MODEL CHECKING IN THE
PROPOSITIONAL MU-CALCULUS

E. Allen Emerson and Chin-Laung Lei
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-86-06 February 1986

Model Checking in

the Propositional Mu-Calculus?

E. Allen EMERSON and Chin-Laung LEI

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

31 January 86 16:26

Abstract: In this paper we address the problem of automatically verifying that a given finite state
concurrent program meets a correctness assertion specified in the propositional Mu-Calculus Ly defined by
Kozen in [Ko83]. The propositional Mu-Calculus provides a framework for handling fairness, past-tense
temporal modalities, and extended temporal modalities such as those of [Wo81] in a uniform way. We give
an efficient model checking algorithm for specifications given in a fragment, L,ug, of the propositional Mu-
Calculus, where the alternation depth of least and greatest fixpoint operators is restricted to be at most 2.
We show that L,u2 can succinctly encode (and is, in fact, strictly more expressive than) many of the com-
monly used logics of programs such as PDL ([FL79]), PDL-A ([St82]), CTL ([EC82], [CES83]), FCTL and
GFCTL (|EL85]). In practice, we therefore have a small polynomial time model checker for a most useful
portion of the propositional Mu-Calculus.

1. Introduction

Due to the rapid development of multiprocessor computer systems and communication networks, a
tremendous amount of concurrently programmed software will be needed to take advantage of the fast, im-
proved hardware. Because of the high degree of nondeterminism inherent in concurrency, software engineer-
ing techniques such as modular design and systematic debugging are not, by themselves, adequate for ensur-
ing the development of error-free concurrent programs. Program verification thus plays an especially im-
portant role during the life cycle of concurrent program development. To improve the productivity of con-
current program development, automatic ver:fication tools become more and more desirable. Recently
Clarke, Emerson and Sistla ([CES83]) have suggested an automatic verification method for finite state con-
current systems: The global state graph of such a system can be viewed as a finite (Kripke) structure, and
an efficient (small polynomial time) model checking algorithm is described for determining if a given struc-
ture is a model of a specification expressed in a propositional branching time temporal logic. Since the algo-
rithm is very efficient, this method is readily mechanizable. Moreover, the approach is potentially of wide
applicability since a large class of concurrent programming problems have finite state solutions, and their
interesting properties can be specified in a propositional Temporal Logic (¢f. [Va85], [LP85]).

Indeed, the role of Temporal Logic as a feasible approach to the specification and verification of con-

current systems is now widely accepted ([Pn84], [La83]). However, several recent developments indicate

1This work was supported in part by NSF Grants MCS8302878 and DCR8511354. A summary of these results will
be presented at the IEEE Con ference on Logic in Computer Science to be held 16-18 June 86 in Cambridge, Mass.

that enriching Temporal Logic can prove most advantageous. For example, it is known (cf. [La80], [EHS83])
that the temporal logic CTL used in [CES83| does not permit reasoning under certain fairness assumptions.
An extension of CTL, which we call Fair Computation Tree logic (FCTL), is thus introduced in [ELS85].
Similarly, in [LPZ85] and [Pn84] it is argued that inclusion of past-tense temporal operators as well as the
extended temporal operators of Wolper [Wo81] (e.g., "at all even moments, P holds") can facilitate the task
of modular temporal reasoning about concurrent programs. Again, these sorts of temporal operators are not
accommodated in the CTL logic of [CES83] (nor in the FCTL logic of [EL85].)

In this paper we investigate another way of extending model checking for CTL. We view C'T'L: not as a
sublanguage of the full branching time logic CTL* ([EHS83]), but, rather, as a sublanguage of the
propositional Mu-Calculus Lu (cf. [Ko83], [Pr81], [EC80], [deB80}). The propositional Mu-Calculus provides
a least fizpoint operator (u) and a greatest fixpoint operator (v) which make it possible to give fizpoint
characterizations of the branching time modalities. Intuitively, the Mu-Calculus makes it possible to
characterize the modalities in terms of recursively defined tree-like patterns. For example, the branching
time temporal assertion EFp (along some computation path p will become true eventually) can be charac-
terized as pZ.p V EXZ, the least fixpoint of the functional p V EXZ where 7 is an atomic proposition vari-
able (intuitively ranging over sets of states) and EX denotes the existential nexttime operator.

