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Parity games

µ-Calculus formula σX .f Mixed Kripke Structure K

Boolean Equation System

K , s |= σX .f iff Xs = true

solve

I Model checking mu-calculus = solving BES
I Solving BESs conceptually simpler than model checking mu-calculus . still exponential
I BESs are more elementary than mu-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . still: fixpoints
I Fixpoints can be understood through an infinite game . . . . . . . . . . . . . . . . . Parity games
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Parity games

The arena:
I total graph
I two players: 3 (Even) and � (Odd)
I each vertex:

• has a non-negative priority p(v)
• is owned by one player

I objective: win as many vertices as possible
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Parity games

Definition (Parity game)
A parity game is a four tuple (V ,E , p, (V3,V�)) where

I (V ,E) is a directed graph
I V a set of vertices partitioned into V3 and V�

• V3: vertices owned by player 3
• V�: vertices owned by player �

I E a total edge relation
I p : V → N a priority function
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Parity games

Rules of the game:

1. place a token on some vertex v

2. owner of the vertex v moves token to successor vertex v ′

3. Repeat step 2

Play: infinite sequence of vertices visited by token

Definition (Winner of a play)

I Let π = v1v2v3 ... be a play
I Let inf(π) be the set of priorities occurring infinitely often in π

Play π is winning for player 3 iff min(inf(π)) is even. Likewise for player �/odd.
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Parity games

Definition (Strategy)
A strategy for player 3 (similarly for �) is a partial function %3:V ∗ × V3 → V

I v1 ... vn ∈ V ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sequence of visited vertices (history)
I vn ∈ V3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vertex owned by 3
I %3(v1 ... vn−1, vn) ∈ {v | (vn, v) ∈ E} . . . . . . . . . . . . . . . . . rule for moving token from vn

Definition (Consistent plays)

I Let π = v1v2v3 ... be an infinite play
I Let %# be a strategy for player # ∈ {3,�}
I π is consistent with %# iff whenever %#(v1 ... vi−1, vi ) is defined, then it is vi+1

Play%#
(v) is the set of all plays starting in v that are consistent with %#
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Parity games

Definition (Winning strategy)

I # ∈ {3,�}
I %# is a strategy for #

%# is a winning strategy from v if every play in Play%#
(v) is winning for #.

Player # wins the vertices in W if from all vertices v ∈W she has a winning strategy %#.

Natural questions

I Is there always at least one player that can win a vertex?
I Is there a unique winner for each vertex?
I Can the winning strategies be of a particular shape or not?
I Can we compute the winning sets W3 and W�?
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Parity games

Theorem (Positional determinacy)
Player # wins a vertex w iff she has a memoryless strategy that is winning from w

Strategy %#:V ∗ × V# → V is memoryless (also history free) if:

for all histories λ v ,λ′ v ∈ V+ for which %# is defined, we have %#(λ, v) = %#(λ
′, v)

Consequences:
I we can drop the history and consider strategies %#:V# → V
I there are only a finite number of memoryless strategies
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Boolean Equation Systems

Recall Boolean equation systems:
I Boolean expressions: f , g ::= X | true | false | f ∧ g | f ∨ g
I Boolean equation system: E ::= ε | (µX = f ) E | (νX = f ) E

Lemma (“Tseitin” transformation)
For all Y bound in E0, E1 or Y = X:

[[E0 (σX = f ∧ g) E1]]η(Y ) = [[E0 (σX = f ∧ X ′) (σ′X ′ = g) E1]]η(Y )

Note: likewise for f , likewise for f ∨ g

Lemma (Constant elimination)
For all Y bound in E :

[[E]]η(Y ) = [[E[true := Xtrue] (νXtrue = Xtrue)]]η(Y )

Note: similarly for false (with µXfalse = Xfalse)
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Boolean Equation Systems

Definition (Standard Recursive Form)
A BES is in Standard Recursive Form (SRF) if all right hand sides of Boolean equations
adhere to the following syntax:

f := X |
∨

F |
∧

F

I X is a proposition variable
I F is a non-empty set of proposition variables

Observe that:
I all BESs can be transformed into a BES in SRF preserving the solution
I how: repeatedly use “Tseitin” transformation and constant elimination
I the total transformation can be done in polynomial time
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Boolean Equation Systems

Definition (Blocks and ranks)

I a µ-block is a BES of µ-signed equations; likewise: ν-block
I let E = B1 · · · Bn for blocks B1, ... ,Bn

I Assume for all i , signs of blocks Bi and Bi+1 differ

for all (σX = f ) ∈ Bi , rank(X ) =

{
i if B1 is µ-block
i − 1 otherwise

Observe:
I rank(X ) = rank(Y ) if both X and Y occur in the same block
I rank(X ) is odd iff X is defined in a µ-equation
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Boolean equation systems and Parity games correspond

Let G = (V ,E , p, (V3,V�)) be a parity game

Definition (Parity game to BES)
Define the BES EG as follows:

I equations (σvXv =
∧
{Xw | (v ,w) ∈ E}) for vertices v ∈ V�

I equations (σvXv =
∨
{Xw | (v ,w) ∈ E}) for vertices v ∈ V3

I σv = µ if p(v) is odd, σv = ν otherwise
I ensure rank(Xv ) ≤ rank(Xu) if p(v) < p(u)

Theorem
Solution to Xv is true ⇔ player 3 has winning strategy from v
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Boolean equation systems and Parity games correspond

Let E be a closed BES in SRF.

Definition (BES to parity game)
Define a parity game GE = (V ,E , p, (V3,V�)) as follows:

I vX ∈ V iff there is an equation for X in E
I (vX , vY ) ∈ E iff propositional variable Y occurs in f in σX = f
I p(vX ) = rank(X ) for all equations (σX = f ) in E
I vX ∈ V� iff the equation for X is of the form (σX =

∧
F )

I V3 = V \ V�

Theorem
Player 3 has winning strategy from vX ⇔ the solution of X is true
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Simplifying parity games

Self-loop elimination

1 to 1 2 to 2

µX = X ∧ f µX = X νX = X ∨ f νX = X

2 to 2 1 to 1

νX = X ∧ f νX = f µX = X ∨ f µX = f

Priority compaction

5 to 3

In case priority 4 does not occur in the parity game. Evenness must be preserved!
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Simplifying parity games

Priority propagation

5. . . 3

2

. . .

to

3. . . 3

2

. . .

. . .

2

1 5 . . .

to

. . .

2

1 2 . . .

Corresponds to re-ordering of equations in BES, which is generally unsafe!
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Summary

I Computing winners in parity games = solving BESs
I Reduction parity games ↔ BESs is polynomial
I Operational interpretation of fixpoints:

• µ-fixpoint: odd priorities; can only be won by 3 if it ensures stretches are finite
• ν-fixpoint: even priorities; benign for player 3

I Simplifications
I No algorithm yet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . but

Next week:
I Recursive algorithm
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Exercise

s0 s1 s2

r

s

τ

l

Consider the following modal µ-calculus formula f :

νX .([r ]X ∧ ((νY .〈τ〉Y ∨ 〈l〉Y ) ∨ (µZ .(([l ]Z ∧ [s]Z) ∨ 〈s〉true))))

I Translate the model checking question M � f to a BES.
I Transform the resulting BES into a parity game.
I Determine whether f holds in s0 by solving the obtained parity game, and
I provide a winning strategy that justifies this solution.
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