Algorithms for Model Checking (2IW55)
 Lecture 11
 Parameterised Boolean Equation Systems (3)

Background material:

- Verification of Reactive Systems via Instantiation of Parameterised Boolean Equation Systems, B. Ploeger, J.W. Wesselink and T.A.C. Willemse (I\&C 2010/2011)
- Static Analysis Techniques for Parameterised Boolean Equation Systems, S. Orzan, J.W. Wesselink and T.A.C. Willemse (TACAS 2009)

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 7.073

Outline

Parameterised Boolean Equation Systems

Verification via PBESs

Verification Methodology:

Solving \mathcal{E} answers $P \models \phi$

Parameterised Boolean Equation Systems

Problem Description

1. Given a process $P(e)$ described by an LPE P over $A c t$
2. Given a first-order modal μ-calculus formula $\sigma X . \phi$
3. Given environments η, ε
4. Check whether $P(e) \models \sigma X . \phi$ holds, where:

$$
P(e) \models \sigma X . \phi \text { iff } e \in \llbracket \sigma X . \phi \rrbracket \eta \varepsilon
$$

5. Conversion to PBES:

$$
P(e) \models \sigma X \cdot \phi \text { iff } e \in \llbracket E(\sigma X \cdot \phi) \rrbracket \eta \varepsilon(\tilde{X}) \text { (or, more informally: } \tilde{X}(e)=\text { true })
$$

Outline

Instantiation

How to solve PBESs

$$
X_{i}(e) \stackrel{?}{=} \text { true in } \mathcal{E}:=\left(\sigma_{1} X_{1}\left(d_{1}: D_{1}\right)=\phi_{1}\right) \cdots\left(\sigma_{n} X_{n}\left(d_{n}: D_{n}\right)=\phi_{n}\right)
$$

Known techniques for solving/simplifying \mathcal{E} :

- Gauß Elimination on PBES + symbolic approximation of equations
- Instantiation to BES and subsequently solve the BES
- Using patterns
- Using under/over approximation
- Invariants

Instantiation

Definition (Logical Equivalence)

Let ϕ, ψ be two predicates. Then ψ is logically equivalent to ϕ, denoted $\phi \leftrightarrow \psi$ iff

$$
\forall \varepsilon, \eta: \llbracket \phi \rrbracket \eta \varepsilon=\llbracket \psi \rrbracket \eta \varepsilon
$$

- If $\phi \leftrightarrow \psi$, then equation $\nu X(d: D)=\phi$ has the same solution as $\nu X(d: D)=\psi$ (likewise for μ)
- Useful simplifications:
- false $\wedge \phi \leftrightarrow$ false
- true $\vee \phi \leftrightarrow$ true
- if $d \notin \mathrm{FV}(\phi)$, then $(\exists d: D . \phi) \leftrightarrow(\forall d: D . \phi) \leftrightarrow \phi$
- One-point rule: $(\exists d: D . d=e \wedge \phi(d)) \leftrightarrow \phi(e)$
- One-point rule: $(\forall d: D . d=e \Rightarrow \phi(d)) \leftrightarrow \phi(e)$
- Apply logical simplifications before applying PBES manipulations/solving techniques.

Instantiation

Instantiation to BES:

$$
X_{i}(e) \stackrel{?}{=} \text { true in } \mathcal{E}:=\left(\sigma_{1} X_{1}\left(d_{1}: D_{1}\right)=\phi_{1}\right) \cdots\left(\sigma_{n} X_{n}\left(d_{n}: D_{n}\right)=\phi_{n}\right)
$$

- Let X_{i}^{e} be a fresh propositional variable representing instance $X_{i}(e)$.
- The procedure below creates a BES from \mathcal{E} s.t. $X_{i}(e)=$ true iff $X_{i}^{e}=$ true

1. For each $X_{j}\left(e_{j}\right)$ occurring in eval $\left(\phi_{i}\left[d_{i}:=e\right]\right)$ create a fresh variable $X_{j}^{e_{j}}$
2. Create an equation $\sigma_{i} X_{i}^{e}=\tilde{\phi}_{i}$, where:

