Algorithms for Model Checking (2IW55)
 Lecture 4 The μ-Calculus
 (Chapter 7 in Model Checking by Clarke, Grumberg \& Peled)

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 7.073

Outline

μ-Calculus: syntax and semantics

Complexity

Emerson-Lei Algorithm

Embedding CTL-formulae

Conclusions

Exercise

μ-Calculus: syntax and semantics

Recall: symbolic model checking for CTL was based on fixed points.

Idea of μ-calculus: add fixed point operators as primitives to basic modal logic.

- μ-calculus is very expressive (subsumes CTL, LTL, CTL*).
- μ-calculus is very pure ("assembly language" for modal logic, cf: λ-calculus for functional programming).
- drawback: lack of intuition.
- fragments of the μ-calculus are the basis for practical model checkers, such as $\mu \mathrm{CRL}$, mCRL2, CADP, Concurrency Workbench.

μ-Calculus: syntax and semantics

Kripke Structures and Labelled Transition Systems

Mix of Kripke Systems and Labelled Transition Systems: $M=\langle S, A c t, R, L\rangle$ over a set $A P$ of atomic propositions:

- S is a set of states
- Act is a set of action labels
- R is a labelled transition relation: $R \subseteq S \times$ Act $\times S$
- L is a labelling: $L \in S \rightarrow 2^{A P}$

Notation: $s \xrightarrow{a} t$ denotes $(s, a, t) \in R$

Special cases:

- Kripke Structures: Act is a singleton (only one transition relation)
- LTS (process algebra): $A P$ is empty (only propositions true and false)

Let the following sets be given:

- $A P$ (atomic propositions),
- Act (action labels) and
- Var (formal variables).

The syntax of μ-calculus formulae f, g is defined by the following grammar:

$$
f, g::=\operatorname{true}|p| X|\neg f| f \wedge g|[a] f| \nu X . f
$$

Note:

- $p \in A P, X \in V a r, a \in$ Act.
- [a] f means "for all direct a-successors, f holds" (compare to CTL: A X f).

μ-Calculus: syntax and semantics

Some notation and terminology:

- An occurrence of X is bound by a surrounding fixed point symbol νX. Unbound occurrences of X are called free.
- A formula is closed if it has no free variables, otherwise it is called open
- An environment e interprets the free formal variables X as a set of states
- Mixed Kripke Structure $M=\langle S, A c t, R, L\rangle$
- e : Var $\rightarrow 2^{\text {S }}$
- $e[X:=V]$ is an environment like e, but X is set to V :

$$
e[X:=V](Y):= \begin{cases}V & \text { if } Y=X \\ e(Y) & \text { otherwise }\end{cases}
$$

- The semantics of a formula f is a set of states of a Mixed Kripke Structure

μ-Calculus: syntax and semantics

Fix a system: $M=\langle S, A c t, R, L\rangle$
$-\llbracket f \rrbracket_{e}$ denotes the set of states where f holds given context $e: \operatorname{Var} \rightarrow 2^{S}$:

$$
\begin{array}{ll}
\llbracket \text { true } \\
\llbracket p \rrbracket_{e} & =S \\
\llbracket X \rrbracket_{e} & =\{s \mid p \in L(s)\} \\
\llbracket \neg f \rrbracket_{e} & =S(X) \\
\llbracket f \wedge g \rrbracket_{e} & =\llbracket f \rrbracket_{e} \cap \llbracket \rrbracket_{e} \\
\llbracket[a\rceil f \rrbracket_{e} & =\left\{s \mid \forall t . s \xrightarrow{a} t \Rightarrow t \in \llbracket f \rrbracket_{e}\right\} \\
\llbracket \nu X . f \rrbracket_{e} & =\nu\left(Z \mapsto \llbracket f \rrbracket_{e[X:=Z]}\right)
\end{array}
$$

