Algorithms for Model Checking (2IW55)

Lecture 2

Symbolic Model Checking for CTL ("Model Checking", Chapter 2, 6.1, 6.2. Also read Chapter 5.)

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw MF 7.073

Fixed Points

Fixed Point Algorithm for CTL

Symbolic Model Checking

Model checking complexity:

- ▶ In general, there are infinitely many states and transitions.
- Many of the states behave very similarly (e.g. the start value of some variables may not matter)
- ▶ We're interested in an algorithm that can benefit from this.

Consider a Kripke Structure $M = \langle S, R, L \rangle$

In what follows, we (temporarily) ignore the difference between syntax and semantics

- Identify sets of states and predicates on states
- So, two notations are often mixed:
 - subsets: $X \subseteq S$ or $X \in \mathcal{P}(S)$, versus
 - predicates: $X \in 2^S$ or $X : S \to \{0, 1\}$
 - $s \in X \Leftrightarrow X(s) = 1 \text{ and } s \notin X \Leftrightarrow X(s) = 0$
- ▶ In general: we identify CTL formulae with the set of states where they hold: f versus $\{s \mid s \models f\}$
- ▶ We freely mix \lor , \land and \cup , \cap : compare $\emptyset \cup E G f$ and false $\lor E G f$

Predicate Transformers and Monotonicity

Consider a Kripke Structure $M = \langle S, R, L \rangle$

- ▶ The set $(\mathcal{P}(S), \subseteq)$ is a complete lattice.
- ► A predicate transformer is a function on predicates. For example, the relations *Pre* and *Post* that lift the transition relation *R* to sets of states:

$$Pre_{R}(X) = \{ s \in S \mid \exists t \in X. \ s \ R \ t \}$$

$$Post_{R}(X) = \{ t \in S \mid \exists s \in X. \ s \ R \ t \}$$

- ▶ Let $\tau : \mathcal{P}(S) \to \mathcal{P}(S)$ be an arbitrary predicate transformer.
- ▶ τ is monotonic iff $P \subseteq Q$ implies $\tau(P) \subseteq \tau(Q)$.
- We write $\tau^i(X)$ for applying τ i times to X:

$$\begin{cases}
\tau^{0}(X) = X \\
\tau^{i+1}(X) = \tau(\tau^{i}(X))
\end{cases}$$

Let $\tau: \mathcal{P}(S) \to \mathcal{P}(S)$.

- ▶ A fixed point of τ is a set Z such that $\tau(Z) = Z$
- ▶ The least fixed point of τ , denoted $\mu X.\tau(X)$ is a set Z such that:
 - Z = τ(Z) (i.e. Z is a fixed point)
 for all X, if τ(X) = X, then Z ⊆ X
- ► The greatest fixed point of τ , denoted $\nu X.\tau(X)$ is a set Z such that:
 - $Z = \tau(Z)$ (i.e. Z is a fixed point)
 - for all X, if $\tau(X) = X$, then $X \subseteq Z$

A theorem by Tarski: a monotonic operator on $\mathcal{P}(S)$ always has least and greatest fixed points:

- $\mu Z.\tau(Z) = \bigcap \{X \mid \tau(X) \subseteq X\}$

Assume now that:

- ▶ S (hence also $\mathcal{P}(S)$) is finite, and
- $au: \mathcal{P}(S) \to \mathcal{P}(S)$ is monotonic

Then:

- 1. $\forall i.\tau^i(\emptyset) \subseteq \tau^{i+1}(\emptyset)$ (induction on i and monotonicity) 2. There exists an i such that $\tau^i(\emptyset) = \tau^{i+1}(\emptyset)$ (sets become bigger and S is finite)
- 3. If $\tau^i(\emptyset) = \tau^{i+1}(\emptyset)$, then $\tau^i(\emptyset)$ is a fixed point of τ (by definition)
- 3. If $\tau^*(\emptyset) = \tau^{r-1}(\emptyset)$, then $\tau^*(\emptyset)$ is a fixed point of τ (by definition) 4. If X is a fixed point of τ , then $\forall i.\tau^i(\emptyset) \subseteq X$ (induction on i and monotonicity)

So an approximant τ^i can be found such that $\tau^i(\emptyset) = \tau^{i+1}(\emptyset)$, and this set is the least fixed point of τ .

