Algorithms for Model Checking (2IV555)
 Lecture 7:
 Solving parity games using small
 progress measures

Background material:
M. Jurdziński "Small Progress Measures for

Solving Parity Games'"
Mácièj. Gảżaa
usingg Jeroen Keeiren's. ṣlides

Department of Mathematics and Computer Science

Technische Universiteit
Eindhoven
University of Technology
Where innovation starts

Recursive algorithm (recap)

Goal: compute winning sets
Relevant concepts:

- Divide and conquer
- Base: empty game
- Step:
- Compute dominion
- Compute attractor set
- Solve remaining subgame
- Assemble winning sets/strategies from
- winning sets/strategies of subgames
- attractor strategy for one of players reaching set of nodes with minimal priority in the game

Algorithms

- Recursive
- Small progress measures (iterative)

Small progress measures (intuition)

- Characterise cycles reachable from each vertex. Cycles can be used to decide the winner.
- Assign a certain measure to each vertex that decreases along the play with each "bad" priority encountered, and can only increase if a "good" value is reached.
- Measure computed using fixed point iteration

Parity games are about odd/even cycles

even [odd] cycle $=$ a cycle in which the lowest priority is even [odd]

Parity games are about odd/even cycles

Player Even [Odd] wins a vertex iff they can force that all cycles appearing in the play are even [odd].

Solitaire game

In a solitaire game, only one player makes (nontrivial) choices.

$$
\begin{aligned}
& \text { Definition (Solitaire game) } \\
& \text { Parity game } G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right) \text { is a } \bigcirc \text {-solitaire game if } \\
& \forall v \in V_{\bar{O}}: v \rightarrow w \wedge v \rightarrow w^{\prime} \Longrightarrow w=w^{\prime}
\end{aligned}
$$

Given a strategy ψ_{\bigcirc}, parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ can be turned into solitaire game $G_{\psi_{O}}=\left(V, E^{\prime}, p,\left(V_{\diamond}, V_{\square}\right)\right)$, where

$$
\begin{aligned}
E^{\prime} & =\left\{(v, w) \in E \mid v \in V_{\bigcirc} \wedge w=\psi_{\bigcirc}(v)\right\} \\
& \cup\left\{(v, w) \in E \mid v \in V_{\bar{\bigcirc}}\right\}
\end{aligned}
$$

Cycles vs winning strategies

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ be a parity game, with:

- $W \subseteq V$
- strategy ψ_{\diamond} closed on W.

Consider solitaire game $G_{\psi \diamond} \cap W$.

Property

ψ_{\diamond} is winning for player \diamond from all $v \in W$ if and only if all cycles in $G_{\psi \diamond} \cap W$ are even

Small progress measures (intuition)

- Characterise cycles reachable from each vertex. Cycles can be used to decide the winner.
- Assign a certain measure to each vertex that decreases along the play with each "bad" priority encountered, and can only increase if a "good" value is reached.
- Measure computed using fixed point iteration

A progress measure

Let $\alpha \in \mathbb{N}^{d}$ be a d-tuple of natural numbers

- we number its components from 0 to $d-1$, i.e.

$$
\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-1}\right)
$$

$-<, \leqslant,=, \neq, \geqslant,>$ on tuples denote lexicographic ordering,

- $\left(n_{0}, n_{1}, \ldots, n_{k}\right) \equiv_{i}\left(m_{0}, m_{1}, \ldots, m_{l}\right)$ iff $\left(n_{0}, n_{1}, \ldots, n_{i}\right) \equiv\left(m_{0}, m_{1}, \ldots, m_{i}\right)$, for $\equiv \in\{<, \leqslant,=, \neq, \geqslant,>\}$
- Note that if $i>k$ or $i>l$, the tuples will be suffixed with 0s

d-tuples

Let $\alpha \in \mathbb{N}^{d}$ be a d-tuple of natural numbers

- we number its components from 0 to $d-1$, i.e.

