuple of Booleans b̄. We can ‘store’ this tuple in an environment θ,
by defining some block B = 〈Xi = fXi〉ni=1 such that, for all 0 ≤ i, j ≤ n with
i 6= j we have Xi 6= Xj . We can then store b̄ in θ by taking θ[〈Xi = b̄i〉ni=1].

Using this method for converting from tuples of Booleans to environments,
and the definition of unfolding a block within an environment, the semantics of
BES can also be formulated as follows.

Definition 2.3.12. We define the semantics of a BES under an environment
θ, written JEKθ, as follows.

JεKθ = θ

J(σB)E ′Kθ = JE ′K(θ[〈Xi := ((F (E ′, B, θ))n(θσ))(Xi)〉ni=1])

Where B = 〈Xi = fXi
〉ni=1 and F is defined as follows.

F (E ′, B, θ) = λθb.||B||(JE ′K(θ[〈Xi := θb(Xi)〉ni=1)])

The two semantics presented in this part are equivalent, as shown by the
following lemma. For the proof of this lemma, we refer the reader to appendix
B.

Lemma 2.3.13. For any BES E and for any environment θ, LEMθ = JEKθ.
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Chapter 3

Solutions of consequence

Solving a BES involves a complex fixpoint approximation with double recursion.
Obviously, the larger the BES, the more expensive solving the BES becomes. To
somewhat mitigate this exponential blowup, methods of abstraction have been
defined, which are used to reduce the complexity of BES. However, the sound-
ness proofs of these abstraction methods are laborious and complex. Thus the
consistent correlation has been created to simplify such soundness proofs [23].
This relation was defined such that, by showing that the abstraction technique
preserved a consistent correlation between the abstract and the concrete BES,
the soundness of the abstraction technique would immediately follow.

At the basis of the consistent correlation lies the consistent consequence
relation. Furthermore, the consistent consequence relation is in itself a method
of abstraction on BES. It allows one to relate the solution of variables from
(possibly different) BES, without solving the BES themselves. Given a BES E ,
if we can relate a pair of bound variables via a consistent consequence relation
on E , then we know that if the solution of a BES is true for one variable, then it
must also be true for the other variable, i.e. in the solution of E one variable is
a logical consequence of the other variable, and therefore it would be sufficient
to solve the BES for one variable to obtain some knowledge about the solution
of the BES for the other variable.

In this chapter, we introduce the consistent consequence relation, as well as
the main theorem capturing the relation between the consistent consequence
relation and the solution of a BES.

3.1 The consistent consequence relation

Given a BES, a relation on propositional variables is a consistent consequence
relation on this BES if, for all pairs of variables related, the rank of the variables
is equal and, if both variables are bound in the BES, then the right hand sides
of the variables should be consequences relative to the relation.

Definition 3.1.1. Let E be a BES, and R a relation on propositional variables.
R is a consistent consequence on E if, for all variables X,Y such that X R Y ,
we have:

1. rank(X) = rank(Y )
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2. if X,Y ∈ bnd then fX
R
=⇒ fY

Given an equation system E , for any pair of propositional variables X,Y , if
there exists a consistent consequence relation R relating only variables bound in
E (i.e. R ⊆ bndE ×bndE) such that X R Y , then we say that Y is a consistent
consequence of X, written as X lE Y .

Given two consistent consequences, their union is also a consistent conse-
quence.

Lemma 3.1.2. [10] Given a BES E and consistent consequence relations R1, R2

on this BES. Then, the union of R1 and R2, written as R1 ∪ R2, is also a
consistent consequence relation.

From the previous lemma, we can derive that there exists some largest con-
sistent consequence relation (if we restrict the relation to only relate bound
variables). In fact, lE is the largest consistent consequence relation on the
bound variables of E .

Lemma 3.1.3. [10] Given a BES E , lE is the largest consistent consequence
relation relating only variables in E .

If no confusion is possible we may write l instead of lE .

Lemma 3.1.4. [10] Given a BES E , lE is a preorder.

3.1.1 Some examples

On any BES, the simplest consistent consequence relation is the empty relation.
For any BES, the empty relation trivially satisfies the properties of a consistent
consequence relation. The following are a few less trivial examples of BES and
their (largest) consistent consequence relations.

Example 3.1.5. Consider the following BES.

(µ〈(X0 = ⊥)(X1 = X1)〉)

Then l = {(X0, X0), (X0, X1), (X1, X1)}. Observe that we do not have
X1 lX0. Consider θν , which assigns true to all variables. This environment is
consistent with R, however, JfX1

Kθ = JX1Kθ = true and JfX0
Kθ = J⊥Kθ = false,

and thus not fX1

R
=⇒ fX0

.

Example 3.1.6. Consider the following BES.

(µ〈(X0 = X4)(X1 = X0 ∨X2)(X2 = X4 ∨X5)(X3 = X2)(X4 = X4)〉)
(ν〈(X5 = X5)〉)

Then we have (among others) X0 l X2, X1 l X3, X3 l X1 and X4 l X0.
Showing this is somewhat complicated as it requires defining consistent conse-
quence relations relating each of the pairs of variables. However, in the next
chapter, we will introduce a sound and complete proof system for deriving con-
sistent consequences, and we will show that it is capable of deriving each of
these.

19



3.2 An important theorem

In the introduction to this section, we stated that there is a relation between
consistent consequences on a BES and its solution. The following claim gives
this relation. It states that, given a BES and a pair of variables (X,Y ), if X is
related to Y by a consistent consequence relation on the BES, then the solution
of X in the BES implies the solution of Y in the BES.

Claim [5],[10] Let E be a BES and R a consistent consequence relation on E .
Then, for all environments θ consistent with R, JEKθ is also consistent with R.

This claim shows us why we are interested in consistent consequence re-
lations. We can use consistent consequence relations to show a dependency
between the solution of one variable in a BES and the solution of another vari-
able in this BES, without solving either BES. In particular, this holds for closed
BES, as the following Corollary states.

Corollary 3.2.1. Given a closed BES E . For all variables X,Y such that XlY
and any environment θ, (JEKθ)(X) = true implies (JEKθ)(Y ) = true.

The usefulness of this property is best demonstrated via an example.

Example 3.2.2. Consider the following BES:

E = (ν〈(X = X)(Y0 = Y1) · · · (Yn = Y0)〉)

Then we can easily solve X in E for any θ; for any θ, we have (JEKθ)(X) =
true, since the solution of X only depends on X, and not on any of the other
equations in the BES. However, the solution of Y0 depends on all other Yi, and
thus solving E for Y0 is a more complex procedure.

However, X l Y0. Thus, if the previous claim is correct, then for any
θ ∈ Θl, we have (JEKθ)(X) = true implies (JEKθ)(Y0) = true. Furthermore,
since we are dealing with a closed BES, we have the following property: For
any environments θ, θ′, for any BES E , and for any variable X bound in E,
(JEKθ)(X) = (JEKθ′)(X). [18] Therefore we can conclude that, for any environ-
ment θ, (JEKθ)(Y0) = true. Thus we have obtained the solution of Y0 without
solving E for Y0.

To prove the claim made previously, we will show that being consistent
with a consistent consequence relation is invariant under each of the operations
involved with solving a BES, from which the theorem (Theorem 3.2.6) will follow
naturally.

First of, given a BES consisting of a single block (σB), a consistent conse-
quence relation R on this BES and an environment θ consistent with R. Then
unfolding B in θ is also consistent with R.

Lemma 3.2.3. Let E = (σB) be a BES consisting of a single block, and let R
be a consistent consequence on E . Then,

∀θ ∈ ΘR : (||B||θ) ∈ ΘR

Proof. Let E = 〈σB〉 be a BES consisting of a single block, and let R be a
consistent consequence on E . Furthermore, take some environment θ ∈ ΘR, and
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propositional variables (X,Y ) ∈ R such that (||B||θ)(X) = true. We need to
show that (||B||θ)(Y ) = true.

Since R is a consistent consequence relation, and thus only relates variables
of the same rank, either both X and Y are bound in B, or neither of them is.
The first approximation of a block only modifies variables bound in the block,
thus if neither X nor Y is bound in B and (||B||θ)(X) = true, then θ(X) must
also be true. Since X R Y and θ ∈ ΘR, we then also have θ(Y ) = true, and
thus (||B||θ)(Y ) = true.

If both X and Y are bound in B then (||B||θ)(X) = true = JfXKθ. Fur-

thermore, since R is a consistent consequence relation, we have fX
R
=⇒ fY .

Since θ is consistent with R, we also know that JfY Kθ = true, and therefore,
(||B||θ)(Y ) = JfY Kθ = true.

Next we will show that given a relation R and a function f on environments
which maintains consistency with R, repeatedly applying f to some environment
θ results in an environment which is still consistent with θ, regardless of the
number of applications.

Lemma 3.2.4. Let R be some relation on propositional variables, and let θ
be some environment consistent with R. Then, for any function f mapping en-
vironments to environments which maintains consistency of environments with
R, and for any natural number n, we have that fn(θ) is also consistent with R.

Proof. Let R be some relation on propositional variables, let f be a function on
environments which maintains consistency of environments with respect to R
and let n be some natural number. We need to show that for any environment θ
consistent with R, fn(θ) is also consistent with R. We will proceed by induction
on n.

n = 0 Take some θ consistent with R. Then, fn(θ) = f(θ), and since f maintains
consistency of environments with R, f(θ) is consistent with R.

n = k + 1 The induction hypothesis is as follows. For any environment θ′ consistent
with R, we have that fk(θ′) is also consistent with R.

Take some environment θ consistent with R. Then we have fn(θ) =
f(fk(θ)). From the induction hypothesis, we know that fk(θ) is consistent
with R. Therefore, since f maintains consistency with R, fn(θ) is also
consistent with R.

There is one more operation for which we need to show that it maintains
consistency, namely redefining an environment for all bound variables from a
block with their solution from some other consistent environment.

Lemma 3.2.5. Let E = (σB) be a BES consisting of a single block such that
B = 〈Xi = fXi

〉ni=1, and let R be a consistent consequence on E . Then for all
environments θ1, θ2 consistent with R, we have that θ1[〈Xi := θ2(Xi)〉ni=1] is
also consistent with R.

Proof. Let E = 〈σB〉 be a BES consisting of a single block such that B = 〈Xi =
fXi
〉ni=1, and let R be a consistent consequence on E . Take environments θ1, θ2

consistent with R, and propositional variables (X,Y ) ∈ R such that (θ1[〈Xi :=
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θ2(Xi)〉ni=1])(X) = true. We need to show that (θ1[〈Xi := θ2(Xi)〉ni=1])(Y ) =
true.

Since R is a consistent consequence relation on E , X and Y must have the
same rank, and therefore either both X and Y are bound in E , or neither of
them is.

If neither X nor Y is bound in E , then (θ1[〈Xi := θ2(Xi)〉ni=1])(X) = θ1(X)
and (θ1[〈Xi := θ2(Xi)〉ni=1])(Y ) = θ1(Y ). Since θ1 is consistent with R, if θ1(X)
is true then so is θ1(Y ).

If both X and Y are bound in E , then (θ1[〈Xi := θ2(Xi)〉ni=1])(X) = θ2(X)
and (θ1[〈Xi := θ2(Xi)〉ni=1])(Y ) = θ2(Y ). Since θ2 is consistent with R, if θ2(X)
is true then so is θ2(Y ).

Finally, we can prove the claim which we started this section with. This
theorem was formalized in Coq Lemma 6.8.5.

Theorem 3.2.6. Let E be a BES, and R a consistent consequence relation on
E . Then for all θ ∈ ΘR, we have JEKθ ∈ ΘR.

Proof. Let E be a BES and R a consistent consequence relation on E . We need
to show that, for any θ consistent with R, we have that JEKθ is also consistent
with R.

We do this by induction on the number of blocks in E .

E = ε In this case, for any θ we have JEKθ = θ, and thus if an environment θ is
consistent with R then so is JEKθ.

E = (σB)E ′ In this case we have the following induction hypothesis: if R is a consistent
consequence on E ′, then for any environment θ consistent with R we have
that JE ′Kθ is also consistent with R.

First, we prove that R is also a consistent consequence on E ′. Take any
variables (X,Y ) ∈ R. We need to show that rankE′(X) = rankE′(Y )
and, if X and Y are bound in E ′, then the right hand side of Y in E ′ is a
consequence of the right hand side of X in E ′, relative to R.

Since X R Y , and R is a consistent consequence on E , the ranks of X
and Y in E are equal. Therefore, either both X and Y are not bound
in (σB)E ′, or they are both bound in B, or they are both bound in
E ′. In the first two cases, we have rankE′(X) = 0 = rankE′(Y ). In
the later case, we have rankE(X) = rankE′(X) + 1 (if σ = ν) and
rankE(X) = rankE′(X)−1 otherwise. Similarly for the rank of Y . Thus,
since rankE(X) = rankE(Y ), we have rankE′(X) = rankE′(Y ).

Next, assume that both X and Y are bound in E ′. We need to show that
the right hand side of Y in E ′ is a consequence of the right hand side of Y
in E ′ relative to R. Observe that, since X is bound in E ′, it is not bound
in (σB) (since E is well-formed), and thus the right hand side of X in E
is the same as the right hand side of X in E ′. The same holds for Y . Let
fX and fY be these right hand sides for X resp. Y . Then, since R is a

consistent consequence relation on E relating X to Y , we have fX
R
=⇒ fY .

Thus we can conclude that R is a consistent consequence relation on E ′,
and therefore the induction hypothesis tells us that for any environment
θ consistent with R, JE ′Kθ is also consistent with R.
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Furthermore R is also a consistent consequence relation on the BES con-
sisting of the single block B. This can be shown using a reasoning similar
to proving that R is a consistent consequence relation on E ′.
Note that B is some non-empty list of Boolean equations, thus assume
that B = 〈Xi = fXi

〉ni=1. Next, take some environment θ consistent with
R. We need to show that J(σB)E ′Kθ is also consistent with R.

From the definition of the solution of a BES, we obtain
J(σB)E ′Kθ = JE ′K(θ[〈Xi := ((F (E ′, B, θ))n(θσ))(Xi)〉ni=1]).

From the induction hypothesis,
JE ′K(θ[〈Xi := ((F (E ′, B, θ))n(θσ))(Xi)〉ni=1]) is consistent with R if
θ[〈Xi := ((F (E ′ B θ))n(θσ))(Xi)〉ni=1] is consistent with R.

From Lemma 3.2.5, since θ is consistent with R,
θ[〈Xi := ((F (E ′ B θ))n(θσ))(Xi)〉ni=1] is consistent with R if
(F (E ′, B, θ))n(θσ) is consistent with R.

Furthermore, from Lemma 2.2.2 we know that θσ is consistent with R,
and thus from Lemma 3.2.4, (F (E ′, B, θ))n(θσ) is consistent with R if
F (E ′, B, θ) maintains consistency.

From the definition of the semantics of a BES, we obtain F (E ′, B, θ) =
λθb.||B||(JE ′K(θ[〈Xi := θb(Xi)〉ni=1])).

Take any environment θb consistent with R. We need to show that
||B||(JE ′K(θ[〈Xi := θb(Xi)〉ni=1])) is also consistent with R. From Lemma
3.2.3, this is the case if JE ′K(θ[〈Xi := θb(Xi)〉ni=1]) is consistent with R.

From the induction hypothesis, since R is a consistent consequence relation
on E ′, this is the case if θ[〈Xi := θb(Xi)〉ni=1] is consistent with R. Finally,
this is the case according to Lemma 3.2.5, since both θ and θb are consistent
with R.

3.3 On variations of consistent consequences

A few variations have occurred in the literature for defining consistent conse-
quence relations. In particular, the relation has been defined both in a setting
of BES and in a more generalized setting of PBES. In [10] the consistent conse-
quence relation was defined on BES as follows.

Definition 3.3.1. Let E be a BES, and R a relation on propositional variables.
R is a consistent consequence on E if, for all variables X,Y such that X R Y
and X and Y are bound in E , we have:

1. rank(X) = rank(Y )

2. fX
R
=⇒ fY

This definition is similar to the one presented in the first section of this chap-
ter. However the restrictions on the relation are only applied on bound variables
(so pairs of unbound variables, and pairs of bound and unbound variables need
not have the same rank).

The definition introduced in the first section of this chapter, which we will use
throughout this document, is more in line with the definition from [5] (though

23



it is defined on BES instead of PBES). In fact, we found an issue with the
definition from [10] (given above). In [10], the claim we made in the previous
section, which gives the relation between the notion of consistent consequence
and the solution of BES, is proven. However, we found a small issue with this
proof. This definition allows unbound variables to relate to bound variables,
which causes contradictions with the claim, as demonstrated in the following
example.

Example 3.3.2. Consider the following BES.

E = (µ〈X = X〉)

Let R = {(A,X)} for some propositional variable A. Then, according to
definition 3.3.1, R is a consistent consequence relation on E . Now consider an
environment θ with θ(X) = θ(A) = true. Then θ is consistent with R. However,
JEKθ is not consistent with R, since (JEKθ)(X) = false but (JEKθ)(A) = true.
Thus, the relation between the semantics of BES, as proven in Theorem 3.2.6,
and the notion of consistent consequence does not hold using this definition.

By taking a notion of consistent consequence more in line with [5], we avoid
these issues. The difference lies in the fact that we also allow unbound variables
to be related to each other (but not unbound variables to bound variables or
vice versa). This relaxation is required to be able to use the induction hypoth-
esis when proving the relation between the semantics of BES and the notion
of consistent consequence, which is the place where the proof in [10] made a
mistake.
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Chapter 4

A proof system of
consequence

The consistent consequence relation presented in the previous chapter has a
complex definition in terms of the semantics of a BES. To show that a relation
R on propositional variables is a consistent consequence relation for some BES,
we need to show two things. The first is that it only relates variables of equal
rank, which is not to hard. The second is that the right hand-sides variables
related by R are consequences relative to R. For this, one needs to reason on
all environments consistent with R, which is difficult.

To gain greater insight into the notion of consistent consequence relations,
a proof system was created in [10] to syntactically derive that variables in a
BES are related via a consistent consequence relation, and it was posed that
this proof system was sound and complete for deriving consistent consequences
between propositional variables. This proof system was initially created by
adding two rules to a proof system for deriving logical consequences on positive
propositional formulas, namely rules CC and CNT, the result of which is shown
in Table 4.1.

The rules in this table are of the following shape.

` A ⊂ B
label

Γ′ ` C ⊂ D
This should be read as ‘given that we can conclude B from A in context Γ,

then using rule ‘label’, we can derive that we can conclude D from C in context
Γ′’. Given a BES E and propositional variables X,Y , to derive XlY using the
proof system, one needs to construct a tree such that ` X ⊂ Y is in the root,
and all leaves are closed.

The proof system shown in Table 4.1 is sufficiently strong to derive consistent
consequences for some examples. However, proving that the system is complete
in general is more complicated. To simplify the proof of completeness, a third
rule was added:

Γ ` α ⊂ β
SUB1

Γ ` αη ⊂ βη
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Here, α and β are propositions, η is a substitution mapping propositional vari-
ables to propositional formulas, and fη is the natural extension of η from vari-
ables to terms.

This rule is very similar to a standard rule for deriving logical consequences.

α ⊂ β
SUB2

αη ⊂ βη

This rule can be derived from the other rules in systems for deriving logical
consequence. Thus, for deriving logical consequences, SUB1 is sound (with
respect to the proof system without the consistent consequence rules, since then
Γ is ignored). However, it is not sound for deriving consistent consequences.
Consider the following example.

Example 4.0.1. Take the following BES.

(µ〈(X = A)(Y = B)〉)(ν〈(A = A)〉)(µ〈(B = B)〉)

In this BES, B could never be a consistent consequence of A, since A and
B have different ranks. (In fact, the solution of A is true while the solution of
B is false, thus if A l B then we would have a counter example for Theorem
3.2.6.) However, by adding SUB1 to the proof system in Table 4.1, it is possible
to build a proof tree with ∅ ` A ⊂ B as the root as follows.

CNT
X ⊂ Y ` X ⊂ Y

SUB
X ⊂ Y ` A ⊂ B

CC` X ⊂ Y
SUB` A ⊂ B

The problem with SUB1 is related to the fact that SUB1 manipulates the
right-hand side of the ` in the tree, without taking the left-hand side (or context)
into consideration. To resolve this problem, one could redefine SUB1 such that
it does behave appropriately, for example by also applying the substitution at
the left-hand side of `. However, then the rule cannot be used in the same way
anymore to prove the completeness of the proof system.

We mentioned that the substitution rule is usually derivable from the other
rules. Thus, one could imagine that this rule is not required for completeness
of the system (at least, it is not required for completeness of the system with
respect to logical consequence). In Chapter 5 we will prove that this is in fact
the case; we will prove that the proof system as shown in Table 4.1 is in fact
sound and complete for deriving consistent consequences on bound variables,
by proving the following claim.

Claim For any BES E , and for any propositional variables X,Y ∈ bnd, ∅ `
X ⊂ Y is derivable iff X l Y .

4.0.1 Proof outline

If we can prove that the previous claim is true, then we would know that the
proof system is sound and complete for deriving consistent consequences between
bound variables; i.e. we can build a proof tree with ` X ⊂ Y as the root iff Y
is a consistent consequence of X.
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To prove the claim, we first define a notion of relativization of consistent
consequence relations. Similar to logical consequence, which can be defined
relative to some relation on propositional variables, we can define a notion of
relative consistent consequence, which takes the consistent consequence relation
relative to some other relation (defined at the start of Chapter 5). This defi-
nition is such that, if we have some relation which is a consistent consequence
relation relative to the empty relation, then this relation is a ‘normal’ consistent
consequence relation.

We then lift this notion of relative consistent consequence on propositional
variables to a notion of relative consistent consequence on propositional formu-
las. This notion is such that, for propositional variables X,Y , if propositional
formula Y is a consistent consequence of propositional formula X relative to the
empty relation, then Y is a consistent consequence of X.

In Section 5.1, we prove the soundness of the proof system (if we can build a
proof tree with ` X ⊂ Y as the root then Y is a consistent consequence of X).
This is done by first showing that the proof system is sound for deriving relative
consistent consequence between propositional formulas. The soundness follows
then from the fact that consistent consequence between propositional formulas
relative to the empty relation, if the propositional formulas are single variables,
equates to normal consistent consequence between the variables.

Logical consequence lies at the basis of consistent consequence, and com-
pleteness of the proof system for logical consequence will be a useful tool for
proving the completeness for consistent consequence. Therefore, before proving
the completeness of the proof system for consistent consequence, we will prove
that the proof system is complete for logical consequence in Section 5.2. To
prove completeness for logical consequence, we will show how we can rewrite
a propositional formula to an equivalent DNF in the proof system. Next we
show that, if there is a logical consequence between a propositional formula in
DNF and some other propositional formula, then we can build a proof tree with
these propositional formulas in the root. The combination of these two gives us
completeness of the proof system for logical consequence.

Finally, in Section 5.3 we will tackle completeness of the proof system for
consistent consequence. We start with completeness of the proof system for
consistent consequences relative to some relation Γ, which relates only bound
variables from a BES. The intuition behind the proof is that we can build a
consistent consequence relation at the left hand side of ` in the proof system,
which relates the variables at the root. We will prove this by induction on the
number variables bound in the BES, but not related at the left hand side of `.
Since a consistent consequence relation relative to the empty relation is also a
consistent consequence relation, we can then easily show that the proof system
is also complete for deriving consistent consequences.

While proving the soundness and completeness properties of this proof sys-
tem, we will introduce a few auxiliary and derived rules. For reference, a com-
plete overview of these rules can be found in Appendix A.
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Table 4.1: Proof system for consistent consequences on BES E ; α, β and γ
are arbitrary propositional formulas; X, Y are propositional variables; Γ is a an
arbitrary set of statements of the form C ⊂ D, where C and D are propositional
variables

Axioms:

rules of the form Γ ` A where A ranges over:

AS1 α ∧ (β ∧ γ) ⊂ (α ∧ β) ∧ γ DS1 α ∨ (β ∧ γ) ⊂ (α ∨ β) ∧ (α ∨ γ)
AS2 (α ∧ β) ∧ γ ⊂ α ∧ (β ∧ γ) DS2 (α ∨ β) ∧ (α ∨ γ) ⊂ α ∨ (β ∧ γ)
AS3 α ∨ (β ∨ γ) ⊂ (α ∨ β) ∨ γ DS3 α ∧ (β ∨ γ) ⊂ (α ∧ β) ∨ (α ∧ γ)
AS4 (α ∨ β) ∨ γ ⊂ α ∨ (β ∨ γ) DS4 (α ∧ β) ∨ (α ∧ γ) ⊂ α ∧ (β ∨ γ)
COM1 α ∧ β ⊂ β ∧ α AB1 α ∨ (α ∧ β) ⊂ α
COM2 α ∨ β ⊂ β ∨ α AB2 α ⊂ α ∨ (α ∧ β)
ID1 α ⊂ α ∧ α ID2 α ∨ α ⊂ α
SUP α ⊂ α ∨ β INF α ∧ β ⊂ α
TOP α ⊂ α ∧ > BOT α ∨ ⊥ ⊂ α

Logic rules:

TRA
Γ ` α ⊂ β Γ ` β ⊂ γ

Γ ` α ⊂ γ
REF Γ ` α ⊂ α

CTX
Γ ` α ⊂ β
Γ ` γ[X := α] ⊂ γ[X := β]

Consistent Consequence rules:

CC
Γ, X ⊂ Y ` fX ⊂ fY

rank(X) = rank(Y ) and X,Y ∈ bndE
Γ` X ⊂ Y

CNT (X ⊂ Y ∈ Γ)
Γ ` X ⊂ Y
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4.1 Some examples

In Example 3.1.6, we promised that we would show how the proof system can
be used for deriving consistent consequences syntactically. As an appetizer for
the next chapter, we will show how to construct the proof trees promised in this
example.

Example 4.1.1. As a reminder, the BES we are considering is the following:

(µ〈(X0 = X4)(X1 = X0 ∨X2)(X2 = X4 ∨X5)(X3 = X2)(X4 = X4)〉)
(ν〈(X5 = X5)〉)

The following proof trees derive (in order), X0 lX2, X1 lX3, X3 lX1 and
X4 lX0.

