
Algorithms for Model Checking (2IW55)
Lecture 7:
Solving parity games recursively

Maciej Gazda
September 30, 2013

using some of Jeroen Keiren’s slides

/ Department of Mathematics and Computer Science 1 / 28

Parity games
!

v1 v2

v3 v4

v5 v6

I 2 players: 3 (Even) and � (Odd)

I every node has an owner
(V = V3 ∪ V�)

I moving token infinitely often;
owner chooses the next state

I play = infinite path through the
game

/ Department of Mathematics and Computer Science 2 / 28

Parity games
!

3

v1

1

v2

0 v3 1v4

1

v5

2

v6

I 2 players: 3 (Even) and � (Odd)

I every node has an owner
(V = V3 ∪ V�)

I moving token infinitely often;
owner chooses the next state

I play = infinite path through the
game

I nodes labelled with natural
numbers (priorities)

I winner of the play: depends on the
minimal priority occurring infinitely
often (even or odd?)

/ Department of Mathematics and Computer Science 3 / 28

Parity games
!

3

v1

1

v2

0 v3 1v4

1

v5

2

v6

I strategy

I winning strategy

I memoryless strategy

I winning partition

/ Department of Mathematics and Computer Science 4 / 28

Goal
!

Let G = (V ,E , p, (V3,V�)) be a parity game.
I There is a unique partition (W3,W�) of V such that:

• 3 has winning strategy %3 from W3, and
• � has winning strategy %� from W�.

Goal of parity game algorithms

Compute partitioning (W3,W�) with strategies %3 and %�
of V , such that %3 is winning for player 3 from W3 and %�
is winning for player � from W�.

/ Department of Mathematics and Computer Science 5 / 28

Notation
!

Let G = (V ,E , p, (V3,V�)) be a parity game.
We use the following notation:
I © ∈ {3,�}
I 3 is �, � is 3
I G \ U is parity game G restricted to the vertices outside U.

Formally G \ U = (V ′,E ′, p′, (V ′3,V
′
�)), with

• V ′ = V \ U,
• E ′ = E ∩ (V ′ × V ′),
• p′(v) = p(v) for v ∈ V \ U,
• V ′3 = V3 \ U, and
• V ′� = V� \ U

I G ∩ U defined similarly

/ Department of Mathematics and Computer Science 6 / 28

Closed strategies and sets
!

Let G = (V ,E , p, (V3,V�)) be a parity game. A strategy
%3:V3 → V is closed on a set W ⊆ V if for all v ∈W , we have:
I if v ∈ V3 then %3(v) ∈W , and
I if v ∈ V� then (v ,w) ∈ E implies w ∈W .

Each play consistent with strategy %3 closed on W , starting in W ,
stays within W

A set W is 3-closed [resp. �-closed], if there is a strategy of
player 3 [resp. �] that is closed on W .

/ Department of Mathematics and Computer Science 7 / 28

Dominions
!

Let W© be a winning region.

Definition

D ⊆W© is a dominion of ©, if © has memoryless strategy
%© that is:
I winning for © from all v ∈ D
I closed on D

/ Department of Mathematics and Computer Science 8 / 28

Dominions
!

Let W© be a winning region.

Definition

D ⊆W© is a dominion of ©, if © has memoryless strategy
%© that is:
I winning for © from all v ∈ D
I closed on D

20
13
-1
0-
21

Algorithms for Model Checking (2IW55) Lecture 7:Solving
parity games recursively

Solving parity games

Dominions

Example of dominions

Example

Consider parity game G :

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

• {X}, {Z ′,Z ,W } are
�-dominions

• Note that {Z ,W } is not
a dominion

• Why is {Y ,Y ′} not a
dominion

Attractor sets
!

The attractor set for © and set U ⊆ V is the set of vertices such
that © can force any play to reach U.

Definition

Attr0©(G ,U) = U
Attrk+1

© (G ,U) = Attrk©(G ,U)

∪{v ∈ V© | ∃v ′ ∈ V : (v , v ′) ∈ E
∧v ′ ∈ Attrk©(G ,U)}

∪{v ∈ V© | ∀v
′ ∈ V : (v , v ′) ∈ E

=⇒ v ′ ∈ Attrk©(G ,U)})
Attr©(G ,U) =

⋃
k∈N Attr

k
©(G ,U)

/ Department of Mathematics and Computer Science 9 / 28

Attractor: “forced” reachability
!

3

v1

1

v2

0 v3 1 v4

1

v5

2

v6

AttrP(B): vertices from
which player P can force
the play to reach set B

Consider Attr3(G , {v3})

Attr03(G , {v3}) = {v3}

/ Department of Mathematics and Computer Science 10 / 28

Attractor: “forced” reachability
!