$$
\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-1}\right)
$$

- $<, \leqslant,=, \neq, \geqslant,>$ on tuples denote lexicographic ordering,
- $\left(n_{0}, n_{1}, \ldots, n_{k}\right) \equiv_{i}\left(m_{0}, m_{1}, \ldots, m_{l}\right)$ iff $\left(n_{0}, n_{1}, \ldots, n_{i}\right) \equiv\left(m_{0}, m_{1}, \ldots, m_{i}\right)$, for $\equiv \in\{<, \leqslant,=, \neq, \geqslant,>\}$
- Note that if $i>k$ or $i>1$, the tuples will be suffixed with 0s

Intuition: when encountering priority i, we are interested only in information concerning i or lower (more significant) priorities. A given priority i "cancels" the impact of all less significant priorities.

d-tuples (example)

- $(0,1,0,1)={ }_{0}(0,2,0,1) \equiv(0)=(0) \equiv$ true
- $(0,1,0,1)<_{1}(0,2,0,1) \equiv(0,1)<(0,2) \equiv$ true
- $(0,1,0,1) \geqslant_{3}(0,2,0,1) \equiv(0,1,0,1) \geqslant(0,2,0,1) \equiv$ false

Restricted d-tuples

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ be a parity game, and let $d=\max \{p(v) \mid v \in V\}+1$.

- For $i \in \mathbb{N}$, let $V_{i}=\{v \in V \mid p(v)=i\}$,
- Denote $n_{i}=\left|V_{i}\right|$, the number of vertices with priority i,

Define $\mathbb{M}^{\triangleright} \subseteq \mathbb{N}^{d}$, such that it is the finite set of d-tuples, with:

- 0 on even positions
- Natural numbers $\leqslant n_{i}$ on odd positions i
\mathbb{M}^{\square} is defined similarly (swap even and odd in the definition)

\mathbb{M}^{\diamond} (example)

Determine maximum value of $\mathbb{M}^{\triangleright}$ for the following parity game:

- Maximum value of \mathbb{M}^{\diamond} is $(0,2,0,1)$
- $\mathbb{M}^{\diamond}=\{0\} \times\{0,1,2\} \times\{0\} \times\{0,1\}$

Parity progress measure

On solitaire games

Recall: $\psi \diamond$ is winning for player \diamond from W if and only if all cycles in $G_{\psi_{\diamond}} \cap W$ are even
Idea: characterise vertices that can only reach even cycles.

Definition (Parity progress measure)

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ be a \square-solitaire game. A function $\varrho: V \rightarrow \mathbb{M}^{\diamond}$ is a parity progress measure for G if for all $(v, w) \in E$ it holds that:

- $\varrho(v) \geqslant_{p(v)} \varrho(w)$ if $p(v)$ is even
- $\varrho(v)>_{p(v)} \varrho(w)$ if $p(v)$ is odd

There exists a parity progress measure for G iff all cycles in G are even

Algorithms for Model Checking (2IW55) Lecture 7:Solving

Parity progress measure (problem)

Problem: no parity progress measure can be assigned to these vertices, as parity progress measure only exists for even cycles. (Second clause requires $\left.\varrho(v)>_{1} \varrho(v)\right)$

Extended parity progress measures Allowing odd cycles

Define $\mathbb{M}^{O, T}=\mathbb{M} \bigcirc \cup\{\top\}$, such that:

- $m\left\{<,<_{i}\right\} \top$ for all $m \in \mathbb{M} \bigcirc$, and $m\{\neq, \neq i\} \top$
- $\top={ }_{i} \top$ for all i.

Extend ϱ such that T is used for infinite values.
Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ be a solitaire game. The winning sets are determined as:

- $W_{\diamond}=\{v \in V \mid \varrho(v) \neq T\}$
- $W_{\square}=V \backslash W_{\diamond}$.

Game parity progress measures

Cope with T element

Definition (Prog)

If $\varrho: V \rightarrow \mathbb{M}^{○, \top}$ and $(v, w) \in E$, then $\operatorname{Prog}(\varrho, v, w)$ is the least $m \in \mathbb{M}^{\bigcirc, \top \text {, such that }}$

- $m \geqslant_{p(v)} \varrho(w)$ if $p(v)$ is even,
- $m>_{p(v)} \varrho(w)$, or $m=\varrho(w)=\top$ if $p(v)$ is odd.

