Algorithms for Model Checking (2IW55)

Lecture 7:

Solving parity games recursively

Maciej Gazda
September 30, 2013
using. same of Jéroen Kërén's s slides.

Parity games

- 2 players: \diamond (Even) and \square (Odd)
- every node has an owner $\left(V=V_{\diamond} \cup V_{\square}\right)$
- moving token infinitely often; owner chooses the next state
- play $=$ infinite path through the game

Parity games

Parity games

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ be a parity game.

- There is a unique partition $\left(W_{\diamond}, W_{\square}\right)$ of V such that:
- \diamond has winning strategy ϱ_{\diamond} from W_{\diamond}, and
- \square has winning strategy ϱ_{\square} from W_{\square}.

Goal of parity game algorithms

Compute partitioning ($W_{\diamond}, W_{\square}$) with strategies ϱ_{\diamond} and ϱ_{\square} of V, such that ϱ_{\diamond} is winning for player \diamond from W_{\diamond} and ϱ_{\square} is winning for player \square from W_{\square}.

Notation

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ be a parity game.
We use the following notation:
$-\bigcirc \in\{\diamond, \square\}$

- $\bar{\diamond}$ is $\square, \bar{\square}$ is \diamond
- $G \backslash U$ is parity game G restricted to the vertices outside U. Formally $G \backslash U=\left(V^{\prime}, E^{\prime}, p^{\prime},\left(V_{\diamond}^{\prime}, V_{\square}^{\prime}\right)\right)$, with
- $V^{\prime}=V \backslash U$,
- $E^{\prime}=E \cap\left(V^{\prime} \times V^{\prime}\right)$,
- $p^{\prime}(v)=p(v)$ for $v \in V \backslash U$,
- $V_{\diamond}^{\prime}=V_{\diamond} \backslash U$, and
- $V_{\square}^{\prime}=V_{\square} \backslash U$
- $G \cap U$ defined similarly

Closed strategies and sets

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ be a parity game. A strategy $\varrho_{\diamond}: V_{\diamond} \rightarrow V$ is closed on a set $W \subseteq V$ if for all $v \in W$, we have:

- if $v \in V_{\diamond}$ then $\varrho_{\diamond}(v) \in W$, and
- if $v \in V_{\square}$ then $(v, w) \in E$ implies $w \in W$.

Each play consistent with strategy ϱ_{\diamond} closed on W, starting in W, stays within W

A set W is \diamond-closed [resp. \square-closed], if there is a strategy of player \diamond [resp. \square] that is closed on W.

Dominions

Let W_{\bigcirc} be a winning region.

Definition

$D \subseteq W_{\bigcirc}$ is a dominion of \bigcirc, if \bigcirc has memoryless strategy ϱ_{\bigcirc} that is:

- winning for \bigcirc from all $v \in D$
- closed on D

Example of dominions

Example

Consider parity game G :

- $\{X\},\left\{Z^{\prime}, Z, W\right\}$ are \square-dominions
- Note that $\{Z, W\}$ is not a dominion
- Why is $\left\{Y, Y^{\prime}\right\}$ not a dominion

Attractor sets

The attractor set for \bigcirc and set $U \subseteq V$ is the set of vertices such that \bigcirc can force any play to reach U.

Definition

$$
\begin{aligned}
& \operatorname{Attr}_{\bigcirc}^{0}(G, U)= U \\
& \operatorname{Attr}_{\bigcirc}^{k+1}(G, U)= \operatorname{Attr}_{\bigcirc}^{k}(G, U) \\
& \cup\left\{v \in V_{\bigcirc} \mid \exists v^{\prime} \in V:\left(v, v^{\prime}\right) \in E\right. \\
&\left.\wedge v^{\prime} \in \operatorname{Attr}^{k}(G, U)\right\} \\
& \cup\left\{v \in V_{\bar{O}} \mid \forall v^{\prime} \in V:\left(v, v^{\prime}\right) \in E\right. \\
&\left.\left.\Longrightarrow v^{\prime} \in \operatorname{Attr}_{\bigcirc}^{k}(G, U)\right\}\right) \\
& \operatorname{Attr}_{\bigcirc}(G, U) \quad=\bigcup_{k \in \mathbb{N}} \operatorname{Attr}_{\bigcirc}^{k}(G, U)
\end{aligned}
$$

Attractor: "forced" reachability

$\operatorname{Attr}_{P}(B)$: vertices from which player P can force the play to reach set B

Consider $\operatorname{Attr}_{\diamond}\left(G,\left\{v_{3}\right\}\right)$

$$
\operatorname{Attr}_{\diamond}^{0}\left(G,\left\{v_{3}\right\}\right)=\left\{v_{3}\right\}
$$