μ-Calculus: syntax and semantics

Fix a system: $M=\langle S, A c t, R, L\rangle$

- $\llbracket f \rrbracket_{e}$ denotes the set of states where f holds given context $e: \operatorname{Var} \rightarrow 2^{S}$:

$$
\begin{array}{ll}
\llbracket \text { true } \\
\llbracket p \rrbracket_{e} & =S \\
\llbracket X \rrbracket_{e} & =\{s \mid p \in L(s)\} \\
\llbracket \neg f \rrbracket_{e} & =S(X) \\
\llbracket f \wedge g \rrbracket_{e} & =\llbracket f \rrbracket_{e} \cap \llbracket \rrbracket_{e} \\
\llbracket\left[a \rrbracket f \rrbracket_{e}\right. & =\left\{s \mid \forall t . s \rightarrow t \Rightarrow t \in \llbracket f \rrbracket_{e}\right\} \\
\llbracket \nu X . f \rrbracket_{e} & =\nu\left(Z \mapsto \llbracket f \rrbracket_{e[X:=Z]}\right)
\end{array}
$$

- $\llbracket \nu X . f \rrbracket_{e}$ requires monotonicity of $\llbracket f \rrbracket_{e[X:=Z]}$.
- Syntactic Monotonicity Criterion: monotonicity is guaranteed if, in $\nu X . f$, formal variable X occurs under an even number of negations (\neg) in f.

μ-Calculus: syntax and semantics

Fix a system: $M=\langle S, A c t, R, L\rangle$

- $\llbracket f \rrbracket_{e}$ denotes the set of states where f holds given context $e: \operatorname{Var} \rightarrow 2^{S}$:

$$
\begin{array}{ll}
\llbracket \text { true } \rrbracket_{e} & =S \\
\llbracket p \rrbracket_{e} & =\{s \mid p \in L(s)\} \\
\llbracket X \rrbracket_{e} & =e(X) \\
\llbracket \neg f \rrbracket_{e} & =S \backslash \llbracket f \rrbracket_{e} \\
\llbracket f \wedge g \rrbracket_{e} & =\llbracket f \rrbracket_{e} \cap \llbracket g \rrbracket_{e} \\
\llbracket[a\rceil f \rrbracket_{e} & =\left\{s \mid \forall t . s \xrightarrow{a} t \Rightarrow t \in \llbracket f \rrbracket_{e}\right\} \\
\llbracket \nu X . f \rrbracket_{e} & =\nu\left(Z \mapsto \llbracket f \rrbracket_{e[X:=Z]}\right)
\end{array}
$$

- $\llbracket \nu X . f \rrbracket_{e}$ requires monotonicity of $\llbracket f \rrbracket_{e[X:=Z]}$.
- Syntactic Monotonicity Criterion: monotonicity is guaranteed if, in $\nu X . f$, formal variable X occurs under an even number of negations (\neg) in f.

The semantics immediately gives rise to a naive algorithm for model checking μ-calculus (compute gfp by iteration).

μ-Calculus: Positive Normal Form

- Extend the grammar with the following shorthands with semantics:

$\begin{aligned} \text { false } & :=\neg \text { true } \\ f \vee g & :=\neg((\neg f) \wedge(\neg g)) \end{aligned}$	$\begin{aligned} \llbracket \mathrm{false} \rrbracket_{e} & =\emptyset \\ \llbracket f \vee g \rrbracket_{e} & =\llbracket f \rrbracket_{e} \cup \llbracket g \rrbracket_{e} \end{aligned}$
$\langle a\rangle f:=\quad \neg([a](\neg f))$	$\llbracket\langle a\rangle f \rrbracket_{e}=\left\{s \mid \exists t . s \xrightarrow{a} t \wedge t \in \llbracket f \rrbracket_{e}\right\}$
$\mu X . f:=\neg(\nu X . \neg f[X:=\neg X])$	$\llbracket \mu X . f \rrbracket_{e}=\mu\left(Z \mapsto \llbracket f \rrbracket_{e[X:=Z]}\right)$

- A μ-calculus formula is in positive normal form if negations occur only in front of propositions.
- Transform a formula into positive normal form by driving negations inward.
- Syntactic monotonicity prevents single negations in front of formal variables.