Algorithms for Model Checking (2IW55) Lecture 7:Solving

parity games using smallprogress measures
—Small progress measures

Game parity progress measures

Prog (examples)
Let $\mathbb{M}^{\diamond}=\{0\} \times\{0,1,2\} \times\{0\} \times\{0,1\}$

- Suppose $p(v)=0, \varrho(w)=(0,2,0,0)$.

Then $\operatorname{Prog}(\varrho, v, w)=(0,0,0,0)$

- Suppose $p(v)=1, \varrho(w)=(0,2,0,0)$.

Then $\operatorname{Prog}(\varrho, v, w)=\top$

- Suppose $p(v)=3, \varrho(w)=(0,2,0,0)$.

Then $\operatorname{Prog}(\varrho, v, w)=(0,2,0,1)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving

2013-10-03
parity games using smallprogress measures
—Small progress measures
Game parity progress measures

Game parity progress measure (example)

- Observe: $\varrho(u)=\varrho(v)=\top$
- Measure can identify both even and odd reachable cycles.

Game parity progress measure From solitaire to parity games

For each vertex in which player \diamond moves, there is at least one neighbour making progress.

Definition (Game parity progress measure)

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ be a parity game. A function $\varrho: V \rightarrow \mathbb{M} O, T$ is a game parity progress measure if for all $v \in V$, it holds that:

- if $v \in V_{\diamond}$, then $\exists_{(v, w) \in E} \varrho(v) \geqslant_{p(v)} \operatorname{Prog}(\varrho, v, w)$
- if $v \in V_{\square}$, then $\forall_{(v, w) \in E} \varrho(v) \geqslant_{p(v)} \operatorname{Prog}(\varrho, v, w)$

Small progress measure

If ϱ is least game parity progress measure, then the following are equivalent:

- $\varrho(v) \neq T$
- there is a strategy of player \diamond such that in the induced \square-solitaire game all cycles reachable from vertex v are even
v $v \in W_{\diamond}$

Small progress measures (intuition)

- Characterise cycles reachable from each vertex. Cycles can be used to decide the winner.
- Assign a certain measure to each vertex that decreases along the play with each "bad" priority encountered, and can only increase if a "good" value is reached.
- Measure computed using fixed point iteration.

Fixed points

Characterise game parity progress measure as fixed point of monotone operators in a finite complete lattice:

- a least game parity progress measure φ exists (Knaster-Tarski),
- computable by fixed point iteration (similar to Lecture 2, slide 8),

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$, and $\varphi, \varrho: V \rightarrow \mathbb{M}^{O, T}$.

- $\varphi \sqsubseteq \varrho$ if $\varphi(v) \leqslant \varrho(v)$ for all $v \in V$
- write $\varphi \sqsubset \varrho$ if $\varphi \sqsubseteq \varrho$ and $\varphi \neq \varrho$.
\sqsubseteq gives a complete lattice structure on the set of functions $V \rightarrow \mathbb{M}^{\bigcirc, \top}$.

Lifting progress measures

Define $\operatorname{Lift}_{v}(\varrho)$ for $v \in V$ as follows:

$$
\operatorname{Lift}_{v}(\varrho)= \begin{cases}\varrho[v:=\min \{\operatorname{Prog}(\varrho, v, w) \mid(v, w) \in E\}] & \text { if } v \in V_{\diamond} \\ \varrho[v:=\max \{\operatorname{Prog}(\varrho, v, w) \mid(v, w) \in E\}] & \text { if } v \in V_{\square}\end{cases}
$$

Observe:

- For every $v \in V$, Lift v is \sqsubseteq-monotone.
- A function $\varrho: V \rightarrow \mathbb{M} O, T$ is a game parity progress measure if and only if $\operatorname{Lift}_{v}(\varrho) \sqsubseteq \varrho$ for all $v \in V$.