Attractor: "forced" reachability

$\operatorname{Attr}_{P}(B)$: vertices from which player P can force the play to reach set B

Consider $\operatorname{Attr}_{\diamond}\left(G,\left\{v_{3}\right\}\right)$

$$
\begin{aligned}
\operatorname{Attr}_{\diamond}^{0}\left(G,\left\{v_{3}\right\}\right) & =\left\{v_{3}\right\} \\
\operatorname{Attr}_{\diamond}^{1}\left(G,\left\{v_{3}\right\}\right) & =\left\{v_{3}, v_{1}\right\}
\end{aligned}
$$

Attractor: "forced" reachability

$\operatorname{Attr}_{P}(B)$: vertices from which player P can force the play to reach set B

Consider $\operatorname{Attr}_{\diamond}\left(G,\left\{v_{3}\right\}\right)$

$$
\begin{aligned}
\operatorname{Attr}_{\diamond}^{0}\left(G,\left\{v_{3}\right\}\right) & =\left\{v_{3}\right\} \\
\operatorname{Attr}_{\diamond}^{1}\left(G,\left\{v_{3}\right\}\right) & =\left\{v_{3}, v_{1}\right\} \\
\operatorname{Attr}_{\diamond}^{2}\left(G,\left\{v_{3}\right\}\right) & =\left\{v_{3}, v_{1}, v_{2}, v_{5}\right\}
\end{aligned}
$$

Time: $O(|V|+|E|)$

Properties

Let D be a \bigcirc-dominion in G, then:

- there is a strategy ϱ_{\bigcirc} such that \bigcirc wins on D;
- \bigcirc can always choose to stay in D;
- $\bar{\bigcirc}$ cannot leave D;
- $A=\operatorname{Attr}^{\bigcirc}(G, D)$ is a \bigcirc-dominion;
- \bigcirc cannot leave $V \backslash A$

Recursive algorithm (intuition)

Divide and conquer

- Base: empty game
- Step:
- identify a proper subgame (with at least one node less)
- compute a dominion in the subgame
- remove the dominion and solve the remainder of the original game
- assemble winning sets/strategies from winning sets/strategies of subgames

Recursive algorithm (McNaughton '93, Zielonka '98)

Recursively solve a parity game: Recursive(G). Returns partitioning ($W_{\diamond}, W_{\square}$) such that \diamond wins from W_{\diamond}, and \square wins from W_{\square}.

```
\(m \leftarrow \min \{p(v) \mid v \in V\}^{\dagger}\)
```

$h \leftarrow \max \{p(v) \mid v \in V\}^{\dagger}$
if $h-m=0$ then
if h is even then
return (V, \emptyset)
else
return (\emptyset, V)
end if
end if
$O \leftarrow \begin{cases}\diamond & \text { if } m \text { is even } \\ \square & \text { otherwise }\end{cases}$
11: $U \leftarrow\{v \in V \mid p(v)=m\}$
12: $A \leftarrow A t t r \bigcirc(G, U)$
13: $\left(W_{\diamond}^{\prime}, W_{\square}^{\prime}\right) \leftarrow \operatorname{Recursive}(G \backslash A)$
\dagger : we assume that min and max return -1 if called on an empty set

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

line 12
/ Department of Mathematics and Computer Science

- $\begin{aligned} & \text { Technische Universiteit } \\ & \text { Eindhoven } \\ & \text { University of Technology }\end{aligned}$ University of Technology

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

line 14 (case $W_{\square}^{\prime}=\emptyset$)
/ Department of Mathematics and Computer Science

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

line 15,16 \& 22 (case $W_{\square}^{\prime}=\emptyset$)

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

line 17 (case $W_{\square}^{\prime} \neq \emptyset$)
/ Department of Mathematics and Computer Science

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

Zielonka's Recursive Algorithm

Assume that the minimal priority in G is even.

Observations

- Lines 1-9: base case, straightforward.
- Lines 10-13: try to establish a dominion. Two cases:
- Lines 12-15: (\bigcirc wins all): \bigcirc wins in $G \backslash A$, then \bigcirc wins all of G, since if $\bar{\bigcirc}$ visits A, then \bigcirc plays towards U using attractor, visiting A infinitely often, hence m infinitely often. If A not visited, game stays in $G \backslash A$.
- Lines 16-20: ($\bar{\bigcirc}$-dominion found): $W_{\bar{O}}^{\prime}$ is a $\bar{\bigcirc}$-dominion in $G \backslash A$. Since \bigcirc cannot leave $G \backslash A$ also $W_{\bar{O}}^{\prime}$ is $\bar{\bigcirc}$-dominion in G. Then solve remaining game recursively and fix solution, compose strategies.