SUP
X0 ⊂ X2 ` X4 ⊂ X4 ∨X5

CC` X0 ⊂ X2

Same as ` X0 ⊂ X2
X1 ⊂ X3 ` X0 ⊂ X2

CTX
X1 ⊂ X3 ` X0 ∨X2 ⊂ X2 ∨X2

ID2
X1 ⊂ X3 ` X2 ∨X2 ⊂ X2

TRA
X1 ⊂ X3 ` X0 ∨X2 ⊂ X2

CC` X1 ⊂ X3

SUP
X3 ⊂ X1 ` X2 ⊂ X2 ∨X0

COM2
X3 ⊂ X1 ` X2 ∨X0 ⊂ X0 ∨X2

TRA
X3 ⊂ X1 ` X2 ⊂ X0 ∨X2

CC` X3 ⊂ X1

REF
X4 ⊂ X0 ` X4 ⊂ X4

CC` X4 ⊂ X0

The previous example does not use the rule CNT. However, this rule is
truly required for completeness of the proof system, as shown in the following
example.

Example 4.1.2. Consider the following BES.

(µ〈(X = A)(Y = B)〉)(ν〈(A = X)(B = Y )〉)

Then we have X l Y , and we can construct the following proof tree.

CNT
X ⊂ Y,A ⊂ B ` X ⊂ Y

CC
X ⊂ Y ` A ⊂ B

CC` X ⊂ Y
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Chapter 5

Proof system consistency

With relative consequence, we take the standard definition of logical conse-
quence relative to some relation on propositional variables. We can do some-
thing similar with the notion of consistent consequence. We say that a relation
R is a consistent consequence relation relative to another relation Γ, if it only
relates variables of the same rank, and the right-hand sides of related bound
variables are consequences relative to the union of R and Γ. Thus, the rel-
ative relation Γ relaxes only the second condition of the notion of consistent
consequence; Γ need not relate variables of equal rank.

Definition 5.0.1. Let E be a BES and let R,Γ be relations on propositional
variables. R is a consistent consequence on E relative to Γ if, for all X,Y such
that X R Y , we have:

1. rank(X) = rank(Y )

2. if X,Y ∈ bnd then fX
R∪Γ
==⇒ fY

Given this notion of relative consequence relations, we can again define the
largest such relation. Given a BES, and some relation Γ on propositional vari-
ables. For any propositional variables X,Y , if there exists a consistent conse-
quence relation R ⊆ bnd×bnd relative to Γ such that X (R∪Γ∪ I) Y , where
I denotes the identity relation relating all variables to themselves, then we say
that Y is a consistent consequence of X relative to Γ, written X lΓ Y .

The simplest example of the consistent consequence relation is the empty
relation (denoted as ∅), which trivially satisfies all properties of the consistent
consequence relation. Furthermore, the empty relation is also a consistent con-
sequence relation relative to any relation.

Lemma 5.0.2. For any relation Γ on propositional variables and for any BES
E , ∅ is a consistent consequence relation on E relative to Γ.

We mentioned that the definition of relative consistent consequence would
be such that, if the relation used for the relative part is the empty set, then the
notions of relative consistent consequence and ‘normal’ consistent consequence
coincide. This is shown by the following lemma shows this.

Lemma 5.0.3. For any BES E and relation R ⊆ bnd × bnd relating only
bound variables, if R is a consistent consequence on E relative to ∅, then R is a
consistent consequence on E .
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Proof. Let E be a BES and let R be a consistent consequence relative to ∅ on
E . R is a consistent consequence on E if, for all (X,Y ) ∈ R, the ranks of X and
Y are equal and, if both X and Y are bound in E , then fY is a consequence of
fX relative to R. Both properties follow trivially from the definition of relative
consistent consequence.

Note that l and l∅ are not the same. This is because l∅ also incorporates
the identity relation. We do have l ∪ I = l∅.

We can combine the definition of relative consequence and relative consistent
consequence, to obtain a natural extension of relative consistent consequence
on propositional variables to relative consistent consequence on propositional
formulas as follows.

Definition 5.0.4. Let Γ be a relation on propositional variables and let f, g be
propositional formulas. Let E be a BES. If there exists a consistent consequence

relation R ⊆ bnd × bnd on E relative to Γ such that f
R∪Γ
==⇒ g, then we say

that g is a relative consistent consequence of f under Γ in E .

For propositional formulas f, g, relation Γ and BES E , if g is a relative
consistent consequence of f under Γ in E and no confusion is possible, then we

may abuse notation and write f
lΓ=⇒ g.

This definition of relative consistent consequence on propositional formulas
does not coincide exactly with the definition of relative consistent consequence
on propositional variables. In particular, given propositional variables X,Y
and relation on propositional variables Γ and consistent consequence relation R

relative to Γ, if we have X
R∪Γ
==⇒ Y then according to Lemma 2.2.19 we have

(X,Y ) ∈ (R∪Γ)∗. However, we do not necessarily have (X,Y ) ∈ lΓ. Consider
the following example.

Example 5.0.5. Let Γ be some relation on propositional variables. Furthermore,
consider the following BES.

E = (µ〈(X = X)〉)(ν〈(Y = Y )〉)(µ〈(Z = Z)〉)

Let Γ = {(X,Y ), (Y,Z)} be a relation on propositional variables. Then,

X
lΓ=⇒ Z. However, for any consistent consequence relation R on E relative to

Γ, R cannot relate X to Y , X to Z or Y to Z, since these are of differing ranks.
Therefore, though we do have (X,Z) ∈ (lΓ)∗, we do not have X lΓ Z.

But we do not require these definitions to precisely coincide to use them to
prove the proof system sound. We are mainly interested in the properties of the
proof system with respect to consistent consequence, and not with respect to
relative consistent consequence. Furthermore, Lemma 5.0.3 provides us with a
correspondence between l and l∅. It is sufficient to show that there is a cor-
respondence between relative consistent consequence on propositional formulas
(relative to ∅) and consistent consequence. This property is captured in the
following Lemma.

Lemma 5.0.6. For any BES E and propositional variables X,Y ∈ bnd, if

X
lΓ=⇒ Y , then X l Y .

31



Proof. Let E be a BES, and let X,Y be variables bound in E such that X
l∅
=⇒ Y .

We need to show that there exists a consistent consequence relation R ⊆ bnd×
bnd such that X R Y .

SinceX
l∅
=⇒ Y , there exists a consistent consequence relationR ⊆ bnd×bnd

such that X
R∪∅
==⇒ Y . Take this R. Then, from Lemma 2.2.19 we know that

X (R ∪ ∅)∗ Y . Thus, either X = Y or X (R)+ Y . If X = Y then {(X,Y )} is a
consistent consequence relation on E relating X to Y , thus X l Y .

Otherwise X R+ Y . In this case, if R+ is a consistent consequence relation
relating only bound variables, then X l Y .

Since R only relates bound variables, so does R+. Furthermore, from Lemma
5.0.3 we know that, since R is a consistent consequence relation on E relative
to ∅, R is a consistent consequence relation on E .

Take variables (X ′, Y ′) ∈ R+. Thus, we need to show that the ranks of X ′

and Y ′ are equal, and that the right hand side of Y ′ is a consequence of the
right hand side of X ′ relative to R+.

Since (X ′, Y ′) ∈ R+, there exist variables X0, · · · , Xn for some n such that
X0 = X ′, Xn = Y ′ and for all i < n we have Xi R Xi+1. Since R is a consistent
consequence relation, the ranks of X0, · · · , Xn must all be equal, and thus so
are the ranks of X ′ and Y ′.

Now, take any environment θ consistent with R+ such that JfXKθ = true.
We need to show that JfY Kθ = true. Since θ is consistent with R+, according
to Lemma 2.2.9 it is also consistent with R.

Furthermore, since R is a consistent consequence relation, for all i < n we

have fXi

R
=⇒ fXi+1

. Thus, since θ is consistent with R and JfX0
Kθ = true,

we have JfXi
Kθ = true for all i ≤ n, and thus also JfnKθ = true = JfY ′Kθ.

Therefore, fX′
R+

==⇒ fY ′ .

In the remainder of this chapter we will prove soundness and completeness of
the proof system for deriving consistent consequences on a BES. Therefore, for
the remainder of this chapter we will assume some arbitrary BES E . Soundness
and completeness is then formulated as follows. Given two bound variables
X,Y , we can build a proof tree with ∅ ` X ⊂ Y as the root iff X lE Y .

5.1 Soundness

In this section, we will prove that the proof system is sound for deriving relative
consistent consequences on propositional formulas. We will then use this prop-
erty to prove soundness of the proof system for deriving consistent consequences
between bound variables.

We start with proving that, if we can build a proof tree with two propo-
sitional formulas in the root and some relation Γ in the context (at the left
hand side of `), then the propositional formula on the right of ⊂ is a consistent
consequence of the propositional formula on the left of ⊂ under Γ.

Lemma 5.1.1. For any propositional formulas f and g, and for any relation

Γ ⊆ X × X . If a tree has Γ ` f ⊂ g as the root, then f
lΓ=⇒ g.

Proof. Given a proof tree with Γ ` f ⊂ g as the root. We will prove that f
lΓ=⇒ g

by induction on the structure of the tree.
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Axioms Soundness of the axioms and logic rules follows trivially from Lemma

2.2.5; for arbitrary relation R, if f ⇒ g then we have f
R
=⇒ g, and thus

also f
lΓ=⇒ g.

CNT Take some relation Γ on propositional variables and propositional variables
(X,Y ) ∈ Γ. We need to show that there exists some relation R ⊆ bnd×
bnd which is a consistent consequence relation relative to Γ such that

X
R∪Γ
==⇒ Y .

This is the case for the empty relation R = ∅. First, note that R =
∅ ⊆ bnd × bnd (i.e. R only relates bound variables). Furthermore,
from Lemma 5.0.2, it follows that R is a consistent consequence relative
to Γ. Now, take any environment θ ∈ ΘR∪Γ with θ(X) = true. Since
(X,Y ) ∈ Γ, also (X,Y ) ∈ (R ∪ Γ). Therefore, since θ ∈ ΘR∪Γ, also

θ(Y ) = true, and thus X
R∪Γ
==⇒ Y

CC We need to show that, for any relation on propositional variables Γ, and for
any propositional variables X,Y ∈ bnd with equal rank, if we can build
a proof tree with Γ, (X ⊂ Y ) ` fX ⊂ fY as the root, then (propositional
formula) Y is a relative consistent consequence of (propositional formula)
X under Γ in E .

Let X,Y and Γ be such that we can build a proof tree with this root. We
need to find some relation R ⊆ bnd × bnd such that R is a consistent

consequence relation relative to Γ and X
Γ∪R
==⇒ Y .

From the induction hypothesis we know that fY is a relative consequence
of fX under (Γ∪ {(X,Y )}). Thus, there exists some relation R′ ⊆ bnd×
bnd which is a consistent consequence relation relative to Γ ∪ {(X,Y )},
such that fX

Γ∪{(X,Y )}∪R′

=========⇒ fY . Let R = R′ ∪ {(X,Y )}. Then obviously
R ⊆ bnd × bnd and, since (X,Y ) ∈ R, also (X,Y ) ∈ (R ∪ Γ) and thus

trivially X
R∪Γ
==⇒ Y .

What remains to show is that this R is a consistent consequence relation
relative to Γ; Let X ′, Y ′ be any pair of variables related by R, then both
X ′ and Y ′ are bound variables. We need to show that the ranks of X ′

and Y ′ are equal, and that fX′
R∪Γ
==⇒ fY ′ . Since R′ only relates variables

of equal rank, and the ranks of X and Y are equal, X ′ and Y ′ must also
be of equal rank.

What remains to prove is that fX′
R∪Γ
==⇒ fY ′ . Since (X ′, Y ′) ∈ R, either

X ′ = X and Y ′ = Y or (X ′, Y ′) ∈ R′. If (X ′, Y ′) ∈ R′ then fX′
R∪Γ
==⇒

fY ′ follows from the fact that R = R′ ∪ {(X,Y )} and R′ is a consistent

consequence relative to Γ∪{(X,Y )}. If X ′ = X and Y ′ = Y then fX′
R∪Γ
==⇒

fY ′ follows from our initial assumptions on X and Y .

Our goal in this section was proving soundness of the proof tree for consistent
consequence. Currently, we have soundness for relative consistent consequence
on propositional formulas. Furthermore, from Lemma 5.0.6, if two propositional
variables are consistent consequences relative to ∅ (using the definition of relative
consistent consequence on propositional formulas), then they are related via a
consistent consequence relation. These facts are sufficient to prove soundness of
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the proof system, as shown in the following theorem, which has been formalized
in Coq in Lemma 6.7.2.

Theorem 5.1.2. For any bound variables X,Y , if we can construct a proof
tree with ∅ ` X ⊂ Y as the root, then X l Y .

Proof. Assume we have a proof tree with ∅ ` X ⊂ Y as the root. Then, from

Lemma 5.1.1 we know that X
l∅
=⇒ Y . Now, using Lemma 5.0.6, since X and Y

are bound variables, we can conclude that X l Y .

5.2 Completeness for logical consequence

As mentioned before, the proof system in Table 4.1 has been derived from a
complete and sound axiomatization for deriving logical consequences. These
modifications invalidate the soundness properties of the the proof system for
logical consequence (because of the rules CC and CNT), consider the following
example.

Example 5.2.1. Consider the following BES: µ〈(X = >)(Y = >)〉.
Obviously we do not have X ⇒ Y . However, we can construct the following

proof tree.

REF
X ⊂ Y ` > ⊂ >

CC` X ⊂ Y
Thus, the proof system is unsound for deriving logical consequences between

propositional formulas.

However, the completeness for deriving logical consequences has not been
changed. Since at the basis of consistent consequence lies an implication relation,
completeness of the proof system for logical consequence will be a valuable tool
for deriving completeness of the proof system for consistent consequence. Since
in the original proof system for logical consequence Γ does not participate, we
will assume some arbitrary relation on propositional variables Γ as a context for
the proof trees in this section.

Before we work on the completeness (for logical consequence) of the system,
we start with deriving some additional rules allowing us to more easily con-
struct the proof trees required in our proofs. The first states that if we have
a conjunction in the consequent (the right hand side of the ⊂ symbol), then it
is sufficient to split the consequent and derive trees for each of the conjuncted
formulas. This allows us to ‘split’ the consequent in the root of the tree into
two separate trees.

Lemma 5.2.2. For any propositional formulas f, g1, g2, the following rule is
derivable:

Γ `f ⊂ g1 Γ `f ⊂ g2
cSPLIT

Γ `f ⊂ g1 ∧ g2

Proof. We can construct the following tree:
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ID1
Γ `f ⊂ f ∧ f

Γ `f ⊂ g2
ID1

Γ `f ∧ f ⊂ f ∧ g2
TRA

Γ `f ⊂ f ∧ g2

Γ `f ⊂ g1
CTX

Γ `f ∧ g2 ⊂ g ∧ g2
TRA

Γ `f ⊂ g1 ∧ g2

Next we show that if we have a disjunction in the consequent, we can con-
struct a proof tree if we can construct a proof tree for either of the disjuncted
formulas. Thus, if we can construct a proof tree, then we can grow the conse-
quent by placing it in disjunction with any propositional formula.

Lemma 5.2.3. For any propositional formulas f, g1, g2, the following rules are
derivable:

Γ `f ⊂ g1
cGROWL

Γ `f ⊂ g1 ∨ g2

Γ `f ⊂ g2
cGROWR

Γ `f ⊂ g1 ∨ g2

Proof. For cGROWL we can construct the following tree:

SUP
Γ `f ⊂ f ∨ g2

Γ `f ⊂ g1
CTX

Γ `f ∨ g2 ⊂ g1 ∨ g2
TRA

Γ `f ⊂ g1 ∨ g2

The tree for cGROWR is similar to cGROWL, using TRA and COM2 to
rearrange the terms

The previous two rules manipulated the consequent of the root of the proof
tree. We can do similar things for the antecedent (the right hand side of the
⊂ symbol). First of all, if the antecedent consists of a disjunction of propo-
sitional formulas then we can construct a proof tree if we can construct proof
trees for each of the disjuncted propositional formulas, allowing us to ‘split’ the
antecedent in the root of the tree into two separate trees.

Lemma 5.2.4. For any propositional formulas f1, f2, g, the following rule is
derivable:

Γ `f1 ⊂ g Γ `f2 ⊂ g
aSPLIT

Γ `f1 ∨ f2 ⊂ g

Proof. We can construct the following tree:

Γ `f2 ⊂ g
CTX

Γ `f1 ∨ f2 ⊂ f1 ∨ g

Γ `f1 ⊂ g
CTX

Γ `f1 ∨ g ⊂ g ∨ g
ID2

Γ `g ∨ g ⊂ g
TRA

Γ `f1 ∨ g ⊂ g
TRA

Γ `f1 ∨ f2 ⊂ g

Finally, if the antecedent consists of a conjunction of propositional formulas
then we can construct a proof tree if we can construct proof trees for one of the
conjuncted propositional formulas, i.e. we can grow the antecedent by placing
it in conjunction with any propositional formula.

Lemma 5.2.5. For any propositional formulas f1, f2, g, the following rules are
derivable:
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Γ `f1 ⊂ g
aGROWL

Γ `f1 ∧ f2 ⊂ g
Γ `f2 ⊂ g

aGROWR
Γ `f1 ∧ f2 ⊂ g

Proof. We can construct the following tree for aGROWL:

Γ `f1 ⊂ g
CTX

Γ `f1 ∧ f2 ⊂ g ∧ f2
INF

Γ `g ∧ f2 ⊂ g
TRA

Γ `f1 ∧ f2 ⊂ g
The tree for aGROWR is similar to aGROWL, using TRA and COM1 to

rearrange the terms.

Using these rules, we can start working on proving the system complete for
logical consequence. This will be done by first showing that we can rewrite any
propositional formula to an equivalent propositional formula in DNF (see also
Definition 2.1.2) in the proof system, and then showing that for all propositional
formulas f and g such that g is a logical consequence of f , if f is in DNF, then
we can derive a proof tree with Γ ` f ⊂ g as the root.

To rewrite a propositional formula to an equivalent formula in DNF, we
would like to have a function for obtaining a propositional formula in DNF which
is equivalent to the input of the function. However, rewriting a propositional
formula to an equivalent DNF is a fairly complex process, since we have to
recursively distribute conjunctions over disjunctions, such that all disjunctions
are at ‘top-level’, and all conjunctions are one level lower. Therefore, we first
recursively define a function on DNFs, dist , which achieves this for a conjunction
of two DNFs.

Definition 5.2.6. We recursively define a function dist on propositional for-
mulas in DNF, for obtaining a DNF equivalent to the conjunction of its input.

dist(c1)(c2) := c1 ∧ c2
dist(c1)(f1 ∨ f2) := (dist(c1)(f1)) ∨ (dist(c1)(f2))

dist(f1 ∨ f2)(g) := dist(f1 ∨ g)(f2 ∨ g)

Where f1, f2, g are DNF’s and c1, c2 are clauses.

Using this distribute function, defining a function which given a propositional
formula, produces an equivalent DNF, becomes easy.

Definition 5.2.7. We recursively define a function DNF on propositional for-
mulas as follows.

DNF (>) := >
DNF (⊥) := ⊥
DNF (X) := X

DNF (f1 ∧ f2) := dist(DNF (f1))(DNF (f2))

DNF (f1 ∨ f2) := DNF (f1) ∨DNF (f2)

Where f1, f2 are propositional formulas.
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The function DNF transforms a propositional formula into an equivalent
DNF.

Lemma 5.2.8. Take a propositional formula f , then DNF (f) is in DNF, and
DNF (f)⇔ f .

Proof. This property has been formalized in Coq, but we omit the proof here.
We refer the interested reader to Coq Lemmas 6.3.6, 6.3.7 and 6.3.8.

The following lemma shows that the rewrite steps of dist can be mimicked
in the proof system, i.e. given a propositional formula which is the conjunction
of two DNFs f, g, we can distribute the disjunctions across the conjunction to
obtain the result of dist(f)(g).

Lemma 5.2.9. For any DNF f, g, the following rule is derivable:

DIST
Γ `f ∧ g ⊂ dist(f)(g)

Proof. Note: we will not explicitly mention when we resolve (parts of) the ap-
plication of dist.

Take DNF’s f, g. We need to show that it is possible to construct the required
proof tree. We will prove this by induction on the structure of g:

> first, we use TRA and COM1 to switch f and g in the antecedent, then
we apply induction on the structure of f :

> We can build the proof tree using aGROWL and REF.

⊥ We can build a proof tree using COM1 as follows.

COM1
Γ `⊥ ∧ > ⊂ > ∧⊥

Y We can build a proof tree using COM1.

f1 ∧ f2 We can build a proof tree using COM1

f1 ∨ f2 In this case, we have the following induction hypotheses:
IHf1: We can derive a tree with Γ ` >∧f1 ⊂ dist(f1)(>) as the root.
IHf2: We can derive a tree with Γ ` >∧f2 ⊂ dist(f2)(>) as the root.

We can construct the following proof tree, where the numbers are as
indicated below.

DS3
(1)

IHf1
(2)

cGROWL
(3)

IHf2
(4)

cGROWR
(5)

aSPLIT
(6)

TRA
(7)

1. Γ `> ∧ (f1 ∨ f2) ⊂ (> ∧ f1) ∨ (> ∧ f2)

2. Γ `> ∧ f1 ⊂ dist(f1)(>)

3. Γ `> ∧ f1 ⊂ (dist(f1)(>)) ∨ (dist(f2)(>))

4. Γ `> ∧ f2 ⊂ dist(f2)(>)

5. Γ `> ∧ f2 ⊂ (dist(f1)(>)) ∨ (dist(f2)(>))

6. Γ `(> ∧ f1) ∨ (> ∧ f2) ⊂ (dist(f1)(>)) ∨ (dist(f2)(>))
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7. Γ `> ∧ (f1 ∨ f2) ⊂ (dist(f1)(>)) ∨ (dist(f2)(>))

⊥, X, g1 ∧ g2 Similar to the case where g is >, except for the ‘moment’ of applying REF

g1 ∨ g2 We have the following induction hypotheses:
IHg1: for all DNFs f , we can construct a proof tree for Γ ` f ∧ g1 ⊂
dist(f)(g1)
IHg2: for all DNFs f , we can construct a proof tree for Γ ` f ∧ g2 ⊂
dist(f)(g2)

We first make the following derivation, where the numbers are as indicated
below:

DS3
(1)

(2) (3)
aSPLIT

(4)
TRA

(5)

1. Γ `f ∧ (g1 ∨ g2) ⊂ (f ∧ g1) ∨ (f ∧ g2)

2. Γ `f ∧ g1 ⊂ dist(f)(g1 ∨ g2)

3. Γ `f ∧ g2 ⊂ dist(f)(g1 ∨ g2)

4. Γ `(f ∧ g1) ∨ (f ∧ g2) ⊂ dist(f)(g1 ∨ g2)

5. Γ `f ∧ (g1 ∨ g2) ⊂ dist(f)(g1 ∨ g2)

We now still have to show that we can derive proof trees for Γ `f ∧ g1 ⊂
dist(f)(g1 ∨ g2) and Γ `f ∧ g2 ⊂ dist(f)(g1 ∨ g2) ((2) resp. (4)).

Constructing the proof tree for both cases is symmetrical up to some
switching of cGROWL and cGROWR, and switching IHg1 for IHg2 so we
will only show how to construct the proof tree for (2). We do this via
induction on the structure of f :

>, ⊥, Y , f1 ∧ f2 Can be done by using cGROWL and induction hypothesis IHg1, as
demonstrated below for >:

IHg1
Γ `> ∧ g1 ⊂ dist(>)(g1)

cGROWL
Γ `> ∧ g1 ⊂ dist(>)(g1 ∨ g2)

f1 ∨ f2 We have the following induction hypotheses:
IHf1:Γ ` f1 ∧ g1 ⊂ dist(f1)(g1 ∨ g2) is derivable
IHf2:Γ ` f2 ∧ g1 ⊂ dist(f2)(g1 ∨ g2) is derivable

We start with making the following derivation, where the numbers
are as indicated below:

COM1
(1)

DS3
(2)

TRA
(3)

(4) (5)
aSPLIT

(6)
TRA

(7)

1. Γ `(f1 ∨ f2) ∧ g1 ⊂ g1 ∧ (f1 ∨ f2)

2. Γ `g1 ∧ (f1 ∨ f2) ⊂ (g1 ∧ f1) ∨ (g1 ∧ f2)

38



3. Γ `(f1 ∨ f2) ∧ g1 ⊂ (g1 ∧ f1) ∨ (g1 ∧ f2)

4. Γ `g1 ∧ f1 ⊂ dist(f1 ∨ f2)(g1 ∨ g2)

5. Γ `g1 ∧ f2 ⊂ dist(f1 ∨ f2)(g1 ∨ g2)

6. Γ `(g1 ∧ f1) ∨ (g1 ∧ f2) ⊂ dist(f1 ∨ f2)(g1 ∨ g2)

7. Γ `f1 ∨ f2 ∧ g1 ⊂ dist(f1 ∨ f2)(g1 ∨ g2)

We now still have to construct proof trees for Γ `g1 ∧ f1 ⊂ (f1 ∨
f2)dist(g1 ∨ g2) and Γ `g1 ∧ f2 ⊂ (f1 ∨ f2)dist(g1 ∨ g2) ((4) resp.
(5)). The cases are symmetrical, up to a switching of cGROWL with
cGROWR and IHf1 with IHf2, so we will only show the proof tree for
Γ `g1 ∧ f1 ⊂ (f1 ∨ f2)dist(g1 ∨ g2). We can build the following proof
tree, where the numbers are as indicated below:

COM1
(1)

IHf1
(2)

TRA
(3)

cGROWL
(4)

1. Γ `g1 ∧ f1 ⊂ f1 ∧ g1

2. Γ `f1 ∧ g1 ⊂ dist(f1)(g1 ∨ g2)

3. Γ `g1 ∧ f1 ⊂ dist(f1)(g1 ∨ g2)

4. Γ `g1 ∧ f1 ⊂ dist(f1 ∨ f2)(g1 ∨ g2)

Now that we can distribute conjunctions over disjunctions in a conjunction
of two formulas in DNF to obtain a DNF equivalent to the conjunction of
two DNF’s, we will show that from any propositional formula f we can derive
an equivalent DNF, namely the result of DNF (f). In other words, we will
prove that for any propositional formula f , we can construct a proof tree with
Γ ` f ⊂ DNF (f) as the root.

