

/ Department of Mathematics and Computer Science

Parity games

▶ 2 players: \diamond (Even) and \Box (Odd)

Where innovation starts

- ► every node has an owner (V = V_◊ ∪ V_□)
- moving token infinitely often; owner chooses the next state
 - play = infinite path through the game

Parity games

- 2 players: \diamond (Even) and \Box (Odd)
- every node has an owner
 (V = V_◊ ∪ V_□)
- moving token infinitely often; owner chooses the next state
- play = infinite path through the game
- nodes labelled with natural numbers (priorities)
- winner of the play: depends on the minimal priority occurring infinitely often (even or odd?)

TU/e Technische Universiteit Eindhoven University of Technology

/ Department of Mathematics and Computer Science

of Mathematics and Computer Science

Parity games

- strategy
- winning strategy
- memoryless strategy
- winning partition

Let $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ be a parity game.

- There is a unique partition (W_{\diamond}, W_{\Box}) of V such that:
 - \diamond has winning strategy ρ_{\diamond} from W_{\diamond} , and
 - \Box has winning strategy ρ_{\Box} from W_{\Box} .

Goal of parity game algorithms

Compute partitioning (W_{\diamond}, W_{\Box}) with strategies ρ_{\diamond} and ρ_{\Box} of V, such that ρ_{\Diamond} is winning for player \Diamond from W_{\Diamond} and ρ_{\Box} is winning for player \Box from W_{\Box} .

TU/e Technische Universiteit Eindhoven University of Technology

/ Department of Mathematics and Computer Science

Notation

Let $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ be a parity game. We use the following notation:

- $\blacktriangleright \bigcirc \in \{\diamondsuit, \Box\}$
- ▶ is □. □ is ◇
- $G \setminus U$ is parity game G restricted to the vertices outside U. Formally $G \setminus U = (V', E', p', (V'_{\diamond}, V'_{\Box}))$, with

 - $V' = V \setminus U$, $E' = E \cap (V' \times V')$,
 - p'(v) = p(v) for $v \in V \setminus U$,
 - $V'_{\diamond} = V_{\diamond} \setminus U$, and $V'_{\Box} = V_{\Box} \setminus U$
- $G \cap U$ defined similarly

Let $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ be a parity game. A strategy $\varrho_{\diamond}: V_{\diamond} \to V$ is closed on a set $W \subseteq V$ if for all $v \in W$, we have:

- if $v \in V_{\Diamond}$ then $\varrho_{\Diamond}(v) \in W$, and
- if $v \in V_{\Box}$ then $(v, w) \in E$ implies $w \in W$.

Each play consistent with strategy ρ_{\Diamond} closed on W, starting in W, stays within W

A set W is \diamond -closed [resp. \Box -closed], if there is a strategy of player \diamond [resp. \Box] that is closed on W.

/ Department of Mathematics and Computer Science

Dominions

Let W_{\bigcirc} be a winning region.

Definition

 $D \subseteq W_{\bigcirc}$ is a dominion of \bigcirc , if \bigcirc has memoryless strategy ϱ_{\bigcirc} that is:

- winning for \bigcirc from all $v \in D$
- ► closed on D

TU/e Technische Universiteit Eindhoven University of Technology

of \bigcirc , if \bigcirc \bigcirc from all $v \in D$

L Dominions

Example of dominions

Attractor sets

The attractor set for \bigcirc and set $U \subseteq V$ is the set of vertices such that \bigcirc can force any play to reach U.

Definition

$$\begin{array}{l} Attr_{\bigcirc}^{0}(G,U) &= U\\ Attr_{\bigcirc}^{k+1}(G,U) &= Attr_{\bigcirc}^{k}(G,U)\\ & \cup \{v \in V_{\bigcirc} \mid \exists v' \in V : (v,v') \in E\\ & \wedge v' \in Attr_{\bigcirc}^{k}(G,U) \}\\ & \cup \{v \in V_{\bigcirc} \mid \forall v' \in V : (v,v') \in E\\ & \implies v' \in Attr_{\bigcirc}^{k}(G,U) \})\\ Attr_{\bigcirc}(G,U) &= \bigcup_{k \in \mathbb{N}} Attr_{\bigcirc}^{k}(G,U)\end{array}$$

e Technische Universiteit Eindhoven University of Technology

TU

Attractor: "forced" reachability

 $Attr_P(B)$: vertices from which player P can force the play to reach set B

Consider $Attr_{\Diamond}(G, \{v_3\})$

$$Attr^0_{\Diamond}(G, \{v_3\}) = \{v_3\}$$

/ Department of Mathematics and Computer Science

TU/e Technische Universiteit Eindhoven University of Technology

10 / 28

Attractor: "forced" reachability

 $Attr_P(B)$: vertices from which player P can force the play to reach set B

Consider $Attr_{\Diamond}(G, \{v_3\})$

$$\begin{array}{rcl} Attr^{0}_{\Diamond}(G, \{v_{3}\}) & = & \{v_{3}\} \\ Attr^{1}_{\Diamond}(G, \{v_{3}\}) & = & \{v_{3}, v_{1}\} \end{array}$$

