Algorithms for Model Checking (2IW55)
 Lecture 3
 Symbolic Model Checking: Fairness and Counterexamples Chapter 6.3, 6.4.

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 7.073

Outline

Symbolic Model Checking

Symbolic Model Checking

In summary, symbolic model checking:

- Recursively processes subformulae
- Represent the set of states satisfying a subformula by OBDDs
- Treats temporal operators by fixed point computations
- Relies on efficient implementation of equivalence test, and \wedge, \vee, \neg and \exists connectives on OBDDs.

Symbolic Model Checking

Fix a Kripke Structure $M=\langle S, R, L\rangle$.

The temporal operators of CTL are characterised by fixed points:

- EFg= $\mu Z . g \vee E \times Z$
- EGf= $f=f \wedge \mathrm{EXZ}$
- $\mathrm{E}[f \cup g]=\mu Z . g \vee(f \wedge \mathrm{EXZ})$
- Least Fixed Points: start iteration at false (\emptyset)
- Greatest Fixed Points: start iteration at true (S)

Intuition:

- Eventually
least fixed points
- Globally greatest fixed points

Symbolic Model Checking

CTL model checking with Fixed Points

Function check (f) takes a formula f and returns the set of states where f holds: $\{s \mid s \models f\}$ (given a fixed Kripke Structure $M=\langle S, R, L\rangle$).

```
check(p) {s|p\inL(s)}
check(\negf) S\\operatorname{check(f)}
check(f }\veeg)\quad\operatorname{check}(f)\cup\operatorname{check}(g
check(EXf) PreR(check(f))
check(E [f U g]) Ifp(Z\mapsto\operatorname{check}(g)\cup(\operatorname{check}(f)\cap\mp@subsup{\operatorname{Pre}}{R}{}(Z))))
check(E G f) gfp(Z\mapsto\operatorname{check}(f)\cap\mp@subsup{\operatorname{Preg}}{R}{}(Z))
```

Recall: $\operatorname{PreR}(Z)=\{s \in S \mid \exists t \in Z . s R t\}$

Example: demanding children

- Atomic Propositions: EP, EQ, EA, LP, LQ, LA
- Intended meaning: Linus or Emma is either Playing, posing Questions, getting Answers

Requirement: Whenever Linus asks a question, he eventually gets an answer Formula: A G $(L Q \rightarrow$ A F $L A)$

Example: demanding children

- Atomic Propositions: EP, EQ, EA, LP, LQ, LA
- Intended meaning: Linus or Emma is either Playing, posing Questions, getting Answers
- Step 1: express using basic operators

$$
\begin{aligned}
& \mathrm{AG}(L Q \rightarrow \mathrm{~A} \mathrm{~F} L A) \\
\equiv & \neg \mathrm{E}[\text { true } \mathrm{U} \neg(\neg L Q \vee \neg \mathrm{E} \mathrm{G} \neg L A)] \\
\equiv & \neg \mathrm{E}[\text { true } \cup(L Q \wedge \mathrm{E} \mathrm{G} \neg L A)] \\
\equiv & \neg \mu Y .((L Q \wedge \mathrm{E} \mathrm{G} \neg L A) \cup \mathrm{E} \times Y)
\end{aligned}
$$

Example: demanding children

- Step 2: compute check(E G \neg LA), i.e., compute $\nu Z .(\neg L A \wedge E X Z)$.

Example: demanding children

- Step 2: compute check(E G \neg LA), i.e., compute $\nu Z .(\neg L A \wedge E X Z)$.
- Greatest fixpoint, so start with approximating from true (i.e. all states)

Example: demanding children

- Step 2: compute check(E G \neg LA), i.e., compute $\nu Z .(\neg L A \wedge E X Z)$.
- Greatest fixpoint, so start with approximating from true (i.e. all states)
- Stable at $\left\{s_{00}, s_{10}, s_{20}, s_{01}, s_{11}, s_{21}\right\}$

