

Technische Universiteit **Eindhoven** University of Technology

/ Department of Mathematics and Computer Science

Recursive algorithm (recap)

Goal: compute winning sets

Relevant concepts:

- Divide and conquer
- Base: empty game
- Step:
 - Compute dominion
 - Compute attractor set
 - Solve remaining subgame
 - Assemble winning sets/strategies from
 - winning sets/strategies of subgames
 - attractor strategy for one of players reaching set of nodes with minimal priority in the game

- Recursive
- Small progress measures (iterative)

2 / 21

Small progress measures (intuition)

- Characterise cycles reachable from each vertex. Cycles can be used to decide the winner.
- Assign a certain measure to each vertex that decreases along the play with each "bad" priority encountered, and can only increase if a "good" value is reached.
- Measure computed using fixed point iteration

Parity games are about odd/even cycles

even [odd] cycle = a cycle in which the lowest priority is even [odd]

Parity games are about odd/even cycles

Player Even [Odd] wins a vertex iff they can force that all cycles appearing in the play are even [odd].

Solitaire game

In a solitaire game, only one player makes (nontrivial) choices.

Definition (Solitaire game)

Parity game
$$G = (V, E, p, (V_{\diamond}, V_{\Box}))$$
 is a \bigcirc -solitaire game if
 $\forall v \in V_{\overline{\bigcirc}} : v \to w \land v \to w' \implies w = w'$

Given a strategy ψ_{\bigcirc} , parity game $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ can be turned into solitaire game $G_{\psi_{\bigcirc}} = (V, E', p, (V_{\diamond}, V_{\Box}))$, where

$$E' = \{ (v, w) \in E \mid v \in V_{\bigcirc} \land w = \psi_{\bigcirc}(v) \}$$
$$\cup \{ (v, w) \in E \mid v \in V_{\bigcirc} \}$$

/ Department of Mathematics and Computer Science

Cycles vs winning strategies

Let $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ be a parity game, with:

- $W \subseteq V$
- strategy ψ_{\diamond} closed on W.

Consider solitaire game $G_{\psi_{\diamond}} \cap W$.

Property

 ψ_{\diamond} is winning for player \diamond from all $v \in W$ if and only if all cycles in $G_{\psi_{\diamond}} \cap W$ are even

TU/e Technische Universiteit Eindhoven University of Technology

6 / 21

- Characterise cycles reachable from each vertex. Cycles can be used to decide the winner.
- Assign a certain measure to each vertex that decreases along the play with each "bad" priority encountered, and can only increase if a "good" value is reached.
- Measure computed using fixed point iteration

Let $\alpha \in \mathbb{N}^d$ be a *d*-tuple of natural numbers

- we number its components from 0 to d 1, i.e. $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{d-1})$,
- ► <, \leq , =, \neq , \geq , > on tuples denote lexicographic ordering,
- $(n_0, n_1, ..., n_k) \equiv_i (m_0, m_1, ..., m_l)$ iff $(n_0, n_1, ..., n_i) \equiv (m_0, m_1, ..., m_i)$, for $\equiv \in \{<, \le, =, \neq, \ge, >\}$
- Note that if i > k or i > l, the tuples will be suffixed with 0s

/ Department of Mathematics and Computer Science

Let $\alpha \in \mathbb{N}^d$ be a *d*-tuple of natural numbers

- we number its components from 0 to d 1, i.e. $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{d-1})$,
- ► <, \leq , =, \neq , \geq , > on tuples denote lexicographic ordering,
- $(n_0, n_1, ..., n_k) \equiv_i (m_0, m_1, ..., m_l)$ iff $(n_0, n_1, ..., n_i) \equiv (m_0, m_1, ..., m_l)$, for $\equiv \in \{<, \le, =, \neq, \ge, >\}$
- Note that if i > k or i > l, the tuples will be suffixed with 0s

Intuition: when encountering priority i, we are interested only in information concerning i or lower (more significant) priorities. A given priority i "cancels" the impact of all less significant priorities.