Lemma 5.2.10. For any propositional formula f , the following rule is derivable:

Γ ` f ⊂ DNF (f)

Proof. Note: we will not explicitly mention when we resolve (parts of) the ap-
plication of DNF.

Let f be any propositional formula. We will show that it is possible to build
a proof tree by induction on the structure of f .

> We can build a proof tree using REF

⊥ We can build a proof tree using REF

X We can build a proof tree using REF

f1 ∧ f2 In this case, we have the following induction hypotheses:
IHf1: we can build a proof tree for Γ ` f1 ⊂ DNF (f1)
IHf2: we can build a proof tree for Γ ` f2 ⊂ DNF (f2)

We can build the following proof tree, where the numbers are as indicated
below:
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IHf1
(1)

aGROWL
(2)

IHf2
(3)

aGROWR
(4)

cSPLIT
(5)

Lemma 5.2.9
(6)

TRA
(7)

1. Γ `f1 ⊂ DNF (f1)

2. Γ `f1 ∧ f2 ⊂ DNF (f1)

3. Γ `f2 ⊂ DNF (f2)

4. Γ `f1 ∧ f2 ⊂ DNF (f2)

5. Γ `f1 ∧ f2 ⊂ DNF (f1) ∧DNF (f2)

6. Γ `DNF (f1) ∧DNF (f2) ⊂ dist(DNF (f1))(DNF (f2))

7. Γ `f1 ∧ f2 ⊂ dist(DNF (f1))(DNF (f2))

f1 ∨ f2 In this case, we have the following induction hypotheses:
IHf1: we can build a proof tree for Γ ` f1 ⊂ DNF (f1)
IHf2: we can build a proof tree for Γ ` f2 ⊂ DNF (f2)

We can build the following proof tree, where the numbers are as indicated
below.

IHf1
(1)

cGROWL
(2)

IHf2
(3)

cGROWR
(4)

aSPLIT
(5)

1. Γ `f1 ⊂ DNF (f1)

2. Γ `f1 ⊂ DNF (f1) ∨DNF (f2)

3. Γ `f2 ⊂ DNF (f2)

4. Γ `f2 ⊂ DNF (f1) ∨DNF (f2)

5. Γ `f1 ∨ f2 ⊂ DNF (f1) ∨DNF (f2)

We can now prove that the proof system is complete for logical consequence,
when the antecedent is in DNF.

Lemma 5.2.11. For any propositional formulas f, g with f a DNF such that
f ⇒ g the following rule is derivable:

Γ `f ⊂ g

Proof. Given propositional formulas g and DNF f , such that f ⇒ g. We will
show that it is possible to construct a proof tree by induction on the structure
of f :

⊥ In this case we can construct the following proof tree, where the numbers
are as indicated below:
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SUP
(1)

COM2
(2)

TRA
(3)

BOT
(4)

TRA
(5)

1. Γ `⊥ ⊂ ⊥ ∨ g
2. Γ `⊥ ∨ g ⊂ g ∨ ⊥
3. Γ `⊥ ⊂ g ∨ ⊥
4. Γ `g ∨ ⊥ ⊂ g
5. Γ `⊥ ⊂ g

> Now, ∀θ : JgKθ = true, since if there is a θ for which JgKθ = false then
> ⇒ g does not hold. We continue with induction on the structure of g:

⊥ This contradicts with the assumption that ∀θ : JgKθ = true

> We can build a proof tree using REF.

Y This contradicts with our assumption that ∀θ : JgKθ = true (consider
the environment which assigns false to all variables).

g1 ∧ g2 In this case both > ⇒ g1 and > ⇒ g2, so we can build a proof tree
using the induction hypotheses of g and rule cSPLIT.

g1 ∨ g2 In this case, we have the following induction hypotheses:
IHg1: If > ⇒ g1 then we can build a proof tree with Γ `> ⊂ g1 as
the root.
IHg2: If > ⇒ g2 then we can build a proof tree with Γ `> ⊂ g2 as
the root.

In this case, from Lemma 2.1.9, we have that f ⇒ g1 or f ⇒ g2. Thus
we can build the proof tree using the induction hypothesis IHg1 resp.
IHg2 and cGROWL resp. cGROWR.

X We will show that we can build a proof tree via induction on the structure
of g:

⊥ This contradicts with the assumption that X ⇒ g (consider any
environment assigning true to X).

> We can build the following proof tree, where the numbers are as
indicated below.

TOP
(1)

COM1
(2)

INF
(3)

TRA
(4)

TRA
(5)

1. Γ `X ⊂ X ∧ >
2. Γ `X ∧ > ⊂ > ∧X
3. Γ `> ∧X ⊂ >
4. Γ `X ∧ > ⊂ >
5. Γ `X ⊂ >
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Y Now, either X = Y or X 6= Y . In the first case, we can build a proof
tree using REFL. The second case contradicts with the assumption
that X ⇒ Y : consider an environment θ assigning false to everything
but X. Since X 6= Y , we have θ(Y ) = false, while θ(X) = true, and
thus X ⇒ Y does not hold.

g1 ∧ g2 We can build a proof tree in the same way as in the case > ⊂ g1∧g2.

g1 ∨ g2 In this case, we have the following induction hypotheses:
IHg1: If X ⇒ g1 then we can build a proof tree with Γ `X ⊂ g1 as
the root.
IHg2: If X ⇒ g2 then we can build a proof tree with Γ `X ⊂ g2 as
the root.

In this case, from Lemma 2.1.9, we have that f ⇒ g1 or f ⇒ g2, and
we can build a proof tree in the same way as in the case > ⊂ g1 ∨ g2.

f1 ∧ f2 In this case, both f1 and f2 are clauses since f is in DNF. Furthermore,
we have the following induction hypotheses:
IHf1: For all propositional formulas g, if f1 ⇒ g then we can build a proof
tree with Γ ` f1 ⊂ g as the root.
IHf2: For all propositional formulas g, if f2 ⇒ g then we can build a proof
tree with Γ ` f2 ⊂ g as the root.

We will continue via induction on the structure of g:

> We can build a proof tree similarly to the case X ⊂ >
⊥ In this case, either f1 ⇒ ⊥ or f2 ⇒ ⊥. If f1 ⇒ ⊥ then we can build

a proof tree using aGROWL and IHf1. The other case is similar
replacing aGROWL with aGROWR and IHf1 with IHf2.

X Since (f1 ∧ f2) ⇒ X and both f1 and f2 are clauses, either X ∈
V(f1 ∧ f2), or f1 ∧ f2 is equivalent to ⊥.

If X ∈ V(f1 ∧ f2) then either X ∈ V(f1) or X ∈ V(f2), thus either
f1 ⇒ X or f2 ⇒ X. Thus, we can build a proof tree using aGROWL

and IHf1, resp. aGROWR and IHf2.

Otherwise, if f1 ∧ f2 is equivalent to ⊥ then either f1 is equivalent
to ⊥ or f2 is equivalent to ⊥, in which case f1 ⇒ X resp. f2 ⇒ X.
Thus, we can build a tree using aGROWL resp. aGROWR and IHf1
resp. IHf2.

g1 ∧ g2 In this case, we have the following induction hypotheses on g:
IHg1: If f1∧f2 ⇒ g1 then we can build a proof tree for Γ ` f1∧f2 ⊂ g1

IHg2: If f1∧f2 ⇒ g2 then we can build a proof tree for Γ ` f1∧f2 ⊂ g2

Furthermore, both f1 ∧ f2 ⇒ g1 and f1 ∧ f2 ⇒ g2 hold. Therefore,
we can build a proof tree using cSPLIT, IHg1 and IHg2.

g1 ∨ g2 In this case we have the following induction hypotheses on g:
IHg1: If f1∧f2 ⇒ g1 then we can build a proof tree for Γ ` f1∧f2 ⊂ g1

IHg2: If f1∧f2 ⇒ g2 then we can build a proof tree for Γ ` f1∧f2 ⊂ g2

In this case, from Lemma 2.1.9, we have that f ⇒ g1 or f ⇒ g2, and
we can build a proof tree in the same way as in the case > ⊂ g1 ∨ g2.

f1 ∨ f2 In this case, we have the same induction hypotheses as in the case for
f1 ∧ f2. Furthermore, both f1 ⇒ g and f2 ⇒ g. Therefore, we can build
a proof tree using aSPLIT and the induction hypotheses.
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Finally, we will prove that the proof system is complete for logical conse-
quence on arbitrary propositional formulas. This proposition has been formal-
ized in Coq in Lemma 6.7.12.

Proposition 5.2.12. For any propositional formulas f, g such that f ⇒ g, the
following rule is derivable

Γ ` f ⊂ g

Proof. Take propositional formulas f, g such that f ⇒ g. From Lemma 5.2.8
we know that f ⇒ DNF (f) and DNF (f) ⇒ f . Take an environment θ such
that JDNF Kθ = true. Then also JfK = true, and thus JgK = true. Therefore,
DNF (f)⇒ g. Also, from Lemma 5.2.8 we know that DNF (f) is a DNF.

Therefore we can build a proof tree as follows:

Lemma 5.2.10
Γ `f ⊂ DNF (f)

Lemma 5.2.11
Γ `DNF (f) ⊂ g

TRA
Γ `f ⊂ g

5.3 Completeness

The goal of the proof system is to be able to derive consistent consequences
between (bound) propositional variables. Soundness of the system provides
us with the useful property that if we can build a proof tree with two bound
propositional variables in the root, then we may conclude that one is a consistent
consequence of the other. What we still need is completeness of the proof system
with respect to consistent consequence. By the end of this section, we will prove
that the proof system is correct (i.e. sound and complete) for deriving consistent
consequences on bound variables.

However, first we derive another auxiliary rule, which corresponds with a
form of completeness for relative consequences.

Lemma 5.3.1. For all relations Γ ⊆ X × X , R ⊆ bnd × bnd, and for all

propositional formulas f, g such that f
R
=⇒ g, the following rule is derivable:

{Γ ` X ⊂ Y | (X,Y ) ∈ R}
Γ ` f ⊂ g

Proof. Take two propositional formulas f, g and relations on propositional vari-
ables Γ and R ⊆ bnd × bnd (i.e. R only relates bound variables) such that

f
R
=⇒ g. We need to show that, if we can build proof trees for all variables

(X,Y ) ∈ R with Γ ` X ⊂ Y as the root, then we can also build a proof tree
with Γ ` f ⊂ g as the root.

First, observe that we can use Lemma 5.2.12 to transform f and g at the
root into two propositional formulas equivalent to f and g in DNF. Thus, if
we prove that we can derive the rule for formulas in DNF, then we also have
derivability of the rule for any pair of propositional formulas, which are a relative
consequence of each other.
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Let Γ be a relation on propositional variables, R ⊆ bnd× bnd and let f, g

be two propositional formulas in DNF such that f
R
=⇒ g. Furthermore, assume

that for all propositional variables (X,Y ) ∈ R, we can build a proof tree with
Γ ` X ⊂ Y as the root. We will prove the derivability of Γ ` f ⊂ g by induction
on the structure of f .

> In this case, g must be equivalent to > (consider the environment θ as-
signing false to all variables, this environment is consistent with R and
J>Kθ = true, thus JgKθ must also be true, which is only the case if g is
equivalent to >). Therefore, > ⇒ g and thus we can use completeness for
logical consequence to build the proof tree.

⊥ In this case we can build the following proof tree, where the numbers are
as indicated below:

SUP
(1)

COM2
(2)

TRA
(3)

BOT
(4)

TRA
(5)

1. Γ `⊥ ⊂ ⊥ ∨ g
2. Γ `⊥ ∨ g ⊂ g ∨ ⊥
3. Γ `⊥ ⊂ g ∨ ⊥
4. Γ `g ∨ ⊥ ⊂ g
5. Γ `⊥ ⊂ g

X In this case we show how to build a proof tree via induction on the struc-
ture of g:

> In this case we can build the following proof tree, where the numbers
are as indicated below:

TOP
(1)

COM1
(2)

INF
(3)

TRA
(4)

TRA
(5)

1. Γ `> ⊂ > ∧X
2. Γ `> ∧X ⊂ X ∧ >
3. Γ `X ∧ > ⊂ X
4. Γ `> ∧X ⊂ X
5. Γ `> ⊂ X

⊥ This contradicts our assumption that X
R
=⇒ g, since the environment

assigning true to all variables is consistent with R, and this environ-
ment assigns false to g.
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Y In this case, since X
R
=⇒ Y , from Lemma 2.2.19 we know that X R∗ Y

thus either X = Y or X R+ Y .

In the first case, we can build a proof tree using REF. Otherwise,
since we can build a proof tree for all variables (A,B) ∈ R with
Γ ` A ⊂ B as the root, using TRA we can also build proof trees for
all variables (A,B) ∈ R+, including (X,Y ) (showing this is straight-
forward using induction on the number of variables required such
that B is reachable from A through R).

g1 ∧ g2 If g1 ∧ g2 is equivalent to > then we can use the completeness of the
system for logical consequence to build a proof tree. Otherwise, since

X
R
=⇒ g1 ∧ g2, for all variables Y ∈ V(g1 ∧ g2) we have X

R
=⇒ Y , thus

also X R∗ Y . Therefore, we can repeatedly use cSPLIT and build
proof trees for the resulting branches using a similar method as for
the case X ⊂ Y .

g1 ∨ g2 In this case, we have the following induction hypotheses:

IHg1: If X
R
=⇒ g1 then we can build a proof tree with Γ ` X ⊂ g1 as

the root.
IHg2: If X

R
=⇒ g2 then we can build a proof tree with Γ ` X ⊂ g2 as

the root.

Since X
R
=⇒ g1 ∨ g2, θR,X(X) = true and θR,X is consistent with R

(2.2.11), either Jg1KθR,X = true or Jg2KθR,X = true. Therefore, from

Lemma 2.2.12, X
R
=⇒ g1 or X

R
=⇒ g2. Thus, we can build a proof tree

using aSPLITL resp. aSPLITR and IHg1 resp. IHg2.

f1 ∧ f2 In this case, f = f1∧f2 is a clause. We will prove a more general statement,

namely that for any clause f and for any DNF g, if f
R
=⇒ g and we can

build proof trees for all variables X,Y such that X R Y , then we can
derive a proof tree for Γ ` f ⊂ g. We proceed with induction on the
structure of g.

> In this case we can build a similar proof tree to the one built for the
case X ⊂ >.

⊥ In this case f is equivalent to ⊥, thus we can build a proof tree from
the completeness of the system for logical consequence.

Y If f is equivalent to ⊥ then we can build a proof tree from the com-
pleteness of the system for logical consequence. Furthermore, f can-

not be equivalent to >, since then we would have > R
=⇒ Y , and thus

since θµ is consistent with R (from Lemma 2.2.2), we must also have
θµ(Y ) = true, which is not the case.

Assume that f is not equivalent to ⊥ or >. Since f is not equivalent
to ⊥, according to Lemma 2.2.14 we have JfKθR,f = true. Therefore,
since according to Lemma 2.2.15 θR,f is consistent with R, we have
θR,f (Y ) = true. Thus, from the definition of θR,f , either there exists
some X ∈ V(f) such that Y is reachable from X through R, or
Y ∈ V(f).

In the first case, there exist variables X0, · · · , Xn such that X0 = X
and Xn = Y and for all i < n we have Xi R Xi+1. Thus, since we
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can build a proof tree for all variables (A,B) ∈ R with Γ ` A ⊂ B as
the root, we can also build proof trees Γ ` Xi ⊂ Xi+1) for all i < n.
Therefore, by repeatedly using TRA, we can construct a proof tree
with Γ ` X ⊂ Y as the root. From this, we can derive Γ ` f ⊂ Y by
repeatedly using aGROWL, aGROWR.

In the second case, we can derive Γ ` X ⊂ Y using REF. From
this, by repeatedly using aGROWL and aGROWR, we can derive
Γ ` f ⊂ Y .

g1 ∧ g2 In this case, we have the following induction hypotheses:

IHg1: For all clauses f , if f
R
=⇒ g1 then we can build a proof tree with

Γ ` f ⊂ g1 in the root.

IHg2: For all clauses f , if f
R
=⇒ g2 then we can build a proof tree with

Γ ` f ⊂ g2 in the root.

Furthermore, both f
R
=⇒ g1 and f

R
=⇒ g2 must hold. Therefore, we can

use cSPLIT and the induction hypotheses to build the proof tree.

g1 ∨ g2 In this case, we have the following induction hypotheses:

IHg1: For all clauses f , if f
R
=⇒ g1 then we can build a proof tree with

Γ ` f ⊂ g1 in the root.

IHg2: For all clauses f , if f
R
=⇒ g2 then we can build a proof tree with

Γ ` f ⊂ g2 in the root.

If f is equivalent to ⊥ then we can construct a proof tree from the
completeness for logical consequence. Otherwise, since f is not equiv-
alent to ⊥, we have JfKθR,f = true from Lemma 2.2.14. Therefore,

since according to 2.2.15 θR,f is consistent with R and f
R
=⇒ g, we have

JgKθR,f = true. Thus Jg1KθR,f = true or Jg2KθR,f = true. The cases
are symmetrical, so we will only consider the case Jg1KθR,f = true.

Since Jg1KθR,f = true, according to Lemma 2.2.17, also f
R
=⇒ g1.

Thus we can build a proof tree using IHg1 and aSPLITL.

f1 ∨ f2 In this case, we have the following induction hypotheses:

IHf1: For all DNF g such that f1
R
=⇒ g we can build a proof tree with

Γ ` f1 ⊂ g as the root.

IHf2: For all DNF g such that f2
R
=⇒ g we can build a proof tree with

Γ ` f2 ⊂ g as the root.

Furthermore, we have both f1
R
=⇒ g and f2

R
=⇒ g. Thus, we can build a

proof tree using aSPLIT and the induction hypotheses.

Next, we will prove completeness of the system for deriving consistent con-
sequences on variables relative to some Γ which only relates bound variables.
If this is the case, then it will be easy to prove that the proof system is com-
plete for deriving consistent consequences on bound variables, since the empty
relation also only relates bound variables, and Lemma 5.0.3 gives us a simple
conversion from consistent consequence relative to the empty relation to general
consistent consequence.

We mentioned that the intuition behind the proof for completeness is that
we can build a consistent consequence relation on the left hand side of ` which
relates the variables in the root of the proof tree. Remember that l is defined
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such that it only relates bound variables. We will show that we can grow the
left hand side of ` with pairs of bound variables, not currently occurring in
Γ, but which are bound in the BES. The number of times we can do this is
finite, since at some point in time the left hand side of ` will relate all bound
variables to all bound variables. When this is the case, we are certain that l
is a subset of Γ. Thus, we will prove the completeness of the proof system for
relative consistent consequence by induction on the number of pairs of bound
variables not currently occurring in Γ.

Definition 5.3.2. Given a relation Γ : bnd × bnd. The inverse size of Γ,
written #(Γ), is the size of the relation relating all bound variables not related
by Γ. The following recursive function calculates this number.

#(Γ) = 0 if Γ = bnd2

#(Γ) = #(Γ ∪ {(X,Y )}) + 1 for any (X,Y ) ∈ (bnd2 \ Γ) if Γ ⊂ bnd2

We can now fairly simply prove completeness for deriving consistent con-
sequences on propositional variables, relative to relations relating only bound
variables.

Lemma 5.3.3. For any relation Γ ⊆ bnd2, and for all propositional variables
X,Y such that X lΓ Y , we can derive the following rule:

Γ ` X ⊂ Y
Proof. Take some X,Y such that X lΓ Y . We will prove that we can construct
a proof tree with Γ ` X ⊂ Y as the root via induction on #(Γ):

#(Γ) = 0 In this case Γ = bnd×bnd. Since X lΓ Y , either X = Y or there exists
a consistent consequence relation R ⊆ bnd× bnd relative to Γ such that
(X,Y ) ∈ (Γ ∪ R). In the first case we can build a proof tree using REF,
otherwise, R ⊆ bnd× bnd = Γ, and thus we can build a proof tree using
CNT.

#Γ = x+ 1 The induction hypothesis tells us that for all Γ′ with #Γ′ = x, and for all
A,B with A lΓ′ B, we can build a proof tree with Γ′ ` A ⊂ B as the
root.

We need to show that, for all X,Y with X lΓ Y we can build a proof
tree with Γ ` X ⊂ Y as the root. Take some X and Y such that X lΓ Y .
Then there exists a consistent consequence relation R relative to Γ such
that X (R∪Γ∪I) Y . If (X,Y ) ∈ I then X = Y and we can build a proof
tree using rule REF . If (X,Y ) ∈ Γ then we can build a proof tree using
rule CNT.

If X R Y and neither X = Y nor X Γ Y , then the rank of X is equal to
the rank of Y (since R is a relative consistent consequence relation relating
only bound variables).

Furthermore, we have fX
R∪Γ
==⇒ fY . If for any propositional variables A,B

such that A (R∪Γ) B we can derive a proof tree with Γ, (X ⊂ Y ) ` A ⊂ B
as the root, then using 5.3.1, we can build the following proof tree.
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{Γ, X ⊂ Y ` A ⊂ B | (A,B) ∈ R ∪ (Γ ∪ (X,Y ))}
Lemma 5.3.1

Γ, X ⊂ Y ` fX ⊂ fY
CC

Γ ` X ⊂ Y

What remains is to show that, for any propositional variables A,B such
that A (R ∪ Γ) B we can build a proof tree with Γ, (X ⊂ Y ) ` A ⊂ B as
the root.

Consider R. This relation is a consistent consequence relation relative to
Γ, and thus R is obviously also a consistent consequence relation relative
to Γ ∪ {(X,Y )}. Now, take propositional variables (A,B) ∈ (R ∪ Γ). If
(A,B) ∈ Γ then we can build the proof tree using CNT. Otherwise, since
A R B and R is a consistent consequence relation relative to Γ∪{(X,Y )},
and since #(Γ ∪ {(X,Y }) = x, we can use the induction hypothesis to
build a proof tree with Γ, X ⊂ Y ` A ⊂ B as the root.

Since we have show that the proof system is both sound and complete,
the proof system satisfies it’s requirements. This is captured by the following
Theorem, which has been formalized in Coq in Lemma 6.7.16.

Theorem 5.3.4. For any X,Y ∈ bnd, ∅ ` X ⊂ Y is derivable iff X l Y .

Proof. a

⇒ From Lemma 5.1.2

⇐ From Lemma 5.0.2, if X l Y then also X l∅ Y . Furthermore, ∅ ⊆
bnd × bnd. Therefore we can build a proof tree according to Lemma
5.3.3.
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Chapter 6

Consequences in Coq

We start this Chapter with some background information on Coq, and an ex-
planation on some notation and some Coq peculiarities with which the reader
may not be familiar. Then, we give some explanations on the contents of the
Coq files which encode the theory from the previous 3 chapters [7].

6.1 Background

Coq is a Proof Assistant for a Logical Framework known as the Calculus of
Inductive Constructions (CIC)[20]. CIC is a type theory, it is an extension of
the Calculus of Constructions. The Calculus of Constructions was originally
formulated by Thierry Coquand and Gérard Huet [24]. The extension was
done by Christine Paulin. It can serve as both a typed programming language,
and as a constructive foundation for mathematics. Coq allows the interactive
construction of formal proofs, and also the manipulation of functional programs
consistently with their specifications. It runs as a computer program on many
architectures, and a wide variety of user interfaces is available [8].

Proving in Coq is based on the Curry-Howard isomorphism. The Curry-
Howard isomorphism gives a correspondence between systems of formal logic
as encountered in proof theory, and computational calculi as found in type
theory. For instance, minimal propositional logic corresponds to simply typed
λ-calculus, first-order logic corresponds to dependent types, etc.

The isomorphism has many aspects, even at the syntactic level: formulas
correspond to types, proofs correspond to terms, provability corresponds to
type inhabitation, proof normalization corresponds to term reduction, etc [17].

In Coq, we use this isomorphism to construct proofs. Proving corresponds
with constructing a term of a type, which corresponds with the formula we wish
to prove. For example, the following is a type.

∀x.P (x)

It is also a proposition, and to prove this proposition, we need to find some
object which has this type, i.e. we need to show that this type is inhabited.
Constructing a proof in Coq is, in essence, telling Coq how to construct an
object whose type is exactly what you wish to prove.
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To trust Coq, we need to trust a number of things. We need to trust the
theory behind Coq, the Coq kernel implementation, the Objective Caml com-
piler (since Coq was written in OCaml), the hardware on which Coq runs and
any assumptions (axioms) made for creating the proofs [14].

The theory of Coq version 8.0 (which was used in this project) is proven to
be consistent in Zermelo-Fraenkel set theory with inaccessible cardinals. Proofs
of the consistency of subsystems of the theory of Coq can be found in literature.

For proofs in Coq to be correct, we need to trust that the implementation
of the Coq kernel mirrors the theory behind Coq (CIC). The kernel was left
intentionally small to limit the risk of conceptual or accidental implementation
bugs.

The Coq kernel was written using the Objective Caml language but it uses
only the most standard features (no object, no label ...), so that it is highly
improbable that an Objective Caml bug breaks the consistency of Coq without
breaking all other kinds of features of Coq or of other software compiled with
Objective Caml.

In theory, if the hardware does not work properly, it can accidentally be the
case that False becomes provable. But it is more likely the case that the whole
Coq system will be unusable. However, if one feels the need, it is always possible
to try compiling your proof using different computers.

Finally, any added axioms should be consistent with the theory behind Coq.
Therefore, we tried to minimize the number of axioms we added to the Coq
environment. The only axiom which was added, states that given a finite rela-
tion on propositional variables R, and two propositional variables X,Y , we can
decide if (X,Y ) ∈ R is true or not. To decide this, since the relation is finite,
we can simply check each of the pairs (X ′, Y ′) ∈ R, and see if (X,Y ) is one of
them.

6.2 The contents of this chapter

This chapter is designed to explain the contents of the Coq files which formalize
the theory from this report, which may be found in [7]. Each of the Coq files
starts with the following line, which tells the Coq compiler where to find the
other files.

Add LoadPath "somePath".

If you wish to compile these files yourself, then this line should be changed to
reflect the situation on your machine. Furthermore, the files should be compiled
in the order in which they are listed in Table 6.1.