Attractor: "forced" reachability

 $Attr_P(B)$: vertices from which player P can force the play to reach set B

Consider $Attr_{\Diamond}(G, \{v_3\})$

$$\begin{array}{rcl} Attr_{\Diamond}^{0}(G, \{v_{3}\}) & = & \{v_{3}\} \\ Attr_{\Diamond}^{1}(G, \{v_{3}\}) & = & \{v_{3}, v_{1}\} \\ Attr_{\Diamond}^{2}(G, \{v_{3}\}) & = & \{v_{3}, v_{1}, v_{2}, v_{5}\} \end{array}$$

Time: O(|V| + |E|)

/ Department of Mathematics and Computer Science

12 / 28

Let *D* be a \bigcirc -dominion in *G*, then:

- there is a strategy ρ_{\bigcirc} such that \bigcirc wins on D;
- \bigcirc can always choose to stay in *D*;
- \bigcirc cannot leave *D*;
- $A = Attr^{\bigcirc}(G, D)$ is a \bigcirc -dominion;
- \bigcirc cannot leave $V \setminus A$

Divide and conquer

- Base: empty game
- ► Step:
 - identify a proper subgame (with at least one node less)
 - compute a dominion in the subgame
 - remove the dominion and solve the remainder of the original game
 - assemble winning sets/strategies from winning sets/strategies of subgames

TU/e Technische Universiteit Eindhoven University of Technology

/ Department of Mathematics and Computer Science

Recursive algorithm (McNaughton '93, Zielonka '98)

Recursively solve a parity game: Recursive(G). Returns partitioning (W_{\diamond}, W_{\Box}) such that \diamond wins from W_{\diamond} , and \Box wins from W_{\Box} .

1:
$$m \leftarrow \min\{p(v) \mid v \in V\}^{\dagger}$$

2: $h \leftarrow \max\{p(v) \mid v \in V\}^{\dagger}$
3: if $h - m = 0$ then
4: if h is even then
5: return (V, \emptyset)
6: else
7: return (\emptyset, V)
8: end if
10: $\bigcirc \leftarrow \begin{cases} \diamondsuit \text{ if m is even} \\ \Box \text{ otherwise} \end{cases}$
11: $U \leftarrow \{v \in V \mid p(v) = m\}$
12: $A \leftarrow Attr^{\bigcirc}(G, U)$
13: $(W_{\Diamond}', W_{\Box}') \leftarrow Recursive(G \setminus A)$
14: if $W_{\bigcirc}' = \emptyset$ then
14: if $W_{\bigcirc}' = \emptyset$ then
15: $W_{\bigcirc} \leftarrow A \cup W_{\bigcirc}'$
16: $W_{\bigcirc} \leftarrow A \cup W_{\bigcirc}'$
16: $W_{\bigcirc} \leftarrow \phi$
17: else
18: $B \leftarrow Attr^{\bigcirc}(G, W_{\bigcirc}')$
19: $(W_{\Diamond}, W_{\Box}) \leftarrow Recursive(G \setminus B)$
20: $W_{\bigcirc} \leftarrow W_{\bigcirc} \cup B$
21: end if
22: return (W_{\Diamond}, W_{\Box})

 $\dagger:$ we assume that min and max return -1 if called on an empty set

Assume that the minimal priority in G is even.

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

Assume that the minimal priority in G is even.

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

U (min. priority)
$Attr_{\diamond}(U)$
$\operatorname{Rec}({\mathcal G}\setminus\operatorname{Attr}_{\diamond}(U)$

G

line 13 / Department of Mathematics and Computer Science

Assume that the minimal priority in G is even.

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

Assume that the minimal priority in G is even.

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

U	(min. priority)	
	$\begin{array}{c} Attr_{\Box}(W_{\Box}')\\ Attr_{\Diamond}(U) \end{array}$	
W_{\diamond}^{\prime}	₩ <mark>′</mark>	

G

Assume that the minimal priority in G is even.