TU/e Technische Universiteit Eindhoven University of Technology

10 / 21

2013-10-03

d-tuples

d-tuples (example)

- $(0,1,0,1) =_0 (0,2,0,1) \equiv (0) = (0) \equiv \mathsf{true}$
- $(0,1,0,1)<_1(0,2,0,1)\equiv (0,1)<(0,2)\equiv {\sf true}$
- $(0,1,0,1) \geqslant_3 (0,2,0,1) \equiv (0,1,0,1) \geqslant (0,2,0,1) \equiv \mathsf{false}$

Restricted *d*-tuples

Let $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ be a parity game, and let $d = \max\{p(v) \mid v \in V\} + 1.$

- ▶ For $i \in \mathbb{N}$, let $V_i = \{v \in V \mid p(v) = i\}$,
- Denote $n_i = |V_i|$, the number of vertices with priority *i*,

Define $\mathbb{M}^{\diamond} \subseteq \mathbb{N}^{d}$, such that it is the finite set of *d*-tuples, with:

- 0 on even positions
- Natural numbers $\leq n_i$ on odd positions *i*

 \mathbb{M}^{\square} is defined similarly (swap even and odd in the definition)

ts componen α_{d-1}),

 $(n_k) \equiv_i (m_0, m_1, \dots, m_l)$ iff $(n_i) \equiv (m_0, m_1, \dots, m_l)$, for

> ountering priority *i*, we are interested or ning *i* or lower (more significant) prioritincels" the impact of all less significant p

Small progress measures

—Restricted *d*-tuples

Let $G = (V, E, p, (V_O, V_O))$ be a parity game, and let $d = \max_i (p_i) \mid v \in V_i + 1$. • $For i \in \mathbb{N}$, let $V_i = (V \in V) (p(v) = i)$, • Denote $n_i = |V_i|$, the number of vertices with priority i. Define $\mathbb{M}^O \subseteq \mathbb{N}^d$, such that it is the finite set of d-tuples, with: • 0 on even positions • Natural numbers $\leq n_i$ on dd positions i \mathbb{M}^{\square} is defined similarly (swap even and odd in the definition)

\mathbb{M}^{\diamond} (example)

2013-10-03

Determine maximum value of \mathbb{M}^{\diamond} for the following parity game:

- Maximum value of \mathbb{M}^{\diamond} is (0, 2, 0, 1)
- $\mathbb{M}^{\diamond} = \{0\} \times \{0, 1, 2\} \times \{0\} \times \{0, 1\}$

Parity progress measure On solitaire games

Recall: ψ_{\diamondsuit} is winning for player \diamondsuit from W if and only if all cycles in $G_{\psi_{\diamondsuit}} \cap W$ are even

Idea: characterise vertices that can only reach even cycles.

Definition (Parity progress measure)

Let $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ be a \Box -solitaire game. A function $\varrho: V \to \mathbb{M}^{\diamond}$ is a parity progress measure for G if for all $(v, w) \in E$ it holds that:

- ▶ $\varrho(v) \ge_{p(v)} \varrho(w)$ if p(v) is even
- $\varrho(v) >_{p(v)} \varrho(w)$ if p(v) is odd

There exists a parity progress measure for G iff all cycles in G are even

Small progress measures

2013-10-03

Parity progress measure (problem)

Problem: no parity progress measure can be assigned to these vertices, as parity progress measure only exists for even cycles. (Second clause requires $\varrho(v) >_1 \varrho(v)$)

Extended parity progress measures Allowing odd cycles

Define $\mathbb{M}^{\bigcirc,\top} = \mathbb{M}^{\bigcirc} \cup \{\top\}$, such that:

• $m\{<,<_i\}$ for all $m \in \mathbb{M}^{\bigcirc}$, and $m\{\neq,\neq_i\}$ \top

•
$$\top =_i \top$$
 for all *i*.

Extend ρ such that \top is used for infinite values.

Let $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ be a solitaire game. The winning sets are determined as:

- $W_{\diamond} = \{ v \in V \mid \varrho(v) \neq \top \}$
- $\blacktriangleright W_{\Box} = V \setminus W_{\Diamond}.$

Definition (Prog)

If $\varrho: V \to \mathbb{M}^{\bigcirc,\top}$ and $(v, w) \in E$, then $Prog(\varrho, v, w)$ is the least $m \in \mathbb{M}^{\bigcirc,\top}$, such that

•
$$m \ge_{p(v)} \varrho(w)$$
 if $p(v)$ is even,

•
$$m >_{p(v)} \varrho(w)$$
, or $m = \varrho(w) = \top$ if $p(v)$ is odd.

