
Department of Mathematics and Computer Science

Algorithms for Model Checking (2IW55)
Lecture 5

Boolean Equation Systems
Background material: Chapter 3 and 6 of

A. Mader, “Verification of Modal Properties using Boolean Equation Systems”, Ph.D.
thesis, 1997

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
MF 7.073



2/19

Department of Mathematics and Computer Science

Outline

Boolean Equation Systems

Model Checking using BESs

Solving BESs

Exercise



3/19

Department of Mathematics and Computer Science

Boolean Equation Systems

I Boolean Equation Systems are systems of fixed point equations.

Given a set Var of propositional variables. A Boolean Expression is defined by:

f ::= X | true | false | f ∧ f | f ∨ f

A Boolean Equation is an equation of the form µX = f or νX = f where X ∈ Var and f
is a Boolean Expression.

A Boolean Equation System is a sequence of Boolean Equations:

E ::= ε | (µX = f ) E | (νX = f ) E

Note:
I Negation is not allowed, in order to ensure monotonicity.
I The order of equations is important. The leftmost sign will be given priority.



4/19

Department of Mathematics and Computer Science

Boolean Equation Systems

I A variable W that occurs in a Boolean Expression of a BES E is called bound, if
there is an equation for W in E , otherwise W is called free.

I If propositional variables are bound uniquely (i.e., at most once), the BES is
well-formed; we only consider well-formed BESs.

I If E contains no free variables, E is closed, otherwise it is open.
I Henceforth, σ represents either µ or ν if we wish to abstract from its actual polarity.

Example
An example of a closed BES E with three propositional variables X , Y and Z :

(µX = (X ∧ Y ) ∨ Z) (νY = X ∧ Y ) (µZ = Z ∧ X )

An example of an open BES F with three propositional variables X ,Y and Z :

(µX = Y ∨ Z) (νY = X ∧ Y )

An example of a BES that is not well-formed:

(µX = X ) (νX = X )



5/19

Department of Mathematics and Computer Science

Boolean Equation Systems

I Let Val be the set of all functions η : Var → {false, true}
I The solution of a BES is a valuation: η : Val
I Let [f ](η) denote the value of boolean expression f under valuation η.
I For the solution η of a BES E , we wish η(X ) = [f ](η) for all equations σX = f in E .
I Also, we want the smallest (for µ) or greatest (for ν) solution, where leftmost fixed

point signs take priority over fixed point signs that follow.

Given a BES E , we define [[E]] : Val → Val by recursion on E .


[[ε]](η) := η

[[(µX = f ) E]](η) := [[E]](η[X := [f ](ηµ)]) where ηµ := [[E]](η[X := false])

[[(νX = f ) E]](η) := [[E]](η[X := [f ](ην)]) where ην := [[E]](η[X := true])

Note: for closed BESs we have [[E]](η)(X ) = [[E]](η′)(X ) for all η, η′ and all bound X



6/19

Department of Mathematics and Computer Science

Outline

Boolean Equation Systems

Model Checking using BESs

Solving BESs

Exercise



7/19

Department of Mathematics and Computer Science

Model Checking using BESs

Transformation of the µ-calculus model checking problem to BES
I Given is the following model checking problem: M, s |= σX . f

• a closed µ-calculus formula σX . f in Positive Normal Form and,
• a Mixed Kripke Structure M = 〈S , s0,Act,R, L〉.
• s ∈ S is a state

I We define a BES E with the following property:

([[E]](η))(Xs) = true iff M, s |= σX . f

i.e. formula σX . f holds in state s if and only if the solution for Xs yields true.
I This BES is defined as follows:

• For each subformula σ′Y .g , we add the following equation for each state s ∈ S :

σ′Ys = RHS(s, g)

• Important: The order of the equations respects the subterm ordering in the original
formula σX . f .