Outline

Complexity

Emerson-Lei Algorithm

Embedding CTL-formulae

Conclusions

Complexity

Complexity of naive μ-Calculus algorithm

- We check formula f with at most k nested fixed points on the Kripke Structure $M=\langle S, R, A c t, L\rangle$.
- $\ln \nu X_{1} .\langle a\rangle\left(\mu X_{2} .\left(X_{1} \wedge h\right) \vee\langle a\rangle X_{2}\right):$
- The outermost (greatest) fixed point can decrease at most $|S|$ times (recall that S is finite)
- In total, the innermost fixed point of formula f is evaluated at most $|S|^{2}$ times.
- In general: the innermost fixed point of formula f is evaluated at most $|S|^{k}$ times.
- Each iteration requires up to $|M| \times|f|$ steps.
- Total time complexity of naive algorithm: $\mathcal{O}\left((|S|+|R|) \times|f| \times|S|^{k}\right)$.

A more careful analysis will yield a more optimal treatment for nested fixed points of the same type.

Complexity

- Let $A c t=\{a\}$:

- Every p is inevitably followed by a $q: \nu X_{1} \cdot\left(\left(p \Rightarrow\left(\mu X_{2} . q \vee[a] X_{2}\right)\right) \wedge[a] X_{1}\right)$
- Special case: X_{1} does not occur within the scope of μX_{2}.
- The last formula can therefore be evaluated "inside-out":

$$
\begin{aligned}
X_{2}^{0} & =\text { false } \\
X_{2}^{1} & =q \vee[a] X_{2}^{0} \\
X_{2}^{2} & =q \vee[a] X_{2}^{1} \\
\ldots X_{2}^{\omega} & =q \vee[a] X_{2}^{\omega}
\end{aligned} \Longrightarrow \begin{aligned}
X_{1}^{0} & =\text { true } \\
X_{1}^{1} & =\left(p \Rightarrow X_{2}^{\omega}\right) \wedge[a] X_{1}^{0} \\
X_{1}^{2} & =\left(p \Rightarrow X_{2}^{\omega}\right) \wedge[a] X_{1}^{1} \\
& \ldots \\
X_{1}^{\omega} & =\left(p \Rightarrow X_{2}^{\omega}\right) \wedge[a] X_{1}^{\omega}
\end{aligned}
$$

Complexity

A more difficult case

- On some path, h holds infinitely often: $\nu X_{1} .\langle a\rangle\left(\mu X_{2} .\left(X_{1} \wedge h\right) \vee\langle a\rangle X_{2}\right)$
- Problem: the inner fixed point depends crucially on X_{1}.

$$
\begin{aligned}
& X_{1}^{0}=\text { true } \\
& X_{2}^{00}=\text { false } \\
& X_{2}^{01}=\left(X_{1}^{0} \wedge h\right) \vee\langle a\rangle X_{2}^{00} \\
& X_{2}^{02}=\left(X_{1}^{0} \wedge h\right) \vee\langle a\rangle X_{2}^{01} \\
& X_{2}^{0 \omega}=\left(X_{1}^{0} \wedge h\right) \vee\langle a\rangle X_{2}^{0 \omega} \\
& X_{1}^{1}=\langle a\rangle X_{2}^{0 \omega} \\
& X_{2}^{10}=\text { false } \\
& X_{2}^{11}=\left(X_{1}^{1} \wedge h\right) \vee\langle a\rangle X_{2}^{10} \\
& X_{2}^{1 \omega}=\left(X_{1}^{1} \wedge h\right) \vee\langle a\rangle X_{2}^{1 \omega} \\
& X_{1}^{2}=\langle a\rangle X_{2}^{1 \omega} \\
& \ldots X_{1}^{\omega}=\langle a\rangle X_{2}^{\omega \omega}
\end{aligned}
$$

Complexity

The complexity of a μ-calculus formula depends on the fixed points (analogue: the complexity of first-order formulae depends on the universal/existential quantifiers and their alternations)

- Basic idea: find a syntactic complexity measure that approaches the semantic complexity
- Nesting Depth: maximum number of nested fixed points in a positive normal form

$N D(f)$	$:=0$	for $f \in\{p, \neg p, X\}$
$N D((a f)$	$:=N D(f)$	for (a) $\in\{[a],\langle a\rangle\}$
$N D(f \square g)$	$:=\max (N D(f), N D(g))$	for $\square \in\{\wedge, \vee\}$
$N D\left({ }_{\nu}^{\mu} X . f\right)$	$:=1+N D(f)$	for ${ }_{\nu}^{\mu} \in\{\mu, \nu\}$