/ Department of Mathematics and Computer Science TU/e Technische Universiteit Lindhoven University of Technology

14 / 21

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games using smallprogress measures Small progress measures

Prog (examples) Let $\mathbb{M}^{\diamond} = \{0\} \times \{0, 1, 2\} \times \{0\} \times \{0, 1\}$

- Suppose p(v) = 0, $\varrho(w) = (0, 2, 0, 0)$. Then $Prog(\varrho, v, w) = (0, 0, 0, 0)$
- Suppose p(v) = 1, $\varrho(w) = (0, 2, 0, 0)$. Then $Prog(\varrho, v, w) = \top$
- Suppose p(v) = 3, $\varrho(w) = (0, 2, 0, 0)$. Then $Prog(\varrho, v, w) = (0, 2, 0, 1)$

Small progress measures

2013-10-03

-Game parity progress measures

Cope with T element Definition (Prog) If $g_i V \to M^{\bigcirc T}$ and $(v, w) \in E$, then $Prog(g_i, v, w)$ is th least $m \in M^{\bigcirc T}$, such that • $m \geq_{g(i)} g(w)$ if p(v) is even, • $m \geq_{g(i)} g(w)$, or m = g(w) = T if p(v) is odd.

Game parity progress measure (example)

- Observe: $\varrho(u) = \varrho(v) = \top$
- Measure can identify both even and odd reachable cycles.

Game parity progress measure From solitaire to parity games

For each vertex in which player \diamond moves, there is at least one neighbour making progress.

Definition (Game parity progress measure)
Let
$$G = (V, E, p, (V_{\diamond}, V_{\Box}))$$
 be a parity game. A function
 $\varrho: V \to \mathbb{M}^{\bigcirc,\top}$ is a game parity progress measure if for all
 $v \in V$, it holds that:
• if $v \in V_{\diamond}$, then $\exists_{(v,w)\in E}\varrho(v) \ge_{p(v)} Prog(\varrho, v, w)$
• if $v \in V_{\Box}$, then $\forall_{(v,w)\in E}\varrho(v) \ge_{p(v)} Prog(\varrho, v, w)$

If ρ is least game parity progress measure, then the following are equivalent:

- $\varrho(\mathbf{v}) \neq \top$
- ► there is a strategy of player ◇ such that in the induced
 □-solitaire game all cycles reachable from vertex v are even
- $v \in W_{\Diamond}$

/ Department of Mathematics and Computer Science

Small progress measures (intuition)

- Characterise cycles reachable from each vertex. Cycles can be used to decide the winner.
- Assign a certain measure to each vertex that decreases along the play with each "bad" priority encountered, and can only increase if a "good" value is reached.
- Measure computed using fixed point iteration.

TU/e Technische Universiteit Eindhoven University of Technology

16 / 21

Fixed points

Characterise game parity progress measure as fixed point of monotone operators in a finite complete lattice:

- a least game parity progress measure φ exists (Knaster-Tarski),
- computable by fixed point iteration (similar to Lecture 2, slide 8),

Let $G = (V, E, p, (V_{\Diamond}, V_{\Box}))$, and $\varphi, \varrho: V \to \mathbb{M}^{\bigcirc, \top}$.

- $\varphi \sqsubseteq \varrho$ if $\varphi(v) \leqslant \varrho(v)$ for all $v \in V$
- write $\varphi \sqsubset \varrho$ if $\varphi \sqsubseteq \varrho$ and $\varphi \neq \varrho$.

 \sqsubseteq gives a complete lattice structure on the set of functions $V \to \mathbb{M}^{\bigcirc,\top}$.

/ Department of Mathematics and Computer Science

Lifting progress measures

Define $Lift_v(\varrho)$ for $v \in V$ as follows:

$$Lift_{v}(\varrho) = \begin{cases} \varrho[v := \min\{Prog(\varrho, v, w) \mid (v, w) \in E\}] & \text{if } v \in V_{\Diamond} \\ \varrho[v := \max\{Prog(\varrho, v, w) \mid (v, w) \in E\}] & \text{if } v \in V_{\Box} \end{cases}$$

Observe:

- ▶ For every $v \in V$, *Lift*_v is \sqsubseteq -monotone.
- A function ρ: V → M^{O,⊤} is a game parity progress measure if and only if Lift_v(ρ) ⊑ ρ for all v ∈ V.