The algorithm

Compute least game parity progress measure using fixed point approximation:

Algorithm $\operatorname{SPM}(G, \bigcirc)$

$\varrho: V \rightarrow \mathbb{M}^{\bigcirc, \top} \leftarrow \lambda v \in V .(0, \ldots, 0)$
while $\varrho \sqsubset \operatorname{Lift}_{v}(\varrho)$ for some $v \in V$ do
$\varrho \leftarrow \operatorname{Lift}_{v}(\varrho)$
end while

Post condition:

- ϱ is least game parity progress measure
- $\{v \in V \mid \varrho(v) \neq T\}$ is winning set for player \bigcirc

Algorithms for Model Checking (2IW55) Lecture 7:Solving

parity games using smallprogress measures
LSmall progress measures
—The algorithm
Small progress measures (example)

Consider parity game G :

The algorithm

Small progress measures (example)

Initially: $\varrho \leftarrow \lambda v \in V .(0,0,0,0)$, so

v	$\varrho(v)$
X	$(0,0,0,0)$
X^{\prime}	$(0,0,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,0)$
W	$(0,0,0,0)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving

2013-10-03 parity games using smallprogress measures
-Small progress measures
-Example
The algorithm

Small progress measures (example) (2)

Step 2: $\varrho \leftarrow \operatorname{Lift}(\varrho)=\varrho\left[X:=\max \left\{\operatorname{Prog}\left(\varrho, X, X^{\prime}\right), \operatorname{Prog}(\varrho, X, X)\right\}\right]=\varrho[X:=$ $\max \{(0,1,0,0),(0,1,0,0)\}]=\varrho[X:=(0,1,0,0)]$

v	$\varrho(v)$
X	$(0,1,0,0)$
X^{\prime}	$(0,0,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,0)$
W	$(0,0,0,0)$

Small progress measures (example) (3)

Step 3: $\varrho \leftarrow \operatorname{Lift} X(\varrho)=\varrho\left[X:=\max \left\{\operatorname{Prog}\left(\varrho, X, X^{\prime}\right), \operatorname{Prog}(\varrho, X, X)\right\}\right]=\varrho[X:=$ $\max \{(0,1,0,0),(0,2,0,0)\}]=\varrho[X:=(0,2,0,0)]$

v	$\varrho(v)$
X	$(0,2,0,0)$
X^{\prime}	$(0,0,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,0)$
W	$(0,0,0,0)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving

2013-10-03 parity games using smallprogress measures
—Small progress measures
—Example
The algorithm

Small progress measures (example) (4)

Step 4: $\varrho \leftarrow \operatorname{Lift} X(\varrho)=\varrho\left[X:=\max \left\{\operatorname{Prog}\left(\varrho, X, X^{\prime}\right), \operatorname{Prog}(\varrho, X, X)\right\}\right]=\varrho[X:=$ $\max \{(0,1,0,0), \top\}]=\varrho[X:=\top]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,0,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,0)$
W	$(0,0,0,0)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving
ع0-0T-६โOZ parity games using smallprogress measures
-Small progress measures
-Example
The algorithm

Small progress measures (example) (5)

Step 5: Lift $Y^{\prime}(\varrho)=\varrho\left[Y^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Y^{\prime}, X\right), \operatorname{Prog}\left(\varrho, Y^{\prime}, Y\right)\right\}\right]=\varrho\left[Y^{\prime}:=\right.$ $\min \{T,(0,0,0,0)\}]=\varrho\left[Y^{\prime}:=(0,0,0,0)\right]$
$\operatorname{Lift} Y(\varrho)=\varrho\left[Y:=\max \left\{\operatorname{Prog}(\varrho, Y, W), \operatorname{Prog}\left(\varrho, Y, Y^{\prime}\right)\right\}\right]=\varrho[Y:=$
$\max \{(0,0,0,0),(0,0,0,0)\}]=\varrho[Y:=(0,0,0,0)]$
$\varrho \leftarrow \operatorname{Lift}_{X^{\prime}}(\varrho)=\varrho\left[X^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, X^{\prime}, Y\right), \operatorname{Prog}\left(\varrho, X^{\prime}, Z\right)\right\}\right]=\varrho\left[X^{\prime}:=\right.$ $\min \{(0,1,0,0),(0,1,0,0)\}]=\varrho\left[X^{\prime}:=(0,1,0,0)\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,0)$
W	$(0,0,0,0)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving

parity games using smallprogress measures
—Small progress measures
-Example
The algorithm
Small progress measures (example) (6)
Step 6: $\varrho \leftarrow \operatorname{Lift}_{Z^{\prime}}(\varrho)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{(0,0,0,1)\}\right]=$ $\varrho\left[Z^{\prime}:=(0,0,0,1)\right]$

v	$\varrho(v)$
X	T
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,1)$
W	$(0,0,0,0)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving
ع0-0T-६โOZ parity games using smallprogress measures
-Small progress measures
LExample
The algorithm