- $\overline{\phi_{i}}=\operatorname{eval}\left(\phi_{i}\left[d_{i}:=e\right]\right)$,
- $\tilde{\phi}_{i}$ is $\bar{\phi}_{i}$ in which every $X_{j}\left(e_{j}\right)$ is replaced by $X_{j}^{e_{j}}$

3. Repeat step 1 and 2 for every $X_{j}^{e_{j}}$ introduced in step 1 , for which there is no equation
4. Order all equations $\sigma_{i} X_{i}^{e}=\ldots$ according to the ordering of \mathcal{E} (ordering within a block may be arbitrary)

Outline

$$
9 / 17
$$

Parameterised Boolean Equation Systems

Instantiation

Manipulations

Exercise

PBES Manipulation

Definition (Simple Formula)

A simple formula is a formula not containing predicate variables

Observations:

1. Consider the equation $\nu X(n: N a t)=$ true $\wedge X(n+1)$

- X has solution Nat (check!)
- Consider formal parameter n :
- It does not affect the value of the simple subformula true
- It appears to be redundant for the solution to X

2. Consider the equation $\nu X(n: N a t, m: N a t)=n \leq 5 \wedge X(n+m, m)$

- X has solution $\{(n, 0) \in N a t \times N a t \mid n \leq 5\}$ (check!)
- Consider formal parameter m :
- It does not affect the value of the simple formula $n \leq 5$
- Via a single recursion through X, it does affect the value of $n \leq 5$
- It appears to become significant for the solution to X

PBES Manipulation

- Identify all obvious significant formal parameters
sig

$$
\begin{array}{llll}
\operatorname{sig}(b) & =\mathrm{FV}(b) & \operatorname{dep}(b) & =\emptyset \\
\operatorname{sig}(X(e)) & =\emptyset & \operatorname{dep}(X(e)) & =\{X(e)\} \\
\operatorname{sig}(\phi \wedge \psi) & =\operatorname{sig}(\phi) \cup \operatorname{sig}(\psi) & \operatorname{dep}(\phi \wedge \psi) & =\operatorname{dep}(\phi) \cup \operatorname{dep}(\psi) \\
\operatorname{sig}(\phi \vee \psi) & =\operatorname{sig}(\phi) \cup \operatorname{sig}(\psi) & \operatorname{dep}(\phi \vee \psi) & =\operatorname{dep}(\phi) \cup \operatorname{dep}(\psi) \\
\operatorname{sig}(\forall d: D \cdot \phi) & =\operatorname{sig}(\phi) \backslash\{d\} & \operatorname{dep}(\forall d: D \cdot \phi) & =\operatorname{dep}(\phi) \\
\operatorname{sig}(\exists d: D \cdot \phi) & =\operatorname{sig}(\phi) \backslash\{d\} & \operatorname{dep}(\exists d: D \cdot \phi) & =\operatorname{dep}(\phi)
\end{array}
$$

Examples:

- $\operatorname{sig}($ true $\wedge X(n+1))=\emptyset, \operatorname{sig}(n \leq 5 \wedge X(n+m, m))=\{n\}$
- dep $($ true $\wedge X(n+1))=\{X(n+1)\}, \operatorname{dep}(n \leq 5 \wedge X(n+m, m))=\{X(n+m, m)\}$

PBES Manipulation

Assume the following PBES:

$$
\mathcal{E}:=\left(\sigma_{1} X_{1}\left(d_{1}: D_{1}\right)=\phi_{1}\right) \cdots\left(\sigma_{n} X_{n}\left(d_{n}: D_{n}\right)=\phi_{n}\right)
$$