Similarly, the smallest i such that $\tau^i(S) = \tau^{i+1}(S)$ yields the greatest fixed point.

Algorithms for computing the least fixed point and the greatest fixed point based on the observations on the previous slide.

```
\begin{array}{l} \text{function } \mathsf{lfp}(\tau : \mathcal{P}(S) \! \to \! \mathcal{P}(S)) : \; \mathcal{P}(S) \\ Q := \emptyset; \\ Q' := \tau(Q); \\ \mathsf{while} \; Q \neq Q' \; \mathsf{do} \\ Q := Q'; \\ Q' := \tau(Q'); \\ \mathsf{end} \; \mathsf{while} \\ \mathsf{return} \; Q; \\ \mathsf{end} \; \mathsf{function} \end{array}
```

```
function \operatorname{gfp}(\tau:\mathcal{P}(S) \to \mathcal{P}(S)): \mathcal{P}(S)
Q := S;
Q' := \tau(Q);
while Q \neq Q' do
Q := Q';
Q' := \tau(Q');
end while
\operatorname{return} \ Q;
end function
```

Fixed Points

Fixed Point Algorithm for CTL

Symbolic Model Checking

Recall that CTL has the following ten temporal operators:

- ► A X and E X : for all/some next state
- ► A F and E F : inevitably and potentially
- ▶ A G and E G : invariantly and potentially always
- ► A [U] and E [U]: for all/some paths, until
- \blacktriangleright A [R] and E [R]: for all/some paths, releases

Besides atomic propositions (AP), the constant true and the Boolean connectives (\neg, \lor) , the following temporal operators are sufficient: E X , E G , E [U].

Hence: only algorithms for computing formulae of the above form are needed.

CTL operators can be seen as fixed point operators. Fix a Kripke Structure $M = \langle S, R, L \rangle$. Identify a CTL formula f with predicate $\{s \mid s \models f\}$.

- ▶ A X $f = \neg E X \neg f$ and E X $f = Pre_R(f)$
- ▶ A F $f = \mu Z.f \cup A X Z$ and E F $f = \mu Z.f \cup E X Z$
- ▶ A G $f = \nu Z.f \cap A X Z$ and E G $f = \nu Z.f \cap E X Z$
- $\blacktriangleright \mathsf{E} [f \mathsf{U} g] = \mu \mathsf{Z}.g \cup (f \cap \mathsf{E} \mathsf{X} \mathsf{Z})$

Intuition:

- least and greatest fixed points deal differently with loops:
 - Greatest fixed point: recursion includes loops, so possibly infinitely many "steps"
 - Least fixed point: finite recursion through loops, so only finitely many "steps"
- ► Globally greatest fixed points (an infinite path without error is OK)

Proof obligations for E G:

- 1. The transformer $Z \mapsto f \land E \ X \ Z$ is monotonic, so its fixed point can be computed by iteration, see Ifp and gfp (If $Z_1 \subseteq Z_2$ then $f \land E \ X \ Z_1 \subseteq f \land E \ X \ Z_2$).
- 2. E G f is a fixed point of $Z \mapsto f \land E X Z$ (E G $f = f \land E X E G f$)
- 3. E G f is the largest such fixed point (for all Z: if $Z = f \land E X Z$, then $Z \subseteq E G f$)
- ▶ For 1,2,3: prove $X \subseteq Y$ by $\forall s.s \in X \Rightarrow s \in Y$.
- ▶ For 2: prove \subseteq and \supseteq .
- ▶ For 2,3: use the semantics of CTL-formulae

Proof obligations for E [U] are similar (see for yourself)

Proofs for (2):

 $\mathsf{E} \; \mathsf{G} \; f = f \wedge \mathsf{E} \; \mathsf{X} \; \mathsf{E} \; \mathsf{G} \; f$ follows from:

▶ "⊆". Let $s \in E G f$. Then $\exists \pi \in \mathsf{path}(s) : \forall i : \pi^i \models f$. Let π be such a path starting in s. We have

$$\pi^0 \models f$$
 (a)

$$\forall j: \pi^{j+1} \models f$$
 (b)

Since f is a state formula (we are in the CTL fragment), from (a) we conclude $s \models f$. By definition, from (b) we conclude $\pi^1 \models G f$. Hence $\pi^1(0) \models E G f$. Since $sR\pi^1(0)$, we have $s \models E X E G f$. Thus $s \in f \land E X E G f$.

▶ " \supseteq ". Let $s \in f \land E X E G f$. Then $s \in f$ and sRt for some $t \in E G f$. But then also $s \in E G f$.

Proofs sketches for (3):

Let
$$\tau(Z) = f \wedge E \times Z$$
. We show that $E G f = \bigcap_i \tau^i(S)$ by proving both inclusions.

- " \subseteq ". By means of an induction on i. Clearly E G $f \subseteq S = \tau^0(S)$. Assume E G $f \subseteq \tau^i(S)$. Then by monotonicity, we have $\tau(\mathsf{E} \mathsf{G} f) \subseteq \tau^{i+1}(S)$. Since E G f is a fixpoint of τ , we have $\tau(\mathsf{E} \mathsf{G} f) = \mathsf{E} \mathsf{G} f$. So E G $f \subseteq \tau^{i+1}(S)$.
- ▶ "⊇". Let $s \in \bigcap_i \tau^i(S)$. Observe that since S is finite and τ is monotonic, $\tau^k(S) = \tau^{k+1}(S)$ for some k, and $\tau^l(S) \supseteq \tau^k(S)$ for all $l \le k$. Then, for every $s \in \tau^k(S)$, we have (by definition of τ) $s \in f$ and $s \in E \times \tau^k(S)$. So, for all $t \in \tau^k(S)$, we have tRu for some $u \in \tau^k(S)$. Therefore, there must be some infinite path starting in s, satisfying f. Thus, $s \in E \setminus G \setminus f$.

CTL model checking with Fixed Points

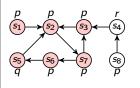
Function check(f) takes a formula f and returns the set of states where f holds: $\{s \mid s \models f\}$ (given a fixed Kripke Structure $M = \langle S, R, L \rangle$).

$$\begin{array}{lll} \operatorname{check}(p) & \{s \mid p \in L(s)\} \\ \operatorname{check}(\neg f) & S \setminus \operatorname{check}(f) \\ \operatorname{check}(f \vee g) & \operatorname{check}(f) \cup \operatorname{check}(g) \\ \operatorname{check}(E \mid X \mid f) & Pre_R(\operatorname{check}(f)) \\ \operatorname{check}(E \mid f \mid U \mid g)] & \operatorname{lfp}(Z \mapsto \operatorname{check}(g) \cup (\operatorname{check}(f) \cap Pre_R(Z)))) \\ \operatorname{check}(E \mid G \mid f) & \operatorname{gfp}(Z \mapsto \operatorname{check}(f) \cap Pre_R(Z)) \end{array}$$

Recall: $Pre_R(Z) = \{s \in S \mid \exists t \in Z.s \ R \ t\}$

Example

- ▶ To check: E [p U q]
- ► Compute: $\mu Z.q \lor (p \land E X Z)$ (with lfp)



$$\begin{split} Z_0 &= \mathsf{false} = \emptyset \\ Z_1 &= q \lor (p \land \mathsf{E} \; \mathsf{X} \; Z_0) = \{s_5\} \\ Z_2 &= q \lor (p \land \mathsf{E} \; \mathsf{X} \; Z_1) = \{s_5, s_6\} \\ Z_3 &= q \lor (p \land \mathsf{E} \; \mathsf{X} \; Z_2) = \{s_5, s_6, s_7\} \\ Z_4 &= q \lor (p \land \mathsf{E} \; \mathsf{X} \; Z_3) = \{s_2, s_5, s_6, s_7\} \\ Z_5 &= q \lor (p \land \mathsf{E} \; \mathsf{X} \; Z_4) = \{s_1, s_2, s_3, s_5, s_6, s_7\} \\ Z_6 &= q \lor (p \land \mathsf{E} \; \mathsf{X} \; Z_4) = \{s_1, s_2, s_3, s_5, s_6, s_7\} \end{split}$$