Small progress measures (example) (4)

Step 7: $\varrho \leftarrow \operatorname{Lift}_{Z^{\prime}}(\varrho)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{(0,0,0,2)\}\right]=$ $\varrho\left[Z^{\prime}:=(0,0,0,2)\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,2)$
W	$(0,0,0,0)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving

2013-10-03 parity games using smallprogress measures
-Small progress measures
—Example
The algorithm
Small progress measures (example) (8)
Step 8: $\varrho \leftarrow \operatorname{Lift}_{Z^{\prime}}(\varrho)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{(0,0,0,3)\}\right]=$ $\varrho\left[Z^{\prime}:=(0,0,0,3)\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,3)$
W	$(0,0,0,0)$

The algorithm

Small progress measures (example) (9)

Step 9: $\varrho \leftarrow \operatorname{Lift}\left(\varrho, Z^{\prime}\right)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\right.$ $\min \{(0,1,0,0)\}]=\varrho\left[Z^{\prime}:=(0,1,0,0)\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,1,0,0)$
W	$(0,0,0,0)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving

Small progress measures (example) (10)
Step 10: $\varrho \leftarrow \operatorname{Lift}_{Z^{\prime}}(\varrho)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\right.$ $\min \{(0,1,0,1)\}]=\varrho\left[Z^{\prime}:=(0,1,0,1)\right]$

v	$\varrho(v)$
X	T
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,1,0,1)$
W	$(0,0,0,0)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving
ع0-0さ-६โO乙 parity games using smallprogress measures
-Small progress measures
—Example
The algorithm

Small progress measures (example) (11)
 Step 11*: Repeat lifting Z^{\prime} even more often

$\varrho \leftarrow \operatorname{Lift}_{Z^{\prime}}(\varrho)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{T\}\right]=\varrho\left[Z^{\prime}:=\top\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	\top
W	$(0,0,0,0)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving

2013-10-03 parity games using smallprogress measures
—Small progress measures

- Example

The algorithm

Small progress measures (example)

Step 12:
$\varrho \leftarrow \operatorname{Lift}_{Z}(\varrho)=\varrho\left[Z:=\min \left\{\operatorname{Prog}\left(\varrho, Z, Z^{\prime}\right)\right\}\right]=\varrho[Z:=\min \{T\}]=\varrho[Z:=\top]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	T
Z^{\prime}	T
W	$(0,0,0,0)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving
ع0-0T-६โOZ parity games using smallprogress measures
-Small progress measures
—Example
The algorithm

Small progress measures (example) (13)

Step 13: $\varrho \leftarrow \operatorname{Lift} W(\varrho)=\varrho\left[W:=\min \left\{\operatorname{Prog}(\varrho, W, Z), \operatorname{Prog}\left(\varrho, W, W^{\prime}\right)\right\}\right]=\varrho[W:=$ $\min \{\top,(0,0,0,1)\}]=\varrho[W:=(0,0,0,1)]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	T
Z^{\prime}	T
W	$(0,0,0,1)$

Algorithms for Model Checking (2IW55) Lecture 7:Solving

2013-10-03 parity games using smallprogress measures
-Small progress measures
—Example
The algorithm

Small progress measures (example) (14)

Step 14*: Repeat lifting of W often
$\varrho \leftarrow \operatorname{Lift}_{W}(\varrho)=\varrho\left[W:=\min \left\{\operatorname{Prog}(\varrho, W, Z), \operatorname{Prog}\left(\varrho, W, W^{\prime}\right)\right\}\right]=\varrho[W:=$ $\min \{\top, \top\}]=\varrho[W:=\top]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	T
Z^{\prime}	T
W	T

Algorithms for Model Checking (2IW55) Lecture 7:Solving
ع0-0T-६โOZ parity games using smallprogress measures
-Small progress measures
LExample
-The algorithm

Small progress measures (example) (15)