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games recursively
-Solving parity games
Zielonka's Recursive Algorithm

Exercise

Apply the recursive algorithm to the following parity game G

```
\(m \leftarrow 3\)
\(h \leftarrow 3\)
return \(\left(\emptyset,\left\{W, Z, Z^{\prime}\right\}\right)\)
```


Exercise

Apply the recursive algorithm to the following parity game G

2013-10-21

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games recursively
-Solving parity games
Zielonka's Recursive Algorithm

Example (Recursiv enG))

1: $m \leftarrow 1$
2: $h \leftarrow 3$
Consider parity game G :
3: ...

10:
$\bigcirc \leftarrow$ \qquad
11: $U \leftarrow\{v \in V \mid p(v)=1\}=\left\{X, X^{\prime}\right\}$
12: $A \leftarrow \operatorname{Attr}^{\square}(G, U)=\left\{X, X^{\prime}\right\}$
13: $\left(W_{\diamond}^{\prime}, W_{\square}^{\prime}\right) \leftarrow \operatorname{Recursive}\left(G \backslash\left\{X, X^{\prime}\right\}\right)=$ $\left(\emptyset,\left\{Y, Y^{\prime}, Z, Z^{\prime}, W\right\}\right)$
14: if $W_{\diamond}^{\prime}=\emptyset$ then
15: $\quad W_{\square} \leftarrow A \cup W_{\square}^{\prime}=\left\{X, X^{\prime}, Y, Y^{\prime}, Z, Z^{\prime}, W\right\}$
16: $\quad W_{\diamond} \leftarrow \emptyset$
17: else
18:
19: end if
20: return $\left(W_{\diamond}, W_{\square}\right)=\left(\emptyset,\left\{X, X^{\prime}, Y, Y^{\prime}, Z, Z^{\prime}, W\right\}\right)$

So, playerwins from all vertices!

Complexity

> Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right.$ be a parity game.
> $n=|V|, e=|E|, d=|\{p(v) \mid v \in V\}|$.

Worst-case running time complexity

$$
\mathcal{O}\left(e \cdot n^{d}\right)
$$

Lowerbound on worst-case:

$$
\Omega\left(2^{n / 3}\right)
$$

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games recursively
-Solving parity games
Complexity

Worst-case analysis

Recurrence $T(n, d)$ defined as $\begin{cases}T(0,0) & =1 \\ T(n+1, d+1) & =T(n, d)+T(n, d+1)+e\end{cases}$
Solve recurrence using substitution method. Guess solution $T(n, d)=\mathcal{O}\left(e n^{d}\right)$. We prove that $T(n, d) \leqslant c e n^{d}$ for an appropriate constant $c>0$ by induction on n and d.

- $n=d=0 . T(0,0) \leqslant c e, c \geqslant 1$
- $n>0, d>0$. IH: assume $T(n, d+1) \leqslant c e n^{d+1}$ and $T(n, d) \leqslant c e n^{d}$. Substitute into recurrence:

$$
\begin{aligned}
T(n+1, p+1) & =T(n, d)+T(n, d+1)+e \\
& \leqslant \operatorname{cen} n^{d}+\operatorname{cen} n^{d+1}+e \\
& \leqslant \operatorname{ce}\left(n^{d}+n^{d+1}+1\right) \\
& =\operatorname{ce}\left(n^{d}+n \cdot n^{d}+1\right) \\
& =\operatorname{ce}\left((n+1) n^{d}+1\right) \\
& \leqslant \operatorname{ce}\left((n+1)(n+1)^{d}\right) \\
& =\operatorname{ce}\left((n+1)^{d+1}\right)
\end{aligned}
$$

The Quest for an Efficient PG Solving Algorithm

- Recursive algorithm [McNaughton 1993, Zielonka 1998] $O\left(n^{c}\right)$
- Small Progress Measures [Jurdziński, 2000] $O\left(n^{c / 2}\right)$
- subexponential algorithm [Jurdziński, Paterson and Zwick, 2006] $O\left(n^{\sqrt{n}}\right)$
- bigstep [Schewe, 2007] $O\left(n^{c / 3}\right)$
- strategy improvement algorithms [e.g. Voege \& Jurdziński]: superpolynomial in worst case

Computational status: $N P \cap \operatorname{coNP}$.

Wrap up

- Recursive algorithm:
- Divide and conquer
- Dominions
- Attractor sets
- $\mathcal{O}\left(e n^{d}\right)$
- Exponential examples available

