Algorithms for Model Checking (2IW55)

Lecture 4
The u-Calculus
(Chapter 7 in Model Checking by Clarke, Grumberg & Peled)

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 7.073

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

pu-Calculus: syntax and semantics

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

u-Calculus: syntax and semantics

3/29

Recall: symbolic model checking for CTL was based on fixed points.

Idea of ji-calculus: add fixed point operators as primitives to basic modal logic.

» p-calculus is very expressive (subsumes CTL, LTL, CTL™).

> p-calculus is very pure (“assembly language” for modal logic, cf: A-calculus for
functional programming).

» drawback: lack of intuition.

» fragments of the u-calculus are the basis for practical model checkers, such as uCRL,
mCRL2, CADP, Concurrency Workbench.

CcTL”

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

u-Calculus: syntax and semantics

4/29

Kripke Structures and Labelled Transition Systems

Mix of Kripke Systems and Labelled Transition Systems: M = (S, Act, R, L) over a set AP
of atomic propositions:

> S is a set of states

> Act is a set of action labels

» R is a labelled transition relation: R C S x Actx S

» Lis a labelling: L € § — 24°
Notation: s 2 t denotes (s,a, t) € R

Special cases:

> Kripke Structures: Act is a singleton (only one transition relation)

> LTS (process algebra): AP is empty (only propositions true and false)

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

u-Calculus: syntax and semantics

Let the following sets be given:
» AP (atomic propositions),
» Act (action labels) and

> Var (formal variables).

The syntax of u-calculus formulae f, g is defined by the following grammar:
f.gu=true|p| X |f | fAg|[af | vX.f

Note:
» p€ AP, X € Var,a € Act.

> [a]f means “for all direct a-successors, f holds” (compare to CTL: A X f).

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

u-Calculus: syntax and semantics

6/29

Some notation and terminology:

> An occurrence of X is bound by a surrounding fixed point symbol vX. Unbound
occurrences of X are called free.

» A formula is closed if it has no free variables, otherwise it is called open

» An environment e interprets the free formal variables X as a set of states

* Mixed Kripke Structure M = (S, Act, R, L)
e e: Var— 25
e e[X := V] is an environment like e, but X is set to V:

% if Y =X
e[X == V](Y) := { e(Y) otherwise

» The semantics of a formula f is a set of states of a Mixed Kripke Structure

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

u-Calculus: syntax and semantics

Fix a system: M = (S, Act, R, L)

» [f]e denotes the set of states where f holds given context e : Var — 2°:

[truele = S

1218 = {slpels)}

Xl = e(X)

[-fle = S\I[fl.

[frgle = [flenlgle

[[a]fle = {s|Vt.s3t = te[fle}
[vX.fle = v(Z+ [flex=21)

Department of Mathematics and Computer Science

u-Calculus: syntax and semantics

Fix a system: M = (S, Act, R, L)

» [f]e denotes the set of states where f holds given context e : Var — 2°:

[truele = S

1218 = {slpels)}

Xl = e(X)

[-fle = S\I[fl.

[frgle = [flenlgle

[[a]fle = {s|Vt.s3t = te[fle}
[vX.fle = v(Z+ [flex=21)

» [vX.f]e requires monotonicity of [f]ex.—z).

» Syntactic Monotonicity Criterion: monotonicity is guaranteed if, in vX.f, formal
variable X occurs under an even number of negations (=) in f.

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

u-Calculus: syntax and semantics

7/29

Fix a system: M = (S, Act, R, L)

» [f]e denotes the set of states where f holds given context e : Var — 2°:

[truele = S

1218 = {slpels)}

Xl = e(X)

[-fle = S\Ifl.

[frgle = [flenlgle

[[a]fle = {s|Vt.s3t = te[fle}
[vX.fle = v(Z+ [flex=21)

> [vX.f]e requires monotonicity of [f]eix.=z]-

» Syntactic Monotonicity Criterion: monotonicity is guaranteed if, in vX.f, formal
variable X occurs under an even number of negations (=) in f.

The semantics immediately gives rise to a naive algorithm for model checking p-calculus
(compute gfp by iteration).

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

u-Calculus: Positive Normal Form

8/29

» Extend the grammar with the following shorthands with semantics:

false := —true [false]e = 0

fveg = =((=f)n(-g)) [fvele = [flevlel.