Step 15: $\varrho \leftarrow \operatorname{Lift}_{Y}(\varrho, Y)=\varrho\left[Y:=\max \left\{\operatorname{Prog}(\varrho, Y, W), \operatorname{Prog}\left(\varrho, Y, Y^{\prime}\right)\right\}\right]=\varrho[Y:=$ $\max \{\top,(0,0,0,0)\}]=\varrho[Y:=\top]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	\top
Y^{\prime}	$(0,0,0,0)$
Z	T
Z^{\prime}	T
W	T

Algorithms for Model Checking (2IW55) Lecture 7:Solving

2013-10-03 parity games using smallprogress measures
—Small progress measures
—Example
The algorithm
Small progress measures (example) (16)
Step 16: $\varrho \leftarrow \operatorname{Lift}_{X^{\prime}}(\varrho)=\varrho\left[X^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, X^{\prime}, Z\right), \operatorname{Prog}\left(\varrho, X^{\prime}, Y\right)\right\}\right]=\varrho\left[X^{\prime}:=\right.$ $\min \{T, \top\}]=\varrho\left[X^{\prime}:=\top\right]$

v	$\varrho(v)$
X	T
X^{\prime}	T
Y	T
Y^{\prime}	$(0,0,0,0)$
Z	T
Z^{\prime}	T
W	T

Algorithms for Model Checking (2IW55) Lecture 7:Solving
ع0-0さ-६LOZ parity games using smallprogress measures
—Small progress measures
—Example
The algorithm
Small progress measures (example) (17)
Step 17: $\varrho \leftarrow \operatorname{Lift}_{Y^{\prime}}(\varrho)=\varrho\left[Y^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Y^{\prime}, X\right), \operatorname{Prog}\left(\varrho, Y^{\prime}, Y\right)\right\}\right]=\varrho\left[Y^{\prime}:=\right.$ $\min \{T, \top\}]=\varrho\left[Y^{\prime}:=\top\right]$

v	$\varrho(v)$
X	T
X^{\prime}	T
Y	T
Y^{\prime}	T
Z	T
Z^{\prime}	T
W	T

ϱ is least game parity progress measure, and $\{v \in V \mid \varrho(v) \neq T\}=\emptyset$ is winning set for player \diamond. Hence player \square wins from all vertices

Strategies from progress measures

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ be a parity game, and $\varrho: V \rightarrow \mathbb{M}^{\circ}{ }^{\top}$ be least game parity progress measure.

- Define strategy $\bar{\varrho}: V_{\diamond} \rightarrow V$ for player \diamond, by setting $\bar{\varrho}(v)$ to be a successor w of $v \in V_{\diamond}$ that minimises $\varrho(w)$.
- ϱ is a winning strategy for player \diamond from $\{v \in V \mid \varrho(v) \neq T\}$.

Algorithms for Model Checking (2IW55) Lecture 7:Solving
ع0-0I-をLOZ parity games using smallprogress measures
-Small progress measures
—Example
The algorithm

Strategy (example)

- As the winning set for player \diamond is empty, the strategy for player \diamond can be chosen arbitrarily
- Stategy for player \square cannot be inferred directly (winning set can be determined), some tricks have to be applied...

Algorithms for Model Checking (2IW55) Lecture 7:Solving
2013-10-03
parity games using smallprogress measures
LSmall progress measures
—Example
-The algorithm

Complexity

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right.$ be a parity game;
$n=|V|, e=|E|, d=\max \{p(v) \mid v \in V\}$.

Worst-case running time complexity:

$$
\mathcal{O}\left(d e \cdot\left(\frac{n}{\lfloor d / 2\rfloor}\right)^{\lfloor d / 2\rfloor}\right)
$$

Lowerbound on worst-case:

$$
\Omega\left((\lceil n / d\rceil)^{\lceil d / 2\rceil}\right)
$$

Summary

- Parity games
- Relation to Boolean Equation Systems
- Link to model checking
- Simplification techniques (self-loop elim. priority compaction/propagation)
- Solving:
- Recursive $\mathcal{O}\left(e n^{d}\right)$
- Small progress measures $\mathcal{O}\left(d e \cdot\left(\frac{n}{[d / 2\rfloor}\right)^{\lfloor d / 2\rfloor}\right)$
- bigstep (combination of the two above): $\mathcal{O}\left(n^{d / 3}\right)$

