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Parity games

» 2 players: & (Even) and O (Odd)

» every node has an owner
(V=VoU\Wn)

» moving token infinitely often;
owner chooses the next state

» play = infinite path through the
game
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Parity games

2 players: & (Even) and [0 (Odd)

every node has an owner
(V=VoU\Wn)

moving token infinitely often;
owner chooses the next state

play = infinite path through the
game

nodes labelled with natural
numbers (priorities)

winner of the play: depends on the
minimal priority occurring infinitely
often (even or odd?)
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strategy
winning strategy
memoryless strategy

winning partition
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Let G = (V,E,p,(Vo, Vo)) be a parity game.
» There is a unique partition (Ws, W) of V such that:

« < has winning strategy oo from W, and
» [ has winning strategy o from W.

Goal of parity game algorithms

Compute partitioning (Ws, Wh) with strategies oo and o
of V/, such that p¢ is winning for player & from We and o
is winning for player [ from Wg.
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Notation

Let G = (V,E,p,(Vo, Vo)) be a parity game.
We use the following notation:

> O e {0}

» Ois O, Ois ©

» G\ U is parity game G restricted to the vertices outside U.
Formally G\ U= (V',E',p’,(V4, V1)), with
=V\U,

E'=En(V x V),

p'(v) = p(v) forve V\U,

VL = Vo \ U, and

Vi = Vo \ U

» G N U defined similarly
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Closed strategies and sets

Let G = (V,E,p,(Vo, Vo)) be a parity game. A strategy
0o:Vo — Vs closed on aset W C V if for all v € W, we have:

» if v.e Vi then po(v) € W, and
» if v.€ Vg then (v,w) € E implies w € W,

Each play consistent with strategy o¢ closed on W, starting in W,
stays within W

A set W is O-closed [resp. [-closed], if there is a strategy of
player & [resp. O] that is closed on W.
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Dominions

Let W be a winning region.

Definition

D C W is a dominion of (O, if O has memoryless strategy
oo that is:

» winning for () from all v € D

» closed on D
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& I—Dominions

Example of dominions

Example

Consider parity game G:
o {X},{Z',Z, W} are
[J-dominions

e Note that {Z, W} is not
a dominion

e Why is {Y, Y’} not a
dominion

Attractor sets

The attractor set for () and set U C V is the set of vertices such
that () can force any play to reach U.

Attrly(G,U)  =U
Attr"“(G U) = Attrf(G, U)

U{ve Vo |3V eV-( V') e E
AV € Attrk O(G, U)}
U{v e V5 |vV eV (v,v') e E
— v/ EAttrO(G u)}h)
Attr~(G, U) —UkGNAttrO(G U)
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Attractor:

“forced” reachability

/ Department of Mathematics and Computer Science

Attractor:

Attrp(B): vertices from
which player P can force
the play to reach set B

Consider Attr,(G,{v3})

Attr%(G, {ns}) = {wv3}
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“forced” reachability

/ Department of Mathematics and Computer Science

Attrp(B): vertices from
which player P can force
the play to reach set B

Consider Attr,(G,{v3})

Attrd (G, {wv3}) = {vs}
Attré(G,{m}) = {V3,V1}
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Attractor: “forced” reachability

Attrp(B): vertices from
which player P can force
the play to reach set B

Consider Attr,(G,{v3})

(
Attr%(Ga{Vﬁ; = {vs}
)

Attré(G,{Vg,} {V3,V1}
Attrd (G, {v3}) = {v3,v1,v2, 5}

Time: O(|V| + |E|)
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Properties

Let D be a ()-dominion in G, then:
there is a strategy oo such that (O wins on D;

\4

v

(O can always choose to stay in D;
6 cannot leave D:;

A = AttrO(G, D) is a O-dominion;
(O cannot leave V \ A

v

v

v
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Recursive algorithm (intuition)

Divide and conquer
» Base: empty game
» Step:
* identify a proper subgame (with at least one node less)
e compute a dominion in the subgame
¢ remove the dominion and solve the remainder of the original
game

 assemble winning sets/strategies from winning sets/strategies
of subgames
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Recursive algorithm (McNaughton '93, Zielonka '98)

Recursively solve a parity game: Recursive(G). Returns partitioning
(We, W5) such that & wins from W, and O wins from W/.

1: m«— min{p(v) | v e V}

2: h« max{p(v)|ve V}

3: if h— m =0 then 14: if Wé:(?)then

4: if h is even then ) — /

5: return (V,0) 12 wo gu Wo

6: else ' o~

7 return (0, V) 17: else _

8: end if 18: B — AttrO(G, W’S)

9: end if 19: (W, WH) « Recursive(G \ B)
<& if mis even 20: We «— W—UB

10:

O ] otherwise 21: end ifO ©
11: U—{veV|p(v)=m} 22: return (Wo, W)

12: A — AttrO(G, U)
13: (WS, W) < Recursive(G \ A)

t: we assume that min and max return —1 if called on an empty set
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Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.
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Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

U (min. priority)

line 11
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Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

U (min. priority)

Attre ( U)

line 12
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Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

U (min. priority)

Attre(U)

REC(G \ Attro(U)

line 13 .
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Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

U (min. priority)

Attre(U)

line 14 (case WY = 0)
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Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

G
line 15, 16 & 22 (case W/ = 0)
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Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

U (min. priority)

Attro(U)

line 17 (case WY, # 0)
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Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

U

line 18 .
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Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

REC(G \ (Wh)

line 19
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Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

line 22
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Algorithms for Model Checking (2IW55) Lecture 7:Solving
parity games recursively

Assume that the minimal priority in G is even.