Table 6.1 states which section in this chapter corresponds with which Coq
file. Each section starts with an overview of the definitions in the corresponding
Coq file, as well as discussions on peculiarities and choices made during devel-
opment. Then, the lemmas proven in the Coq file are presented and explained,
in a slightly more readable format than the Coq code. However, since not ev-
ery lemma states equally interesting properties, some of these descriptions have
been moved to Appendix D. Please note that when explaining the lemmas, we
will use ⇒ and ⇔ for logical consequence and logical equivalence as defined in
Chapter 2. We will use → and ↔ to indicate the logical implication and logical
equivalence respectively. Furthermore, → will also be used to specify types (of
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File name Section
propForm.v 6.3
propForm cons.v 6.3.1
DNF.v 6.3.2
cons dec.v 6.3.3
propVar relation.v 6.4
rel cons.v 6.4.1
genBES.v 6.5
rel reach.v 6.5.1
rel ind.v 6.5.2
rel cons dec.v 6.5.3
BES.v 6.6
cc.v 6.6.1
rel cc.v 6.6.2
prv tree.v 6.7
sound.v 6.7.1
complete cons.v 6.7.2
complete.v 6.7.3
sound and complete.v 6.7.4
cc usefull.v 6.8

Table 6.1: The Coq files

mappings). Which interpretation is meant where is explained when it might not
be obvious.

6.2.1 Exciting bits in the formalization

The theory behind most of the formalization in Coq has allready been discussed
in the previous chapters. However, in some places the formalization was more
complex than it would seem from the previous chapters.

In Section 6.3.2, we discuss DNFs and how these have been formalized in
Coq. Because we inductively define the type of propositional formulas, Coq
automatically generates induction principles which allow us to prove properties
of propositional formulas by induction on the structure of propositional formu-
las. However, because we defined being in DNF as a property of propositional
formulas, Coq does not automatically provide us with induction principles for
proving by induction on the structure of DNFs. Therefore we have had to define
and prove our own induction principles for DNFs (and also for clauses).

Furthermore, to define a function which, given some propositional formula,
obtains an equivalent DNF, we separately defined a distribute function. Given
two DNFs, this function returns a DNF which is equivalent to the conjunction of
these DNFs. To define this function, we had to use a nested recursion function.
This is because Coq expects a fixpoint to be structurally decreasing on one of
its arguments, and it would not be possible to satisfy this requirement if we did
not use nested recursion.

In Definition 5.3.2 we defined the inverse size of a relation. It is not a very
complex definition, and by doing induction on the inverse size of a relation, we
were able to prove the system complete for deriving consistent consequences be-
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tween variables. However formalizing this definition in Coq has been a bit more
complicated. We have had to define inductive types for being a relation which
only relates bound variables, which we could relate to an ‘inverse’ constructive
type for being a relation which only relates bound variables. On this inverse
constructive type we could then define the inverse size of subset relations. This
is discussed further in Section 6.5.2.

For formalizing the proof system, we found that we could effectively define
the type of a proof tree as an inductive type with constructors for each of the
rules in the proof system. This is explained in Secion 6.7.

Finally, as we argued in Section 2.3.1, to simplify the formalization of the
relation between the semantics of BES and the consistent consequence rela-
tion, we have defined an alternate semantics for BES. The formalization of this
semantics is presented in Section 6.8.
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6.3 Propositional formulas

As variables, we will use the natural numbers, which we define as propVar. This
way, we have access to an infinite set of variables. Moreover, equality on natural
numbers is decidable in Coq. We can then inductively define propositional
formulas as given in Definition 2.1.1.

Inductive propForm : Set :=

| top : propForm

| bot : propForm

| var : propVar -> propForm

| orp : propForm -> propForm -> propForm

| andp : propForm -> propForm -> propForm.

This notation should be read as follows. We inductively (Inductive) define
the Set of propositional formulas as follows. top is a propositional formula; bot
is a propositional formula; given a propositional variable X, we can construct
a propositional formula by applying the constructor var ; given two proposi-
tional formulas, we can construct another propositional formula by applying
the constructor orp; given two propositional formulas, we can construct another
propositional formula by applying the constructor andp. The following are some
examples of propositional formulas (given some propositional variables X,Y, Z)
as defined in Chapter 2 together with their Coq representations.

formula Coq representation
> top

X var X

(X ∧ Y ) ∨ Z orp (andp (var X) (var Y)) (var Z)

To simplify writing propositional formulas, we introduced some infix nota-
tion in Coq for constructors andp ( ∧p ) and orp ( ∨p ), which we will also be
using in this document.

Furthermore, we defined a function uses: propForm → propVar , which deter-
mines if a propositional variable x occurs in a propositional formula f . Given
a propositional formula, a function has been defined mxUsed : propForm →
propVar which determines the largest natural number used to encode a propo-
sitional variable in some propositional formula. Finally, a function replace:
propForm → propVar → propForm → propForm was defined. For proposi-
tional formulas f, g and propositional variable x, replace(f, x, g) returns the
result of replacing every occurrence of x in f with g.

We define environments as mappings from propositional variables to the
Booleans.

Definition environment := propVar -> bool.

The semantics of a propositional formula f is given in terms of an environ-
ment θ, as defined in Definition 2.1.5. We define a recursive function in Coq
(hence the keyword Fixpoint, which indicates that we are defining a function
using recursion) which calculates the semantics of a propositional formula in
some environment as follows.

Fixpoint propForm_solution (f:propForm)(theta:environment):Prop:=

match f with

| a \/p b =>

(propForm_solution a theta) \/ (propForm_solution b theta)
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| a /\p b =>

(propForm_solution a theta) /\ (propForm_solution b theta)

| var x => theta x

| T => True

| B => False

end.

In Coq, we write [[f ]]theta for propForm solution f theta, but in this docu-
ment we use the notation JfKtheta.

We define a function redefineEnvironment : environment → propVar → bool
such that, given an environment θ, propositional variable x and Boolean value s,
redefineEnvironment θ x s returns an environment with x mapped to s and all
other mappings as defined in θ. In Coq, and this document, we write θ[x := s]
for redefineEnvironment θ x s.

Definition redefineEnvironment (theta:environment)(x:propVar)

(s:bool):environment :=

fun (y:propVar)=>if beq_nat x y then s else theta y in newtheta.

Furthermore, the environments returning true and false for all variables are
defined as full environment resp. empty environment in the Coq code. In this
document, we referred to these as θν resp. θµ. The environment returning true
for a specific variable x and false otherwise is environment point(x), and its
inverse is environment max point(x).

Definition full_environment (x:propVar) : bool := true.

Definition empty_environment (x:propVar) : bool := false.

Definition environment_point (x y:propVar) :=

if beq_nat x y then true else false.

Definition environment_max_point (x y:propVar) :=

if beq_nat x y then false else true.

The union of two environments is defined as the environment returning true
for a variable if either of the two environments returns true for this variable in
Definition 2.1.3. The intersection of two environment is defined as the environ-
ment returning true for a variable if both of the two environments returns true
for this variable. We will write θ1&θ2 for the intersection of environments θ1

and θ2.

Definition environment_union (theta1 theta2:environment)

(x:propVar) :=

(theta1 x) || (theta2 x).

Definition environment_intersect (theta1 theta2:environment)

(x:propVar) :=

(theta1 x) && (theta2 x).

Lemmas

Lemma 6.3.1. full environment maximal
For any propositional formula and environment, if the semantics of the proposi-
tional formula is true under this environment then the semantics of the propo-
sitional formula under the full environment is also true
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∀f, ∀θ, JfKθ → JfKθν

Lemma 6.3.2. empty environment minimal
For any propositional formula and environment, if the semantics of the proposi-
tional formula is false under this environment then the semantics of the propo-
sitional formula under the empty environment is also false.

∀f, ∀θ,¬JfKθ → ¬JfKθµ

6.3.1 Logical consequence

Given two propositional formulas f, g, we say that g is a logical consequence of
f if for all environments, the solution of f implies the solution of g, as defined
in Definition 2.1.6. In this text we write f ⇒ g instead of propForm cons f g.

Definition propForm_cons (f g:propForm):Prop :=

forall theta:environment, [[f]]theta -> [[g]]theta.

Given two propositional formulas f, g, we say that f is a logically equivalent
to g if for all environments, the solution of f is equivalent to the solution of g.
In this text we write f ⇔ g instead of propForm eqv f g.

Definition propForm_eqv (f g:propForm):Prop :=

forall theta:environment, [[f]] theta <-> [[g]] theta.

Lemmas

Lemma 6.3.3. empty true eqv top
If a propositional formula f evaluates to true under θµ then f is equivalent to
>

∀f, JfKθµ → f ⇔ >

6.3.2 DNF

Being a singleton is a property of propositional formulas. We define the function
singleton propForm to determine if a propositional formula is a singleton, which
is consistent with Definition 2.1.2.

Definition singleton_propForm (f:propForm):Prop :=

match f with

| top => True

| bot => True

| var x => True

| _ => False

end.

Like with singletons, being a clause is a property of propositional formulas.
We define a function conj propForm which determines if a propositional formula
is a clause, which is consistent with Definition 2.1.2. We will write clause(f)
for the proposition conj propForm f .
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Fixpoint conj_propForm (f:propForm):Prop :=

match f with

| a /\p b => conj_propForm a /\ conj_propForm b

| _ => singleton_propForm f

end.

Coq provides us with standard methods for doing induction on the structure
of propositional formulas. However, for induction on the structure of a clause
we need to define our own induction principle. This is because being a clause
is defined as a property of propositional formulas, in stead of being defined as
some inductive type. In Coq, we have proven the following induction principle,
which allows us to do induction on the structure of propositional formulas which
are clauses.

Definition conj_ind : forall P:propForm -> Prop,

P top ->

P bot ->

(forall x:propVar, P (var x)) ->

(forall f g:propForm, conj_propForm f -> conj_propForm g ->

P f -> P g -> P (f /\p g)) ->

(forall f:propForm, conj_propForm f -> P f).

With conj , we have defined the following. For any proposition P over propo-
sitional formulas, if P holds on >; and P holds on ⊥; and P holds on all formulas
consisting of single propositional variables; and for all clauses f, g if P holds on
both f and g then P also holds on the conjunction of f and g; then we can
conclude that P holds on all clauses.

As with singletons and clauses, being in disjunctive normal form (DNF) is a
property of propositional formulas. Like in Definition 2.1.2, we have inductively
defined a function DNF propForm which determines if a propositional formula
is in DNF. In this document, we write DNF f to indicate that f is in DNF.

Fixpoint DNF_propForm (f:propForm):Prop :=

match f with

| f1 \/p f2 => (DNF_propForm f1 /\ DNF_propForm f2)

| _ => conj_propForm f

end.

We can also do induction on the structure of DNFs. However, like with
clauses, we need to define (and proof correct) such an induction principle sep-
arately. The following is the induction principle we have proven in Coq, which
allows us to do induction on the structure of DNFs.

Definition DNF_ind : forall P:propForm -> Prop,

P top ->

P bot ->

(forall x:propVar, P (var x)) ->

(forall f g:propForm, conj_propForm f -> conj_propForm g ->

P f -> P g -> P (f /\p g)) ->

(forall f g:propForm, DNF_propForm f -> DNF_propForm g ->

P f -> P g -> P (f \/p g)) ->

(forall f:propForm, DNF_propForm f -> P f).
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To transform a propositional formula, we need to recursively distribute con-
junctions over disjunctions. The function distribute takes two propositional
formulas f, g, and returns a DNF equivalent to the conjunction of f and g. It
corresponds with the function presented in Definition 5.2.6. In this text we will
write dist(f)(g) for distribute f g.

Fixpoint distribute (f:propForm) : propForm -> propForm :=

fix distribute1 (g:propForm) : propForm :=

match f with

| f1 \/p f2 => distribute f1 g \/p distribute f2 g

| _ => match g with

| g1 \/p g2 => distribute1 g1 \/p distribute1 g2

| _ => f /\p g

end

end.

We define a function toDNF, which given a propositional formula, returns an
equivalent formula in DNF. This function corresponds with the one from Defi-
nition 5.2.7. In this chapter, we will write toDNF (f) for the result of applying
toDNF to formula f , and DNF (f) for the proposition that f is in DNF. This
is different from the previous Chapters, where we wrote DNF (f) for the result
of applying toDNF to f .

Fixpoint toDNF (f:propForm):propForm :=

match f with

| f1 \/p f2 => toDNF f1 \/p toDNF f2

| f1 /\p f2 => distribute (toDNF f1) (toDNF f2)

| _ => f

end.

Lemmas

Lemma 6.3.4. distribute DNF
Distribute called on two DNF formulas f, g returns a DNF formula.

∀fg,DNFf → DNFg → DNF (dist(f)(g)).

Lemma 6.3.5. distribute sound
Given two propositional formulas f, g and an environment θ, if JfKθ = true and
JgKθ = true then the semantics of the result of distributing f over g under θ is
also true.

∀fg,∀θ, JfKθ → JgKθ → Jdist(f)(g)Kθ

Lemma 6.3.6. DNF toDNF
For any propositional formula f , the result of transforming f using to DNF is
a DNF.

∀f,DNF (toDNF (f))
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Lemma 6.3.7. toDNF cons
For any propositional formula f and any environment θ, the solution of
JtoDNFfKθ implies the solution of JfKθ

∀f, ∀θ, JtoDNF (f)Kθ → JfKθ

Lemma 6.3.8. cons toDNF
For any propositional formula f and any environment θ, the solution of JfKθ
implies the solution of JtoDNFfKθ

∀f, ∀θ, JfKθ → JtoDNF (f)Kθ

6.3.3 Logical consequence decidability

Lemmas

Lemma 6.3.9. propForm cons propForm decidable
For any propositional formulas f, g, either g is a logical consequence of f , or
there exists an environment for which f evaluates to true and g evaluates to
false

∀fg, (f ⇒ g ∨ ∃θ, (JfKθ ∧ ¬JgKθ))

Lemma 6.3.10. propForm eqv decidable
For any propositional formulas f, g, either f is equivalent to g or not

∀fg, f ⇔ g ∨ ¬(f ⇔ g)
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6.4 Relations on variables

We define a relation on propositional variables as any function mapping two
propositional variables to propositions. Let R be a relation, and let x, y be
propositional variables. Then R x y is a proposition corresponding with x R y
and (x, y) ∈ R. Observe that with this formulation, membership in a relation
is in Prop, and thus it is in general undecidable if a pair of variables is related
by a relation.

Definition propVar_relation := propVar -> propVar -> Prop

The empty relation is the relation which does not relate any variables; i.e.
any two variables x, y are not related by empty relation. In this text, we write
∅ to indicate this relation.

Definition empty_relation (x y:propVar):Prop := False

The identity relation is the relation relating all variables to themselves, and
only that. We refer to this relation as id rel . In this text, we write I to indicate
the identity relation.

Definition id_rel := fun (x y:propVar) => x=y

We say that two relations R1, R2 are equivalent, rel eqv , if for all variables
x, y, (x, y) ∈ R1 if and only if (x, y) ∈ R2. We will write R1 ∼ R2 to indicate
that R1 and R2 are equivalent.

Definition rel_eqv (R1 R2:propVar_relation) :=

forall x y:nat, R1 x y <-> R2 x y

Given two relations R1, R2, we define the union of these relations as the
relation relating only and all variables related by either R1 or R2, i.e. {(a, b) |
(a, b) ∈ R1 ∨ (a, b) ∈ R2}. In this text we write R1 ∪ R2 to indicate the union
of R1 and R2.

Definition rel_union : propVar_relation ->

propVar_relation -> propVar_relation :=

let result (R1 R2 : propVar_relation) (x z:propVar) : Prop :=

(R1 x z) \/ (R2 x z)

in result

Given two relations R1, R2, we define rel minus R1 R2 as the relation re-
lating only and all variables related by R1 except for those related by R2,
i.e. {(a, b) | (a, b) ∈ R1(a, b) 6∈ R2}. We will write R1 \ R2 to indicate
rel minus R1 R2.

Definition rel_minus (R1 R2:propVar_relation):propVar_relation :=

fun (x y:propVar) => R1 x y /\ ~R2 x y

Given a pair of propositional variables x, y, we define the relation relat-
ing only x to y as pair relation x y, i.e. {(x, y)}. We will write {(x, y)} for
pair relation(x y).

Definition pair_relation (x y:propVar) : propVar_relation :=

let result (x’ y’:propVar) : Prop := (x=x’) /\ (y=y’) in result
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Given a relation R and propositional variable a, remove var left R a is the
relation resulting from removing from R all tuples (a, y). i.e. {(x, y) | (x, y) ∈
R ∧ x 6= a}. In this text we will write R \L a to indicate remove var left R a.
We define this relation as follows.

Definition remove_var_left (R:propVar_relation)(a:nat)(x y:nat)

: Prop :=

if (beq_nat a x) then False else R x y

Note: In Coq, if then else is notation for an operator from the Booleans to some
other type. The type of a = x is a proposition, and thus cannot be used in if-
the-else statements. beq nat is an operator on the natural numberss, which takes
two natural numbers (here a, x) and returns true if a = x and false otherwise.
Therefore, we use beq nat a x instead of a = x in the if-the-else statement.

Given a relation R and propositional variable b, remove var right R b is the
relation resulting from removing from R all tuples (x, b). i.e. {(x, y) | (x, y) ∈
R ∧ y 6= b}. In this text we will write R \R b to indicate remove var right R b.

Definition remove_var_right (R:propVar_relation)(b:nat)(x y:nat)

: Prop :=

if (beq_nat b y) then False else R x y

Given a relation R and propositional variables a, b, remPoint R a b is the
relation resulting from removing from R only the tuple (a, b). i.e. {(x, y) |
(x, y) ∈ R ∧ x 6= a ∧ y 6= b}.

Definition remPoint (R:propVar_relation)(a b:nat)(x y:nat):Prop:=

if ((beq_nat a x)&&(beq_nat b y)) then False else R x y

6.4.1 Relative consequences

Given a relation on propositional variables and an environment, we say that the
environment is consistent with the relation if, for all pairs of variables related by
the relation, the interpretation of the variables under the environment is related
via a logical consequence, as in Definition 2.2.1.

Definition consistent_environment (theta : environment)

(R:propVar_relation) :=

forall x y: propVar, (R x y) -> (theta x -> theta y)

Given a relation on propositional variables and a pair of propositional for-
mulas, we say that the propositional formulas are a consequence of one another
relative to the relation if, for all environments consistent with the relation,
the interpretation of the formulas under these environments are logical conse-
quences, as in Definition 2.2.4.

Definition rel_cons (R:propVar_relation)(f g:propForm) :=

forall theta:environment, consistent_environment theta R ->

[[f]]theta -> [[g]]theta.
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Lemmas

Lemma 6.4.1. environment union consistent
For any relation on propositional variables. If any two environments are consis-
tent with this relation, then so is the union of these environments.

∀R,∀θ1θ2, θ1 ∈ ΘR → θ2 ∈ ΘR → (θ1||θ2) ∈ ΘR

Lemma 6.4.2. full environment consistent
The full environment (the environment assigning true to all variables) is consis-
tent with all relations on propositional variables.

∀R, θν ∈ ΘR

Lemma 6.4.3. empty environment consistent
The empty environment (the environment assigning false to all variables) is
consistent with all relations on propositional variables.

∀R, θµ ∈ ΘR

Lemma 6.4.4. consistent environment rel union
If an environment is consistent with the union of two relations, then the envi-
ronment is consistent with both relations.

∀θ,∀R1R2, θ ∈ ΘR1∪R2
→ (θ ∈ ΘR1

∧ θ ∈ ΘR2
)

Lemma 6.4.5. rel union consistent environment
If an environment is consistent with two relations, then the environment is also
consistent with the union of these relations.

∀θ,∀R1R2, (θ ∈ ΘR1
∧ θ ∈ ΘR2

)→ θ ∈ ΘR1∪R2
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6.5 Boolean Equation Systems

We inductively define Boolean equations with constructor bEqn, consistent with
Definition 2.3.1. The constructor takes a propositional variable and proposi-
tional formula to build a Boolean equation. We will write (x = f) for Boolean
equation bEqn(x f).

Inductive booleanEquation :=

bEqn : propVar -> propForm -> booleanEquation.

A block is a list of Boolean equations. Its block type is either µ or ν, which
we capture using a Boolean (false resp. true). Furthermore, a block is never
empty. Thus, a block is a triple of a list of Boolean equations, its block type
and a proof that the list is non-empty, as defined in Definition 2.3.2.

Record block:=makeBlock{

theBlock:> list booleanEquation;

blockType: bool;

non_empty: exists beqn:booleanEquation, In beqn theBlock

}.

If a list of blocks has alternating block types, then the list of blocks is a (not
necessarily well-formed) BES. We define a function on lists of Boolean equations,
which decides if the block types of the blocks in the list alternate.

Fixpoint alternating_list_block (theList:list block):Prop:=

match theList with

| nil => true

| b1::l => match l with

| nil => true

| b2::l’ =>

(eqb (blockType b1) (negb (blockType b2)))

/\ alternating_list_block l

end

end.

A BES is defined as a list blocks of alternating types, as in Definition 2.3.4.
Thus, it is a tuple of a list of blocks and a proof that the list of blocks has
alternating block types.

Record genBES := make_genBES {

the_genBES:> list block;

block_alternates: alternating_list_block the_genBES

}.

We define a function bnd block to determine if a propositional variable x
occurs on the left-hand side of an equation in a block. We will write x ∈ B to
indicate that x is bound in block B.

Fixpoint bnd_block (E:list booleanEquation)(x:propVar):Prop:=

match E with

| nil => False

| cons (bEqn y _) E’ => x=y \/ bnd_block E’ x

end.
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Using this function, we can define a function bnd which determines if a
propositional variable x occurs on the left-hand side of one of the blocks in a
list of blocks (or, a genBES). We will abuse notation and write x ∈ E to indicate
that x is bound in list of blocks E.

Fixpoint bnd (E:list block)(x:propVar) : Prop :=

match E with

| nil => False

| cons bl E’ => bnd_block bl x \/ bnd E’ x

end.

We define a function bnd cnt block to determine how often a propositional
variable x occurs on the left hand side of an equation in block E. We will write
#(x ∈ B) instead of bnd cnt block B x.

Fixpoint bnd_cnt_block (bl:list booleanEquation)(x:propVar):nat:=

match bl with

| nil => 0

| bEqn y _ :: bl’ => if (beq_nat x y)

then S(bnd_cnt_block bl’ x)

else bnd_cnt_block bl’ x

end.

Using this function, we can define a function bnd which determines how
often a propositional variable x occurs on the left hand side of one the blocks
in a list of blocks (or, a genBES). We will abuse notation and write #(x ∈ E)
instead of bnd cnt E x.

Fixpoint bnd_cnt (E:list block)(x:propVar) : nat :=

match E with

| nil => 0

| cons bl E’ => bnd_cnt_block bl x + bnd_cnt E’ x

end.

Finally, we define a function occ block to determine if a propositional variable
occurs in the right-hand side of an equation in a block.

Fixpoint occ_block (E:list booleanEquation)(x:propVar) : Prop :=

match E with

| nil => False

| cons (bEqn _ f) E’ => (uses f x) \/ (occ_block E’ x)

end.

Which we use to define a function occ which determines if a propositional
variable occurs in the right-hand side of an equation in a list of blocks (or, a
genBES).

Fixpoint occ (E:list block)(x:propVar) : Prop:=

match E with

| nil => False

| cons bl E’ => occ_block bl x \/ occ E’ x

end.
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6.5.1 Reachability on relations

Given a relation on propositional variables R and two lists of Boolean equations
l1, l2, if R only relates variables bound in l1 to variables bound in l2 then we
say that R only relates bound variables, which we name relates bound . In
this chapter we will write R ⊆ l1 × l2 for relates bound R l1 l2, and R ⊆
l1 × l2, using the notation from previous chapters, corresponds exactly with
R ⊆ bndl1 × bndl2 .

Definition relates_bound (R:propVar_relation) (l1 l2:genBES):=

(forall x y:nat, R x y -> (bnd l1 x /\ bnd l2 y))

Because we defined relations such that membership of a relation is in Prop,
we cannot prove for arbitrary relation R and propositional variables X,Y , that
(X,Y ) ∈ R (neither can we prove (X,Y ) 6∈ R). However, this is decidable for
the relations which only relate bound variables we are dealing with. Therefore
we add this assumption to our Coq environment. For any relation R relating
only variables bound in some BES to variables bound in another BES, and for
any propositional variables x, y, it is decidable whether R relates x to y or not.

Axiom relates_decidable :

forall R:propVar_relation, forall l1 l2:genBES,

relates_bound R l1 l2 -> forall x y:nat, {R x y}+{~R x y}

For any pair of lists of Boolean equations l1, l2, the largest relation relating
only variables bound in l1 to variables bound in l2 is called max rel , in this
chapter written as l1 × l2.

Definition max_rel (l1 l2:genBES)(a b:nat):Prop:=

(bnd l1 a /\ bnd l2 b)

Given a relation R, we say that a variable y is reachable from another variable
x through R if we have some set of variables x0, · · · , xn for some n such that
x0 = x, xn = y and for all i < n, R relates xi to xi+1. We can inductively define
this property as: if R relates x to y then y is reachable from x; if R relates x
to some z, and y is reachable from z through R then y is reachable from x. As
shown in Lemma 2.2.8, the relation induced by the reachable set of a relation
R corresponds exactly with R+.

Inductive reachable (R:propVar_relation)

: propVar -> propVar -> Prop:=

| single_path (x y:propVar) : R x y -> reachable R x y

| step_path (x z:propVar) : forall y:propVar, R x y ->

reachable R y z -> reachable R x z

In Definitions 2.2.10 and 2.2.13, we defined minimal environments consistent
with some relation R for propositional variables resp. formulas. To define these
environments in Coq, we require that determining if a variable y is reachable
from a variable x through some relation R is decidable. However, this is not
in general decidable. But, it is sufficient if we take relations which only relate
bound variables (for which we have assumed that membership in the relation
is decidable). Thus, the minimal environments consistent with a relation for
propositional variables and formulas are defined as follows.