 $Z_5 = Z_6$, so this is the least fixed point.

Fixed Point

Fixed Point Algorithm for CTL

Symbolic Model Checking

Example (GCD)

Consider the following program:

```
repeat

if x > y - > x := x - y;

[]x < y - > y := y - x;

fi

until false
```

This program uses:

- ▶ variables: $\{x, y\}$, with an (implicit) domain of variables: \mathbb{N}
- ▶ States of this program are functions of type: $\{x, y\} \to \mathbb{N}$
- An example state could be: $\{x \mapsto 5, y \mapsto 15\}$
- ► An execution is a sequence of transitions: e.g.

$$\{x \mapsto 5, y \mapsto 15\} \rightarrow \{x \mapsto 5, y \mapsto 10\} \rightarrow \{x \mapsto 5, y \mapsto 5\} \rightarrow \{x \mapsto 5, y \mapsto 5\} \rightarrow \dots$$

Example (SWAP)

Consider the following program fragment:

```
z := x; % | 1

x := y; % | 2

y := z; % | 3
```

- ▶ Besides variables x, y, z : \mathbb{N} , this program has a program counter, whose values are labels (line numbers)
- Let $pc: \{l_1, l_2, l_3\}$. Now, a state is a function that gives a value to $\{x, y, z, pc\}$
- ► A possible execution is the following sequence:

$$\{x \mapsto 5, y \mapsto 15, z \mapsto 500, pc \mapsto l_1\}$$

$$\rightarrow \{x \mapsto 5, y \mapsto 15, z \mapsto 5, pc \mapsto l_2\}$$

$$\rightarrow \{x \mapsto 15, y \mapsto 15, z \mapsto 5, pc \mapsto l_3\}$$

$$\rightarrow \{x \mapsto 15, y \mapsto 5, z \mapsto 5, pc \mapsto l_4\}$$

Idea: the set of states can be represented very concisely by a number of formulae

- ▶ for GCD:
 - initial set of states: $x < 100 \land y < 100$
 - · next state predicate:

$$(x > y \wedge x' = x - y \wedge y' = y) \vee (x < y \wedge y' = y - x \wedge x' = x)$$

- for SWAP:
 - initial states: $x = 5 \land y = 15$
 - next state predicate:

$$(pc = l_1 \wedge pc' = l_2 \wedge z' = x \wedge ...) \vee ...$$

The system specification is represented by propositional logic formula

- Let V be a set of variables $v_0, v_1, ..., v_n$
- Let D be the domain of these variables
- ▶ The states of the Kripke Structure will be functions $v: V \to D$
- ▶ A formula $S_0(V)$ represents the initial states
- Let V' be a copy of the variables in $V: v'_0, v'_1, ..., v'_n$
- ▶ A formula $\mathcal{R}(V, V')$ represents the transition relation.
 - V denotes the value of the variables before the transition
 - ullet V^\prime denotes the value of the variables after the transition.

