Algorithms for Model Checking (2IW55) Lecture 6 Parity games

Background material: Chapter 3 of J.J.A. Keiren, An experimental study of algorithms and optimisations for parity games, with an application to Boolean Equation Systems, MSc thesis, 2009

> Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw MF 7.073

Parity games

Boolean Equation Systems

Boolean equation systems and Parity games correspond

Simplifying parity games

Summary

Exercise

- Model checking mu-calculus = solving BES
- Solving BESs conceptually simpler than model checking mu-calculus. still exponential
- BESs are more elementary than mu-calculusstill: fixpoints
- Fixpoints can be understood through an infinite game Parity games

4/23

The arena:

- total graph
- two players: \diamond (Even) and \Box (Odd)
- each vertex:
 - has a non-negative priority p(v)
 - is owned by one player
- objective: win as many vertices as possible

Definition (Parity game)

A parity game is a four tuple ($V, E, p, (V_{\diamond}, V_{\Box})$) where

- (V, E) is a directed graph
- ▶ V a set of vertices partitioned into V_{\Diamond} and V_{\Box}
 - V_{\diamondsuit} : vertices owned by player \diamondsuit
 - V_{\Box} : vertices owned by player \Box
- E a total edge relation
- $p: V \to \mathbb{N}$ a priority function

- 1. place a token on some vertex v
- 2. owner of the vertex v moves token to successor vertex v'
- 3. Repeat step 2

- 1. place a token on some vertex v
- 2. owner of the vertex v moves token to successor vertex v'
- 3. Repeat step 2

Play: infinite sequence of vertices visited by token

- 1. place a token on some vertex v
- 2. owner of the vertex v moves token to successor vertex v'
- 3. Repeat step 2

Play: infinite sequence of vertices visited by token

Definition (Winner of a play)

- Let $\pi = v_1 v_2 v_3 \dots$ be a play
- Let $inf(\pi)$ be the set of priorities occurring infinitely often in π

Play π is winning for player \diamond iff min(inf(π)) is even. Likewise for player \Box /odd.

Definition (Strategy)

A strategy for player \diamond (similarly for \Box) is a partial function $\varrho_\diamond: V^* \times V_\diamond \to V$
▶ $v_1 v_n \in V^*$ sequence of visited vertices (history)
▶ $v_n \in V_{\Diamond}$ vertex owned by \Diamond
• $\varrho_{\diamond}(v_1 \dots v_{n-1}, v_n) \in \{v \mid (v_n, v) \in E\}$ rule for moving token from v_n

Definition (Strategy)

Definition (Consistent plays)

- Let $\pi = v_1 v_2 v_3 \dots$ be an infinite play
- Let ϱ_{\bigcirc} be a strategy for player $\bigcirc \in \{\diamondsuit, \Box\}$
- π is consistent with ϱ_{\bigcirc} iff whenever $\varrho_{\bigcirc}(v_1 \dots v_{i-1}, v_i)$ is defined, then it is v_{i+1}

 $\operatorname{Play}_{\rho_{\bigcirc}}(v)$ is the set of all plays starting in v that are consistent with ϱ_{\bigcirc}

Definition (Winning strategy)

- $\blacktriangleright \ \bigcirc \in \{\diamondsuit, \Box\}$
- ϱ_{\bigcirc} is a strategy for \bigcirc

 ρ_{\bigcirc} is a winning strategy from v if every play in $\operatorname{Play}_{\rho_{\bigcirc}}(v)$ is winning for \bigcirc .

8/23

Definition (Winning strategy)

- $\blacktriangleright \ \bigcirc \in \{\diamondsuit, \Box\}$
- ϱ_{\bigcirc} is a strategy for \bigcirc

 ϱ_{\bigcirc} is a winning strategy from v if every play in $\operatorname{Play}_{\varrho_{\bigcirc}}(v)$ is winning for \bigcirc .

Player \bigcirc wins the vertices in W if from all vertices $v \in W$ she has a winning strategy ρ_{\bigcirc} .