- Example: $N D\left(\left(\mu X_{1} . \nu X_{2} . X_{1} \vee X_{2}\right) \wedge\left(\mu X_{3} . \mu X_{4} .\left(X_{3} \wedge \mu X_{5} . p \vee X_{5}\right)\right)\right)$

Complexity

The complexity of a μ-calculus formula depends on the fixed points (analogue: the complexity of first-order formulae depends on the universal/existential quantifiers and their alternations)

- Basic idea: find a syntactic complexity measure that approaches the semantic complexity
- Nesting Depth: maximum number of nested fixed points in a positive normal form

$N D(f)$	$:=0$	for $f \in\{p, \neg p, X\}$
$N D(ⓕ)$	$:=N D(f)$	for ©a $\in\{[a],\langle a\rangle\}$
$N D(f \square g)$	$:=\max (N D(f), N D(g))$	for $\square \in\{\wedge, \vee\}$
$N D\left({ }_{\nu}^{\mu} X . f\right)$	$:=1+N D(f)$	for ${ }_{\nu}^{\mu} \in\{\mu, \nu\}$

- Example: $N D\left(\left(\mu X_{1} . \nu X_{2} . X_{1} \vee X_{2}\right) \wedge\left(\mu X_{3} . \mu X_{4} .\left(X_{3} \wedge \mu X_{5} . p \vee X_{5}\right)\right)\right)=3$
- X_{3}, X_{4} and X_{5} have no alternation between fixed point signs

Complexity

- Capture alternation
- Alternation Depth: number of alternating fixed points of a formula in positive normal form.

$A D(f)$	$:=0$	for $f \in\{p, \neg p, X\}$
$A D(@ f)$	$:=A D(f)$	for $(a \in\{[a],\langle a\rangle\}$
$A D(f \square g)$	$:=\max (A D(f), A D(g))$	for $\square \in\{\wedge, V\rangle\}$
$A D(\mu X . f)$	$:=1+\max \{A D(g) \mid g$ is a ν-subformula of $f\}$	
$A D(\nu X . f)$	$:=1+\max \{A D(g) \mid g$ is a μ-subformula of $f\}$	

- Examples:

$$
\begin{aligned}
& A D\left(\left(\mu X_{1} \cdot \nu X_{2} \cdot X_{1} \vee X_{2}\right) \wedge\left(\mu X_{3} \cdot \mu X_{4} \cdot\left(X_{3} \wedge \mu X_{5} \cdot p \vee X_{5}\right)\right)\right) \\
& A D\left(\left(\mu X_{1} \cdot \nu X_{2} \cdot X_{1} \vee X_{2}\right) \wedge\left(\mu X_{3} \cdot \nu X_{4} \cdot\left(X_{3} \wedge \mu X_{5} \cdot p \vee X_{5}\right)\right)\right)
\end{aligned}
$$

Complexity

- Capture alternation
- Alternation Depth: number of alternating fixed points of a formula in positive normal form.

$A D(f)$	$:=0$	for $f \in\{p, \neg p, X\}$
$A D(@ f)$	$:=A D(f)$	for $(a \in\{[a],\langle a\rangle\}$
$A D(f \square g)$	$:=\max (A D(f), A D(g))$	for $\square \in\{\wedge, V\rangle\}$
$A D(\mu X . f)$	$:=1+\max \{A D(g) \mid g$ is a ν-subformula of $f\}$	
$A D(\nu X . f)$	$:=1+\max \{A D(g) \mid g$ is a μ-subformula of $f\}$	

- Examples:

$$
\begin{aligned}
& A D\left(\left(\mu X_{1} \cdot \nu X_{2} . X_{1} \vee X_{2}\right) \wedge\left(\mu X_{3} \cdot \mu X_{4} \cdot\left(X_{3} \wedge \mu X_{5} \cdot p \vee X_{5}\right)\right)\right)=2 \\
& A D\left(\left(\mu X_{1} \cdot \nu X_{2} . X_{1} \vee X_{2}\right) \wedge\left(\mu X_{3} \cdot \nu X_{4} \cdot\left(X_{3} \wedge \mu X_{5} \cdot p \vee X_{5}\right)\right)\right)=3
\end{aligned}
$$