Compute least game parity progress measure using fixed point approximation:

Algorithm SPM(G, () $\varrho \colon V \to \mathbb{M}^{\bigcirc,\top} \leftarrow \lambda v \in V.(0, ..., 0)$ while $\varrho \sqsubset Lift_v(\varrho)$ for some $v \in V$ do $\varrho \leftarrow Lift_v(\varrho)$ end while

Post condition:

- ϱ is least game parity progress measure
- $\{v \in V \mid \varrho(v) \neq \top\}$ is winning set for player \bigcirc

/ Department of Mathematics and Computer Science

TU/e Technische Universiteit Eindhoven University of Technology

20 / 21

 $\rightarrow M^{\odot, \uparrow} \leftarrow \lambda v \in V.(0, ..., 0)$ $\varrho \equiv Lift_v(\varrho)$ for some $v \in V$ do $Lift_v(\varrho)$ hile

ρ is least game parity progress measure
 {*v* ∈ *V* | *ρ*(*v*) ≠ ⊤} is winning set for player ○

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games using smallprogress measures Small progress measures

Small progress measures (example)

Consider parity game G:

Maximum value of \mathbb{M}^{\diamond} is (0, 2, 0, 3)

Small progress measures

Example

The algorithm

 $\begin{array}{l} \varrho \colon V \to \mathbb{M}^{\bigcirc,\top} \leftarrow \lambda v \in V.(0,\ldots,0) \\ \text{while } \varrho \sqsubseteq Lift_v(\varrho) \text{ for some } v \in V \text{ do} \\ \varrho \leftarrow Lift_v(\varrho) \\ \text{end while} \end{array}$ *ρ* is least game parity progress measure
 {*ν* ∈ *V* | *ρ*(*ν*) ≠ ⊤} is winning set for player ○

Small progress measures (example) (1) Initially: $\rho \leftarrow \lambda v \in V.(0, 0, 0, 0)$, so

V	$\varrho(\mathbf{v})$
X	(0,0,0,0)
X'	(0, 0, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0,0,0,0)
Ζ	(0, 0, 0, 0)
Ζ'	(0,0,0,0)
W	(0,0,0,0)

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games using smallprogress measures 2013-10-03 -Small progress measures Example -The algorithm

 $\begin{array}{l} \varrho \colon V \to \mathbb{M}^{\bigcirc,\top} \leftarrow \lambda v \in V.(0,\ldots,0) \\ \text{while } \varrho \sqsubset Lift_v(\varrho) \text{ for some } v \in V \text{ do} \\ \varrho \leftarrow Lift_v(\varrho) \\ \text{end while} \end{array}$ *ρ* is least game parity progress measure
 {*v* ∈ *V* | *ρ*(*v*) ≠ ⊤} is winning set for player ○

Small progress measures (example) (2) Step 2: $\rho \leftarrow Lift_X(\rho) = \rho[X := \max\{Prog(\rho, X, X'), Prog(\rho, X, X)\}] = \rho[X := \max\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \rho[X := (0, 1, 0, 0)]$

V	$\varrho(\mathbf{v})$
X	(0, 1, 0, 0)
X'	(0, 0, 0, 0)
Y	(0,0,0,0)
Y'	(0,0,0,0)
Ζ	(0,0,0,0)
Z'	(0, 0, 0, 0)
W	(0,0,0,0)

Small progress measures

──Example └──The algorithm

2013-10-03

The algorithm Compute least game parity progress measure using fixed point approximation: $\begin{array}{l} \textbf{Agenthm SPM(C, \bigcirc) \\ e: V \rightarrow M^{\bigcirc, 1} - \lambda v \in V(0, \ldots, 0) \\ while e \subset Lift_{v}(e) for some v \in V \ do \\ e \rightarrow Lift_{v}(e) \\ end while \\ \end{array}$ Post condition: • e is large mapping progress measure • $(v \in V \mid e(v) \neq T)$ is winning set for player \bigcirc

Small progress measures (example) (3) Step 3: $\rho \leftarrow Lift_X(\rho) = \rho[X := \max\{Prog(\rho, X, X'), Prog(\rho, X, X)\}] = \rho[X := \max\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \rho[X := (0, 2, 0, 0)]$

V	$\varrho(\mathbf{v})$
X	(0, 2, 0, 0)
X'	(0, 0, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0, 0, 0, 0)
Z'	(0, 0, 0, 0)
W	(0,0,0,0)

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games using smallprogress measures Small progress measures Example The algorithm