Definition (Winning strategy)

- $\blacktriangleright \ \bigcirc \in \{\diamondsuit, \Box\}$
- ϱ_{\bigcirc} is a strategy for \bigcirc

 ϱ_{\bigcirc} is a winning strategy from v if every play in $\operatorname{Play}_{\varrho_{\bigcirc}}(v)$ is winning for \bigcirc .

Player \bigcirc wins the vertices in W if from all vertices $v \in W$ she has a winning strategy ϱ_{\bigcirc} .

Natural questions

- Is there always at least one player that can win a vertex?
- Is there a unique winner for each vertex?
- Can the winning strategies be of a particular shape or not?
- Can we compute the winning sets W_{\diamond} and W_{\Box} ?

Theorem (Positional determinacy)

Player \bigcirc wins a vertex w iff she has a memoryless strategy that is winning from w

Theorem (Positional determinacy)

Player \bigcirc wins a vertex w iff she has a memoryless strategy that is winning from w

Strategy $\varrho_{\bigcirc}: V^* \times V_{\bigcirc} \to V$ is memoryless (also history free) if:

for all histories $\lambda v, \lambda' v \in V^+$ for which ϱ_{\bigcirc} is defined, we have $\varrho_{\bigcirc}(\lambda, v) = \varrho_{\bigcirc}(\lambda', v)$

Theorem (Positional determinacy)

Player \bigcirc wins a vertex w iff she has a memoryless strategy that is winning from w

Strategy $\rho_{\bigcirc}: V^* \times V_{\bigcirc} \to V$ is memoryless (also history free) if:

for all histories $\lambda \ v, \lambda' \ v \in V^+$ for which ϱ_{\bigcirc} is defined, we have $\varrho_{\bigcirc}(\lambda, v) = \varrho_{\bigcirc}(\lambda', v)$

Consequences:

- we can drop the history and consider strategies $\varrho_{\bigcirc}:V_{\bigcirc} \to V$
- there are only a finite number of memoryless strategies

10/23

Parity games

Boolean Equation Systems

Boolean equation systems and Parity games correspond

Simplifying parity games

Summary

Exercise

TU/e Technische Universiteit Eindhoven University of Technology

Boolean Equation Systems

Recall Boolean equation systems:

- ▶ Boolean expressions: $f, g ::= X | \text{true} | \text{false} | f \land g | f \lor g$
- ▶ Boolean equation system: $\mathcal{E} ::= \varepsilon \mid (\mu X = f) \mathcal{E} \mid (\nu X = f) \mathcal{E}$

Boolean Equation Systems

Recall Boolean equation systems:

- ▶ Boolean expressions: $f, g ::= X | \text{true} | \text{false} | f \land g | f \lor g$
- ▶ Boolean equation system: $\mathcal{E} ::= \varepsilon \mid (\mu X = f) \mathcal{E} \mid (\nu X = f) \mathcal{E}$

Lemma ("Tseitin" transformation) For all Y bound in \mathcal{E}_0 , \mathcal{E}_1 or Y = X:

 $[\mathcal{E}_0 (\sigma X = f \land g) \mathcal{E}_1]\eta(Y) = [\mathcal{E}_0 (\sigma X = f \land X') (\sigma' X' = g) \mathcal{E}_1]\eta(Y)$

Note: likewise for f, likewise for $f \lor g$

11/23

Boolean Equation Systems

Recall Boolean equation systems:

- ▶ Boolean expressions: $f, g ::= X | \text{true} | \text{false} | f \land g | f \lor g$
- ▶ Boolean equation system: $\mathcal{E} ::= \varepsilon \mid (\mu X = f) \mathcal{E} \mid (\nu X = f) \mathcal{E}$

Lemma ("Tseitin" transformation) For all Y bound in \mathcal{E}_0 , \mathcal{E}_1 or Y = X:

 $[\mathcal{E}_0 (\sigma X = f \land g) \mathcal{E}_1]\eta(Y) = [\mathcal{E}_0 (\sigma X = f \land X') (\sigma' X' = g) \mathcal{E}_1]\eta(Y)$

Note: likewise for f, likewise for $f \lor g$

Lemma (Constant elimination)

For all Y bound in \mathcal{E} :

$$[\mathcal{E}]\eta(Y) = [\mathcal{E}[true := X_{true}] \ (\nu X_{true} = X_{true})]\eta(Y)$$

Note: similarly for false (with $\mu X_{\text{false}} = X_{\text{false}}$)

Definition (Standard Recursive Form)

A BES is in Standard Recursive Form (SRF) if all right hand sides of Boolean equations adhere to the following syntax:

$$F := X \mid \bigvee F \mid \bigwedge F$$

- X is a proposition variable
- F is a non-empty set of proposition variables

Definition (Standard Recursive Form)

A BES is in Standard Recursive Form (SRF) if all right hand sides of Boolean equations adhere to the following syntax:

$$F := X \mid \bigvee F \mid \bigwedge F$$

- X is a proposition variable
- F is a non-empty set of proposition variables

Observe that:

- ► all BESs can be transformed into a BES in SRF preserving the solution
- how: repeatedly use "Tseitin" transformation and constant elimination
- the total transformation can be done in polynomial time

Definition (Blocks and ranks)

- a μ -block is a BES of μ -signed equations; likewise: ν -block
- let $\mathcal{E} = \mathcal{B}_1 \cdots \mathcal{B}_n$ for blocks $\mathcal{B}_1, \dots, \mathcal{B}_n$
- Assume for all *i*, signs of blocks \mathcal{B}_i and \mathcal{B}_{i+1} differ

for all
$$(\sigma X = f) \in \mathcal{B}_i$$
, rank $(X) = \begin{cases} i & \text{if } \mathcal{B}_1 \text{ is } \mu\text{-block} \\ i-1 & \text{otherwise} \end{cases}$

Definition (Blocks and ranks)

- a μ -block is a BES of μ -signed equations; likewise: ν -block
- let $\mathcal{E} = \mathcal{B}_1 \cdots \mathcal{B}_n$ for blocks $\mathcal{B}_1, \dots, \mathcal{B}_n$
- Assume for all *i*, signs of blocks \mathcal{B}_i and \mathcal{B}_{i+1} differ

for all
$$(\sigma X = f) \in \mathcal{B}_i$$
, rank $(X) = \begin{cases} i & \text{if } \mathcal{B}_1 \text{ is } \mu\text{-block} \\ i-1 & \text{otherwise} \end{cases}$

Observe:

- rank(X) = rank(Y) if both X and Y occur in the same block
- rank(X) is odd iff X is defined in a µ-equation

Parity games

Boolean Equation Systems

Boolean equation systems and Parity games correspond

Simplifying parity games

Summary

Exercise

Department of Mathematics and Computer Science

Let $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ be a parity game

Definition (Parity game to BES)

Define the BES \mathcal{E}_G as follows:

- equations $(\sigma_v X_v = \bigwedge \{X_w \mid (v, w) \in E\})$ for vertices $v \in V_{\Box}$
- equations $(\sigma_v X_v = \bigvee \{X_w \mid (v, w) \in E\})$ for vertices $v \in V_\diamond$

•
$$\sigma_v = \mu$$
 if $p(v)$ is odd, $\sigma_v = \nu$ otherwise

• ensure $\operatorname{rank}(X_v) \leq \operatorname{rank}(X_u)$ if p(v) < p(u)

Department of Mathematics and Computer Science

Let $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ be a parity game

Definition (Parity game to BES)

Define the BES \mathcal{E}_G as follows:

- equations $(\sigma_v X_v = \bigwedge \{X_w \mid (v, w) \in E\})$ for vertices $v \in V_{\Box}$
- equations $(\sigma_v X_v = \bigvee \{X_w \mid (v, w) \in E\})$ for vertices $v \in V_\diamond$

•
$$\sigma_v = \mu$$
 if $p(v)$ is odd, $\sigma_v = \nu$ otherwise

• ensure $\operatorname{rank}(X_v) \leq \operatorname{rank}(X_u)$ if p(v) < p(u)

Theorem

Solution to X_v is true \Leftrightarrow player \diamond has winning strategy from v

Let ${\mathcal E}$ be a closed BES in SRF.