- X_{5} does not depend on X_{3} and X_{4}

Complexity

- Dependent Alternation Depth (dAD): number of alternating fixed points, such that the innermost fixed point depends on the outermost.
- The definition of $d A D$ is identical to $A D$, except for

$$
\begin{array}{cc}
d A D(\mu X . f):= & \max (d A D(f), \\
1+\max \{d A D(g) \mid \\
g \text { is a } \nu \text {-subformula of } f \text { and } X \text { occurs in } g\} \\
d A D(\nu X . f):=\quad \max (d A D(f), \\
1+\max \{d A D(g) \mid \\
& g \text { is a } \mu \text {-subformula of } f \text { and } X \text { occurs in } g\}
\end{array}
$$

- Examples:

$$
\begin{aligned}
& d A D\left(\left(\mu X_{1} \cdot \nu X_{2} \cdot X_{1} \vee X_{2}\right) \wedge\left(\mu X_{3} \cdot \mu X_{4} \cdot\left(X_{3} \wedge \mu X_{5} \cdot p \vee X_{5}\right)\right)\right) \\
& d A D\left(\left(\mu X_{1} \cdot \nu X_{2} \cdot X_{1} \vee X_{2}\right) \wedge\left(\mu X_{3} \cdot \nu X_{4} \cdot\left(X_{3} \wedge \mu X_{5} \cdot p \vee X_{5}\right)\right)\right)
\end{aligned}
$$

Complexity

- Dependent Alternation Depth (dAD): number of alternating fixed points, such that the innermost fixed point depends on the outermost.
- The definition of $d A D$ is identical to $A D$, except for

$$
\begin{array}{cc}
\hline d A D(\mu X . f):= & \max (d A D(f), \\
& 1+\max \{d A D(g) \mid \\
g \text { is a } \nu \text {-subformula of } f \text { and } X \text { occurs in } g\} \\
d A D(\nu X . f):=\quad \max (d A D(f), \\
1+\max \{d A D(g) \mid \\
& g \text { is a } \mu \text {-subformula of } f \text { and } X \text { occurs in } g\}
\end{array}
$$

- Examples:

$$
\begin{aligned}
& d A D\left(\left(\mu X_{1} \cdot \nu X_{2} \cdot X_{1} \vee X_{2}\right) \wedge\left(\mu X_{3} \cdot \mu X_{4} \cdot\left(X_{3} \wedge \mu X_{5} \cdot p \vee X_{5}\right)\right)\right)=2 \\
& \operatorname{dAD}\left(\left(\mu X_{1} \cdot \nu X_{2} \cdot X_{1} \vee X_{2}\right) \wedge\left(\mu X_{3} \cdot \nu X_{4} \cdot\left(X_{3} \wedge \mu X_{5} \cdot p \vee X_{5}\right)\right)\right)=2
\end{aligned}
$$

Outline

Emerson-Lei Algorithm

Emerson-Lei Algorithm

- Given a finite set S and a monotonic $\tau: 2^{S} \rightarrow 2^{S}$ in the partial order $\left(2^{S}, \subseteq\right)$.
- We used to compute the least fixed point from \emptyset :

$$
\emptyset \subseteq \tau(\emptyset) \subseteq \tau^{2}(\emptyset) \subseteq \ldots \subseteq \tau^{i}(\emptyset)=\tau^{i+1}(\emptyset)
$$

then $\mu X . \tau(X)=\tau^{i}(\emptyset)$

- Actually, instead of \emptyset, we can start in any set known to be smaller than the fixed point:

Emerson-Lei Algorithm

- Given a finite set S and a monotonic $\tau: 2^{S} \rightarrow 2^{S}$ in the partial order $\left(2^{S}, \subseteq\right)$.
- We used to compute the least fixed point from \emptyset :

$$
\emptyset \subseteq \tau(\emptyset) \subseteq \tau^{2}(\emptyset) \subseteq \ldots \subseteq \tau^{i}(\emptyset)=\tau^{i+1}(\emptyset)
$$

then $\mu X . \tau(X)=\tau^{i}(\emptyset)$

- Actually, instead of \emptyset, we can start in any set known to be smaller than the fixed point:
- Assume $W \subseteq \mu X . \tau(X)$, so we have:

$$
\emptyset \subseteq W \subseteq \tau^{i}(\emptyset)
$$

- By monotonicity and the definition of fixed points:

$$
\tau^{i}(\emptyset) \subseteq \tau^{i}(W) \subseteq \tau^{2 i}(\emptyset)=\tau^{i}(\emptyset)
$$