Example: demanding children

- Step 3: compute $L Q \wedge \mathrm{E} G \neg L A$

Example: demanding children

- Step 3: compute $L Q \wedge \mathrm{E} G \neg L A$
- $L Q \wedge E \mathrm{E} \neg L A$ holds in $\left\{s_{01}, s_{11}, s_{21}\right\}$

Example: demanding children

- Step 3: compute $L Q \wedge E G \neg L A$
- $L Q \wedge E G \neg L A$ holds in $\left\{s_{01}, s_{11}, s_{21}\right\}$
- Step 4: compute $\mu Y .((L Q \wedge E G \neg L A) \cup E X Y)$

Example: demanding children

- Step 3: compute $L Q \wedge E G \neg L A$
- $L Q \wedge E G \neg L A$ holds in $\left\{s_{01}, s_{11}, s_{21}\right\}$
- Step 4: compute $\mu Y .((L Q \wedge E G \neg L A) \cup E X Y)$
- Least fixpoint, so start with approximating from false (i.e. no states)

Example: demanding children

- Step 3: compute $L Q \wedge E G \neg L A$
- $L Q \wedge E G \neg L A$ holds in $\left\{s_{01}, s_{11}, s_{21}\right\}$
- Step 4: compute $\mu Y .((L Q \wedge E G \neg L A) \cup E X Y)$
- Least fixpoint, so start with approximating from false (i.e. no states)
- Add states that satisfy $L Q \wedge E G \neg L A$

Example: demanding children

- Step 3: compute $L Q \wedge E G \neg L A$
- $L Q \wedge E G \neg L A$ holds in $\left\{s_{01}, s_{11}, s_{21}\right\}$
- Step 4: compute $\mu Y .((L Q \wedge E G \neg L A) \cup E X Y)$
- Least fixpoint, so start with approximating from false (i.e. no states)
- Add states that satisfy $L Q \wedge E G \neg L A$ and states that go there...

Example: demanding children

- Step 3: compute $L Q \wedge E G \neg L A$
- $L Q \wedge E G \neg L A$ holds in $\left\{s_{01}, s_{11}, s_{21}\right\}$
- Step 4: compute $\mu Y .((L Q \wedge E G \neg L A) \cup E X Y)$
- Least fixpoint, so start with approximating from false (i.e. no states)
- Add states that satisfy $L Q \wedge E G \neg L A$ and states that go there...and again...

Example: demanding children

- Step 3: compute $L Q \wedge E G \neg L A$
- $L Q \wedge E G \neg L A$ holds in $\left\{s_{01}, s_{11}, s_{21}\right\}$
- Step 4: compute μY. ($(L Q \wedge E G \neg L A) \cup E X Y)$
- Least fixpoint, so start with approximating from false (i.e. no states)
- Add states that satisfy $L Q \wedge E \mathrm{G} \neg L A$ and states that go there...and again...
- Step 5: compute negation of $\mu Y .((L Q \wedge E G \neg L A) \cup E X Y)$
- μY.($(L Q \wedge E G \neg L A) \cup E X Y)$ holds everywhere

Example: demanding children

- Step 3: compute $L Q \wedge E G \neg L A$
- $L Q \wedge E G \neg L A$ holds in $\left\{s_{01}, s_{11}, s_{21}\right\}$
- Step 4: compute $\mu Y .((L Q \wedge E G \neg L A) \cup E X Y)$
- Least fixpoint, so start with approximating from false (i.e. no states)
- Add states that satisfy $L Q \wedge E \mathrm{G} \neg L A$ and states that go there...and again...
- Step 5: compute negation of $\mu Y .((L Q \wedge E G \neg L A) \cup E X Y)$
- μY. ($(Q \wedge \wedge \mathrm{E} G \neg L A) \cup E X Y)$ holds everywhere
- $\neg \mu Y .((L Q \wedge E G \neg L A) \cup E X Y)$ holds nowhere