Given variables x, a and a relation R relating variables bound in two lists
of Boolean equations e1, e2, we will in the lemmas of this part prove that it is
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decidable if a is reachable from x through R. Using this lemma, we can define the
environment which is consistent with R and assigns true to the smallest number
of variables as well as x. This environment is the environment assigning true to
all variables reachable from x through R. However, since the lemma can only
be used for relations relating bound variables, we need an additional parameter.
This parameter is any object H of type relates bound R e1 e2, i.e. H proves that
R relates only variables bound in e1 to variables bound in e2. In this text we
will write θe1,e2,HR,x for minimal environment for var(R, e1, e2, H, x). Note that

if R only relates bound variables then θR,x = θe1,e2,HR,x .

Definition minimal_environment_for_var

(R:propVar_relation)(e1 e2:genBES)

(H:relates_bound R e1 e2)(x:propVar) : environment:=

fix env (a:propVar) := if reachable_dec_b e1 e2 R H x a

then true

else beq_nat x a

Lemma 2.2.17 shows that, if some propositional formula g evaluates to true
under the minimal environment of some clause f in some relation R, then g is a
relative consequence of f . Thus, it would have been sufficient if this environment
was only correctly defined on clauses. In Coq, we did not add the minimal envi-
ronments variables occurring within the scope of a disjunction from the minimal
environment consistent with a propositional formula. However, the properties of
the definition are equivalent for clauses, and for clauses the definitions coincide.

We can lift the notion of a minimal environment for a variable under some
relation to the minimal environment for a clause under some relation. This
environment is in essence the union of the minimal environments of all vari-
ables used in the clause, and it is the minimal environment consistent with R
such that the clause evaluates to true. In this text we will write θe1,e2,HR,f for
minimal environment for conj (R, e1, e2, H, f). Note that, if f is a clause and R

only relates bound variables, then θe1,e2,HR,f = θR,f .

Fixpoint minimal_environment_for_conj

(R:propVar_relation)(e1 e2:genBES)(H:relates_bound R e1 e2)

(f:propForm)(x:propVar):bool :=

match f with

| var y => (minimal_environment_for_var R e1 e2 H y x)

| f1 /\p f2 => (minimal_environment_for_conj R e1 e2 H f1 x)

||(minimal_environment_for_conj R e1 e2 H f2 x)

| _ => false

end

Lemmas

Lemma reachable trans
The relation induced by reachable is transitive, i.e. given a relation R and
propositional variables x, y, z such that z is reachable from y through R, and y
is reachable from x through R. Then z is also reachable from x through R.

∀R,∀ x y z,R+ x y → R+ y z → R+ x z
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Lemma reachable maintains relates bound
Given a relation R which relates only bound variables from some list of Boolean
equations e1 to bound variables from another list of Boolean equations e2, then
the relation obtained from reachable on R also relates only bound variables from
e1 to bound variables from e2.

∀e1e2,∀R,R ⊆ e1 × e2 → R+ ⊆ e1 × e2

Lemma reachable dec b
Given a relation R relating only bound variables from some list of Boolean
equations e1 to bound variables from another list of Boolean equations e2, it is
decidable for any pair of propositional variables x, y whether or not y is reachable
from x through R.

∀e1e2,∀R,R ⊆ e1 × e2 →
∀x y, {R+ x y}+ {¬(R+ x y)}

Note: Here, the notation {P}+ {Q} means that we always either have P or
we have Q.

Lemma minimal environment for var consistent
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1 × e2, then
for all propositional variables x, the minimal environment for x under R is
consistent with R.

∀R,∀e1e2,∀H : R ⊆ e1 × e2,∀x, θe1,e2,HR,x ∈ ΘR

Lemma minimal environment for var self
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1 × e2, then
for all propositional variables x, the minimal environment for x under R assigns
true to x.

∀R,∀e1e2,∀H : R ⊆ e1 × e2,∀x, θe1,e2,HR,x (x)

Lemma min env rel cons
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1×e2, then for
all propositional variables x, y such that y is a relative consequence of x under
R, the minimal environment for x under R assigns true to y.

∀e1e2,∀R,∀H : R ⊆ e1 × e2,∀x y, (var x)
R
=⇒ (var y)→ θe1,e2,HR,x (y)

Lemma reachable if min env
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1 × e2, then
for all propositional variables x, y, if y is assigned true under the minimal envi-
ronment assigning true to x under R, y is reachable through R from x.

∀e1e2,∀R,∀H : R ⊆ e1 × e2,∀x y, x 6= y → θe1,e2,HR,x (y)→ R+ x y
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Lemma rel cons min env
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1×e2, then for
all propositional variables x, y, if y is assigned true under the minimal environ-
ment assigning true to x under R, then y is a relative consequence of x under
R.

∀e1e2,∀R,∀H : R ⊆ e1 × e2,∀x y, θe1,e2,HR,x (y)→ (var x)
R
=⇒ (var y)

Lemma minimal environment for conj consistent
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1×e2, then for
all propositional formulas f , the consistent environment of f in R, is consistent
with R.

∀R,∀e1e2,∀H : R ⊆ e1 × e2,∀f, θe1,e2,HR,f ∈ ΘR

Lemma minimal environment for conj self
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1 × e2, then
for all clauses f not equivalent to ⊥, the minimal environment consistent with
R assigning true to all variables in f assigns true to f .

∀R,∀e1e2,∀H : R ⊆ e1 × e2,∀f, clause(f)→ ¬(f ⇔ ⊥)→ JfKθe1,e2,HR,f

Lemma min env var rel cons form
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1 × e2, then
for all variables x and propositional formulas f , if f is true under the minimal
environment consistent with R assigning true to x, then f is a consequence of
x relative to R.

∀e1e2,∀R,∀H : R ⊆ e1 × e2,∀x,∀f, JfKθe1,e2,HR,x → (var x)
R
=⇒ f

Lemma var rel cons form min env
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1×e2, then for
all variables x and propositional formulas f , if f is a consequence of x relative
to R, then f is true under the minimal environment consistent with R assigning
true to x.

∀e1e2,∀R,∀H : R ⊆ e1 × e2,∀x,∀f, (var x)
R
=⇒ f → JfKθe1,e2,HR,x

Lemma min for conj rel cons
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1×e2, then for
all variables x and propositional formulas f , if f is a consequence of x relative
to R, then f is true under the minimal environment consistent with R assigning
true to x.

∀R,∀e1e2,∀H : R ⊆ e1 × e2,∀fg, clause(f)⇒ JgKθe1,e2,HR,f → f
R
=⇒ g
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6.5.2 Induction on relations

In the previous section we introduced relates bound as a proposition on a relation
and two lists of Boolean equations, and introduced the assumption that if a
relation satisfies this proposition for any pair of lists of Boolean equations, then
membership in the relation for any pair of variables is decidable. This makes it
possible for us to inductively define relates bound . This is because, given two
lists of Boolean equations l1, l2, the empty relation relates only variables bound
in l1 to variables bound in l2. Furthermore, if a relation R relates only bound
variables bound in l1 to variables bound in l2 then adding any pair of variables
from l1 × l2 which does not occur in R to R results in a relation relating only
pairs of variables from l1 × l2. We define this inductively as a relation R being
a subset of l1 × l2, i.e. is subset R l1 l2.

Normally, given two relations which are equivalent, we would treat these
relations to be equal. However, this is not the case in Coq. For example, a
relation R which does not relate some variables x to some variable y is not
equal to (R ∪ {x, y}) \ {x, y}. This is related to the fact that equality is not a
very simple concept, consider 2 + 2 and 1 + 3, if we consider the semantics of
these statements, then the statements are equal. However, if we consider the
syntax of the statements, then the statements are clearly different. For more on
equality and type theory, we refer the interested reader to [15].

What is important here is that we want the is subset property not to distin-
guish between equivalent relations (i.e. relations which relate the same variables
to the same variables). To fix this there are two options: either to add the as-
sumption that two equivalent relations are equal, or by adding an additional
constructor to is subset. To minimize the number of assumptions, we chose to
add an additional constructor stating that, if two relations are equivalent and
one of them is a subset relation, then the other is also a subset relation (of
the same two lists of Boolean equations). We will write l1 × l2 ⊇ R instead of
is subset l1 l2 R.

Inductive is_subset (l1 l2:list booleanEquation)

: propVar_relation -> Prop :=

| is_empty : forall R:propVar_relation,

(forall x y:nat, ~R x y) -> is_subset l1 l2 R

| not_empty : forall R:propVar_relation, is_subset l1 l2 R ->

forall x y:nat, ~R x y -> bnd l1 x -> bnd l2 y ->

is_subset l1 l2 (rel_union R (pair_relation x y))

| eqv : forall R1 R2:propVar_relation, rel_eqv R1 R2 ->

is_subset l1 l2 R1 -> is_subset l1 l2 R2

In stead of building a relation in the natural way like in is subset, where we
build a relation by starting with the empty relation and adding elements until we
reach the desired relation, we can also do this inversely (for relations ⊆ l1× l2).
This can be done as follows. The maximal relation on two lists of Boolean
equations is a subset of these two lists of Boolean equations. Furthermore, if a
relation is a subset of two lists of Boolean equations, then the result of removing
any pair of variables related by this relation is also a subset of these two lists.
We define this manner of inductively building a subset relation for two lists
of Boolean equations as rev subset . Just like with is subset , we also add the
constructor stating that for any two equivalent relations, if one is a reverse
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subset on two lists of Boolean equations, then the other is also a reverse subset

on these lists. We will write l1 × l2
rev
⊇ R instead of rev subset l1 l2 R.

Inductive rev_subset (l1 l2:list booleanEquation)

: propVar_relation -> Prop :=

| is_full : forall R:propVar_relation,

(forall x y:nat, R x y <-> (bnd l1 x /\ bnd l2 y)) ->

rev_subset l1 l2 R

| not_full : forall R:propVar_relation, rev_subset l1 l2 R ->

forall x y:nat, R x y -> rev_subset l1 l2 (remPoint R x y)

| eqv_rev : forall R1 R2:propVar_relation, rel_eqv R1 R2 ->

rev_subset l1 l2 R1 -> rev_subset l1 l2 R2

The notations introduced in this section might cause some confusion for the

reader since we use ⊆, ⊇ and
rev
⊇ for representing different properties; R ⊆ l1×l2

stands for relates bound(R l1 l2), l1 × l2 ⊇ R stands for is subset(l1 l2 R) and

l1 × l2
rev
⊇ R stands for rev subset (l1 l2 R). However, these definitions are

all equivalent in this setting (as shown in the lemmas of this section), so the
confusion should not be (too) much of a problem.

Finally, we can define the inverse size of a relation as the cardinality of a
reverse subset, as in Definition 5.3.2. To avoid some issues with subtracting on
natural numbers and the number 0, since 0− 1 is defined as 0 in Coq, we start
counting the cardinality with 1. Thus, the size of the largest subset relation of
two lists of Boolean equations (the maximal relation on these lists) is 1. Given a
subset relation R of size n, the size of the result of removing any pair of variables
related in R from R is S(n) (the successor of n). Again, similar to rev subset
and is subset, we add that, given two equivalent reverse subset relations, if the
size of one relation is n, then the size of the other relation is also n. We will
write #(l1× l2 \R) = n for rev subset card l1 l2 R n. If no confusion is possible
then we may write #R = n.

Inductive rev_subset_card (l1 l2:list booleanEquation)

: propVar_relation -> nat -> Prop :=

| card_full : forall R:propVar_relation,

(forall x y:nat, R x y <-> (bnd l1 x /\ bnd l2 y)) ->

rev_subset_card l1 l2 R 1

| card_not_full : forall R:propVar_relation, forall n:nat,

rev_subset_card l1 l2 R n -> forall x y:nat, R x y ->

rev_subset_card l1 l2 (remPoint R x y) (S n)

| card_eqv : forall R1 R2:propVar_relation, forall n:nat,

rev_subset_card l1 l2 R1 n -> rel_eqv R1 R2 ->

rev_subset_card l1 l2 R2 n

This seems like a very roundabout way of specifying rev subset card. We
first defined being a subset, then being a reverse subset, to finally define the
cardinality of reverse subsets. However, adding the definitions is subset and
rev subset greatly simplifies the proof of R ⊆ l1 × l2 being equivalent to there
being some n such that #(l1×l2\R) = n, since it allows us to tackle proving this
via simpler steps; first proving that relates bound and is subset are equivalent
notions, then showing that is subset and ref subset are equivalent, and finally
showing that for all relations which are a rev subset there is some n which is
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the cardinality of this relation.
The inspiration for the definitions from this section came from the Finite

set library in Coq[16], which defines finite sets and their cardinality in a similar
fashion.

Lemmas

Lemma bound then is subset
For any relation R and lists of Boolean equations l1, l2, if R only relates variables
bound in l1 to variables bound in l2, then is subset l1 l2 R.

∀l1l2,∀R, (∀xy,R x y → (x ∈ l1 ∧ y ∈ l2))→ l1 × l2 ⊇ R

Lemma max rel inverse
For any relation R and lists of Boolean equations l1, l2, if is subset l1 l2 R then
the maximal relation between l1 and l2 minus R is a reverse subset relation, i.e.
rev subset l1 l2 ((l1 × l2) \R).

∀l1l2,∀R, l1 × l2 ⊇ R→ l1 × l2
rev
⊇ ((l1 × l2) \R)

Lemma rev subset then bound
For any relation R and lists of Boolean equations l1, l2, if rev subset l1 l2 R then
R only relates variables bound in l1 to variables bound in l2.

∀l1l2,∀R, l1 × l2
rev
⊇ R→ ∀x y,R x y → (x ∈ l1 ∧ y ∈ l2)

Lemma rev subset rev subset card
For any relation R and lists of Boolean equations l1, l2, if rev subset l1 l2 R then
there exists some n such that rev subset card l1 l2 R n.

∀l1l2,∀R, l1 × l2
rev
⊇ R→ ∃n,#(l1 × l2 \R) = n

Lemma rev subset card rev subset
For any relation R, lists of Boolean equations l1, l2 and natural number n, if
rev subset card l1 l2 R n, then R is a reverse subset on l1 × l2.

∀l1l2,∀n, ∀R,#(l1 × l2 \R) = n→ l1 × l2
rev
⊇ R

Lemma rev subset decreasing
Take any relation Γ′, lists of Boolean equations l1, l2 and natural number n such
that rev subset card l1 l2 Γ′ n. Then, for any relation Γ and variables x, y bound
in l1 resp. l2 such that Γ is equivalent to the union of Γ′ with {x, y}, and Γ
relates x to y, but Γ′ does not, we have that the reverse size of Γ is one smaller
than the reverse size of Γ′, i.e. rev subset card l1 l2 Γ (n− 1).

∀n, ∀l1l2,∀Γ′,#(l1 × l2 \ Γ′) = n→
∀Γ,∀x y,¬(Γ′ x y)→ Γ x y → x ∈ l1 → y ∈ l2 →

Γ ∼ (Γ′ ∪ {x, y})→ #(l1 × l2 \ Γ) = n− 1
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6.5.3 Relative consequence decidability

The subset and reverse subset properties defined in the previous section have
been defined on lists of Boolean equations. To obtain their definitions on
genBES, we define a function flatten genBES which obtains the list of all Boolean
equations in the blocks from a list of blocks.

Fixpoint flatten_genBES (e1:list block):list booleanEquation :=

match e1 with

| nil => nil

| bl::e’ => bl ++ (flatten_genBES e’)

end.

Lemma rel cons decidable
For any relation R relating only pairs of variables from e1 × e2 and for any
propositional formulas f, g, either g is a relative consequence of f under R or
not.

∀R,∀e1e2, R ⊆ (flatten genBES e1)× (flatten genBES e2)⇒

∀fg, (f R
=⇒ g ∨ ¬(f

R
=⇒ g))
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6.6 Well-formed BES

Given a list of blocks, we define the property that all variables bound in this
list only occur on the left hand side of equations once as w d.

Definition w_d(E:list block) :=

forall x:propVar, bnd E x <-> bnd_cnt E x=1

Using this definition, a well-formed BES (or BES ) is a tuple of a genBES
and a proof that this genBES is well-formed.

Record BES : Set := makeBES {

bes:> genBES;

well_defined: w_d bes}

Given a list of Boolean equations, we define a recursive function rhs block
which finds the right-hand side of the first equation, where the left-hand side
is some specified variable. If the variable is not bound in the list, then the
proposition consisting of the specified variable is returned.

Fixpoint rhs_block (l:list booleanEquation)(x:propVar)

: propForm :=

match l with

| nil => var x

| cons (bEqn xc f) l’ => if beq_nat xc x

then f

else rhs_block l’ x

end

We lift rhs block from lists of Boolean equations to BES in the recursive
function rhs.

Fixpoint rhs (E:BES)(x:propVar) : propForm :=

let fix helper (l:list block) : propForm :=

match l with

| nil => bot

| bl::l’ => if (bnd_block_dec bl x)

then rhs_block bl x

else helper l’

end in helper E

We define a function bnd block number on a list of blocks and a propositional
variable, to return the length of the list plus 1 if the variable is not bound in the
list, and otherwise to return the lowest index of a block in which the variable is
bound.

Fixpoint bnd_block_number (e:list block)(x:propVar):=

match e with

| nil => 0

| bl::e’ => if (bnd_block_dec bl x)

then 0

else S(bnd_block_number e’ x)

end
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Using the previous function, defining a function which determines the rank
of a variable in a BES is simple. This function corresponds with the Definition
from 2.3.5. Note that the standard definition of rank starts counting at 0 resp.
1 if we start with a greatest resp. least fixed point sign. However, we reserve 0
for unbound variables. Thus, to maintain that greatest fixed points correspond
with even rank, we start counting at 2 if the first block has a greatest fixed
point, and 1 otherwise.

Definition rank (E:list block)(x:propVar) : nat :=

if (bnd_dec E x)

then match E with

| nil => 0

| bl::_ => if blockType bl

then S(S(bnd_block_number E x))

else S(bnd_block_number E x)

end

else 0

Lemmas

Lemma 6.6.1. eq rank
For any list of blocks e and propositional variables x, y of equal rank, one of
them is bound in e if and only if the other is as well.

∀e,∀x y, rank e x = rank e y → (x ∈ e↔ y ∈ e)

6.6.1 Consistent consequences

Given a BES E, a relation on propositional variables R and propositional vari-
ables x, y, if for any environment consistent with R, if the solution of the right-
hand side of x in E under this environment implies the solution of the right-hand
side of y in E under this environment then we say consistent environment rhs
E R x y.

Definition consistent_environment_rhs (E:BES)(R:propVar_relation)

(x y:propVar) :=

forall theta:environment, consistent_environment theta R ->

[[rhs E x]]theta -> [[rhs E y]]theta

Given a BES E and a relation on propositional variables R, if all variables
related by R have the same rank, and for pairs of bound variables the right-
hand sides of these variables in E are relative consequences under R, then R
is a consistent consequence relation. We may write cc E R to indicate that R
is a consistent consequence on E. consistent consequence corresponds with the
Definition from 3.1.1.

Definition consistent_consequence (E:BES)(R:propVar_relation)

: Prop :=

forall x y:propVar, R x y ->

(rank E x=rank E y)

/\

(bnd E x -> bnd E y -> consistent_environment_rhs E R x y)
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Given a BES E, we say that propositional variables x, y are related in cc max
E if there exists some relation R which is a consistent consequence relation on
E and relates only variables bound in E to variables bound in E, such that
(x, y) ∈ R. The definition for lE corresponds with cc max E.

Definition cc_max (E:BES)(x:propVar)(y:propVar) : Prop :=

exists R:propVar_relation, consistent_consequence E R /\

relates_bound R (flatten_genBES E) (flatten_genBES E) /\ R x y

Lemmas

Lemma 6.6.2. cc max consistent environment has cc
For any BES E and environment θ, if θ is consistent with lE then for any
propositional variables x, y related by lE there exists a relation R which is a
consistent consequence relation on E relating x to y such that θ is consistent
with R.

∀E,∀θ, θ ∈ ΘlE ⇒ ∀x y, x lE y → ∃R, (cc E R ∧R x y ∧ θ ∈ ΘR)

Lemma 6.6.3. cc max is cc
For any BES E, lE is a consistent consequence relation on E.

∀E, cc E (lE)

6.6.2 Relative consistent consequences

By relaxing the second requirement of consistent consequence relations, which
states that the right-hand sides of related bound variables should be relative
consequences, to allow them to be relative consequences relative to the union
with another relation, we will later be able to prove certain properties more
naturally. The new definition is as follows.

Definition relative_cc (E:BES)(R G:propVar_relation) : Prop :=

forall x y:propVar, R x y ->

(rank E x=rank E y)

/\

(bnd E x -> bnd E y ->

consistent_environment_rhs E (R U G) x y)

If we restrict the relative consistent consequence relation to relations on
bound variables, then we can define the largest consistent consequence relation
relative to some other relation. This relation relates any pair of variables if they
are either: related by the identity relation, related by the relative relation, or
related by some relation which is a consistent consequence relation relative to
the relative relation. For any BES E and relation Γ, rel cc on propVar E Γ
corresponds with the definition of lEΓ .

Definition rel_cc_on_propVar (E:BES)(G:propVar_relation)

(x y:propVar) : Prop :=

exists R:propVar_relation,

relates_bound R (flatten_genBES E) (flatten_genBES E) /\

relative_cc E R G /\ (R U G U id_rel) x y
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We can also define relative consistent consequence on propositional formulas.
The following corresponds with the Definition in 5.0.4.

Definition rel_cc_on_propForm (E:BES)(G:propVar_relation)

(f g:propForm) : Prop :=

exists R:propVar_relation,

relates_bound R (flatten_genBES E) (flatten_genBES E) /\

relative_cc E R G /\ (forall theta:environment,

consistent_environment theta (R U G) ->

[[f]]theta -> [[g]]theta)

Lemmas

Lemma 6.6.4. empty relation rel cc
The empty relation is a consistent consequence relation on any BES, relative to
any other relation Γ.

∀E,∀Γ, relative cc E ∅ Γ

Lemma 6.6.5. empty relative cc
If a relation R is a consistent consequence relation on some BES E relative to
the empty relation, then R is a consistent consequence relation on E.

∀E,∀R, relative cc E R ∅ → cc E R

Lemma 6.6.6. cc relative empty
If a relation R is a consistent consequence relation on some BES E, then R is a
consistent consequence relation on E relative to the empty relation.

∀E,∀R, cc E R→ relative cc E R ∅

Lemma 6.6.7. propForm cons cc max
Given a BES E and variables x, y bound in E, then if propositional formula
y is a consistent consequence of propositional formula x relative to the empty
relation, then y is a consistent consequence of x.

∀E,∀x y, x ∈ E → y ∈ E → (var x)
lE

∅
==⇒ (var y)→ x lE y
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6.7 Proof system for consistent consequences

We define a statement to be a tuple of a relation on propositional variables and
two propositional formulas.

Inductive statement :=

| stmt : propVar_relation -> propForm -> propForm -> statement.

We introduce some notation in Coq for stmt Γ f g as follows. However, we
will write Γ ` f ⊂ g for stmt Γ f g in this text.

Notation "G |- f --> g" := (stmt G f g)(at level 50).

A proof tree can be built by applying rules until we close all branches. We
can inductively define proof trees, by specifying a constructor for each of the
rules in the proof system. The inspiration for the type of the proof system came
from the proof system for CTL presented in [3].

As an example, consider the following constructor.

| TRA (a b c:propForm)(G:propVar_relation):

(prv_tree E (stmt G a b) -> prv_tree E (stmt G b c) ->

prv_tree E (stmt G a c))

This constructor corresponds with the transitivity rule in the proof system. It
states that we can build a proof tree prv tree E G ` a ⊂ c (i.e. a proof tree
with G ` a ⊂ c as the conclusion), by supplying constructor TRA with proof
trees prv tree E G ` a ⊂ b and prv tree E G ` b ⊂ c.

Inductive prv_tree (E:BES) : statement -> Prop :=

| AS1 (a b c:propForm)(G:propVar_relation):

(prv_tree E (stmt G (andp a (andp b c)) (andp (andp a b) c)))

| AS2 (a b c:propForm)(G:propVar_relation):

(prv_tree E (stmt G (andp (andp a b) c) (andp a (andp b c))))

| AS3 (a b c:propForm)(G:propVar_relation):

(prv_tree E (stmt G (orp a (orp b c)) (orp (orp a b) c)))

| AS4 (a b c:propForm)(G:propVar_relation):

(prv_tree E (stmt G (orp (orp a b) c) (orp a (orp b c))))

| COM1 (a b:propForm)(G:propVar_relation):

(prv_tree E (stmt G (andp a b) (andp b a)))

| COM2 (a b:propForm)(G:propVar_relation):

(prv_tree E (stmt G (orp a b) (orp b a)))

| DS1 (a b c:propForm)(G:propVar_relation):

(prv_tree E (stmt G (orp a (andp b c))

(andp (orp a b) (orp a c))))

| DS2 (a b c:propForm)(G:propVar_relation):

(prv_tree E (stmt G (andp (orp a b) (orp a c))

(orp a (andp b c))))

| DS3 (a b c:propForm)(G:propVar_relation):

(prv_tree E (stmt G (andp a (orp b c))

(orp (andp a b) (andp a c))))

| DS4 (a b c:propForm)(G:propVar_relation):
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(prv_tree E (stmt G (orp (andp a b) (andp a c))

(andp a (orp b c))))

| AB1 (a b:propForm)(G:propVar_relation):

(prv_tree E (stmt G (orp a (andp a b)) a))

| AB2 (a b:propForm)(G:propVar_relation):

(prv_tree E (stmt G a (orp a (andp a b))))

| ID1 (a:propForm)(G:propVar_relation):

(prv_tree E (stmt G a (andp a a)))

| ID2 (a:propForm)(G:propVar_relation):

(prv_tree E (stmt G (orp a a) a))

| SUP (a b:propForm)(G:propVar_relation):

(prv_tree E (stmt G a (orp a b)))

| INF (a b:propForm)(G:propVar_relation):

(prv_tree E (stmt G (andp a b) a))

| TOP (a:propForm)(G:propVar_relation):

(prv_tree E (stmt G a (andp a top)))

| BOT (a:propForm)(G:propVar_relation):

(prv_tree E (stmt G (orp a bot) a))

| CTX (a b c:propForm)(x:propVar)(G:propVar_relation):

(prv_tree E (stmt G a b) ->

prv_tree E (stmt G (replace c x a) (replace c x b)))

| TRA (a b c:propForm)(G:propVar_relation):

(prv_tree E (stmt G a b) -> prv_tree E (stmt G b c) ->

prv_tree E (stmt G a c))

| REF (a:propForm)(G:propVar_relation):

(prv_tree E (stmt G a a))

| CC (x y:propVar)(G:propVar_relation):

(((bnd (bes E) x) /\ (bnd (bes E) y) /\ (rank E x=rank E y)) ->

(prv_tree E (stmt (rel_union G (pair_relation x y))

(rhs E x)(rhs E y))) ->

(prv_tree E (stmt G (var x) (var y))))

| CNT (x y:propVar)(G:propVar_relation):

((G x y) -> (prv_tree E (stmt G (var x) (var y))))

.