- So if $W \subseteq \mu X . \tau(X)$ we compute the least fixed point as:

$$
W, \tau(W), \tau^{2}(W), \ldots, \tau^{j}(W)=\tau^{j+1}(W)
$$

This converges at some $j \leq i$ (may be $j<i$)

Emerson-Lei Algorithm

- The observations on the previous slide can speed up computations of nested fixed points.
- Consider two nested μ-fixed points: $\mu X_{1} . f\left(X_{1}, \mu X_{2} . g\left(X_{1}, X_{2}\right)\right)$
- Start approximation of X_{1} and X_{2} with $X_{1}^{0}=X_{2}^{0}=$ false:

$$
\begin{array}{llll}
X_{1}^{0}=\text { false } & \\
& & \begin{array}{l}
X_{2}^{00}
\end{array}=\text { false } \\
& X_{2}^{01} & =g\left(X_{1}^{0}, X_{2}^{00}\right) \\
X_{1}^{1}=f\left(X_{1}^{0}, X_{2}^{0 \omega}\right) & & &
\end{array}
$$

- Clearly, $X_{1}^{0} \subseteq X_{1}^{1}$, so also $X_{2}^{0 \omega}=\mu X_{2} . g\left(X_{1}^{0}, X_{2}\right) \subseteq \mu X_{2} \cdot g\left(X_{1}^{1}, X_{2}\right)=X_{2}^{1 \omega}$. So, approximating X_{2} can start at $X_{2}^{0 \omega}$ instead of at false:

$$
\begin{array}{ll}
& \begin{array}{l}
X_{2}^{10}
\end{array}=X_{2}^{0 \omega} \\
X_{1}^{2}=f\left(X_{1}^{1}, X_{2}^{1 \omega}\right)
\end{array} \quad \begin{array}{ll}
X_{2}^{1 \omega} & =g\left(X_{1}^{1}, X_{2}^{1 \omega}\right)
\end{array}
$$

Emerson-Lei Algorithm

Given:

- Mixed Kripke Structure: $M=\langle S, R, A c t, L\rangle$
- A μ-Calculus formula f and an environment e

Returns: $\llbracket f \rrbracket_{e}$, the set of states in S where f holds.

Idea:

- The function eval (f) proceeds by recursion on f, using iteration for the fixed points.
- The value of the current approximation for variable X_{i} is stored in array $A[i]$, in order to reuse it in later iterations.
- Reset $A[i]$ only if:
- a higher X_{j} of different sign changed, and
- ${ }_{\nu}^{\mu} X_{i} . f$ contains free variables.

Emerson-Lei algorithm

Initialisation:

```
for all variables \(X_{i}\) do
    if \(X_{i}\) is bound by a \(\mu\) then \(A[i]:=\) false;
    else if \(X_{i}\) is bound by a \(\nu\) then \(A[i]:=\) true;
    else \(A[i]:=e\left(X_{i}\right)\)
    end if
end for
```


Emerson-Lei algorithm

```
function eval \((f)\)
    if \(f=X_{i}\) then return \(A[i]\)
    else if \(f=g_{1} \vee g_{2}\) then return \(\operatorname{eval}\left(g_{1}\right) \cup \operatorname{eval}\left(g_{2}\right)\)
    else if ... then ...
    else if \(f=\mu X_{i} \cdot g\left(X_{i}\right)\) then
        if the surrounding binder of \(f\) is a \(\nu\) then
        for all open subformulae of \(f\) of the form \(\mu X_{k} \cdot g\) do \(A[k]:=\) false
        end for
        end if
        repeat
            \(X_{\text {old }}:=A[i] ; \quad\) \{continue from previous value \(\}\)
            \(A[i]:=\operatorname{eval}(g)\);
        until \(A[i]=X_{\text {old }}\)
        return \(A[i]\)
    end if
end function
```