Example: demanding children

- Step 3: compute $L Q \wedge E G \neg L A$
- $L Q \wedge E G \neg L A$ holds in $\left\{s_{01}, s_{11}, s_{21}\right\}$
- Step 4: compute μY. ($(L Q \wedge E G \neg L A) \cup E X Y)$
- Least fixpoint, so start with approximating from false (i.e. no states)
- Add states that satisfy $L Q \wedge E \mathrm{G} \neg L A$ and states that go there...and again...
- Step 5: compute negation of $\mu Y .((L Q \wedge E G \neg L A) \cup E X Y)$
- μY. ($(Q Q \wedge \mathrm{E} G \neg L A) \cup E X Y)$ holds everywhere
- $\neg \mu Y$. $((L Q \wedge E G \neg L A) \cup E X Y)$ holds nowhere \leftarrow ANSWER

Example: demanding children

Conclusion:

- So, A G $(L Q \rightarrow$ A F LA) holds in no state
- The requirement does not hold for the full Kripke Structure
- Why? Because in this case, there is a path in which only Emma progresses while Linus is not being served.
- Next, we look at the Kripke Structure with Fairness Constraints

Outline

Temporal Logics: Fairness

Sometimes properties are violated by "unrealistic" paths only, for instance due to a scheduler. In this case, one may wish to restrict to fair paths.

A Kripke Structure over $A P$ with fairness constraints is a structure $M=\langle S, R, L, F\rangle$, where:

- $\langle S, R, L\rangle$ is an "ordinary" Kripke Structure as before
- $F \subseteq 2^{S}$ is a set of fairness constraints

A path is fair if it "hits" each fairness constraint infinitely often:
fair (π) iff $\forall C \in F .\{i \mid \pi(i) \in C\}$ is an infinite set

Temporal Logics: Fairness

In CTL* with fairness semantics $\left(\models_{F}\right)$, only fair paths will be considered.

Given a fixed Kripke Structure with fairness constraints $M=\langle S, R, L, F\rangle, s \neq F f$ means: formula f holds in state s in the fair CTL* semantics.

The definition of \models_{F} coincides with \vDash except for the following four clauses:

$$
\begin{array}{lll}
s \models_{F} \text { true } & \text { iff } & \text { there is some fair path starting in } s \\
s=_{F} p & \text { iff } & p \in L(s) \text { and there is some fair path starting in } s \\
s \models_{F} \text { A } f & \text { iff } & \text { for all fair paths } \pi \text { starting in } s, \text { we have } \pi \models_{F} f \\
s \models_{F} E f & \text { iff } & \text { for some fair path } \pi \text { starting in } s \text {, we have } \pi \models_{F} f
\end{array}
$$

Temporal Logics: Fairness

- To exclude runs in which one child gets all attention, we want that both $\neg E Q$ as well as $\neg L Q$ hold infinitely often
- fairness constraints ensuring this: $F=\left\{\left\{s_{00}, s_{01}, s_{02}, s_{20}, s_{21}\right\},\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\}\right\}$
- Check whether A G $(L Q \rightarrow$ A F $L A)$ holds fairly!

Outline

Fair Symbolic Model Checking

Fair Symbolic Model Checking

Fix a fair Kripke Structure $M=\left\langle S, R, L,\left\{F_{1}, \ldots, F_{n}\right\}\right\rangle$

Recall that a fair path infinitely often hits some state from each fairness constraint F_{i}

- First, note that in fair CTL (with \models_{F}),

$$
\mathrm{E} G f \equiv f \wedge \bigwedge_{k=1}^{n} \mathrm{EXE}\left[f \cup\left(F_{k} \wedge \mathrm{EG} f\right)\right] \quad(\text { prove } \subseteq \text { and } \supseteq)
$$

- Next, if

$$
Z \equiv f \wedge \bigwedge_{k=1}^{n} \mathrm{EXE}\left[f \cup\left(F_{k} \wedge Z\right)\right]
$$

Then $Z \subseteq \mathrm{E} G f$ (construct a path cycling through F_{1}, \ldots, F_{n})

- Hence, we found:

$$
\mathrm{EG} f \equiv \nu Z . f \wedge \bigwedge_{k=1}^{n} \mathrm{EXE}\left[f \cup\left(F_{k} \wedge Z\right)\right]
$$