6.7.1 Soundness

For proving the soundness of the proof system, we define a converter which takes
a BES E and a statement ‘stmt G f g’, and returns rel cc on propForm E G
f g. This ensures that Coq applies the induction principle correctly, when we
apply induction on the structure of proof trees to prove soundness of the proof
system.

Definition mk_rel_cc(E:BES)(s : statement) : Prop :=
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match s with

| stmt G f g => rel_cc_on_propForm E G f g

end.

Lemmas

Lemma 6.7.1. soundness
For any BES E, relation on propositional variables G and propositional formulas
f, g, if we have a proof tree with G ` f ⊂ g as the root, then g is a consistent
consequence of f on E, relative to G.

∀E,∀fg, ∀G, prv tree E (G ` f ⊂ g)→ mk rel cc E (G ` f ⊂ g)

Lemma 6.7.2. prv system sound
For any BES E, relation on propositional variables G and propositional variables
x, y bound in E, if we have a proof tree with ∅ ` x ⊂ y as the root, then y is a
consistent consequence of x on E.

∀E,∀x y, x ∈ E → y ∈ E → prv tree E (∅ ` (var x) ⊂ (var y))→ x lE y

6.7.2 Complete for logical consequence

Lemmas

Lemma 6.7.3. cSPLIT
For any BES E, relation on propositional variables G and propositional formulas
f, g1, g2, if we can build proof trees with G ` f ⊂ g1 and G ` f ⊂ g2 as the
root, then we can build a proof tree with G ` f ⊂ g1 ∧ g2 as the root.

∀E,∀G,∀f g1 g2, prv tree E (G ` f ⊂ g1)→ prv tree E (G ` f ⊂ g2)→
prv tree E (G ` f ⊂ (g1 ∧p g2))

Lemma 6.7.4. cGROW L
For any BES E, relation on propositional variables G and propositional formulas
f, g1, g2, if we can build a proof tree with G ` f ⊂ g1 as the root, then we can
build a proof tree with G ` f ⊂ g1 ∨ g2 as the root.

∀E,∀G,∀f g1 g2, prv tree E (G ` f ⊂ g1)→ prv tree E (G ` f ⊂ (g1 ∨p g2))

Lemma 6.7.5. cGROW R
For any BES E, relation on propositional variables G and propositional formulas
f, g1, g2, if we can build a proof tree with G ` f ⊂ g2 as the root, then we can
build a proof tree with G ` f ⊂ g1 ∨ g2 as the root.

∀E,∀G,∀f g1 g2, prv tree E (G ` f ⊂ g2)→ prv tree E (G ` f ⊂ (g1 ∨p g2))
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Lemma 6.7.6. aSPLIT
For any BES E, relation on propositional variables G and propositional formulas
f1, f2, g, if we can build proof trees with G ` f1 ⊂ g and G ` f2 ⊂ g as the root,
then we can build a proof tree with G ` f1 ∨ f2 ⊂ g as the root.

∀E,∀G,∀f1 f2 g, prv tree E (G ` f1 ⊂ g)→ prv tree E (G ` f2 ⊂ g)→
prv tree E (G ` (f1 ∨p f2) ⊂ g)

Lemma 6.7.7. aGROW L
For any BES E, relation on propositional variables G and propositional formulas
f1, f2, g, if we can build a proof tree with G ` f1 ⊂ g as the root, then we can
build a proof tree with G ` f1 ∧ f2 ⊂ g as the root.

∀E,∀G,∀f1 f2 g, prv tree E (G ` f1 ⊂ g)→ prv tree E (G ` (f1 ∧p f2) ⊂ g)

Lemma 6.7.8. aGROW R
For any BES E, relation on propositional variables G and propositional formulas
f1, f2, g, if we can build a proof tree with G ` f2 ⊂ g as the root, then we can
build a proof tree with G ` f1 ∧ f2 ⊂ g as the root.

∀E,∀G,∀f1 f2 g, prv tree E (G ` f2 ⊂ g)→ prv tree E (G ` (f1 ∧p f2) ⊂ g)

Lemma 6.7.9. distribute prv tree
For any BES E, relation on propositional variables G and DNF’s f, g, we can
build a proof tree with G ` f ∧ g ⊂ (dist(f)(g)) as the root.

∀E,∀G,∀g,DNF (g)→ ∀f,DNF (f)→ prv tree E (G ` (f ∧p g) ⊂ dist(f)(g))

Lemma 6.7.10. complete propForm cons DNF
For any BES E, relation on propositional variables G and DNF f , we can build
a proof tree with G ` f ⊂ toDNFf as the root.

∀E,∀G,∀f, prv tree E (G ` f ⊂ toDNF (f))

Lemma 6.7.11. complete DNF cons propForm
For any BES E, relation on propositional variables G, DNF f and propositional
formula g, if g is a logical consequence of f , then we can build a proof tree with
G ` f ⊂ g as the root.

∀E,∀G,∀g f,DNF (f)→ f ⇒ g → prv tree E (G ` f ⊂ g)

Lemma 6.7.12. complete cons
For any BES E, relation on propositional variables G and propositional formulas
f, g, if g is a logical consequence of f , then we can build a proof tree with
G ` f ⊂ g as the root.

∀E,∀G,∀g f, f ⇒ g → prv tree E (G ` f ⊂ g)

79



6.7.3 Complete for consistent consequence

Lemmas

Lemma 6.7.13. lem5
For any BES E, relation R on variables bound in E, relation G on propositional
variables and propositional formulas f, g such that g is a consequence of f
relative to R, if we can make proof trees for all variables (x, y) ∈ R with root
G ` x ⊂ y, then we can create a proof tree with G ` f ⊂ g as the root.

∀E,∀R G,R ⊆ (flatten genBES E)× (flatten genBES E)→

∀f g, f R
=⇒ g → (∀x y,R x y → prv tree E (G ` (var x) ⊂ (var y)))→

prv tree E (G ` f ⊂ g)

Lemma 6.7.14. complete propVar
For any n, BES E, relation G on variables bound in E such that the size of the
maximal relation minus G is n and propositional variables x, y such that xlEG y
we can construct a proof tree with G ` x ⊂ y as the root.

∀E,∀n, ∀G,#((flatten genBES E)× (flatten genBES E) \G) = n→
∀x y, x lEG y → prv tree E (G ` (var x) ⊂ (var y))

Lemma 6.7.15. prv system complete
For BES E, and propositional variables x, y such that x lE y we can construct
a proof tree with ∅ ` x ⊂ y as the root.

∀E,∀x y, x lE y → prv tree E (∅ ` (var x) ⊂ (var y))

6.7.4 Complete and sound

Lemmas

Lemma 6.7.16. prv system sound and complete
For any BES E and propositional variables x, y bound in E, y is a consistent
consequence of x in E if and only if we can build a proof tree with ∅ ` x ⊂ y as
the root.

∀E,∀x y, x ∈ E → y ∈ E → (x lE y ↔ prv tree E (∅ ` (var x) ⊂ (var y)))
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6.8 Semantics of BES

We originally defined the semantics of a propositional formula under some envi-
ronment to be in Prop. However, the semantics of a propositional formula is, in
fact, a Boolean value. We can define a recursive function b propForm solution
equivalent to propForm solution on a propositional formula and an environment,
obtaining a Boolean representing the solution of the propositional formula under
the environment. In this text, we will indicate b propForm solution f θ with
JfKbθ

Fixpoint b_propForm_solution(f:propForm)(theta:environment)

: bool :=

match f with

| top => true

| bot => false

| var x => theta x

| f1 /\p f2 =>

b_propForm_solution f1 theta && b_propForm_solution f2 theta

| f1 \/p f2 =>

b_propForm_solution f1 theta || b_propForm_solution f2 theta

end.

We define a function for the unfolding of a list of Boolean equations in an
environment. This function corresponds with Definition 2.3.11.

Fixpoint unfold_block (bl:list booleanEquation)

(theta:environment) : environment:=

match bl with

| nil => theta

| bEqn x fx::bl’ =>

redefineEnvironment (unfold_block bl’ theta) x ([[fx]]_b theta)

end.

We define a function for redefining an environment θ (result unbound) in the
bound variables from some list of Boolean equations bl with their interpretations
under another environment θ′ (result bound).

Definition redefine_bound (bl:list booleanEquation)

(result_unbound result_bound:environment) : environment:=

fun (x:propVar) => if bnd_block_dec bl x

then result_bound x

else result_unbound x.

We define well-formedness of blocks as follows; all variables bound in the
block occur exactly once at the left-hand side of an equation in the block.

Definition w_d_block(bl:list booleanEquation) :=

forall x:propVar, bnd_block bl x <-> bnd_cnt_block bl x=1.

We define a function sol iterator, which applies a function on environments,
H, i times to some environment theta b. We write Hi(theta b) instead of
sol iterator H theta b i, as defined in Section 2.3.1.

Fixpoint sol_iterator (H:environment -> environment)

(theta_b:environment)(i:nat) :=
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match i with

| 0 => H theta_b

| S(k) => H (sol_iterator H theta_b k)

end.

We define a recursive function genBES solution for obtaining the semantics
of a list of blocks e under some environment θ.

Fixpoint genBES_solution (e:list block)(theta:environment)

{struct e} : environment :=

let F (e’’:list block)(B’’:block)(theta’’ theta_b’’:environment)

: environment :=

unfold_block B’’ (genBES_solution e’’

(redefine_bound B’’ theta’’ theta_b’’))

in

match e with

| nil => theta

| cons bl e’ => if (blockType bl)

then genBES_solution e’ (redefine_bound bl theta

(sol_iterator (F e’ bl theta) full_environment (length bl)))

else genBES_solution e’ (redefine_bound bl theta

(sol_iterator (F e’ bl theta) empty_environment (length bl)))

end.

The semantics of a BES under some environment is simply the semantics
given by genBES solution on this BES and environment. The semantics given
in Definition 2.3.12 corresponds with this definition.

Definition BES_solution (E:BES)(Theta:environment)

: environment :=

genBES_solution (the_genBES (bes E)) Theta.

Lemmas

Lemma 6.8.1. rank bound split
For any BES E, relation on propositional variables R which is a consistent
consequence relation on E and variables (x, y) ∈ R, either both x and y are
bound in E, or neither of them is.

∀E,∀R, cc E R→ ∀x y,R x y → ((x ∈ E ∧ y ∈ E) ∨ (x 6∈ E ∧ y 6∈ E))

Lemma 6.8.2. useful unfold block
For any BES consisting of a single block bl, any relation R on propositional
variables which is a consistent consequence relation on this BES, and any en-
vironment θ consistent with R, the result of unfolding bl in θ is also consistent
with R.

∀bl ,∀alt bl : alternating list block (bl :: nil),

∀w d bl : w d (make genBES (bl :: nil) alt bl),

∀R, cc (makeBES (make genBES (bl :: nil) alt bl) w d bl) R→
∀θ, θ ∈ ΘR → (||bl ||θ) ∈ ΘR
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Lemma 6.8.3. useful sol iterator
For any function f on environments, any relation R on propositional variables
such that f maintains consistency of environments with R, any number n and
any environment θ consistent with R, the result of applying f n times to θ is
also consistent with R.

∀f : environment → environment ,∀R, (∀θ, θ ∈ ΘR → (f(θ) ∈ ΘR))→
∀n, ∀θ, θ ∈ ΘR → (fn(θ)) ∈ ΘR

Note, f : environment → environment should be read as f is a function map-
ping environments to environments, not f is a proof that environment implies
environment.

Lemma 6.8.4. redef bnd consistent
For any BES consisting of a single block bl, relation R on propositional vari-
ables which is a consistent consequence relation on bl, and environments θu, θb
consistent with R, the result of redefining θu in the variables bound in bl with
the values of their interpretations under θb is also consistent with R.

∀bl ,∀alt bl : alternating list block (bl :: nil),

∀w d bl : w d (make genBES (bl :: nil) alt bl),

∀R, cc (makeBES (make genBES (bl :: nil) alt bl) w d bl) R→
∀θb θu, θb ∈ ΘR → θu ∈ ΘR →

(redefine bound bl θb θu) ∈ ΘR

Lemma 6.8.5. useful
For any BES E, relation R on propositional variables which is a consistent
consequence relation on E and environment θ consistent with R, the solution
of E in θ is also consistent with R.

∀E,∀R, cc E R→ ∀θ, θ ∈ ΘR → (JEKθ) ∈ ΘR
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Chapter 7

Conclusion

In [10], a proof system was presented for deriving consistent consequences be-
tween propositional variables based on syntax. However, to prove the proof
system complete, an additional rule was added which turned out to be un-
sound. The goal of this project was to fix this issue, and define a proof system
for deriving consistent consequences which is sound and complete. Furthermore,
since in the past some errors had been made while trying to establish such a
proof system, we decided to formalize the theory in Coq.

In this project, we have shown that the proof system from [10] can be made
sound by removing the unsound rule (Chapter 4), and we have shown that
the resulting proof system is complete for consistent consequence (Chapter 5).
Furthermore, we have also shown that the proof system is complete for logical
consequence, which was required for showing the completeness of the proof
system (Chapter 5). Each of these proofs were formalized in Coq, and in this
report we gave translations from the Coq formalization (documented in Chapter
6) to more abstract mathematical notation.

To paint the full picture, we also formalized the relation between the se-
mantics of BES and consistent consequence relation (Chapter 3). To make the
formalization in Coq simpler, we introduced an alternative semantics for BES,
which we have shown to be equivalent to the standard semantics. This formal-
ization revealed a small mistake in an earlier proof, and we have shown how to
fix this issue by tweaking the definition of consistent consequence.

While working with Coq, we sometimes felt the desire to add additional
axioms for results which seemed obvious (for example, the completeness of the
proof system with regards to logical consequence). However, we have suppressed
this desire to make sure that everything is formally verified.

Being forced to pay attention to all details has had both down- and upsides.
It was difficult to define the notion of the inverse size of a relation which only
relates from some finite set of variables, where we had to define relates bound,
is subset and rev subset. In Coq, showing that these notions are equivalent was
not an easy task, while in Chapter 5 we did not even need to refer to these
concepts since we could immediately define the inverse size of a relation. On
the other hand, being forced not to ignore any of the details has made the
intricate reasoning why the properties we have proven hold extremely clear.
Furthermore, the way Coq manages the context is an asset during long complex
proofs. During more complex proofs, Coq allows the user to easily break down
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the proof into smaller, bite sized parts (or, sub-goals). So, though Coq forces
you to pay attention to details, it also assists the user with tackling complex
proofs one step at a time, and makes sure you don’t skip any of the details. In
particular, this attention to detail has revealed small errors from previous work,
such as the issue we found in the proof of the relation between the semantics of
BES and the notion of consistent consequence.

7.1 The future: From BES to PBES

Consistent consequence was originally defined for simplifying soundness proofs
of abstraction techniques for PBES and not BES. Therefore it is interesting to
investigate if and how the proof system in this document can serve as a basis for
a proof system in the setting of PBES. In Appendix C, we made an attempt at
making this adjustment. The proof system in Appendix C is based on the one
presented in this document, however the CC and CNT rules have been changed
significantly to allow making derivations under some assumptions on data terms.
Furthermore, we add rules to handle data terms, Boolean expressions, quanti-
fiers, and manipulating the assumptions made on data terms, which we do not
encounter in the setting of BES.

In Appendix C, we indicate the properties on which the CC and CNT rules
in the setting of BES are based. We then show how we can formulate these
properties in the setting of PBES in such a way that we can add assumptions
on data terms to the system.

Next we discuss a set of rules for data terms and quantifiers, which are
based on standard rules from sequent calculus [11]. Sequent calculus provides a
method for deriving logical implications between predicate formulas, and part
of the data rules in Appendix C were created by observing that in the proof
system, what comes before the ⊂ symbol is in essence a series of sequents (in
Γ ` f ⊂ g, we can view both f and the contents of Γ as sequents).

This proof system appears to be a good basis for future work, and to show
how it can be used we make an example derivation of consistent consequence on
a PBES which cannot be instantiated into a BES. However, many details are
glossed over or skipped altogether, and in particular the soundness of the proof
system needs to be formally investigated.

Furthermore, if the system is indeed sound, it would be interesting to inves-
tigate how strong the system is in reality. Proving completeness of the proof
system for BES was possible because in the setting of BES, l is always finite.
This is not the case for the setting of PBES, though this tactic could still be
used if all consistent consequence relations can be finitely represented with the
notation we introduced for the proof system: {X(x) ⊂ Y (y) | P}. However,
it is likely that this is not the case, and it seems probable that no sound and
complete proof system exists for deriving consistent consequences on PBES.
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Appendix A

Full proof system

In this appendix we repeat the proof system for consistent consequences, to-
gether with all rules derived in lemmas and theorems for ease of reference while
reading the soundness and completeness proofs.

Table A.1: Proof system for consistent consequences on BES E ;
α, β and γ are arbitrary propositional formulas; X, Y are proposi-
tional variables; Γ is a an arbitrary relation on propositional vari-
ables; Γ, X ⊂ Y is used to denote the relation Γ ∪ {(X,Y )}

Axioms:
rules of the form Γ ` A where A ranges over:

AS1 α ∧ (β ∧ γ) ⊂ (α ∧ β) ∧ γ DS1 α ∨ (β ∧ γ) ⊂ (α ∨ β) ∧ (α ∨ γ)
AS2 (α ∧ β) ∧ γ ⊂ α ∧ (β ∧ γ) DS2 (α ∨ β) ∧ (α ∨ γ) ⊂ α ∨ (β ∧ γ)
AS3 α ∨ (β ∨ γ) ⊂ (α ∨ β) ∨ γ DS3 α ∧ (β ∨ γ) ⊂ (α ∧ β) ∨ (α ∧ γ)
AS4 (α ∨ β) ∨ γ ⊂ α ∨ (β ∨ γ) DS4 (α ∧ β) ∨ (α ∧ γ) ⊂ α ∧ (β ∨ γ)
COM1 α ∧ β ⊂ β ∧ α AB1 α ∨ (α ∧ β) ⊂ α
COM2 α ∨ β ⊂ β ∨ α AB2 α ⊂ α ∨ (α ∧ β)
ID1 α ⊂ α ∧ α ID2 α ∨ α ⊂ α
SUP α ⊂ α ∨ β INF α ∧ β ⊂ α
TOP α ⊂ α ∧ > BOT α ∨ ⊥ ⊂ α

Logic rules:

TRA
Γ ` α ⊂ β Γ ` β ⊂ γ

Γ ` α ⊂ γ
REF Γ ` α ⊂ α

CTX
Γ ` α ⊂ β
Γ ` γ[X := α] ⊂ γ[X := β]

86



Consistent Consequence rules:

CC
Γ, X ⊂ Y ` fX ⊂ fY

rank(X) = rank(Y ) and X,Y ∈ bndE
Γ` X ⊂ Y

CNT (X ⊂ Y ∈ Γ)
Γ ` X ⊂ Y

Split/grow rules:
In these rules, f, g, f1, f2, g1, g2 are propositional formulas

cSPLIT
Γ ` f ⊂ g1 Γ ` f ⊂ g2

Γ ` f ⊂ g1 ∧ g2

cGROWL
Γ ` f ⊂ g1

Γ ` f ⊂ g1 ∨ g2
cGROWR

Γ ` f ⊂ g2

Γ ` f ⊂ g1 ∨ g2

aSPLIT
Γ ` f1 ⊂ g Γ ` f2 ⊂ g

Γ ` f1 ∨ f2 ⊂ g

aGROWL
Γ ` f1 ⊂ g
Γ ` f1 ∧ f2 ⊂ g

aGROWR
Γ ` f2 ⊂ g
Γ ` f1 ∧ f2 ⊂ g

DNF rules:
In these rules, f, g are propositional formulas

DIST f, g are in DNF
Γ ` f ∧ g ⊂ dist(f)(g)

Lemma 5.2.10 Γ ` f ⊂ DNF (f)

Lemma 5.2.11 f is in DNF and f ⇒ g
Γ ` f ⊂ g

Lemma 5.2.12 f ⇒ g
Γ ` f ⊂ g

Completeness rules:
In these rules, R ⊆ bnd× bnd is a relation on propositional
variables. Furthermore, f and g are propositional formulas.

Lemma 5.3.1
{Γ ` X ⊂ Y | (X,Y ) ∈ R}

f
R∪Γ
==⇒ gΓ ` f ⊂ g

Lemma 5.3.3 X lΓ YΓ ` X ⊂ Y
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Appendix B

Equivalent semantics

In this appendix, we prove Lemma 2.3.13.

Lemma For any BES E and for any environment θ, LEMθ = JEKθ.

Proof. Take some BES E . We proceed by induction on the number of blocks in
E (written #(E)).

0 In this case, for any environment θ, LεMθ = θ = JεKθ

k + 1 In this case, we have the following induction hypothesis: for any E ′ such
that #(E ′) = k and environment θ′,

LE ′Mθ′ = JE ′Kθ′ (1)

Furthermore, E = (σB)E ′ for some E ′ with #(E ′) = k and B = 〈Xi =
fXi
〉ni=1.

From the two definitions for the semantics of BES, we obtain the following:

LEMθ = LE ′M(θ[〈Xi〉ni=1 = σ(F(E ′, B, θ))])
J(σB)E ′Kθ = JE ′K(θ[〈Xi := ((F (E ′, B, θ))n(θσ))(Xi)〉ni=1])

From the induction hypothesis,

LE ′M(θ[〈Xi〉ni=1 := σ(F(E ′, B, θ))])
=

JE ′K(θ[〈Xi := ((F (E ′, B, θ))n(θσ))(Xi)〉ni=1])

if

θ[〈Xi〉ni=1 := σ(F(E ′, B, θ))] = θ[〈Xi := ((F (E ′ B θ))n(θσ))(Xi)〉ni=1]

Which is the case if, for all Xi ∈ bndB ,

(σ(F(E ′, B, θ)))i = ((F (E ′, B, θ))n(θσ))(Xi)

Observe that we have the following.

σ(F(E ′, B, θ)) = ((F(E ′, B, θ))n)(bσ)
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Therefore, we need to show that for all Xi ∈ bndB ,

(((F(E ′, B, θ))n)(bσ))i = ((F (E ′, B, θ))n(θσ))(Xi)

Observe that for all 1 ≤ j ≤ n, (bσ)j = θσ(Xj). We will prove that, for
any n tuple of Booleans b and environment θb such that, for all 1 ≤ j ≤ n
we have (b)j = θb(Xj), and for any l, the following holds.

(((F(E ′, B, θ))l)(b))i =

((F (E ′, B, θ))l(θb))(Xi)

We proceed by induction on l.

l = 0 In this case, for any n tuple of Booleans b, any environment θb such
that, for all 1 ≤ j ≤ n we have (b)j = θb(Xj), and any Xi ∈ bndB ,
we can derive the following.

(((F(E ′, B, θ))0)(b))i =

(b)i =

(θb)(Xi) =

((F (E ′, B, θ))0(θb))(Xi)

l = m+ 1 In this case, we have the following induction hypothesis; for any n
tuple of Booleans b, any environment θb such that, for all 1 ≤ j ≤ n
we have (b)j = θb(Xj), and any Xi ∈ bndB , and for any Xi ∈ bndB ,
we have

(((F(E ′, B, θ))m)(b))i = ((F (E ′, B, θ))m(θb))(Xi) (2)

Take some n tuple of Booleans b and environment θb such that, for
all 1 ≤ i ≤ n, (b)i = θb(Xi). Furthermore, take some Xi ∈ bndB .
Then we can derive the following.

(((F(E ′, B, θ))m+1)(b))i =

((F(E ′, B, θ))(((F(E ′, B, θ))m)(b)))i =

JfXiK(LE ′M(θ[〈Xj := (((F(E ′, B, θ))m)(b))j〉nj=1]))

And

((F (E ′, B, θ))m+1(θb))(Xi) =

((F (E ′, B, θ))((F (E ′, B, θ))m(θb)))(Xi) =

(||B||(JE ′K(θ[〈Xi := ((F (E ′, B, θ))m(θb))(Xi)〉ni=1)])(Xi) =

JfXi
K(JE ′K(θ[〈Xi := ((F (E ′, B, θ))m(θb))(Xi)〉ni=1]))

Thus, we need to show that

JfXi
K(LE ′M(θ[〈Xj := (((F(E ′, B, θ))m)(b))j〉nj=1])) =

JfXiK(JE ′K(θ[〈Xj := ((F (E ′, B, θ))m(θb))(Xj)〉nj=1))
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Which is the case if

LE ′M(θ[〈Xj := (((F(E ′, B, θ))m)(b))j〉nj=1]) =

JE ′K(θ[〈Xj := ((F (E ′, B, θ))m(θb))(Xj)〉nj=1)

Which, according to (1), is the case if

θ[〈Xj := (((F(E ′, B, θ))m)(b))j〉nj=1] =

θ[〈Xj := ((F (E ′, B, θ))m(θb))(Xj)〉nj=1]

Which is the case if, for all 1 ≤ j ≤ n, we have

(((F(E ′, B, θ))m)(b))j = ((F (E ′, B, θ))m(θb))(Xj)

Which follows from (2).
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Appendix C

PBES rules

In this appendix, we explain how the proof system presented in this document
could be adjusted to obtain a proof system suitable for deriving consistent conse-
quences in the setting of PBES. For convenience, we will assume to be working in
a standard setting for discussing PBES. Furthermore, we assume that the reader
has some familiarity with standard definitions on PBES and the definition of
consistent consequences on PBES (see also [5]).

In this appendix, when some proposition P logically implies some proposition
Q, we may write P → Q.