Example

- ▶ $V = \{TL_1, TL_2\},$
- $D = \{r(ed), y(ellow), g(reen)\}$
- \triangleright $S_0(TL_1, TL_2) := TL_1 = r \land TL_2 = r$
- ▶ $\mathcal{R}(TL_1, TL_2, TL'_1, TL'_2) := R_1 \vee R_2 \vee R_3 \vee R_4 \vee R_5 \vee R_6$, where:
 - $R_1 := TL_1 = r \wedge TL'_1 = g \wedge TL'_2 = TL_2$
 - $R_2^1 := TL_1^1 = g \wedge TL_1^{7} = y \wedge TL_2^{7} = TL_2$
 - $R_3 := TL_1 = y \wedge TL_1^T = r \wedge TL_2^T = TL_2$
 - $R_4 := TL_2 = r \wedge TL_2^{1} = g \wedge TL_1^{2} = TL_1$
 - $R_5 := TL_2 = g \wedge TL'_2 = y \wedge TL'_1 = TL_1$
 - $R_6 := TL_2 = y \land TL_2' = y \land TL_1' = TL_1$
 - $R_6 := IL_2 = y \wedge IL_2 = r \wedge IL_1 = IL_1$

Notes:

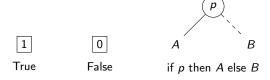
- this corresponds to a Kripke Structure modelling an unsafe traffic light system at a junction
- ▶ a specification for *n* traffic lights gives $O(3^n)$ states \Rightarrow State space explosion

We wish to avoid representing the state space and its subsets explicitly. To efficiently implement symbolic model checking, we need:

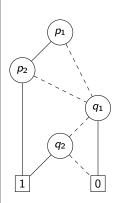
- ► A concise representation of sets of states
- Quick operations for:
 - Boolean operators ∧, ∨, ¬
 - Existential quantification (for the relational composition)
 - Equivalence test

Solution: Ordered Binary Decision Diagrams (OBDD)

- Symbolic model checking is restricted to finite Kripke Structures
- ► All finite data can be encoded in "bits"
- Boolean functions can be represented concisely as (Ordered) Binary Decision Diagrams
- ▶ Binary Decision Diagrams are directed acyclic graphs, with the following ingredients:



BDD representation of $(p_1 \wedge p_2) \vee (\neg q_1 \wedge q_2)$:



- ▶ In ordered BDDs, tests along a path occur in a fixed order (e.g. $p_1 < p_2 < q_1 < q_2$).
- ► Theorem[Bryant'86]: OBDDs are a unique representation for Boolean Functions.
- Claim: many practical formulae have a concise OBDD representation due to maximal sharing
- Disclaimer 1: some small formulae have only exponentially large BDDs. (multiplier)
- Disclaimer 2: the size of an OBDD can crucially depend on the ordering of the variables

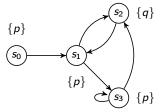
More on OBDDs:

- ▶ OBDDs are implemented as maximally shared pointer structures in memory.
- ► The order of variables is fixed (some implementations feature dynamic reordering)
- ► Equivalence test can be performed in constant time, in particular, also checking for satisfiability and tautology.
- ▶ Boolean operations can be performed efficiently. Let B_1 and B_2 be OBDDs with m and n nodes, respectively, then:
 - OBDDs for $B_1 \wedge B_2$ and $B_1 \vee B_2$ can be computed in $\mathcal{O}(m \cdot n)$ time.
 - OBDDs for $\neg B_1$ can be computed in $\mathcal{O}(m)$ time.
 - the OBDD of $\exists x.B_1$ can be computed in $\mathcal{O}(m^2)$ time.
- ▶ Note: still a formula of size $\mathcal{O}(n)$ may have a BDD of size $\mathcal{O}(2^n)$.

Attend Automated Reasoning (2IW15) for more information on OBDDs (Semester A.2).

- ► The implementation of a symbolic model checking relies on a representation of all sets in check, Ifp and gfp by OBDDs.
- ► Hence, in summary, symbolic model checking:
 - Recursively processes subformulae
 - Represent the set of states satisfying a subformula by OBDDs
 - Treats temporal operators by fixed point computations
 - Relies on efficient implementation of equivalence test, and ∧, ∨, ¬ and ∃ connectives on OBDDs.

Consider the following Kripke Structure:



Consider the following formulae, where p and q are atomic propositions:

- (A) A(F(q))(B) A[q R p]

Determine the set of states where (A) and (B) hold using the symbolic model checking algorithm for CTL . You may use explicit set notation to represents states.