Fair Symbolic Model Checking

The equivalence

$$
\mathrm{EG} f \equiv \nu Z . f \wedge \bigwedge_{k=1}^{n} \mathrm{EXE}\left[f \mathrm{U}\left(F_{k} \wedge Z\right)\right]
$$

leads to the following algorithm:

$$
\operatorname{check}_{F}(\mathrm{E} G f) \quad \operatorname{gfp}\left(Z \mapsto \operatorname{check}\left(f \wedge \bigwedge_{k=1}^{n} \mathrm{E} X\left(\mathrm{E}\left[f \cup\left(F_{k} \wedge Z\right)\right]\right)\right)\right.
$$

So, in the greatest fixed point computation for E G, we perform nested least fixed point computations to compute E [U].

Next, we can compute an OBDD fair $:=$ check $_{F}(E G$ true). The remaining temporal operators can then be encoded as follows:

$$
\begin{array}{ll}
\operatorname{check}_{F}(E \times f) & \operatorname{check}(E \times(f \wedge \text { fair })) \\
\operatorname{check}_{F}(E[f \cup g]) & \operatorname{check}(E[f \cup(g \wedge \text { fair })]) \\
\hline
\end{array}
$$

Fair Symbolic Model Checking

Example

- To check: $\mathrm{E}[p \mathrm{U}$]
- Fairness constraint: $\{\neg r\}$
- Compute fair $:=\operatorname{check}_{F}(E$ G true $)(=S)$
- Compute: $\mu Z .(q \wedge$ fair $) \vee(p \wedge E X Z)$ (with Ifp)

$$
\begin{aligned}
& Z_{0}=\text { false }=\emptyset \\
& Z_{1}=q \vee\left(p \wedge E \times Z_{0}\right)=\left\{s_{5}\right\} \\
& Z_{2}=q \vee\left(p \wedge E \times Z_{1}\right)=\left\{s_{5}, s_{6}\right\} \\
& Z_{3}=q \vee\left(p \wedge E \times Z_{2}\right)=\left\{s_{5}, s_{6}, s_{7}\right\} \\
& Z_{4}=q \vee\left(p \wedge E \times Z_{3}\right)=\left\{s_{2}, s_{5}, s_{6}, s_{7}\right\} \\
& Z_{5}=q \vee\left(p \wedge E \times Z_{4}\right)=\left\{s_{1}, s_{2}, s_{3}, s_{5}, s_{6}, s_{7}\right\} \\
& Z_{6}=q \vee\left(p \wedge E \times Z_{5}\right)=\left\{s_{1}, s_{2}, s_{3}, s_{5}, s_{6}, s_{7}\right\}
\end{aligned}
$$

$Z_{5}=Z_{6}$, so this is the least fixed point.

Outline

Counterexamples and Witnesses

- Motivation:
- In practice, a model checker is often used as an extended debugger
- If a bug is found, the model checker should provide a particular trace, which shows it
- A formula with a universal path quantifier has a counterexample consisting of one trace
- A formula with an existential path quantifier has a witness consisting of one trace
- Due to the dualities in CTL, we only have to consider:
- a finite trace witnessing $\mathrm{E}[f \mathrm{U} g$]
- an infinite trace witnessing E G f; for finite systems, the latter is a so-called lasso, consisting of a prefix and a loop
- For fair counter examples we require that the loop contains a state from each fairness constraint
- $\mathrm{E}[f \cup g]=\mu Z . g \vee(f \wedge \mathrm{EXZ})$
- Unfolding the recursion, we get:

$$
\begin{aligned}
& Z_{0}=\text { false } \\
& Z_{1}=g \\
& Z_{2}=g \vee(f \wedge E \times g) \\
& Z_{3}=g \vee(f \wedge E \times(g \vee(f \wedge E \times g)))
\end{aligned}
$$

- So, the fixed point computation corresponds to a backward reachability analysis
- Z_{i} contains those states that can reach g in at most $i-1$ steps (and f holds in between).
- Assume $s_{0} \models \mathrm{E}[f \cup g]$. To find a minimal witness from state s_{0}, we start in the smallest N such that $s_{0} \in Z_{N}$.
- For $i \in 1, \ldots, N-1$, we define s_{i} to be a state in Z_{N-i} satisfying $s_{i-1} R s_{i}$.