@f = —([a(~F)) [(afle = {s|3ts3tntel[fl}
pXf = AwXAf[X:=-X]) | [uXfle = w(Z= [flex=z)

» A p-calculus formula is in positive normal form if negations occur only in front of
propositions.

> Transform a formula into positive normal form by driving negations inward.

» Syntactic monotonicity prevents single negations in front of formal variables.

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Complexity

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Complexity of naive y-Calculus algorithm

» We check formula f with at most k nested fixed points on the Kripke Structure
M = (S, R, Act, L).
> In vXy. (@) (uXa. (X2 A h)V (a)X2):
. 'I_'h.e outermost (greatest) fixed point can decrease at most |S| times (recall that S is
. {Lnlttcft)al, the innermost fixed point of formula f is evaluated at most |S|? times.
> In general: the innermost fixed point of formula f is evaluated at most |S|¥ times.
> Each iteration requires up to |M| x |f]| steps.
» Total time complexity of naive algorithm: O((|S| + |R|) x |f] x |S|).
A more careful analysis will yield a more optimal treatment for nested fixed points of the
same type.

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

> Let Act = {a}:

* Every p is inevitably followed by a q: vXj. ((p = (pX2. gV [a]X2)) A [a]Xl)

> Special case: Xi does not occur within the scope of uXo.

» The last formula can therefore be evaluated “inside-out™

X? = false X2 = true

X = qvaxe X = (p=X) A X
X3 = qvlEX; | = X; = (p=X)A[alX]
X5 = qvaxs XE = (p= XE) A lalXE

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

A more difficult case

» Problem: the inner fixed point depends crucially on Xj.

Department of Mathematics and Computer Science

» On some path, h holds infinitely often: vX;. (a) (uXz. (X1 A h) V (a)X2)

X2 = true
X = false
Xt = (X2 Ah) Vv (a)XE°
X2 = (X2 Ah)v(a)XP*
X939 = (X2 Ah)V (a)X$¥
Xi = (a)x3
X3° = false
Xt = (X1 Ah)V(a)X3°
X3¢ = (X$ Ah)V(a)X3¥
X; = (a)X3*
Xy = (a)Xs¥

TU/e

Technische Universiteit
Eindhoven
University of Technology

The complexity of a u-calculus formula depends on the fixed points (analogue: the
complexity of first-order formulae depends on the universal/existential quantifiers and their
alternations)

» Basic idea: find a syntactic complexity measure that approaches the semantic
complexity

> Nesting Depth:
maximum number of nested fixed points in a positive normal form

ND(f) = 0 for f € {p,—p, X}
ND(@f) := ND(f) for @ € {[a], (a)}
ND(fOg) := max(ND(f),ND(g)) forOe {A,V}
ND(E X.f) := 1+ ND(f) for e {u, v}

> Example: ND((/J,Xl Z/Xz. X1 Vv Xz) AN (,LLX3 ,U,X4. (X3 A ;LX5. P V X5))>

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

The complexity of a u-calculus formula depends on the fixed points (analogue: the
complexity of first-order formulae depends on the universal/existential quantifiers and their
alternations)

» Basic idea: find a syntactic complexity measure that approaches the semantic
complexity

> Nesting Depth:
maximum number of nested fixed points in a positive normal form

ND(f) = 0 for f € {p,—p, X}
ND(@f) := ND(f) for @ € {[a], (a)}
ND(fOg) := max(ND(f),ND(g)) forOe {A,V}
ND(E X.f) := 1+ ND(f) for e {u, v}

> Example: ND((/J,Xl Z/Xz. X1 Vv Xz) A\ ([J,X3 ,U,X4. (X3 A\ ;LX5. P Vv X5))> =3

» X3, X4 and Xs have no alternation between fixed point signs

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

> Capture alternation

» Alternation Depth: number of alternating fixed points of a formula in positive normal

form.
AD(f) = 0 for f € {p,—p, X}
AD(@f) = AD(f) for @ € {[a]. (a)}
AD(fOg) := max(AD(f), AD(g)) for O € {A, V)}
AD(uX.f) = 14 max{AD(g) | g is a v-subformula of f}
AD(wX.f) = 1+ max{AD(g) | g is a u-subformula of f}

» Examples:
AD ((p,xl.

AD ((p,Xl.