Compute last game parity progress measure using fixed point approximation: $\begin{array}{c} Algorithm SPM(G, \bigcirc) \\ \varrho: V \rightarrow M^{\bigcirc, \uparrow} \leftarrow \lambda v \in V(0, \ldots, 0) \\ while \varrho \in Lift_i(\varrho) \text{ for some } v \in V \text{ do} \\ \varrho \rightarrow Lift_i(\varrho) \\ end while \\ \end{array}$ Post condition: • ϱ is least game parity progress measure • $\{v \in V \mid \varrho(v) \neq \top\}$ is winning set for player \bigcirc

Small progress measures (example) (4) Step 4: $\rho \leftarrow Lift_X(\rho) = \rho[X := \max\{Prog(\rho, X, X'), Prog(\rho, X, X)\}] = \rho[X := \max\{(0, 1, 0, 0), \top\}] = \rho[X := \top]$

V	$\varrho(\mathbf{v})$
X	T
X'	(0, 0, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0, 0, 0, 0)
Z'	(0, 0, 0, 0)
W	(0,0,0,0)

-Small progress measures

Example

-The algorithm

Small progress measures (example) (5) Step 5: $Lift_{Y'}(\varrho) = \varrho[Y' := \min\{Prog(\varrho, Y', X), Prog(\varrho, Y', Y)\}] = \varrho[Y' := \min\{\top, (0, 0, 0, 0)\}] = \varrho[Y' := (0, 0, 0, 0)]$

 $Lift_{Y}(\varrho) = \varrho[Y := \max\{Prog(\varrho, Y, W), Prog(\varrho, Y, Y')\}] = \varrho[Y := \varrho[Y := \varrho[Y]]$ $\max\{(0,0,0,0),(0,0,0,0)\}] = \varrho[Y := (0,0,0,0)]$ $\varrho \leftarrow Lift_{X'}(\varrho) = \varrho[X' := \min\{Prog(\varrho, X', Y), Prog(\varrho, X', Z)\}] = \varrho[X' := \min\{(0,1,0,0), (0,1,0,0)\}] = \varrho[X' := (0,1,0,0)]$

V	$\varrho(v)$
X	T
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0, 0, 0, 0)
Z'	(0, 0, 0, 0)
W	(0, 0, 0, 0)

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games using smallprogress measures 2013-10-03 Small progress measures Example

-The algorithm

Small progress measures (example) (6) Step 6: $\rho \leftarrow Lift_{Z'}(\rho) = \rho[Z' := \min\{Prog(\rho, Z', Z')\}] = \rho[Z' := \min\{(0, 0, 0, 1)\}] =$ $\varrho[Z' := (0, 0, 0, 1)]$

V	$\varrho(\mathbf{v})$
X	Т
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0,0,0,0)
Z'	(0, 0, 0, 1)
W	(0,0,0,0)

2013-10-03

Small progress measures

−Example └──The algorithm The algorithm 1 Compute least game parity progress measure using fixed point approximation: $\begin{array}{r} \textbf{Algorithm SPM(G, \bigcirc)} \\ \hline e: V \rightarrow M^{\bigcirc, T} \rightarrow \lambda v \in V(0, \dots, 0) \\ while e \subset Lift_v(e) \text{ for some } v \in V \text{ do} \\ e \leftarrow Lift_v(e) \text{ for some } v \in V \text{ do} \\ e \text{ downline} \end{array}$ Post condition: • e is least game parity progress measure • $(v \in V \mid e(v) \neq T)$ is winning set for player \bigcirc

Small progress measures (example) (4) Step 7: $\rho \leftarrow Lift_{Z'}(\rho) = \rho[Z' := \min\{Prog(\rho, Z', Z')\}] = \rho[Z' := \min\{(0, 0, 0, 2)\}] = \rho[Z' := (0, 0, 0, 2)]$

V	$\varrho(\mathbf{v})$
X	T
X'	(0, 1, 0, 0)
Y	(0,0,0,0)
Y'	(0, 0, 0, 0)
Ζ	(0,0,0,0)
Z'	(0, 0, 0, 2)
W	(0,0,0,0)

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games using smallprogress measures Small progress measures Example The algorithm

Small progress measures (example) (8) Step 8: $\rho \leftarrow Lift_{Z'}(\rho) = \rho[Z' := \min\{Prog(\rho, Z', Z')\}] = \rho[Z' := \min\{(0, 0, 0, 3)\}] = \rho[Z' := (0, 0, 0, 3)]$