- $\operatorname{arity}\left(X_{i}\right)$: the length of vector d_{i}
- $d_{i}[j]$ denotes the j-th element of vector d_{i}
- Construct a marked influence graph $G(\mathcal{E})=\langle V, \longrightarrow, M)$:
- $V=\left\{\left(X_{i}, j\right) \mid 1 \leq j \leq \operatorname{arity}\left(X_{i}\right)\right\}$ is the set of vertices
- $\left(X_{i}, k\right) \longrightarrow\left(X_{j}, I\right)$ iff for some expression $e: X_{j}(e) \in \operatorname{dep}\left(\phi_{i}\right)$ and $d_{i}[k] \in \mathrm{FV}(e[/])$
- $M=\left\{\left(X_{i}, j\right) \mid 1 \leq i \leq n\right.$ and $\left.d_{i}[j] \in \operatorname{sig}\left(\phi_{i}\right)\right\}$ is the marking

PBES Manipulation

Definition (Positively redundant parameters)

Given a Marked Influence Graph $G(\mathcal{E})=\langle V, \longrightarrow, M\rangle$.
The set of positively redundant parameters of \mathcal{E} is:

$$
\mathcal{R}=\left\{d_{i}[j] \mid \neg\left(\exists\left(X_{k}, I\right) \in M:\left(X_{i}, j\right) \longrightarrow \longrightarrow^{*}\left(X_{k}, I\right)\right)\right\}
$$

- Computing the set \mathcal{R} requires $\mathcal{O}(|\longrightarrow|)$ steps at most
- \mathcal{R} can be computed using a standard least fixed point computation, a depth-first search or a breadth-first search.

Given closed equation system \mathcal{E} with no unbound data variables

Procedure for eliminating redundant parameters in \mathcal{E}

1. Step 1 (compute redundant parameters)
1.1 Construct Marked Influence Graph of \mathcal{E}
1.2 Compute the set \mathcal{R} of positive redundant parameters of \mathcal{E}
2. Step 2 (remove redundant parameters): for every equation $\sigma_{i} X_{i}\left(d_{i}: D_{i}\right)=\phi_{i}$ in \mathcal{E} :
2.1 remove parameter $d_{i}[j]$ from $X_{i}\left(d_{i}: D_{i}\right)$ iff $d_{i}[j] \in \mathcal{R}$
2.2 remove expression $e[j]$ from an occurrence $X_{k}(e)$ in ϕ_{i} iff $d_{k}[j] \in \mathcal{R}$

Theorem (Redundancy)

The modified equation system \mathcal{E} has the "same" solution as \mathcal{E}, i.e., the solution of a variable X does not depend on the parameters that have been identified as positively redundant.

PBES Manipulation

Example

- $\nu X(b: B o o l, n: N a t)=b \wedge X(b, n+1)$ has solution $f=\{(c, v) \in$ Bool \times Nat $\mid c=$ true $\}$
- $\nu X(b: B o o l)=b \wedge X(b)$ has solution $g=\{c \in$ Bool $\mid c=$ true $\}$
- For all $c \in$ Bool, $v \in$ Nat, $(c, v) \in f$ iff $c \in g$.

Outline

Exercise

Exercise

Consider the lossy channel system described by the following LPE:

$$
\begin{aligned}
C(b: \text { Bool }, m: M) & =\sum_{k: M} b \longrightarrow r(k) \cdot C(\text { false }, k) \\
& +\neg b \longrightarrow s(m) \cdot C(\text { true }, m) \\
& +\neg b \longrightarrow I \cdot C(\text { true }, m)
\end{aligned}
$$

Action r stands for reading, s stands for sending and $/$ stands for losing a message.

1. νX. $([$ true $] X \wedge(\mu Y .[/] Y \wedge \forall m: M .[r(m)] Y \wedge\langle$ true \rangle true $))$
2. $\nu X . \mu Y . \nu Z .(\forall m: M \cdot[s(m)] X) \wedge((\forall m: M .[s(m)] f a l s e) \vee([/] Y \wedge \forall m: M \cdot[r(m)] Y)) \wedge$ $[l] Z \wedge \forall m: M \cdot[r(m)] Z$

Questions:

- Translate both formulae to PBESs given process C (true, m_{0})
- Use instantiation to compute BESs when $M=$ Bool, and solve the BES ($m_{0}=$ true)
- Can you remove redundant parameters? If so, remove these redundant parameters and try instantiation to compute a BES when $M=\operatorname{Nat}\left(m_{0}=0\right)$