8/19

Department of Mathematics and Computer Science

Model Checking using BESs

The Right-Hand Side of an equation is defined inductively on the structure of the
µ-calculus formula:

RHS(s, true) = true
RHS(s, false) = false

RHS(s, p) =

{
true if p ∈ L(s)
false otherwise

RHS(s,X ) = Xs

RHS(s, f ∧ g) = RHS(s, f ) ∧ RHS(s, g)
RHS(s, f ∨ g) = RHS(s, f ) ∨ RHS(s, g)

RHS(s, [a]f ) =
∧

t∈S {RHS(t, f ) | s a−→ t}
RHS(s, 〈a〉f ) =

∨
t∈S {RHS(t, f ) | s a−→ t}

RHS(s,µX . f ) = Xs

RHS(s, νX . f ) = Xs

conventions:
∧

t∈S ∅ = true and
∨

t∈S ∅ = false



9/19

Department of Mathematics and Computer Science

Model Checking using BESs

Example

1

3

2

aa

b

b

I RHS(1, [a]X ) = RHS(2, X ) ∧ RHS(3, X ) = X2 ∧ X3.
I RHS(2, 〈b〉Y ) = RHS(1, Y ) ∨ RHS(3, Y ) = Y1 ∨ Y3.
I RHS(3, 〈b〉Y ) = false (empty disjunction!)
I RHS(1, [a]〈b〉µZ . Z)

= RHS(2, 〈b〉µZ . Z) ∧ RHS(3, 〈b〉µZ . Z)∧
= (RHS(1, µZ .Z) ∨ RHS(3, µZ .Z)) ∧ false
= (Z1 ∨ Z3) ∧ false

I Translation of µX .〈b〉true ∨ 〈a〉X to BES:

(µX1 = X3 ∨ X2) (µX2 = true) (µX3 = false)



10/19

Department of Mathematics and Computer Science

Model Checking using BESs

Example

1

3

2

4

b

a a

a

b

µ-calculus formula: νX .
(
[a]X ∧ νY .µZ .(〈b〉Y ∨ 〈a〉Z)

)
Translates to the following BES:

νX1 = X3 ∧ Y1

νX2 = X2 ∧ Y2

νX3 = X4 ∧ Y3

νX4 = true ∧ Y4

νY1 = Z1

νY2 = Z2

νY3 = Z3

νY4 = Z4

µZ1 = Y2 ∨ Z3

µZ2 = false ∨ Z2

µZ3 = false ∨ Z4

µZ4 = Y3 ∨ false



11/19

Department of Mathematics and Computer Science

Outline

Boolean Equation Systems

Model Checking using BESs

Solving BESs

Exercise



12/19

Department of Mathematics and Computer Science

Solving BESs

I We reduced the model checking problem M, s |= f to the solution of a BES with
O(|M| × |f |) equations.

I We now want a fast procedure to solve such BESs.
I An extremely tedious way to solve a BES is to unfold its semantics.
I A very appealing solution is to solve it by Gauß Elimination.



13/19

Department of Mathematics and Computer Science

Solving BESs

Gauß Elimination uses the following 4 basic operations to solve a BES:

I local solution: eliminate X in its defining equation:

E0 (µX = f ) E1 becomes E0 (µX = f [X := false]) E1
E0 (νX = f ) E1 becomes E0 (νX = f [X := true]) E1

I Substitute definitions to the left:

E0 (σ1X = X ∨ Y ) E1 (σ2Y = Y ∧ X ) E2
becomes: E0 (σ1X = X ∨ (Y ∧ X )) E1 (σ2Y = Y ∧ X ) E2

I Substitute closed equations to the right:

E0 (σ1X = true) E1 (σ2Y = Y ∧ X )E2
becomes: E0 (σ1X = true) E1 (σ2Y = Y ∧ true) E2

I Boolean simplication: At least the following:

b ∧ true→ b b ∨ true→ true b ∧ false→ false b ∨ false→ b



14/19

Department of Mathematics and Computer Science

Solving BESs

Example
(µX = X ∨ Y ) (νY = X ∨ (Y ∧ Z)) (µZ = Y ∧ Z)

local →
(µX = false ∨ Y ) (νY = X ∨ (true ∧ Z)) (µZ = Y ∧ false)

simplifications →
(µX = Y ) (νY = X ∨ Z)) (µZ = false)

substitution backwards →
(µX = Y ) (νY = X ∨ false) (µZ = false)

simplifications →
(µX = Y ) (νY = X ) (µZ = false)

substitution backwards →
(µX = X ) (νY = X ) (µZ = false)

local →
(µX = false) (νY = X ) (µZ = false)

substitution to the right →
(µX = false) (νY = false) (µZ = false)



15/19

Department of Mathematics and Computer Science

Solving BESs

Gauß Elimination is a decision procedure for computing the solution to a BES.