We will use a notion of autographs, which has been used to define the notion
of relative consistent consequence in the setting of PBES. The autograph of a
predicate variable is similar to the signature of a predicate variable, but is
defined using data terms in stead of data values.

Definition C.0.1. Let X : DX → B be a predicate variable. X’s autograph,
denoted aut(X), is the product X × DX , where DX is the data sort asso-
ciated with the data type of X. We lift the notion of autographs of pred-
icate variables to sets of predicate variables P ⊆ X in the natural way, so
aut(P ) =

⋃
X∈P aut(X). Likewise for PBES E , we write aut(E) for aut(bndE).

Also, if no confusion is possible, we may write the more readableX(d) ∈ aut(X),
in stead of (X, d) ∈ aut(X).

Given a relation on autographs, we define the relation on signatures induced
by this relation as follows.

Definition C.0.2. Let E be a PBES, and let R ⊆ aut(E)×aut(E) be a relation
on autographs from E . The relation on signatures induced by R is defined as⋃
δ{(X(Jd1Kδ), Y (Jd2Kδ)) | (X(d1), Y (d2)) ∈ R}. We write ind(R) to indicate

the relation on signatures induced by R.

Furthermore, we will use the following definitions of logical and relative
consequence in the setting of predicate formulas.

Definition C.0.3. Given predicate formulas f, g, we say that g is a logical
consequence of f , written f ⇒ g if, for all data environments δ and for all
predicate environments θ, we have JfKθδ = true implies JgKθδ = true.

Definition C.0.4. Given a relation R on predicate variables, and predicate

formulas f, g, we say that g is a consequence of f relative to R, written f
R
=⇒ g
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if, for all data environments δ and for all predicate environments θ ∈ ΘR, we
have JfKθδ = true implies JgKθδ = true.

Definition C.0.5. Given a relation R on predicate variables, a set of Boolean
data terms P and predicate formulas f, g, we say that g is a consequence of f

relative to R given P , written f
R
=⇒
P
g if, for all data environments δ such that for

all b ∈ P we have δ(b) = true (written δ(P )), and for all predicate environments
θ ∈ ΘR, we have JfKθδ = true implies JgKθδ = true.

Note that we overload notation (⇒ and
R
=⇒), which is also used in the setting

of propositional formulas. If it is not clear which setting is meant from the
context then this will be explained.

The proof system for deriving consistent consequences on BES from this doc-
ument was created by taking a sound and complete axiomatization for deriving
logical consequences on propositional logic, and adding the rules CC and CNT.
We will first study these two rules in Section C, and see how they could be
adjusted for the setting of PBES. Since PBES uses data terms and quantifiers,
while BES only use the symbols > and ⊥, we will add some (modified) rules for
handling these in Section C. We found that working with assumptions on data
terms is an asset in the setting of PBES, thus we will introduce some rules to
deal with these assumptions in Section C.

In Section C, we will present the resulting proof system. We theorize that
this proof system allows derivations of consistent consequences between bound
predicate variables from PBES, and to support this claim we will show how
this proof system can derive consistent consequences between variables a PBES
which cannot be solved by instantiating the PBES to a BES. Since the theory
presented here is mostly conjecture, we will end with a discussion on the most
critical parts where further investigation of the theory is required in Section C.

CC, CNT

The rule CC from the proof system in this document is sound because it cor-
responds with the the following property: For any variables X,Y bound in a
BES E , if we can derive that the right hand sides of X,Y in E are consequences
of each other relative to lE from an assumption that the variables are related
via a consistent consequence relation, then the variables are indeed related via
a consistent consequence relation.

Claim C.0.6. Given a BES E . Then, for any bound variables X,Y with equal
rank we have the following:

((X
lE

=⇒ Y )→ (fX
lE

=⇒ fY ))→ (X
lE

=⇒ Y )

We can then straightforwardly derive the CNT rule from rule CC. When
we use the rule CC, we assume that a pair of variables is related via a con-
sistent consequence relation, and try to derive a logical consequence between
the right hand sides of these variables, assuming that the variables are logical
consequences. Thus, if we are in a state where we need to show that there is a
logical consequence between variables, and one of our assumptions is that there
is a logical consequence between these variables, then we are done.
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When we try to derive consistent consequences in the setting of PBES, things
become slightly more tricky. First, let’s see what happens if we adjust C.0.6 to
a setting of PBES.

Claim C.0.7. Let E be a PBES, and take some variables X,Y bound in E with
equal ranks. Furthermore, let x, y be data terms such that X(x) and Y (y) are
elements from aut(E). Then we have the following:

((X(x)
lE

=⇒ Y (y))→ (fX(x)
lE

=⇒ fY (y)))→ (X(x)
lE

=⇒ Y (y))

Creating rules CC and CNT based on C.0.7 would allow us to derive con-
sistent consequences between specific elements from the autograph of a PBES.
In some cases this might be sufficient, in particular if we can all ready solve the
PBES by instantiating it to a BES and solving the BES. However, let’s say that
we have some PBES with some bound variables X,Y, Z, such that the domain
of X is the natural numbers. We might be interested in relating X(n) to Y (y)
for some y if n is even, and X(n) to Z(z) if n is odd. However, using C.0.7
to define CC (and CNT), we then would not be able to use the fact that if we
assume that X(n) lE Y (y) for even n, we also have X(k + 2) lE Y (y) for
some even k, unless n = k + 2.

Therefore, we wish to generalize this property, such that we can work with
assumptions on data terms and we are trying to derive consistent consequences
between sets of the autographs of predicate variables, in stead of deriving con-
sistent consequences between specific elements from the autographs of predicate
variables. We propose the following adjustment of C.0.7, which should be suffi-
ciently powerful to derive consistent consequence between sets of autographs.

Claim C.0.8. Let E be a PBES, and take some variables X,Y bound in E with
equal ranks. Furthermore, let a, b be data terms such that X(a) ∈ aut(E) and
Y (b) ∈ aut(E), and let P (a, b) be a set of Boolean data terms over a and b.

We have that, if the following holds:

∀x, y : (X(x) ∈ AutE ∧ Y (y) ∈ AutE)→

(X(x)
lE

====⇒
P (x,y)

Y (y)→ (fX(x)
lE

====⇒
P (x,y)

fY (y)))

Then we can conclude that, for all x, y such that X(x) ∈ AutE , Y (y) ∈ AutE ,
and for all data environments δ such that P (x, y) holds on all its Boolean data
terms, then we have X(δ(x)) lE Y (δ(y)).

Using this property, we can use P to express conditions on variables used in
data terms. The CC rule corresponding with C.0.8 could look as follows.

P & Γ, ({X(x) ⊂ Y (y) | P})[x, y := a] ` fX(x) ⊂ fY (y)
*

P & Γ ` X(x) ⊂ Y (y)

Here, x, y is the set of data variables which occur in data terms x, y, and
({X(x) ⊂ Y (y) | P})[x, y := a] stands for the simultaneous replacement of
all variables from x, y in X(x), Y (y) and P with variables from a.
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*: This rule should be applied with the following restrictions. First, X
and Y should be bound in the PBES on which one wishes to derive consistent
consequences, and their ranks should be equal. Furthermore, a is a set of fresh
variables sufficiently large such that all variables from x and y are replaced with
variables from a and variables from x, y with the same name should be replaced
with the same variable from a.

The idea behind this notation is that, in Γ we are building a set of predicate
variables with data elements which we assume to be consistent consequences,
and on the right hand side of ` we need to show that two predicate formulas are
consistent consequences for all data environments such that all Boolean data
terms in P hold.

Within BES, the CNT rule was straightforward. Given the previous CC
rule, derived from the property in C.0.7, we can also present a CNT rule.

{X(x) ⊂ Y (y) | P} ⊆ Γ
P & Γ ` X(x) ⊂ Y (y)

Here, {X(x) ⊂ Y (y) | P} ⊆ Γ means
⋃
δ{(X(δ(x)), Y (δ(y))) | δ(P )} is a subset

of
⋃
δ,{X(x)⊂Y (y)|P}∈Γ{(X(δ(x)), Y (δ(y))) | δ(P )}.

The idea is that, if what we wish to derive follows from our assumptions,
then we are done. However, there is a significant downside to this rule, since
we have to show that something is a subset of Γ. It would be interesting to
investigate how the rules can be changed such that we do not have to show
subsets.

Data and quantifiers

Changing the CC and CNT rules in the proof system for BES with these new
rules on PBES, is insufficient for creating a proof system powerful enough for
deriving consistent consequences on PBES. At least, the predicate formulas used
in PBES have a more complex structure than the propositional formulas in BES.
Thus, we need ways to handle these differences; we need to be able to handle
data terms (and in particular Boolean data terms) and quantifiers.

In the setting for BES we had the primitives > and ⊥. However, in the
setting for PBES, we have arbitrary Boolean data terms, whose semantics are
given by data environments. Since P restricts the set of data environments we
are considering, given a Boolean data term b, if all data environments δ such
that δ(P ) holds have δ(b) = true (written P → b), then from our assumptions
we know that b can be used as we used > in the setting for BES. Similarly, if all
data environments δ such that δ(P ) holds have δ(b) = false (written P → ¬b),
then from our assumptions we know that b can be used as we used ⊥ in the
setting for BES. Thus, we change the rules for > and ⊥ as follows.

TOP P → b
P & Γ ` α ⊂ α ∧ b BOT P → ¬b

P & Γ ` α ∨ b ⊂ α

Let P be a set of Boolean data terms. Furthermore, let t1, t2 be two data
terms of the same type. We will write P → t1 = t2 if, for all data environments
δ such that P (δ) holds, we have δ(t1) = δ(t2). If two predicate formulas are
equal up to some data terms t1 and t2, and we know from our assumptions that
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these two data rules are equal, then the two predicate formulas are equal under
our assumptions. Thus, the reflexivity rule is modified to allow equivalent data
terms. This results in the following rule.

REF P → t1 = t2
P & Γ ` α[t := t1] ⊂ α[t := t2]

For the quantifier rules, we can simply copy the rules used in the sequent
calculus LK, as defined by Gentzen [11], and add them to our proof system.

∀L
P & Γ ` α[d := d′] ⊂ β
P & Γ ` ∀d : D.α ⊂ β

∃L
P & Γ ` α[d := z] ⊂ β
P & Γ ` ∃d : D.α ⊂ β

∀R
P & Γ ` α ⊂ β[d := z]

P & Γ ` α ⊂ ∀d : D.β
∃R

P & Γ ` α ⊂ β[d := d′]

P & Γ ` α ⊂ ∃d : D.β

Here, d and d′ are data terms of type D. Furthermore, z is a fresh data
variable of type D, i.e. z does not occur anywhere below the horizontal line.

Manipulating P

Currently, we have no way of manipulating the assumptions on data terms stored
in P . Consider the following statement in a proof tree (in the setting of some
PBES).

P & Γ ` b ∧ α ⊂ β (3)

Where P is a set of Boolean data terms, Γ is a relation on elements from
the autographs of a PBES, b is a Boolean data term, and α and β are predicate
formulas. Then we mean the following. If ind(Γ) is a set of signatures which
are related via a consistent consequence relation on the PBES we are interested
in, then for all data environments δ such that δ(P ) holds, δ(β) is a consistent
consequence of δ(b ∧ α), i.e.

ind(Γ) ⊆ lE → (b ∧ α)
lE

=⇒
P

β

We can derive the following:
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ind(Γ) ⊆ lE → (b ∧ α)
lE

=⇒
P

β

↔
∀δ.(δ(P ) ∧ ind(Γ) ⊆ lE)→ (∀θ ∈ ΘlE .Jb ∧ αKθδ → JβKθδ)

↔
∀δ.(δ(P, b) ∧ ind(Γ) ⊆ lE)→ (∀θ ∈ ΘlE .JαKθδ → JβKθδ)

↔

ind(Γ) ⊆ lE → α
lE

==⇒
P,b

β

Thus, for deriving (3), it is sufficient if we can derive the following.

P, b & Γ ` α ⊂ β

Therefore we can add the following rule for adding Boolean data terms from
the antecedant to P , which we will cal DAT1.

P, b & Γ ` α ⊂ β
P & Γ ` b ∧ α ⊂ β

Next, consider the following statement in a proof tree.

P & Γ ` α ⊂ β ∨ b (4)

Again, P is a set of Boolean data terms, Γ is a relation on elements from
the autographs of a PBES, b is a Boolean data term, and α and β are predicate
formulas.

Using a similar reasoning, we can add the following rule for adding Boolean
data terms from the consequent to P , which we will cal DAT2.

P,¬b & Γ ` α ⊂ β
P & Γ ` α ⊂ β ∨ b

We can also modify P when we are eliminating quantifiers. Consider the
following statement in a proof tree (in the setting of some PBES).

P & Γ ` ∀d : D.α ⊂ β (5)

Where P is a set of Boolean data terms, Γ is a relation on elements from
the autographs of a PBES, and d is a data variable of type d. Then we mean
the following.

ind(Γ) ⊆ lE → (∀d : D.α)
lE

=⇒
P

β
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Which is equivalent to the following.

∀δ.(δ(P ) ∧ ind(Γ) ⊆ lE)→ ∀θ ∈ ΘlE .J∀d : D.αKθδ → JβKθδ (6)

Let d be some data variable of type D which does not occur in α, β, P or Γ,
and let b be a Boolean data term such that the only data variable which occurs
in b is d, and such that we do not have P → ¬b (i.e. b does not contradict our
assumptions in P ). Then (6) holds if the following holds:

∀δ : (δ(P ∪ {b}) ∧ Γ ⊆ lE)→ ∀θ ∈ ΘlE .Jα[d := dKθδ)→ JβKθδ

Thus, for deriving (5), it is sufficient if we can derive the following.

P, b & Γ ` α[d := d] ⊂ β
Therefore we can add the following rule for adding Boolean data terms from

the antecedant to P , which we will cal DAT∀.

P, b & Γ ` α[d := d] ⊂ β
*

P & Γ ` ∀d : D.α ⊂ β
*: b is a Boolean data term such that not P → ¬b and the only variable

which occurs in b is d.
We can apply a similar reasoning for existential quantifiers in the consequent,

to obtain the following rule which we will call DAT∃.

P, b & Γ ` α ⊂ β[d := d]
*

P & Γ ` α ⊂ ∃d : D.β

*: b is a Boolean data term such that not P → ¬b and the only variable
which occurs in b is d.

A proof system for consistent consequence on PBES

In Table C.1 a proof system for deriving consistent consequences on predicate
variables from a PBES is shown. The rules are as discussed in the previous
sections. We believe that this system provides a basis for future research into
a more complete proof system for PBES. To show that this proof system is
indeed capable of deriving consistent consequences on PBES, we will show how
the proof system can be used to derive consistent consequences on a PBES,
which cannot be instantiated into BES.

Example C.0.9. Consider the following PBES.

(ν〈(A> = B>)

(A⊥ = B⊥)

(X(n : N) = Y (n))〉)
(µ〈(B> = A⊥)

(B⊥ = B⊥ ∨B>)

(Y (n : N) = (even(n) ∧X(n+ 1))∨
(odd(n) ∧ (Y (n) ∨ Y (n+ 1))))〉)
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This PBES (which we will refer to as E) is the result of merging the PBES
containing the equations for A>, A⊥, B>, B⊥ (which we will refer to as E1) with
the PBES containing the equations for X and Y (which we will refer to as E2).

The solution for PBES E1 can be easily found by instantiating to BES (it is
a BES). However, PBES E2 cannot be solved by instantiating to BES, due to
the presence of an infinite chain of dependencies.

(ν〈(A> = B>)(A⊥ = B⊥)(X0 = Y0)(X1 = Y1) · · · 〉)
(µ〈(B> = A⊥)(B⊥ = B⊥ ∨B>)(Y0 = X1)(Y1 = Y1 ∨ Y2) · · · 〉)

However, for even v we have A>lEX(v), and for odd v we have A⊥lEX(v).
Likewise, for even v we have B>lEY (v), and for odd v we have B⊥lEY (v) (see
also [5]).

Since any solution of E1 assigns true to all predicate variables in E1, we also
know that the solution for any n of X(n) and Y (n) in E2 must be true.

In Figure C.1, a proof tree is shown tree for deriving A> lE X(v) for even v.
The numbers are as indicated below. For convenience, we assume that we can
derive rules similar to the following derived rules cSPLIT, cGROWL, cGROWR,
aSPLIT, aGROWL and aGROWR from the system for BES.

In the following, let Γ be {A> ⊂ X(a) | even(a)}, {B> ⊂ Y (b) | even(b)}
and let Γ′ be {A⊥ ⊂ X(c + 1) | even(c)}, {B⊥ ⊂ Y (d + 1) | even(d)}. Also, let
P be even(v).

1. P & Γ ` A⊥ ⊂ A⊥ ∧ even(v)

2. P & Γ ` A⊥ ⊂ even(v) ∧A⊥

3. P & Γ ` even(v) ∧A⊥ ⊂ even(v)

4. P & Γ ` A⊥ ⊂ even(v)

5. P & Γ ` A⊥ ⊂ even(v)

6. P & Γ,Γ′ ` B⊥ ∨B> ⊂ (B⊥ ∨B>) ∧ odd(v + 1)

7. P & Γ,Γ′ ` (B⊥ ∨B>) ∧ odd(v + 1) ⊂ odd(v + 1) ∧ (B⊥ ∨B>)

8. P & Γ,Γ′ ` odd(v + 1) ∧ (B⊥ ∨B>) ⊂ odd(v + 1)

9. P & Γ,Γ′ ` (B⊥ ∨B>) ∧ odd(v + 1) ⊂ odd(v + 1)

10. P & Γ,Γ′ ` B⊥ ∨B> ⊂ odd(v + 1)

11. P & Γ,Γ′ ` B⊥ ⊂ Y (v + 1)

12. P & Γ,Γ′ ` B⊥ ⊂ Y (v + 1) ∨ Y (v + 1 + 1)

13. P & Γ,Γ′ ` B> ⊂ Y (v + 1 + 1)

14. P & Γ,Γ′ ` B> ⊂ Y (v + 1) ∨ Y (v + 1 + 1)

15. P & Γ,Γ′ ` B⊥ ∨B> ⊂ Y (v + 1) ∨ Y (v + 1 + 1)

16. P & Γ,Γ′ ` B⊥ ∨B> ⊂ odd(v + 1) ∧ (Y (v + 1) ∨ Y (v + 1 + 1))
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17. P & Γ,Γ′ ` B⊥ ∨ B> ⊂ (even(v + 1) ∧ X(v + 1 + 1)) ∨ (odd(v + 1) ∧
(Y (v + 1) ∨ Y (v + 1 + 1)))

18. P & Γ, {A⊥ ⊂ X(c+ 1) | even(c)} ` B⊥ ⊂ Y (v + 1)

19. P & Γ ` A⊥ ⊂ X(v + 1)

20. P & Γ ` A⊥ ⊂ even(v) ∧X(v + 1)

21. P & Γ ` A⊥ ⊂ (even(v) ∧X(v + 1)) ∨ (odd(v) ∧ (Y (v) ∨ Y (v + 1)))

22. P & {A> ⊂ X(a) | even(a)} ` B> ⊂ Y (v)

23. P & ` A⊥ ⊂ X(v)
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Figure C.1: A proof tree for deriving A>lEX(v) for even v from Example C.0.9.
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Table C.1: Proof system for consistent consequences on PBES E ;
α, β and γ are arbitrary predicate formulas; X, Y are predicate
variables; P is a set of Boolean (data) expressions; x and dX are
data terms of data sort DX ; y is a data term of data sort DY ; d, d
and z are data variables of data sort D; d′ is a data term of data
sort D; b and b are Boolean data terms; t, t1, t2 are data terms of
the same data sort; d and z are free variables; the only variable
occurring in b is d; ā is a set of free variables

Axioms:
The same as in the proof system for BES, but without TOP and BOT.

Logic rules:

REF P → t1 = t2
P & Γ ` α[t := t1] ⊂ α[t := t2]

TRA
P & Γ ` α ⊂ β P & Γ ` β ⊂ γ

P & Γ ` α ⊂ γ

CTX
P & Γ ` α(dX) ⊂ β(dX)

P & Γ ` γ[X := λdX : DX .α(dX)] ⊂ γ[X := λdX : DX .β(dX)]

Data rules:

TOP P → b
P & Γ ` α ⊂ α ∧ b BOT P → ¬b

P & Γ ` α ∨ b ⊂ α

DAT1
b,P & Γ ` α ⊂ β
P & Γ ` b ∧ α ⊂ β

DAT2
¬b,P & Γ ` α ⊂ β

P & Γ ` α ⊂ b ∨ β

Quantifier rules:

∀L
P & Γ ` α[d := d′] ⊂ β
P & Γ ` ∀d : D.α ⊂ β

∃L
P & Γ ` α[d := z] ⊂ β

z fresh
P & Γ ` ∃d : D.α ⊂ β

∀R
P & Γ ` α ⊂ β[d := z]

z fresh
P & Γ ` α ⊂ ∀d : D.β

∃L
P & Γ ` α ⊂ β[d := d′]

P & Γ ` α ⊂ ∃d : D.β

DAT∀
P,b & Γ ` α[d := d] ⊂ β
P & Γ ` ∀d : D.α ⊂ β

DAT∃
P,b & Γ ` α[d := d] ⊂ β
P & Γ ` ∀d : D.α ⊂ β

Consistent Consequence rules:

CC
P & Γ, ({X(x) ⊂ Y (y) | P})[x, y := a] ` fX(x) ⊂ fY (y)

*
P & Γ ` X(x) ⊂ Y (y)

CNT {X(x) ⊂ Y (y) | P} ⊆ Γ
P & Γ ` X(x) ⊂ Y (y)

*:rank(X) = rank(Y ) and X,Y ∈ bndE
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What’s next for this system

We proposed a proof system in this appendix and have shown that it can be
used to derive consistent consequences. However, due to time constraints the
soundness of this proof system has not been checked thoroughly, as well as some
other details. To show soundness of the proof system, the following claim should
be proven:

Claim C.0.10. Given a PBES E and X(x), Y (y) ∈ aut(E). If we can build a
proof tree with P & ` X(x) ⊂ Y (y) as the root, then we have

∀δ.δ(P )→ X(δ(x)) lE Y (δ(y))

Furthermore, we have given a few rules for adding expressions to P , but it
remains to be seen if these are sufficient, and if it would be desirable to also
be able to modify expressions from P (for example strengthening or weakening
expressions). Both DAT∀ and DAT∃ should be investigated since these rules are
currently fairly strongly formulated (d needs to be a free variable, b can only
use d). It is probable that some relaxations can be made here.

Also, the CNT rule is not fully a syntactic rule yet. It would be desirable
to add or modify rules such that we are not dealing with determining subsets
when applying the CNT rule. This would probably require adding rules capable
of manipulating (strengthening or weakening) Γ.

Furthermore, for the CC rule we made the very safe choice of renaming all
variables in the set {X(x) ⊂ Y (y) | P} which is added to Γ. This is probably a
bit to safe, and relaxing this requirement would make the system more usable.

The theory outside of the proof system also warrants further investigation.
We implicitly assumed some properties of relative consequence given a set of
assumptions to be similar to properties of relative consequence, but the relation
between the two notions should be further explored. We also used a notion of
(relative) consistent consequence (both on predicate formulas and on predicate
variables) without giving a formal definition. These definitions and properties
will probably be required in some form for formally checking the soundness of
the proof system.

Considering all these remaining questions, it is highly unlikely that the sys-
tem is complete. Completeness of the proof system for BES, which we have
shown in this document, was achieved by showing that we can build the consis-
tent consequence relation at the left-hand side of `. To be able to mimic this
method for proving this system complete, it would first need to be investigated
if all consistent consequence relations can be finitely represented by the notation
we use: {X(x) ⊂ Y (y) | P}.
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Appendix D

The remaining parts of Coq

In this appendix, we provide descriptions of the lemmas in the Coq files accom-
panying this report, which were not discussed in Chapter 6.

6.1

Lemma D.0.1. propForm solution decidable
Given a propositional formula and an environment, the semantics of this propo-
sitional formula under this environment is decidable:

∀f, ∀θ, JfKθ ∨ ¬JfKθ

Lemma D.0.2. propForm solution deMorgan conj
A version of De Morgan’s law on the semantics of propositional formulas.

∀f1f2,∀θ,¬(Jf1Kθ ∧ Jf2Kθ)→ (¬Jf1Kθ ∨ ¬Jf2Kθ)

Lemma D.0.3. environment intersect distributes neg
If the solution of two propositional formulas under two environments is false,
then the solution of the propositional formulas under the intersection of the
environments is also false.

∀θ1θ2,∀f1f2,(¬Jf1Kθ1 ∧ ¬Jf2Kθ2)→ (¬Jf1K(θ1‖θ2) ∧ ¬Jf2K(θ1‖θ2))

Lemma D.0.4. maxlteq
For any natural numbers x, y, z such that x ≤ y or x ≤ z, we have that x is less
than or equal to the maximum of y and z

∀x y z, (x ≤ y ∨ x ≤ z)→ x ≤ (max (y, z))

Lemma D.0.5. uses lteq mxUsed
For any propositional formula f and propositional variable x occurring in f , x
is less than or equal to the largest variable used in f

∀f, ∀x, uses f x→ x ≤ (mxUsed f)
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Lemma D.0.6. suc mxUsed unused
For any propositional formula f , the propositional variable encoded by the suc-
cessor of the largest propositional variable used in f is not used in f

∀f,¬(uses f (S(mxUsed f)))

Lemma D.0.7. unused no rewrite
For any propositional formulas f, f ′, and propositional variable x, if x is not
used in f then rewriting x in f to f ′ results in f (with no changes)

∀ff ′,∀x, (¬uses f x)→ f [x := f ′] = f

Lemma D.0.8. environment union grows
Given two environments, and a propositional formula, if either environment
gives the solution true to the propositional formula, then the union of the envi-
ronments solves the propositional formula to true as well.

∀f, ∀θ1θ2, (JfKθ1 ∨ JfKθ2)→ JfK(θ1‖θ2)

Lemma D.0.9. environment point minimal
Given an environment assigning true to a propositional variable, for any propo-
sitional formula, if this environment solves this formula to false then the propo-
sitional formula also solves to false under the environment point of x.

∀f, ∀x,∀θ, θ(x)→ ¬JfKθ → ¬JfK(environment point x)

Lemma D.0.10. environment union distributes
If the solution of two propositional formulas under two environments is true,
then the solution of both propositional formulas under the union of the envi-
ronments is also true.