V	$\varrho(\mathbf{v})$
X	Т
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0,0,0,0)
Z'	(0, 0, 0, 3)
W	(0,0,0,0)

2013-10-03

Small progress measures

Example

The algorithm

Small progress measures (example) (9) Step 9: $\rho \leftarrow Lift(\rho, Z') = \rho[Z' := \min\{Prog(\rho, Z', Z')\}] = \rho[Z' := \min\{(0, 1, 0, 0)\}] = \rho[Z' := (0, 1, 0, 0)]$

V	$\varrho(\mathbf{v})$
X	Т
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0, 0, 0, 0)
Z'	(0, 1, 0, 0)
W	(0, 0, 0, 0)

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games using smallprogress measures 2013-10-03 Small progress measures Example -The algorithm

Small progress measures (example) (10) Step 10: $\rho \leftarrow Lift_{Z'}(\rho) = \rho[Z' := \min\{Prog(\rho, Z', Z')\}] = \rho[Z' := \min\{(0, 1, 0, 1)\}] = \rho[Z' := (0, 1, 0, 1)]$

V	$\varrho(\mathbf{v})$
X	
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0,0,0,0)
Z'	(0, 1, 0, 1)
W	(0, 0, 0, 0)

-Small progress measures

Example

-The algorithm

Small progress measures (example) (11)

Step 11*: Repeat lifting Z' even more often $\varrho \leftarrow Lift_{Z'}(\varrho) = \varrho[Z' := \min\{Prog(\varrho, Z', Z')\}] = \varrho[Z' := \min\{\top\}] = \varrho[Z' := \top]$

V	$\varrho(\mathbf{v})$
X	T
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0, 0, 0, 0)
Z'	T
W	(0, 0, 0, 0)

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games using smallprogress measures 2013-10-03 Small progress measures $m \in V^{(n)} \leftarrow \lambda v \in V.(0,...,0)$ $\varrho \equiv Lift_v(\varrho) \text{ for some } v \in V \text{ do}$ $Lift_v(\varrho)$ hile Example The algorithm *ρ* is least game parity progress measure
 {*v* ∈ *V* | *ρ*(*v*) ≠ ⊤} is winning set for player ○

Small progress measures (example) (12) Step 12: $\varrho \leftarrow Lift_{Z}(\varrho) = \varrho[Z := \min\{Prog(\varrho, Z, Z')\}] = \varrho[Z := \min\{\top\}] = \varrho[Z := \top]$

V	$\varrho(v)$
X	Т
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	T
Ζ'	Т
W	(0,0,0,0)

-Small progress measures

Example

The algorithm

Small progress measures (example) (13) Step 13: $\rho \leftarrow Lift_W(\rho) = \rho[W := \min\{Prog(\rho, W, Z), Prog(\rho, W, W')\}] = \rho[W := \min\{\top, (0, 0, 0, 1)\}] = \rho[W := (0, 0, 0, 1)]$

V	$\varrho(\mathbf{v})$	
X	T	
X'	(0, 1, 0, 0)	
Y	(0,0,0,0)	
Y'	(0, 0, 0, 0)	
Ζ	T	
Z'	Τ	
W	(0, 0, 0, 1)	

Small progress measures (example) (14) Step 14*: Repeat lifting of W often $\varrho \leftarrow Lift_{W}(\varrho) = \varrho[W := \min\{Prog(\varrho, W, Z), Prog(\varrho, W, W')\}] = \varrho[W :=$ $\min\{\top,\top\}] = \varrho[W := \top]$

V	<i>ϱ</i> (v)
X	Т
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	Ť
Z'	Т
W	Т

Small progress measures

—Example

—The algorithm

Small progress measures (example) (15) Step 15: $\rho \leftarrow Lift_Y(\rho, Y) = \rho[Y := \max\{Prog(\rho, Y, W), Prog(\rho, Y, Y')\}] = \rho[Y := \max\{\top, (0, 0, 0, 0)\}] = \rho[Y := \top]$

V	$\varrho(v)$	
X	Т	
X'	(0, 1, 0, 0)	
Y	Т	
Y'	(0,0,0,0)	
Ζ	T	
Z'	T	
W	Τ	

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games using smallprogress measures Small progress measures Example The algorithm

Small progress measures (example) (16) Step 16: $\rho \leftarrow Lift_{X'}(\rho) = \rho[X' := \min\{Prog(\rho, X', Z), Prog(\rho, X', Y)\}] = \rho[X' := \min\{\top, \top\}] = \rho[X' := \top]$