3

v1

1

v2

0 v3 1 v4

1

v5

2

v6

AttrP(B): vertices from
which player P can force
the play to reach set B

Consider Attr3(G , {v3})

Attr03(G , {v3}) = {v3}
Attr13(G , {v3}) = {v3, v1}

/ Department of Mathematics and Computer Science 11 / 28

Attractor: “forced” reachability
!

3

v1

1

v2

0 v3 1 v4

1

v5

2

v6

AttrP(B): vertices from
which player P can force
the play to reach set B

Consider Attr3(G , {v3})

Attr03(G , {v3}) = {v3}
Attr13(G , {v3}) = {v3, v1}
Attr23(G , {v3}) = {v3, v1, v2, v5}

Time: O(|V |+ |E |)

/ Department of Mathematics and Computer Science 12 / 28

Properties
!

Let D be a ©-dominion in G , then:
I there is a strategy %© such that © wins on D;
I © can always choose to stay in D;
I © cannot leave D;
I A = Attr©(G ,D) is a ©-dominion;
I © cannot leave V \ A

/ Department of Mathematics and Computer Science 13 / 28

Recursive algorithm (intuition)
!

Divide and conquer
I Base: empty game
I Step:

• identify a proper subgame (with at least one node less)
• compute a dominion in the subgame
• remove the dominion and solve the remainder of the original

game
• assemble winning sets/strategies from winning sets/strategies

of subgames

/ Department of Mathematics and Computer Science 14 / 28

Recursive algorithm (McNaughton ’93, Zielonka ’98)
!

Recursively solve a parity game: Recursive(G). Returns partitioning
(W3,W�) such that 3 wins from W3, and � wins from W�.

1: m← min{p(v) | v ∈ V }†
2: h← max{p(v) | v ∈ V }†
3: if h −m = 0 then
4: if h is even then
5: return (V , ∅)
6: else
7: return (∅,V)
8: end if
9: end if

10: ©←
{

3 if m is even

� otherwise
11: U ← {v ∈ V | p(v) = m}
12: A← Attr©(G ,U)
13: (W ′3,W ′�)← Recursive(G \ A)

14: if W ′
©

= ∅ then
15: W© ← A ∪W ′©
16: W© ← ∅
17: else
18: B ← Attr©(G ,W ′

©
)

19: (W3,W�)← Recursive(G \B)
20: W© ←W© ∪ B
21: end if
22: return (W3,W�)

†: we assume that min and max return −1 if called on an empty set

/ Department of Mathematics and Computer Science 15 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

G

/ Department of Mathematics and Computer Science 16 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

U (min. priority)

G

line 11
/ Department of Mathematics and Computer Science 17 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

U (min. priority)

Attr3(U)

G

line 12
/ Department of Mathematics and Computer Science 18 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

U (min. priority)

Attr3(U)

Rec(G \ Attr3(U)

G

line 13
/ Department of Mathematics and Computer Science 19 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

U (min. priority)

Attr3(U)

W ′3

G

line 14 (case W ′� = ∅)
/ Department of Mathematics and Computer Science 20 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

W3

G

line 15, 16 & 22 (case W ′� = ∅)
/ Department of Mathematics and Computer Science 21 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

U (min. priority)

Attr3(U)

W ′3 W ′�

G

line 17 (case W ′� 6= ∅)
/ Department of Mathematics and Computer Science 22 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

U (min. priority)

Attr3(U)

W ′3 W ′�

Attr�(W ′�)

G

line 18
/ Department of Mathematics and Computer Science 23 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

W�

Rec(G \ (W�)

G

line 19
/ Department of Mathematics and Computer Science 24 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

W�W3

G

line 22
/ Department of Mathematics and Computer Science 25 / 28

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

W�W3

G

line 22

20
13
-1
0-
21

Algorithms for Model Checking (2IW55) Lecture 7:Solving
parity games recursively

Solving parity games

Zielonka’s Recursive Algorithm

Observations

• Lines 1-9: base case, straightforward.

• Lines 10-13: try to establish a dominion. Two cases:

– Lines 12-15: (© wins all):© wins in G \ A, then © wins all of
G , since if © visits A, then © plays towards U using attractor,
visiting A infinitely often, hence m infinitely often. If A not
visited, game stays in G \ A.

– Lines 16-20: (©-dominion found): W ′
©

is a ©-dominion in

G \ A. Since © cannot leave G \ A also W ′
©

is ©-dominion in
G . Then solve remaining game recursively and fix solution,
compose strategies.