Definition (BES to parity game)

Define a parity game $G_{\mathcal{E}} = (V, E, p, (V_{\diamond}, V_{\Box}))$ as follows:

- $v_X \in V$ iff there is an equation for X in \mathcal{E}
- $(v_X, v_Y) \in E$ iff propositional variable Y occurs in f in $\sigma X = f$
- $p(v_X) = \operatorname{rank}(X)$ for all equations $(\sigma X = f)$ in \mathcal{E}
- ▶ $v_X \in V_{\Box}$ iff the equation for X is of the form $(\sigma X = \bigwedge F)$
- $V_{\diamond} = V \setminus V_{\Box}$

Let ${\mathcal E}$ be a closed BES in SRF.

Definition (BES to parity game)

Define a parity game $G_{\mathcal{E}} = (V, E, p, (V_{\diamond}, V_{\Box}))$ as follows:

- $v_X \in V$ iff there is an equation for X in \mathcal{E}
- $(v_X, v_Y) \in E$ iff propositional variable Y occurs in f in $\sigma X = f$
- $p(v_X) = \operatorname{rank}(X)$ for all equations $(\sigma X = f)$ in \mathcal{E}
- $v_X \in V_{\Box}$ iff the equation for X is of the form $(\sigma X = \bigwedge F)$
- $V_{\diamond} = V \setminus V_{\Box}$

Theorem

Player \diamond has winning strategy from $v_X \Leftrightarrow$ the solution of X is true

Parity games

Boolean Equation Systems

Boolean equation systems and Parity games correspond

Simplifying parity games

Summary

Exercise

Department of Mathematics and Computer Science

Simplifying parity games

Self-loop elimination

18/23

Simplifying parity games

Self-loop elimination

Priority compaction

In case priority 4 does not occur in the parity game. Evenness must be preserved!

Department of Mathematics and Computer Science

Simplifying parity games

Priority propagation

Corresponds to re-ordering of equations in BES, which is generally unsafe!

to

to

Department of Mathematics and Computer Science

Parity games

Boolean Equation Systems

Boolean equation systems and Parity games correspond

Simplifying parity games

Summary

Exercise

Department of Mathematics and Computer Science

- Computing winners in parity games = solving BESs
- ► Reduction parity games ↔ BESs is polynomial
- Operational interpretation of fixpoints:
 - μ -fixpoint: odd priorities; can only be won by \diamond if it ensures stretches are finite
 - u-fixpoint: even priorities; benign for player \diamond
- Simplifications
- No algorithm yet.....but

- Computing winners in parity games = solving BESs
- ► Reduction parity games ↔ BESs is polynomial
- Operational interpretation of fixpoints:
 - μ -fixpoint: odd priorities; can only be won by \diamond if it ensures stretches are finite
 - u-fixpoint: even priorities; benign for player \diamond
- Simplifications
- No algorithm yet.....but

Next week:

Recursive algorithm

Parity games

Boolean Equation Systems

Boolean equation systems and Parity games correspond

Simplifying parity games

Summary

Exercise

22/23

Exercise

Consider the following modal μ -calculus formula f:

 $\nu X.([r]X \land ((\nu Y.\langle \tau \rangle Y \lor \langle l \rangle Y) \lor (\mu Z.(([l]Z \land [s]Z) \lor \langle s \rangle true))))$

- Translate the model checking question $M \vDash f$ to a BES.
- Transform the resulting BES into a parity game.
- Determine whether f holds in s_0 by solving the obtained parity game, and
- provide a winning strategy that justifies this solution.