∀θ1θ2,∀f1f2,(Jf1Kθ2 ∧ Jf2Kθ2)→ (Jf1K(θ1‖θ2) ∧ Jf2K(θ1‖θ2))

Lemma D.0.11. exists unused
For any propositional formula f , there exists a propositional variable which is
not used in f

∀f, ∃x,¬(uses f x)

6.1.1

Lemma D.0.12. propForm eqv bot
If a propositional formula f evaluates to false regardless of the environment,
then f is equivalent to ⊥.

∀f, (∀θ,¬JfKθ)↔ f ⇔ ⊥
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Lemma D.0.13. eqv bot dec
Any propositional formula f is either equivalent to false under all evaluations,
or there exists an environment for which f evaluates to true

∀f, ((∀θ,¬JfKθ) ∨ ∃θ, JfKθ)

Lemma D.0.14. eqv propForm bot decidable
It is decidable if a propositional formula g is equivalent to ⊥.

∀g, g ⇔ ⊥∨ ¬(g ⇔ ⊥)

Lemma D.0.15. neq var bot
No variable is equivalent to ⊥.

∀x,¬((var x)⇔ ⊥)

Lemma D.0.16. propForm eqv top
A propositional formula f evaluates to true under all environments iff f is
equivalent to >

∀f, (∀θ, JfKθ)↔ f ⇔ >

Lemma D.0.17. not top get not true
If a propositional formula f is not equivalent to > then there exists an environ-
ment for which f evaluates to false

∀f, (¬(> ⇔ f))→ ∃θ,¬JfKθ

Lemma D.0.18. eqv top decidable
Any propositional formula f is either equivalent to > or not

∀f, f ⇔ >∨ ¬(f ⇔ >)

Lemma D.0.19. neq var top
No variable is equivalent to >

∀x,¬((var x)⇔ >)

Lemma D.0.20. var cons propForm decidable
For any propositional formula f and any propositional variable x, either x is a
logical consequence of f or not

∀f, ∀x, f ⇒ (var x) ∨ ¬(f ⇒ (var x))
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Lemma D.0.21. neqv bot full true
If a propositional formula f is not equivalent to ⊥, then f evaluates to true
under the θν .

∀f, (¬(f ⇔ ⊥))→ JfKθν

Lemma D.0.22. full false eqv bot
If a propositional formula f evaluates to false under the θν then f is not equiv-
alent to ⊥.

∀f,¬JfKθν → f ⇔ ⊥

Lemma D.0.23. eqv bot full false
If a propositional formula f is equivalent to ⊥ then f evaluates to false under
the θν

∀f, f ⇔ ⊥→ ¬JfKθν

Lemma D.0.24. empty true eqv top
If a propositional formula f evaluates to true under the θµ then f is equivalent
to >

∀f, JfKθµ → f ⇔ >

Lemma D.0.25. cons var propForm
For any propositional formula f and any propositional variable x, either f is a
logical consequence of x or there exists an environment for which x evaluates to
true and f evaluates to false

∀f, ∀x, (∀θ, θ(x)→ JfKθ) ∨ (∃θ, θ(x) ∧ ¬JfKθ)

Lemma D.0.26. cons propForm var
For any propositional formula f and any propositional variable x, either x is a
logical consequence of f or there exists an environment for which f evaluates
to true and x evaluates to false.

∀f, ∀x, (∀θ, JfKθ → θ(x)) ∨ (∃θ, JfKθ ∧ ¬θ(x))

6.1.2

Lemma D.0.27. distribute f top
Distribute called on > and some propositional formula f returns a formula
equivalent to f .

∀f, ∀θ, JfKθ ↔ Jdist(f)(>)Kθ
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Lemma D.0.28. distribute top f
Distribute called on some propositional formula f and > returns a formula
equivalent to f .

∀f, ∀θ, JfKθ ↔ Jdist(>)(f)Kθ

Lemma D.0.29. distribute bot f
Distribute called on ⊥ and some propositional formula f returns a formula
equivalent to ⊥.

∀f, ∀θ, Jdist(⊥)(f)Kθ ↔ False

Lemma D.0.30. distribute f bot
Distribute called on ⊥ and some propositional formula f returns a formula
equivalent to ⊥.

∀f, ∀θ, Jdist(f)(⊥)Kθ ↔ False

Lemma D.0.31. distribute f var
Distribute called on some propositional formula f and some propositional vari-
able X returns a formula equivalent to f ∧X.

∀f, ∀X,∀θ, Jdist(f)(varX)Kθ ↔ Jf ∧p (varX)Kθ

Lemma D.0.32. distribute var f
Distribute called on some propositional variable X and some propositional for-
mula f returns a formula equivalent to X ∧ f .

∀f, ∀X,∀θ, Jdist(varX)(f)Kθ ↔ J(varX) ∧p fKθ

Lemma D.0.33. distribute DNF left
Given two DNF formulas f, g, f is a logical consequence of the result of calling
distribute on f and g.

∀fg,DNF (f)→ DNF (g)→ dist(f)(g)⇒ f.

Lemma D.0.34. distribute DNF right
Given two DNF formulas f, g, g is a logical consequence of the result of calling
distribute on f and g.

∀fg,DNF (f)→ DNF (g)→ dist(f)(g)⇒ g.

Lemma D.0.35. env intersect conj
For any clause f and any pair of environments θ1 and θ2, if JfKθ1 = true and
JfKθ2 = true then JfK(θ1&θ2) = true.

∀f, clause(f)→ ∀θ1θ2, JfKθ1 → JfKθ2 → JfK(θ1&θ2)
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6.1.3

Lemma D.0.36. conj full ncons max point
Given a clause f which evaluates to true under the full environment, for any
variable x, if x is not a logical consequence of f , then f evaluates to true under
the environment assigning true to everything but x

∀f,JfKθν → clause(f)→
∀x,¬(f ⇒ (var x))→ JfK(environment max point x)

Lemma D.0.37. conj cons propForm decidable
Given a clause f and a propositional formula g, either g is a logical consequence
of f , or there exists an environment for which f evaluates to true and g evaluates
to false

∀fg, clause(f)→ (f ⇒ g ∨ ∃θ, (JfKθ ∧ ¬JgKθ))

Lemma D.0.38. DNF cons propForm decidable
For any DNF formula f and propositional formula g, either g is a logical conse-
quence of f , or there exists an environment for which f evaluates to true and g
evaluates to false

∀fg,DNF (f)→ (f ⇒ g ∨ ∃θ, (JfKθ ∧ ¬JgKθ))

Lemma D.0.39. conj cons disj decide
For any clause c and propositional formulas f, g, if the disjunction f ∨p g is a
logical consequence of c then f or g is a logical consequence of c

∀cfg, clause(c)→ c⇒ (f ∨p g)→ ((c⇒ f) ∨ (c⇒ g))

6.3.1

Lemma D.0.40. empty relation relates bound
For any list of Boolean equations e, the empty relation relates only variables
bound in e to variables bound in e.

∀e, ∅ ⊆ e× e

Lemma D.0.41. reachable exists to
Given a relation R and propositional variables x, z. If z is reachable from x
through R then there exists some variable y such that R relates y to z.

∀R,∀x z,R+ x z → ∃y,R y z
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Lemma D.0.42. reachable exists from
Given a relation R and propositional variables x, z. If z is reachable from x
through R then there exists some variable y such that R relates x to y.

∀R,∀x z,R+ x z → ∃y,R x y

Lemma D.0.43. conj propForm grows right
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1×e2, then for
all propositional formulas f and all clauses g1, g2, if the minimal environment
consistent with R assigning true to all variables in g1 assigns true to f , then
the minimal environment consistent with R assigning true to all variables in g1

and g2 assigns true to f .

∀R,∀e1e2,∀H : R ⊆ e1 × e2,

∀fg1g2, clause(g1)→ clause(g2)→ JfKθe1,e2,HR,g1
→ JfKθe1,e2,HR,(g1∧pg2)

Lemma D.0.44. conj propForm grows left
Given some lists of Boolean equations e1, e2 and a relation R ⊆ e1×e2, then for
all propositional formulas f and all clauses g1, g2, if the minimal environment
consistent with R assigning true to all variables in g2 assigns true to f , then
the minimal environment consistent with R assigning true to all variables in g1

and g2 assigns true to f .

∀R,∀e1e2,∀H : R ⊆ e1 × e2,

∀fg1g2, clause(g1)→ clause(g2)→ JfKθe1,e2,HR,g2
→ JfKθe1,e2,HR,(g1∧pg2)

6.3.2

Lemma D.0.45. separe subset then union subset
For any relations R1, R2 which are subsets of lists of Boolean equations l1, l2, if
both is subset l1 l2 R1 and is subset l1 l2 R2 hold then is subset l1 l2 (R1 ∪R2)
also holds.

∀l1l2,∀R1R2, R1 ⊆ l1 × l2 → R2 ⊆ l1 × l2 →
l1 × l2 ⊇ R1 → l1 × l2 ⊇ R2 → l1 × l2 ⊇ (R1 ∪R2)

Lemma D.0.46. add still subset left
For any relation R and lists of Boolean equations l1, l2 such that is subset l1 l2
R, we can add any Boolean equation a to l1, i.e. for any Boolean equation a we
then have is subset (a :: l1) l2 R.

∀l2l1,∀a,∀R, l1 × l2 ⊇ R→ (a :: l1)× l2 ⊇ R

Lemma D.0.47. add still subset right
For any relation R and lists of Boolean equations l1, l2 such that is subset l1 l2
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R, we can add any Boolean equation a to l2, i.e. for any Boolean equation a we
then have is subset l1 (a :: l2) R.

∀l2l1,∀a,∀R, l1 × l2 ⊇ R→ l1 × (a :: l2) ⊇ R

Lemma D.0.48. rev card gt0
For any relation R, lists of Boolean equations l1, l2 and natural number n, if
rev subset card l1 l2 R n then n > 0.

∀l1l2,∀Γ,∀n,#(l1 × l2 \ Γ) = n→ n > 0

6.3.3

Lemma D.0.49. DNF rel cons DNF decidable
For any relation R relating only pairs of variables from e1 × e2 and for any
DNF’s f, g, either g is a relative consequence of f under R or not.

∀R,∀e1e2, R ⊆ (flatten genBES e1)× (flatten genBES e2)→

∀f,DNF (f)→ ∀g,DNF (g)→ (f
R
=⇒ g ∨ ¬(f

R
=⇒ g))

6.4

Lemma D.0.50. bnd block dec
For any list of Boolean equations l and propositional variable x, it is decidable
if x is bound in l or not.

∀l,∀x, {x ∈ l}+ {x 6∈ l}

Lemma D.0.51. bnd dec
For any list of blocks e and propositional variable x, it is decidable if x is bound
in e or not.

∀e, ∀x, {x ∈ e}+ {x 6∈ e}

6.4.1

Lemma D.0.52. rel union maintains rel cc
If two relations R1, R2 are consistent consequence relations on some BES E
relative to some relation Γ, then the union of R1 and R2 is also a consistent
consequence relation on E relative to Γ.

∀E,∀R1R2Γ, relative cc E R1 Γ→ relative cc E R2 Γ→
relative cc E (R1 ∪R2) Γ
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Lemma D.0.53. rel cc trans
Given a BES E and some relation on propositional variables Γ, relative consis-
tent consequence on propositional formulas under E is transitive, i.e. for any
propositional formulas a, b, c, if c is a consistent consequence of b relative to Γ,
and b is a relative consistent consequence of a relative to Γ, then c is a relative
consistent consequence of a relative to Γ.

∀E,∀Γ,∀a b c, ((a lE
Γ==⇒ b) ∧ (b

lE
Γ==⇒ c))→ (a

lE
Γ==⇒ c)

Lemma D.0.54. bnd block flatten bnd
Any variable bound in BES E is also bound in the result of flattening E to a
list of Boolean equations.

∀E,∀x, x ∈ E → x ∈ (flatten genBES E)

Lemma D.0.55. bnd flatten bnd block
Any variable bound in the result of flattening BES E to a list of Boolean equa-
tions is also bound in E.

∀E,∀x, x ∈ (flatten genBES E)→ x ∈ E

6.5.1

Lemma D.0.56. AS1 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. (a∧p (b∧p c)) is a consistent consequence of ((a∧p b)∧p c) on E, relative
to G.

∀E,∀a b c,∀G, (a ∧p (b ∧p c))
lE

G==⇒ ((a ∧p b) ∧p c)

Lemma D.0.57. AS2 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. ((a∧p b)∧p c) is a consistent consequence of (a∧p (b∧p c)) on E, relative
to G.

∀E,∀a b c,∀G, ((a ∧p b) ∧p c)
lE

G==⇒ (a ∧p (b ∧p c))

Lemma D.0.58. AS3 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. ((a∨p b)∨p c) is a consistent consequence of (a∨p (b∨p c)) on E, relative
to G.

∀E,∀a b c,∀G, (a ∨p (b ∨p c))
lE

G==⇒ ((a ∨p b) ∨p c)
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Lemma D.0.59. AS4 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. (a∨p (b∨p c)) is a consistent consequence of ((a∨p b)∨p c) on E, relative
to G.

∀E,∀a b c,∀G, ((a ∨p b) ∨p c)
lE

G==⇒ (a ∨p (b ∨p c))

Lemma D.0.60. COM1 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b. (b ∧p a) is a consistent consequence of (a ∧p b) on E, relative to G.

∀E,∀a b, ∀G, (a ∧p b)
lE

G==⇒ (b ∧p a)

Lemma D.0.61. COM2 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b. (b ∨p a) is a consistent consequence of (a ∨p b) on E, relative to G.

∀E,∀a b, ∀G, (a ∨p b)
lE

G==⇒ (b ∨p a)

Lemma D.0.62. DS1 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. ((a ∨p b) ∧p (a ∨p c)) is a consistent consequence of (a ∨p (b ∧p c)) on E,
relative to G.

∀E,∀a b c,∀G, (a ∨p (b ∧p c))
lE

G==⇒ ((a ∨p b) ∧p (a ∨p c))

Lemma D.0.63. DS2 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. (a ∨p (b ∧p c)) is a consistent consequence of ((a ∨p b) ∧p (a ∨p c)) on E,
relative to G.

∀E,∀a b c,∀G, ((a ∨p b) ∧p (a ∨p c))
lE

G==⇒ (a ∨p (b ∧p c))

Lemma D.0.64. DS3 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. ((a ∧p b) ∨p (a ∧p c)) is a consistent consequence of (a ∧p (b ∨p c)) on E,
relative to G.

∀E,∀a b c,∀G, (a ∧p (b ∨p c))
lE

G==⇒ ((a ∧p b) ∨p (a ∧p c))

Lemma D.0.65. DS4 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. (a ∧p (b ∨p c)) is a consistent consequence of ((a ∧p b) ∨p (a ∧p c)) on E,
relative to G.

∀E,∀a b c,∀G, ((a ∧p b) ∨p (a ∧p c))
lE

G==⇒ (a ∧p (b ∨p c))
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Lemma D.0.66. AB1 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b. a is a consistent consequence of (a ∨p (a ∧p b)) on E, relative to G.

∀E,∀a b, ∀G, (a ∨p (a ∧p b))
lE

G==⇒ a

Lemma D.0.67. AB2 sound
For any BES E, relation on propositional variables G and propositional formulas
a, b. (a ∨p (a ∧ b)) is a consistent consequence of a on E, relative to G.

∀E,∀a b, ∀G, a lE
G==⇒ (a ∨p (a ∧p b))

Lemma D.0.68. ID1 sound
For any BES E, relation on propositional variables G and propositional formula
a. (a ∧ a) is a consistent consequence of a on E, relative to G.

∀E,∀a,∀G, a lE
G==⇒ (a ∧p a)

Lemma D.0.69. ID2 sound
For any BES E, relation on propositional variables G and propositional formula
a. a is a consistent consequence of (a ∨p a) on E, relative to G.

∀E,∀a,∀G, (a ∨p a)
lE

G==⇒ a

Lemma D.0.70. SUP sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. (a ∨p b) is a consistent consequence of a on E, relative to G.

∀E,∀a b, ∀G, a lE
G==⇒ (a ∨p b)

Lemma D.0.71. INF sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. a is a consistent consequence of (a ∧ b) on E, relative to G.

∀E,∀a b, ∀G, (a ∧p b)
lE

G==⇒ a

Lemma D.0.72. TOP sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. (a ∧ >) is a consistent consequence of a on E, relative to G.

∀E,∀a,∀G, a lE
G==⇒ (a ∧p >)

113



Lemma D.0.73. BOT sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. a is a consistent consequence of (a ∨p ⊥) on E, relative to G.

∀E,∀a,∀G, (a ∨p ⊥)
lE

G==⇒ a

Lemma D.0.74. CTX sound
For any BES E, relation on propositional variables G, propositional formulas
a, b, c and propositional variable x. If b is a consistent consequence of a on E,
relative to G, then c[x := b] is a consistent consequence of c[x := a] on E,
relative to G.

∀E,∀a b c,∀x, ∀G, (a lE
G==⇒ b)→ ((c[x := a])

lE
G==⇒ (c[x := b]))

Lemma D.0.75. TRA sound
For any BES E, relation on propositional variables G and propositional formulas
a, b, c. If b is a consistent consequence of a on E, relative to G and c is a con-
sistent consequence of b on E, relative to G, then c is a consistent consequence
of a on E, relative to G.

∀E,∀a b c,∀G, ((a lE
G==⇒ b) ∧ (b

lE
G==⇒ c))→ (a

lE
G==⇒ c)

Lemma D.0.76. REF sound
For any BES E, relation on propositional variables G and propositional formula
a. a is a consistent consequence of a on E, relative to G.

∀E,∀a,∀G, (a lE
G==⇒ a)

Lemma D.0.77. CC sound
For any BES E, relation on propositional variables G, propositional formulas
a, b, c and propositional variables x, y bound in E with equal rank. If the right
hand side of x in E is a consistent consequence of the right hand side of y in E
relative to G∪{(x, y)}, then propositional formula y is a consistent consequence
of propositional formula x on E, relative to G.

∀E,∀x y, ∀G, ((x ∈ E) ∧ (y ∈ E) ∧ (rank E x = rank E y))→

((rhs E x)
lE

G∪{(x,y)}
=======⇒ (rhs E y))→ ((var x)

lE
G==⇒ (var y))

Lemma D.0.78. CNT sound
For any BES E, relation on propositional variables G and propositional variables
(x, y) ∈ G. Propositional formula y is a consistent consequence of propositional
formula x on E, relative to G.

∀E,∀x y, ∀G, ((x, y) ∈ G→ ((var x)
lE

G==⇒ (var y)))
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6.5.2

Lemma D.0.79. conj distribute prv tree
For any BES E, relation on propositional variables G clause f and DNF g, we
can build a proof tree with G ` (f ∧p g) ⊂ (dist(f)(g)) as the root.

∀E,∀G,∀f g, clause(f)→ DNF (g)→ prv tree E (G ` (f ∧p g) ⊂ (dist(f)(g)))

Lemma D.0.80. complete to bot
For any BES E, relation on propositional variables G and propositional formula
f , if ⊥ is a logical consequence of f then we can build a proof tree with G `
f ⊂ ⊥ as the root.

∀E,∀G,∀f, f ⇒ ⊥→ prv tree E (G ` f ⊂ ⊥)

Lemma D.0.81. complete from top
For any BES E, relation on propositional variables G and propositional formula
f , if f is a logical consequence of > then we can build a proof tree with G `
> ⊂ f as the root.

∀E,∀G,∀f,> ⇒ f → prv tree E (G ` > ⊂ f)

Lemma D.0.82. complete from var
For any BES E, relation on propositional variables G, propositional formula f
and propositional variable x, if f is a logical consequence of x then we can build
a proof tree with G ` x ⊂ f as the root.

∀E,∀G,∀f, ∀x, (var x)⇒ f → prv tree E (G ` (var x) ⊂ f)

Lemma D.0.83. complete to var
For any BES E, relation on propositional variables G, propositional formula f
and propositional variable x, if x is a logical consequence of f then we can build
a proof tree with G ` f ⊂ x as the root.

∀E,∀G,∀f, ∀x, f ⇒ (var x)→ prv tree E (G ` f ⊂ (var x))

Lemma D.0.84. generalized complete from conj propForm
For any BES E, relation on propositional variables G, clause f and propositional
formula g, if g is a logical consequence of f , then we can build a proof tree with
G ` f ⊂ g as the root.

∀E,∀G,∀f g, clause(f)→ f ⇒ g → prv tree E (G ` f ⊂ g)

115



6.5.3

Lemma D.0.85. complete fom conj rel cons
For any BES E, relation R on variables bound in E, relation G on propositional
variables, clause f and DNF g such that g is a consequence of f relative to R,
if we can make proof trees for all variables (x, y) ∈ R with root G ` x ⊂ y, then
we can create a proof tree with G ` f ⊂ g as the root.

∀E,∀R G,R ⊆ (flatten genBES E)× (flatten genBES E)→

∀f g, clause(f)→ DNF (g)→ f
R
=⇒ g →

(∀x y,R x y → prv tree E (G ` (var x) ⊂ (var y)))→
prv tree E (G ` f ⊂ g)

Lemma D.0.86. lem5 DNF
For any BES E, relation R on variables bound in E, relation G on propositional
variables, DNF f and DNF g such that g is a consequence of f relative to R, if
we can make proof trees for all variables (x, y) ∈ R with root G ` x ⊂ y, then
we can create a proof tree with G ` f ⊂ g as the root.

∀E,∀R G,R ⊆ (flatten genBES E)× (flatten genBES E)→

∀f g,DNF (f)→ DNF (g)→ f
R
=⇒ g →

(∀x y,R x y → prv tree E (G ` (var x) ⊂ (var y)))→
prv tree E (G ` f ⊂ g)

6.6

Lemma D.0.87. neq no rewrite
For any environment θ and propositional variables x, y such that x 6= y, redefin-
ing θ in y to any value, does not change the interpretation of x in θ.

∀θ,∀x y, x 6= y → ∀b, θ(x)↔ θ[y := b](x)

Lemma D.0.88. unbound no change block function
For any list of Boolean equations bl, propositional variable x not bound in bl
and environment θ, unfolding bl in θ does not change the interpretation of x in
θ.

∀bl ,∀x, x 6∈ bl → ∀θ, θ(x)↔ (||bl ||θ)(x)

Lemma D.0.89. b propForm solution correct
The function b propForm solution is equivalent to propForm solution.

∀f, ∀θ, JfKθ ↔ JfKbθ
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Lemma D.0.90. alt tl
For any block h and list of blocks l, if the blocks in h :: l have alternating
fixedpoint symbols, then so do the blocks in l.

∀l,∀h, alternating list block (h :: l)→ alternating list block l

Lemma D.0.91. bnd cnt block gt
For any list of Boolean equations bl, variables are bound in bl if and only if they
occur at least once at the left hand side of an equation in bl.

∀bl ,∀x, x ∈ bl ↔ #(x ∈ bl) > 0

Lemma D.0.92. bnd cnt gt
For any list of blocks bl, variables are bound in bl if and only if they occur at
least once at the left hand side of an equation in a block in bl.

∀bl ,∀x, x ∈ bl ↔ #(x ∈ bl) > 0

Lemma D.0.93. w d w d block
For any non-empty list of Boolean equations bl, if the BES consisting of a single
block σbl (for σ ∈ {µ, ν}) is well formed, then bl is well formed.

∀bl ,∀b,∀exists bl : (∃beqn, In beqn bl),

(w d ((makeBlock bl b exists bl) :: nil))↔ w d block bl

Lemma D.0.94. w d block tl
For any non-empty list of Boolean equations bl and Boolean equation h, if h ::bl
is well formed then so is bl.

∀bl ,∀heqn,w d block (heqn :: bl)→ w d block bl

Lemma D.0.95. rhs unfold block
For any BES consisting of a single block bl, any variable x bound in this BES,
and any θ, the interpretation of x under the unfolding of bl in θ is equivalent to
the interpretation of the right hand side of x in bl.

∀bl ,∀alt bl : alternating list block (bl :: nil),

∀w d bl : w d (make genBES (bl :: nil) alt bl),∀x, x ∈ bl →
∀θ, (||bl ||θ)(x)↔ Jrhs (makeBES (make genBES (bl :: nil) alt bl) w d bl) xKθ

Lemma D.0.96. w d tl
For any block bh, and any list of blocks bl, if bh::bl is well formed then so is bl.

∀bl ,∀bh,w d (bh :: bl)→ w d bl
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Lemma D.0.97. w d hd
For any block bh, and any list of blocks bl, if bh::bl is well formed then so is bh.

∀bl ,∀bh,w d (bh :: bl)→ w d block bh

Lemma D.0.98. rank tl
For any BES e, block bl such that bl :: e is well formed, and any variables x, y
with equal rank in (bl :: e), the ranks of x and y in e are also equal.

∀bl ,∀e, ∀w d bl e : w d (bl :: e),

∀x y, rank (bl :: e) x = rank (bl :: e) y → rank e x = rank e y

Lemma D.0.99. cc tl
For any BES e, block bl such that bl :: e is a BES, relation R on propositional
variables which is a consistent consequence relation on bl :: e, we have that R is
also a consistent consequence relation on e.

∀e, ∀bl ,∀alt bl e : alternating list block (bl :: e),

∀w d bl e : w d (make genBES (bl :: e) alt bl e),

∀R, cc (makeBES (make genBES (bl :: e) alt bl e) w d bl e) R→
∀alt e : alternating list block e, ∀w d e : w d (make genBES e alt e),

cc (makeBES (make genBES e alt e) w d e) R

Lemma D.0.100. cc hd
For any BES e, block bl such that bl :: e is a BES and bl on its own is also a
BES, relation R on propositional variables which is a consistent consequence
relation on bl :: e, we have that R is also a consistent consequence relation on bl.

∀e, ∀bl ,∀alt bl e : alternating list block (bl :: e),

∀w d bl e : w d (make genBES (bl :: e) alt bl e),

∀R, cc (makeBES (make genBES (bl :: e)alt bl e) w d bl e) R→
∀alt bl : alternating list block (bl :: nil),

∀w d bl : w d (make genBES (bl :: nil) alt bl),

cc (makeBES (make genBES (bl :: nil) alt bl) w d bl) R
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