Counterexamples and Witnesses - Witnesses for fair E G

- We want an initial path to a cycle on which each fairness constraint $\left\{F_{1}, \ldots, F_{n}\right\}$ occurs (i.e. the cycle must contain at least one state from all F_{i}).
- $\mathrm{EG} f=\nu Z . f \wedge \bigwedge_{k=1}^{n} \mathrm{EX} \mathrm{E}\left[f \mathrm{U}\left(F_{k} \wedge Z\right)\right]$
- Unfolding the recursion, we get:

$$
\begin{aligned}
Z_{0} & =\text { true } \\
& \ldots \\
Z_{L} & =f \wedge \bigwedge_{k=1}^{n} E X E\left[f U\left(F_{k} \wedge Z_{L-1}\right)\right]
\end{aligned}
$$

- Let $Z:=Z_{L}=Z_{L-1}=\mathrm{E} G f$ be the fixed point
- To compute Z, we compute for each $k(1 \leq k \leq n), \mathrm{E}\left[f \cup\left(F_{k} \wedge Z\right)\right]$ using backward reachability. So, we have for each k the approximations: $Q_{0}^{k} \subseteq Q_{1}^{k} \subseteq Q_{2}^{k} \subseteq \ldots \subseteq Q_{j_{k}}^{k}$
- From the $\mathrm{E}\left[\mathrm{U}\right.$] case, recall that Q_{i}^{k} contains those states that can reach $F_{k} \wedge Z$ in at most i steps
- Assume $s_{0} \models_{F}$ E G f, hence, $s_{0} \in Z$
- We will now inductively construct a path $s_{0} \rightarrow^{*} s_{1} \rightarrow^{*} \ldots \rightarrow^{*} s_{n}$, such that:
- f holds along the whole path
- $s_{k} \in Z \wedge F_{k}$ (for $1 \leq k \leq n$)
- Observe: by induction $s_{k-1} \models Z$, so, by definition of Z : $s_{k-1} \models \mathrm{EX} \mathrm{E}\left[f \mathrm{U}\left(Z \wedge F_{k}\right)\right]$
- For $1 \leq k \leq n$ do:

1. Determine the minimal M such that s_{k-1} has a successor $t_{0}^{k} \in Q_{M}^{k}$.
2. Construct (as the witness for E [U]):

$$
s_{k-1} \rightarrow t_{0}^{k} \rightarrow \cdots \rightarrow t_{M}^{k} \in Z \wedge F_{k}
$$

3. Define $s_{k}:=t_{M}^{k}$.

- heuristic improvement: Visit the F_{k} in a different order: continue with the closest F_{k} that has not yet been visited.
- Finally, we must close the loop, but this is not always possible: Check if $\left.s_{n} \models \mathrm{EXE} \operatorname{f} \cup\left\{s_{1}\right\}\right]$.
- If so: the E [U]-witness closes the loop
- If not: the cycle cannot be closed. Hence:
- The sequence so far $s_{0} \rightarrow \cdots \rightarrow s_{n}$ is in the prefix of the lasso, not yet on the loop.
- Restart the whole procedure of the previous slide, now starting in $s_{n} \in Z$.
- Eventually, this process must terminate:
- We only restart if s_{n} cannot reach s_{1}
- so we moved to the next Strongly Connected Component
- The SCC graph cannot contain cycles
- Optimisation: By precomputing $\mathrm{E}\left[f \mathrm{U}\left\{s_{1}\right\}\right]$, one can detect earlier that closing the cycle will not be possible.

Outline

Exercise

Exercise

Example

- Check that $s_{1} \models_{F} \mathrm{E} G(p \vee q)$
- Fairness constraint: $\neg r$ and q
- Construct a witness for $s_{1} \models_{F} \mathrm{EG}(p \vee q)$