Department of Mathematics and Computer Science

vXa. X1V Xz) A (/J,X3.,U,X4. (X3 A puXs.p V X5)))

vXz. X1V Xz) N (,uX3.l/X4. (X3 A uXs.pV X5))>

Technische Universiteit
e Eindhoven
University of Technology

> Capture alternation

» Alternation Depth: number of alternating fixed points of a formula in positive normal

form.
AD(f) = 0 for f € {p,—p, X}
AD(@f) = AD(f) for @ € {[a]. (a)}
AD(fOg) := max(AD(f), AD(g)) for O € {A, V)}
AD(uX.f) = 14 max{AD(g) | g is a v-subformula of f}
AD(wX.f) = 1+ max{AD(g) | g is a u-subformula of f}

» Examples:
AD ((/.LX]_. vXo. X1V X2) A (pX3.uXa. (X3 A uXs.pV X5))) =2
AD ((p,Xl. vXz. X1V X2) A (uXz.vXs. (X3 A uXs.pV X5))> =3
» Xs does not depend on X3 and X4

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

> Dependent Alternation Depth (dAD): number of alternating fixed points, such that
the innermost fixed point depends on the outermost.

» The definition of dAD is identical to AD, except for

dAD(uX.f) = max(dAD(f),
1+ max{dAD(g) |
g is a v-subformula of f and X occurs in g}
dAD(vX.f) = max(dAD(f),
1+ max{dAD(g) |
g is a p-subformula of £ and X occurs in g}

» Examples:

dAD ((/,LX1. vXz. X1V Xz) A (;LX3.,uX4. (X3 A uXs.p VvV Xs)))
dAD ((;I,X]_. vXa. X1V Xz) A (/J,X3.VX4. (X3 A uXs.pV Xs)))

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

> Dependent Alternation Depth (dAD): number of alternating fixed points, such that
the innermost fixed point depends on the outermost.

» The definition of dAD is identical to AD, except for

dAD(uX.f) = max(dAD(f),
1+ max{dAD(g) |
g is a v-subformula of f and X occurs in g}
dAD(vX.f) = max(dAD(f),
1+ max{dAD(g) |
g is a p-subformula of £ and X occurs in g}

» Examples:

dAD

dAD ((/,LX1. vXs. X1V Xz) A (;LX3.,uX4. (X3 A uXs.p VvV Xs))) =2
()~

(;I,X]_. vXs. X1V Xz) A (/J,X3.VX4. (X3 A uXs.pV Xs))

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Emerson-Lei Algorithm

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Emerson-Lei Algorithm

» Given a finite set S and a monotonic 7 : 2° — 2% in the partial order (2°, C).

» We used to compute the least fixed point from (:
0 C @) C0)C...C70)=7"0)
then uX.7(X) = 7'(0)

> Actually, instead of (), we can start in any set known to be smaller than the fixed
point:

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Emerson-Lei Algorithm

» Given a finite set S and a monotonic 7 : 2° — 2% in the partial order (2°, C).

» We used to compute the least fixed point from (:
0 C @) C0)C...C70)=7"0)
then uX.7(X) = 7'(0)

> Actually, instead of (), we can start in any set known to be smaller than the fixed
point:

e Assume W C puX.7(X), so we have:
0 CwCri)

* By monotonicity and the definition of fixed points:
T(0) C TI(W) C 7 (0) = 7'(0)

* Soif W C puX.7(X) we compute the least fixed point as:
W, (W), 72(W), ..., (W) = (W)

This converges at some j < i (may be j < i)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Emerson-Lei Algorithm

The observations on the previous slide can speed up computations of nested fixed
points.

Consider two nested p-fixed points: pX1.f (X1, pX2. g(X1, X2))

v

v

Start approximation of Xi and X> with X? = X? = false:

X? = false
X0 =false
Xt = g(Xi, X2°)
X0 =g(X X2¥)
Xt = (X, X3)

v

Clearly, X{ C X{, so also X3“ = uXo.g(X{, X2) C puXo.g(XT, Xo) = X3*.
So, approximating Xz can start at X2 instead of at false:

X210 — X20\AJ
X3© = g(Xi, X3¥)
Xt = (X1, X3%)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Emerson-Lei Algorithm

Given:
> Mixed Kripke Structure: M = (S, R, Act, L)
» A p-Calculus formula f and an environment e
Returns: [f]e, the set of states in S where f holds.