Solving parity games

I—Zielon ka's Recursive Algorithm

Observations

e Lines 1-9: base case, straightforward.

e Lines 10-13: try to establish a dominion. Two cases:

— Lines 12-15: (O wins all):() wins in G \ A, then () wins all of
G, since if () visits A, then () plays towards U using attractor,
visiting A infinitely often, hence m infinitely often. If A not
visited, game stays in G \ A.

— Lines 16-20: (()-dominion found): W’6 is a ()-dominion in

G \ A. Since () cannot leave G \ A also W’6 is ()-dominion in

G. Then solve remaining game recursively and fix solution,
compose strategies.

Algorithms for Model Checking (2IW55) Lecture 7:Solving
parity games recursively

Assume that the minimal priority in G is even.

Solving parity games

I—Zielon ka's Recursive Algorithm s

Exercise

Apply the recursive algorithm to the following parity game G

m«—3
h+<—3
return (0, {W,Z,7Z'})

Z
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— Assume that the minimal priority in G is even.
g parity games recursively
; Solving parity games
—
< (I . .
& Zielonka's Recursive Algorithm
Exercise
Apply the recursive algorithm to the following parity game G
1: m—2
2: h«3
3 ...
10: O« ¢
>Y! 11: U {ve V|pv)=2}={Y, ¥}
12: A« Attr®(G,U) = {Y,Y'}
13: (W, Wé — Recursive(G \ {Y,Y’}) =
Y 0,{2, 2, w})
14: if W5 =0 then
15: e
Z/ 0 0 W  15: else
7 16: B «— Attr(G, W) ={Y,Y', 2,2/, W}
17: (Wo, W) <« Recursive(G \ B) = (0, 0)
18: Wo— WouB=B={Y,Y',Z,Z' W}
19: end if
20: return (Wo, Wo) = (0,{Y,Y’,Z,Z2',W})
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& Zielonka's Recursive Algorithm s

Example (Recursive(G))
1:
2:

Consider parity game G: 3: ..
10:
11:
12:
13:

14
15:
16:
17:
18:
19:
20:

m«—1

h<+3

O <0

U—{veV]|p(v)=1}={X,X"}

A — AttrP (G, U) = {X, X"}

(W5, W)« Recursive(G \ {X,X'}) =
0,{Y,Y",z2,Z2",W})

if W5 =0 then

Wo — AuWL ={X,X",Y, Y Z Z W}
We «— 0

else

end if

return (Wo , W) = (0,{X, X", Y, Y, Z,Z' W})

So, player [ wins from all vertices!



Complexity

Let G = (V,E,p,(Vo, Vo) be a parity game.
n=|V],e=|El,d=[{p(v)|v eV}

Worst-case running time complexity

O(e - n?)

Lowerbound on worst-case:

Q(2n/3)
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a - - Let G = (V. E, p.(Vo. Vi) be a parity game.
. parity games recursively n=Vie= Il d=Tipl0 ve v}

2 Worst-case running time complexity

& Solving parity games _

— Lowerbound on worst-case:

o

N Complexity e

Worst-case analysis

7(0,0) =1

T(n+1,d+1) =T(n,d)+ T(n,d+1)+e
Solve recurrence using substitution method. Guess solution T(n,d) = O(en?). We
prove that T(n, d) < cen? for an appropriate constant ¢ > 0 by induction on n and d.

e n=d=0.T(0,0)<ce,c>1

e n>0,d>0.IH: assume T(n,d + 1) < cen?"! and T(n, d) < cen?. Substitute
into recurrence:

Recurrence T(n, d) defined as{

T(n+1,p+1)=T(n,d)+ T(n,d+1)+e
< cen® + cendt! + ¢
<t ce(nd + ndt 1)
ce(n? +n-n? +1)
ce((n+ 1)n? 4+ 1)
ce((n+ 1)(n+1)°)
= ce((n+ 1))

N



The Quest for an Efficient PG Solving Algorithm

» Recursive algorithm [McNaughton 1993, Zielonka 1998]
O(n°)
> Small Progress Measures [Jurdzifiski, 2000] O(n</?)

» subexponential algorithm [Jurdzifiski, Paterson and Zwick,
2006] O(nvV")
> bigstep [Schewe, 2007] O(n</3)

» strategy improvement algorithms [e.g. Voege & Jurdzinskil:
superpolynomial in worst case

Computational status: NP N coNP.
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Wrap up

» Recursive algorithm:

e Divide and conquer
e Dominions
Attractor sets
O(en?)

Exponential examples available
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