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

Observations

- Lines 1-9: base case, straightforward.
- Lines 10-13: try to establish a dominion. Two cases:
 - Lines 12-15: (○ wins all):○ wins in G \ A, then wins all of G, since if visits A, then plays towards U using attractor, visiting A infinitely often, hence m infinitely often. If A not visited, game stays in G \ A.
 - Lines 16-20: ($\overline{\bigcirc}$ -dominion found): $W'_{\overline{\bigcirc}}$ is a $\overline{\bigcirc}$ -dominion in $G \setminus A$. Since \bigcirc cannot leave $G \setminus A$ also $W'_{\overline{\bigcirc}}$ is $\overline{\bigcirc}$ -dominion in

G. Then solve remaining game recursively and fix solution, compose strategies.

Exercise

Apply the recursive algorithm to the following parity game G

 $\begin{array}{l} m \leftarrow 3 \\ h \leftarrow 3 \\ \text{return} \ (\emptyset, \{W, Z, Z'\}) \end{array}$

nimal priority in G is eve line 22

Zielonka's Recursive Algorithm L

Exercise

2013-10-21

Apply the recursive algorithm to the following parity game G

$$Z' \xrightarrow{3}_{Z} \xrightarrow{3}_{Z$$

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games recursively -Solving parity games Zielonka's Recursive Algorithm line 22 Example (*Recursive*(G))

Consider parity game G:

$$\begin{array}{c}
1: \ m \leftarrow 1 \\
2: \ h \leftarrow 3 \\
3: \dots \\
10: \bigcirc \leftarrow \square \\
11: \ U \leftarrow \{v \in V \mid p(v) = 1\} = \{X, X'\} \\
12: \ A \leftarrow Attr^{\square}(G, U) = \{X, X'\} \\
13: \ (W'_{\Diamond}, W'_{\square}) \leftarrow Recursive(G \setminus \{X, X'\}) = \\
(\emptyset, \{Y, Y', Z, Z', W\}) \\
14: \ \text{if } W'_{\Diamond} = \emptyset \text{ then} \\
15: \ W_{\square} \leftarrow A \cup W'_{\square} = \{X, X', Y, Y', Z, Z', W\} \\
16: \ W_{\Diamond} \leftarrow \emptyset \\
17: \ \text{else} \\
18: \ \dots \\
19: \ \text{end if} \\
20: \ \text{return } (W_{\Diamond}, W_{\square}) = (\emptyset, \{X, X', Y, Y', Z, Z', W\})
\end{array}$$

So, player \Box wins from all vertices!

Complexity

Let $G = (V, E, p, (V_{\diamond}, V_{\Box})$ be a parity game. $n = |V|, e = |E|, d = |\{p(v) \mid v \in V\}|.$

Worst-case running time complexity

 $\mathcal{O}(e \cdot n^d)$

Lowerbound on worst-case:

 $Ω(2^{n/3})$

/ Department of Mathematics and Computer Science

TU/e Technische Universiteit Eindhoven University of Technology

26 / 28

 $(V, E, p, (V_{\diamond}, V_{\Box}))$ be a parity ga $e = |E|, d = |\{p(v) \mid v \in V\}|.$

 $\mathcal{O}(e \cdot n^d)$

 $Ω(2^{n/3})$

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games recursively Solving parity games

Complexity

Worst-case analysis

Recurrence T(n, d) defined as $\begin{cases} T(0, 0) = 1 \\ T(n+1, d+1) = T(n, d) + T(n, d+1) + e \end{cases}$

Solve recurrence using substitution method. Guess solution $T(n, d) = O(en^d)$. We prove that $T(n, d) \leq cen^d$ for an appropriate constant c > 0 by induction on n and d.

- n = d = 0. $T(0,0) \leqslant ce$, $c \geqslant 1$
- n > 0, d > 0. IH: assume T(n, d + 1) ≤ cen^{d+1} and T(n, d) ≤ cen^d. Substitute into recurrence:

$$egin{aligned} T(n+1,p+1) &= T(n,d) + T(n,d+1) + e \ &\leqslant cen^d + cen^{d+1} + e \ &\leqslant^\dagger ce(n^d + n^{d+1} + 1) \ &= ce(n^d + n \cdot n^d + 1) \ &= ce((n+1)n^d + 1) \ &\leqslant ce((n+1)(n+1)^d) \ &= ce((n+1)^{d+1}) \end{aligned}$$

 $\dagger : c \ge 1.$

The Quest for an Efficient PG Solving Algorithm

- Recursive algorithm [McNaughton 1993, Zielonka 1998]
 O(n^c)
- Small Progress Measures [Jurdziński, 2000] $O(n^{c/2})$
- subexponential algorithm [Jurdziński, Paterson and Zwick, 2006] $O(n^{\sqrt{n}})$
- bigstep [Schewe, 2007] $O(n^{c/3})$
- strategy improvement algorithms [e.g. Voege & Jurdziński]: superpolynomial in worst case

Computational status: $NP \cap coNP$.

/ Department of Mathematics and Computer Science

Wrap up

27 / 28

Recursive algorithm:

- Divide and conquer
- Dominions
- Attractor sets
- *O*(*en^d*)
- Exponential examples available