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

W�W3

G

line 22

20
13
-1
0-
21

Algorithms for Model Checking (2IW55) Lecture 7:Solving
parity games recursively

Solving parity games

Zielonka’s Recursive Algorithm

Exercise

Apply the recursive algorithm to the following parity game G

3

Z
3Z ′ 3 W

m← 3
h← 3
return (∅, {W ,Z ,Z ′})

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

W�W3

G

line 22

20
13
-1
0-
21

Algorithms for Model Checking (2IW55) Lecture 7:Solving
parity games recursively

Solving parity games

Zielonka’s Recursive Algorithm

Exercise

Apply the recursive algorithm to the following parity game G

2 Y ′

2 Y

3

Z
3Z ′ 3 W

1: m← 2
2: h← 3
3: . . .
10: ©← 3
11: U ← {v ∈ V | p(v) = 2} = {Y ,Y ′}
12: A← Attr3(G ,U) = {Y ,Y ′}
13: (W ′3,W ′�) ← Recursive(G \ {Y ,Y ′}) =

(∅, {Z ,Z ′,W })
14: if W ′� = ∅ then
15: . . .
15: else
16: B ← Attr�(G ,W ′�) = {Y ,Y

′,Z ,Z ′,W }
17: (W3,W�)← Recursive(G \ B) = (∅, ∅)
18: W� ←W� ∪ B = B = {Y ,Y ′,Z ,Z ′,W }
19: end if
20: return (W3,W�) = (∅, {Y ,Y ′,Z ,Z ′,W })

Zielonka’s Recursive Algorithm
!

Assume that the minimal priority in G is even.

W�W3

G

line 22

20
13
-1
0-
21

Algorithms for Model Checking (2IW55) Lecture 7:Solving
parity games recursively

Solving parity games

Zielonka’s Recursive Algorithm

Example (Recursive(G))

Consider parity game G :

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

1: m← 1
2: h← 3
3: . . .
10: ©← �
11: U ← {v ∈ V | p(v) = 1} = {X ,X ′}
12: A← Attr�(G ,U) = {X ,X ′}
13: (W ′3,W ′�) ← Recursive(G \ {X ,X ′}) =

(∅, {Y ,Y ′,Z ,Z ′,W })
14: if W ′3 = ∅ then
15: W� ← A ∪W ′� = {X ,X ′,Y ,Y ′,Z ,Z ′,W }
16: W3 ← ∅
17: else
18: . . .
19: end if
20: return (W3,W�) = (∅, {X ,X ′,Y ,Y ′,Z ,Z ′,W })

So, player � wins from all vertices!

Complexity
!

Let G = (V ,E , p, (V3,V�) be a parity game.
n = |V |, e = |E |, d = |{p(v) | v ∈ V }|.

Worst-case running time complexity

O(e · nd)

Lowerbound on worst-case:

Ω(2n/3)

/ Department of Mathematics and Computer Science 26 / 28

Complexity
!

Let G = (V ,E , p, (V3,V�) be a parity game.
n = |V |, e = |E |, d = |{p(v) | v ∈ V }|.

Worst-case running time complexity

O(e · nd)

Lowerbound on worst-case:

Ω(2n/3)20
13
-1
0-
21

Algorithms for Model Checking (2IW55) Lecture 7:Solving
parity games recursively

Solving parity games

Complexity

Worst-case analysis

Recurrence T (n, d) defined as

{
T (0, 0) = 1

T (n + 1, d + 1) = T (n, d) + T (n, d + 1) + e

Solve recurrence using substitution method. Guess solution T (n, d) = O(end). We
prove that T (n, d) ¬ cend for an appropriate constant c > 0 by induction on n and d .

• n = d = 0. T (0, 0) ¬ ce, c 1

• n > 0, d > 0. IH: assume T (n, d + 1) ¬ cend+1 and T (n, d) ¬ cend . Substitute
into recurrence:

T (n + 1, p + 1) = T (n, d) + T (n, d + 1) + e

¬ cend + cend+1 + e

¬† ce(nd + nd+1 + 1)

= ce(nd + n · nd + 1)

= ce((n + 1)nd + 1)

¬ ce((n + 1)(n + 1)d)

= ce((n + 1)d+1)

† : c 1.

The Quest for an Efficient PG Solving Algorithm
!

I Recursive algorithm [McNaughton 1993, Zielonka 1998]
O(nc)

I Small Progress Measures [Jurdziński, 2000] O(nc/2)

I subexponential algorithm [Jurdziński, Paterson and Zwick,
2006] O(n

√
n)

I bigstep [Schewe, 2007] O(nc/3)

I strategy improvement algorithms [e.g. Voege & Jurdziński]:
superpolynomial in worst case

Computational status: NP ∩ coNP.

/ Department of Mathematics and Computer Science 27 / 28

Wrap up
!

I Recursive algorithm:
• Divide and conquer
• Dominions
• Attractor sets
• O(end)
• Exponential examples available

/ Department of Mathematics and Computer Science 28 / 28

	Solving parity games