Input: a BES (σ1X1 = f1) ... (σnXn = fn). Returns: the solution for X1.

for i = n downto 1 do
if σi = µ then fi := fi [Xi := false]
else fi := fi [Xi := true]
end if
for j = i − 1 downto 1 do fj := fj [Xi := fi ]
end for

end for
Note:

I Invariants of the outer loop:
• fi contains only variables Xj with j ≤ i .
• for all i < j ≤ n, Xj does not occur in fj .

I Upon termination (i = 0), σ1X1 = f1 is closed and evaluates to true or false.
I One could substitute the solution for X1 to the right and repeat the procedure to

solve X2, etcetera.



16/19

Department of Mathematics and Computer Science

Model Checking using BESs

Example

1 32 4
b aa

a

b

Encoding the µ-calculus formula: νX .
(
[a]X ∧ νY .µZ .(〈b〉Y ∨ 〈a〉Z)

)
leads to the below

BES; solving using Gauß Elimination (each column is one iteration of the algorithm):

νX1 = X3 ∧ Y1 X3 ∧ Y1 X3 ∧ Y1 X3 ∧ Y1 X3 ∧ Y1 X3 ∧ Y1 · · · true
νX2 = X2 ∧ Y2 X2 ∧ Y2 X2 ∧ Y2 X2 ∧ Y2 X2 ∧ Y2 X2 ∧ Y2 · · · false
νX3 = X4 ∧ Y3 X4 ∧ Y3 X4 ∧ Y3 X4 ∧ Y3 X4 ∧ Y3 X4 ∧ Y3 · · · true
νX4 = Y4 Y4 Y4 Y4 Y4 Y3 · · · true
νY1 = Z1 Z1 Z1 Z1 Y2 ∨ Y3 Y2 ∨ Y3 · · · true
νY2 = Z2 Z2 Z2 false false false · · · false
νY3 = Z3 Z3 Y3 Y3 Y3 Y3 · · · true
νY4 = Z4 Y3 Y3 Y3 Y3 Y3∗ · · · true
µZ1 = Y2 ∨ Z3 Y2 ∨ Z3 Y2 ∨ Y3 Y2 ∨ Y3 Y2 ∨ Y3∗ Y2 ∨ Y3∗ · · · true
µZ2 = Z2 Z2 Z2 false∗ false∗ false∗ · · · false
µZ3 = Z4 Y3 Y3∗ Y3∗ Y3∗ Y3∗ · · · true
µZ4 = Y3 Y3∗ Y3∗ Y3∗ Y3∗ Y3∗ · · · true



17/19

Department of Mathematics and Computer Science

Solving BESs

Complexity of Gauß Elimination.

I Note that in O(n2) substitutions, we obtain the final answer for X1.
I However, f1 can have O(2n) different copies of en as subterms, so intermediate

expressions could become exponentially big.
I Practical efficiency increases a lot if one keeps all intermediate terms simplified all the

time.
I Gauß Elimination can be sped up if a forward dependency analysis is conducted

(so-called local model checking).
I Precise efficiency depends heavily on the set of simplification rules.
I Precise complexity of solving Boolean Equation Systems is still unknown.
I Complexity of Gauß Elimination is independent of the alternation depth (see

Proposition 6.4 [Mader]).



18/19

Department of Mathematics and Computer Science

Outline

Boolean Equation Systems

Model Checking using BESs

Solving BESs

Exercise



19/19

Department of Mathematics and Computer Science

Exercise

s1

s3

s2

s4

b

a

a

a
a

b

a
Consider the following µ-Calculus formula f :

νX .
(
[a]X ∧ νY .µZ .(〈b〉Y ∨ 〈a〉Z)

)

I Use the Emerson-Lei algorithm for computing whether M, s1 |= f .
I Translate the model checking question M |= f to a BES; indicate how M, s |= φ

corresponds to the variables in the BES.
I Solve the BES by Gauß Elimination.


	Boolean Equation Systems
	Model Checking using BESs
	Solving BESs
	Exercise