V	$\varrho(v)$
X	T
X'	Т
Y	Т
Y'	(0, 0, 0, 0)
Ζ	Ť
Z'	Т
W	Т

2013-10-03

Algorithms for Model Checking (2IW55) Lecture 7:Solving parity games using smallprogress measures 2013-10-03 Small progress measures Example

The algorithm

Small progress measures (example) (17) Step 17: $\rho \leftarrow Lift_{Y'}(\rho) = \rho[Y' := \min\{Prog(\rho, Y', X), Prog(\rho, Y', Y)\}] = \rho[Y' := \min\{\top, \top\}] = \rho[Y' := \top]$

 ϱ is least game parity progress measure, and $\{v \in V \mid \varrho(v) \neq \top\} = \emptyset$ is winning set for player \diamondsuit . Hence player \Box wins from all vertices

Algorithms for Model Checking (2IW55) Lecture 7:Solving	The algorithm 1
S parity games using smallprogress measures	Compute least game parity progress measure using fixed point approximation:
Small progress measures	Algorithm SPM(G, \bigcirc) $g: V \to M^{\bigcirc \top} \leftarrow \lambda v \in V.(0,,0)$
Example	while $\varrho \subset Lift_{\tau}(\varrho)$ for some $v \in V$ do $\varrho - Lift_{\tau}(\varrho)$ end while
∾ — The algorithm	Post condition: • ϱ is least game parity progress measure • $\{ \psi \in V \mid \rho(\psi) \neq T \}$ is winning set for player ()
	• $\{h \in A \mid h(h) \neq 1\}$ is minimized to holder (

Strategies from progress measures Let $G = (V, E, p, (V_{\diamond}, V_{\Box}))$ be a parity game, and $\varrho: V \to \mathbb{M}^{\bigcirc, \top}$ be least game parity progress measure.

- Define strategy $\overline{\varrho}: V_{\Diamond} \to V$ for player \Diamond , by setting $\overline{\varrho}(v)$ to be a successor w of $v \in V_{\Diamond}$ that minimises $\rho(w)$.
- $\overline{\varrho}$ is a winning strategy for player \diamond from $\{v \in V \mid \varrho(v) \neq \top\}$.

Strategy (example)

- As the winning set for player ◇ is empty, the strategy for player ◇ can be chosen arbitrarily
- Stategy for player \Box cannot be inferred directly (winning set *can* be determined), some tricks have to be applied...

	Algorithms for Model Checking (2IW55) Lecture 7:Solving	The algorithm I
03	parity games using smallprogress measures	Compute least game parity progress measure using f approximation:
Example	Small progress measures	Algorithm SPM(G, ()
	Example	$\begin{array}{l} \varrho \colon V \to \mathbb{M}^{\bigcirc,\top} \leftarrow \lambda v \in V.(0,\ldots,0) \\ \text{while } \varrho \subset Lit_v(\varrho) \text{ for some } v \in V \text{ do} \\ \varrho \leftarrow Lit_v(\varrho) \\ \text{end while} \end{array}$
	The algorithm	Post condition: • ϱ is least game parity progress measure • { $v \in V \varrho(v) \neq \top$ } is winning set for player \bigcirc

Complexity Let $G = (V, E, p, (V_{\diamond}, V_{\Box})$ be a parity game; $n = |V|, e = |E|, d = \max\{p(v) \mid v \in V\}.$

Worst-case running time complexity:

$$\mathcal{O}(de \cdot (\frac{n}{\lfloor d/2 \rfloor})^{\lfloor d/2 \rfloor})$$

Lowerbound on worst-case:

 $\Omega((\lceil n/d\rceil)^{\lceil d/2\rceil})$

Summary

- Parity games
- Relation to Boolean Equation Systems
- Link to model checking
- Simplification techniques (self-loop elim. priority compaction/propagation)
- Solving:
 - Recursive $\mathcal{O}(en^d)$
 - Small progress measures $\mathcal{O}(de \cdot (\frac{n}{\lfloor d/2 \rfloor})^{\lfloor d/2 \rfloor})$
 - bigstep (combination of the two above): $\mathcal{O}(n^{d/3})$

/ Department of Mathematics and Computer Science

TU/e Technische Universiteit Eindhoven University of Technology 21 / 21