Emerson-Lei algorithm

Given a formula $\nu X_{1} \cdot \nu X_{2} \cdot \mu X_{3} \cdot \mu X_{4} .\left(X_{1} \vee X_{2} \vee\left(\mu X_{5} \cdot X_{5} \wedge p\right)\right)$

- When computing $\nu X_{2}, \mu X_{4}$ and μX_{5} : no reset is needed because the surrounding binder has the same sign.
- When computing X_{3} :
- Reset X_{3}, X_{4} : their subformula contains X_{1} and X_{2} as free variables
- Do not reset X_{5} : the subformula ($\mu X_{5} \cdot X_{5} \wedge p$) is closed

Modifications with respect to the book (p. 105):

- We identified e and $A[i]$ (they play the same role)
- The restriction to reset open formulae only makes the algorithm more efficient. This is essential for CTL (see later).
- The book has a slightly different algorithm (correctness unclear to me): we presented the original Emerson and Lei algorithm (1986).

Emerson-Lei algorithm

Complexity analysis

- Let formula f be given, with dependent alternation depth $d A D(f)=d$.
- Let the Kripke Structure be $\langle S, A c t, R, L\rangle$.
- Take a block of fixed points of the same type:
- its length is at most $|f|$.
- the value of each fixed point in it can grow/shrink at most $|S|$ times.
- In total, the innermost block will have no more than $(|f| \cdot|S|)^{d}$ iterations of the repeat-loop.
- Each iteration requires time at most $\mathcal{O}(|f| \cdot(|S|+|R|))$.
- Hence: the overall complexity of the Emerson-Lei algorithm is $\mathcal{O}\left(|f| \cdot(|S|+|R|) \cdot(|f| \cdot|S|)^{d}\right)$

Outline

Embedding CTL-formulae

Again, assume Act $=\{a\}$. Given the fixed point characterisation of CTL, there is a straightforward translation of CTL to the μ-calculus:

- $\operatorname{Tr}(p)=p$
- $\operatorname{Tr}(\neg f)=\neg \operatorname{Tr}(f)$
- $\operatorname{Tr}(f \wedge g)=\operatorname{Tr}(f) \wedge \operatorname{Tr}(g)$
- $\operatorname{Tr}(\mathrm{E} \times f)=\langle a\rangle \operatorname{Tr}(f)$
- $\operatorname{Tr}(\mathrm{E} G f)=\nu Y .(\operatorname{Tr}(f) \wedge\langle a\rangle Y)$
$-\operatorname{Tr}(\mathrm{E}[f \cup g])=\mu Y .(\operatorname{Tr}(g) \vee(\operatorname{Tr}(f) \wedge\langle a\rangle Y))$
Note:
- $\operatorname{Tr}(f)$ is syntactically monotone
- $\operatorname{Tr}(f)$ is a closed μ-calculus formula
- $d A D(\operatorname{Tr}(f)) \leq 1$, which is called the alternation free fragment of the μ-calculus
- $A D(\operatorname{Tr}(f))$ is not bounded!

Outline

Conclusions

Conclusions

- the μ-calculus incorporates least and greatest fixed points directly in the logic.
- the naive algorithm is exponential in the nesting depth of fixed points.
- a careful analysis leads to an algorithm which is exponential in the (dependent) alternation depth only,
- Hence: alternation free μ-calculus is linear in the Kripke Structure and polynomial in the formula.
- CTL translates into the alternation free fragment of the μ-calculus.
- for the latter we essentially needed the dependent alternation depth.
- fairness constraints typically lead to one extra alternation $(d A D(f)=2)$

Outline

Exercise

Consider the following μ-calculus formula ϕ and LTS \mathcal{L} :

$$
\phi:=\nu X \cdot([a] X \wedge \nu Y . \mu Z .(\langle b\rangle Y \vee\langle a\rangle Z))
$$

- Compute the set of states where ϕ holds with the naive algorithm (give all intermediate approximations).
- Compute the set of states where ϕ holds with the Emerson-Lei's algorithm (give all intermediate approximations).
- Explain in natural language the meaning of formula ϕ.