Idea:
> The function eval(f) proceeds by recursion on f, using iteration for the fixed points.
> The value of the current approximation for variable X; is stored in array A[i], in order
to reuse it in later iterations.
> Reset A[i] only if:
* a higher X; of different sign changed, and
e £ X;.f contains free variables.

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Emerson-Lei algorithm

Initialisation:

for all variables X; do
if X; is bound by a p then A[i] := false;
else if X; is bound by a v then A[i] := true;
else A[i] := e(Xi)
end if

end for

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Emerson-Lei algorithm

function eval(f)
if f = X; then return A[/]
else if f = g1 V g> then return eval(gy) U eval(gz)
else if ... then ...
else if f = uX;.g(X;) then
if the surrounding binder of f is a v then
for all open subformulae of f of the form pXk.g do A[k] := false
end for
end if
repeat
Xotd = Alil; {continue from previous value}
Ali] := eval(g);
until A[l] = Xoid
return A[/]
end if
end function

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Emerson-Lei algorithm

Given a formula v X1.0Xo. uX3.uXa.(X1 V X2 V (uXs. X5 A p))
» When computing v X5, uXs and puXs: no reset is needed because the surrounding
binder has the same sign.
» When computing Xs:

¢ Reset X3, X3: their subformula contains X; and X> as free variables
¢ Do not reset Xs: the subformula (uXs.Xs A p) is closed

Modifications with respect to the book (p. 105):
> We identified e and A[i] (they play the same role)

> The restriction to reset open formulae only makes the algorithm more efficient. This
is essential for CTL (see later).

> The book has a slightly different algorithm (correctness unclear to me): we presented
the original Emerson and Lei algorithm (1986).

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Emerson-Lei algorithm

Complexity analysis
> Let formula f be given, with dependent alternation depth dAD(f) = d.
> Let the Kripke Structure be (S, Act, R, L).

» Take a block of fixed points of the same type:

* its length is at most |f].
¢ the value of each fixed point in it can grow/shrink at most |S| times.

> In total, the innermost block will have no more than (|f| - |S|)? iterations of the
repeat-loop.
» Each iteration requires time at most O(|f| - (|S| + |R])).

> Hence: the overall complexity of the Emerson-Lei algorithm is
O(If]- (IS + [RI) - (If] - [SD)

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Embedding CTL-formulae

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Embedding CTL-formulae

Again, assume Act = {a}. Given the fixed point characterisation of CTL, there is a
straightforward translation of CTL to the p-calculus:
» Tr(p)=p
Tr(—=f) = = Tr(f)
Tr(f Ng) = Tr(f) A Tr(g)
Tr(E X f) = (a) Tr(f)
Tr(EGFf)=vY.(Tr(f)A(a) Y)
Tr(E [f U g]) = nY.(Tr(g) v (Tr(f) A(a) Y))
Note:

v

v

\4

v

v

> Tr(f) is syntactically monotone

> Tr(f) is a closed p-calculus formula

» dAD(Tr(f)) < 1, which is called the alternation free fragment of the p-calculus
> AD(Tr(f)) is not bounded!

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Conclusions

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

the p-calculus incorporates least and greatest fixed points directly in the logic.
» the naive algorithm is exponential in the nesting depth of fixed points.

> a careful analysis leads to an algorithm which is exponential in the (dependent)
alternation depth only,

» Hence: alternation free p-calculus is linear in the Kripke Structure and polynomial in
the formula.

» CTL translates into the alternation free fragment of the u-calculus.
» for the latter we essentially needed the dependent alternation depth.

> fairness constraints typically lead to one extra alternation (dAD(f) = 2)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Exercise

Technische Universiteit
Eindhoven
Department of Mathematics and Computer Science University of Technology

Consider the following p-calculus formula ¢ and LTS L:

¢ =vX. ([a]X AvY.pZ. ((byY Vv (a)Z))

» Compute the set of states where ¢ holds with the naive algorithm (give all
intermediate approximations).

> Compute the set of states where ¢ holds with the Emerson-Lei's algorithm (give all
intermediate approximations).

» Explain in natural language the meaning of formula ¢.

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

	-Calculus: syntax and semantics
	Complexity
	Emerson-Lei Algorithm
	Embedding CTL-formulae
	Conclusions
	Exercise