The propositional Mu-Calculus provides a uniform framework for extending the CTL model checking
approach of [CES83| to handle fairness constraints as in [EL85], plus past tense temporal operators similar
to those in [LPZ85] (cf. [PW84]), and extended temporal operators like those in [Wo81]. For example, the
temporal assertion E%‘op ("along some computation path, p occurs infinitely often"), which is associated
with fairness, can be characterized as uZl.pZQ.EX[(P A Zl) \% ZQ}. The extended temporal operator "along
all paths, P holds of all even moments" (cf. [Wo81]) is captured by vZ.P A AXAXZ. We can accommodate
the (branching time) past tense through use of the converse relations.

We show how model checking can be done when correctness assertions are formulated in the proposi-
tional Mu-Calculus Ly. For the full Mu-Calculus Ly our algorithm has exponential worst case time com-
plexity. However, we consider model checking for restricted fragments Ly of Ly where the depth of alter-
nating nestings of p’s and v’s is bounded by k-1. For example, Lul consists of formulae obtained by compos-
ing modalities such as pZ.P vV EXZ (equivalent to EFP) and vZ.P A AXZ (equivalent to AGP) which con-
tain only p’s or only v’s. The fragment Ly, contains modalities such as vZ,-nZy EX[(P N Z)) V Z,)
(equivalent to E%OP) and ,uZl.z/Z.z.AX[(P VZ) A Z,| (equivalent to AEP, the dual of E%‘OP), where one alter-
nation of u’s inside v’s (or vice-a-versa) is allowed. We will show that the model checking problem for Ly

can be solved in polynomial time (with degree of the polynomial = k+1).

We go on to show that these restricted fragments of the propositional Mu-Calculus have considerable
expressive power. We establish that the propositional Mu-Calculus, even restricted to alternation depth 2,
is adequate for formalizing most of the reasoning about concurrent programs that can be done in a proposi-
tional Temporal Logic by proving that it subsumes many of the commonly used logics of programs such as
PDL ([FL79]), PDL-A ([St82]), CTL ([EC82], [CES83]), and FCTL ([EL85]). In particular, we show that
PDL and CTL can be succinctly translated into Lpl while PDL-A and FCTL can be succinctly translated
into Lpg.z We thus have a model checker of small polynomial time complexity for a specification language
able to handle almost any correctness assertion arising in practice including all of the examples cited above.

The rest of the paper is organized as follows: In section 2 the syntax and semantics of the proposi-
tional Mu-Calculus, Ly, are defined. Section 3 describes how to do efficient model checking in the proposi-
tional Mu-Calculus ka, and analyzes the complexity of our model checking algorithm. In section 4 we
present our results on translating program logics into L“l and Lu2. Finally, some concluding remarks are
given in section 5.

2. Preliminaries
2.1. Syntax.
The formulae of the propositional Mu-Calculus Ly are:

(1) Atomic propositional constants P, Q, R, . . .
(2) Atomic propositional variables X, Y, Z, . . .

(3) <A>p, where A is a member of a set of program letters A, B, C, . .. and p is any formula.
(4) —p, the negation of formula p.

(5) p A q, the conjunction of formulae p, q.

(6) pX.p(X), where p(X) is any formula syntactically monotone in the propositional variable X, i.e.
all free occurrences of X in p(X) fall under an even number of negations.

The set of formulae generated by the above rules forms the language Lu. The other connectives are intro-
duced as abbreviations in the usual way: p V q abbreviates =(=p A =—q), [A]p abbreviates —<<A>-p,
vX.p(X) abbreviates =uX.=p(=X), etc. Intuitively, uX.p(X) (¢X.p(X)) stands for the least (greatest, resp.)
fixpoint of p(X), <<A>p ([A]p) means p is true at some (every) next state t reachable by executing atomic
program A, A means "and", etc. We use |p| to denote the length (i.e., number of symbols) of p.3

We say that a formula q is a subformula of a formula p provided that q, when viewed as a sequence

of symbols, is a substring of p. A subformula q of p is said to be proper provided that q is not p itself. A

top-level (or immediate) subformula is a maximal proper subformula. We use SF(p) to denote the set of

QCTL* can also be translated into L,ug. Because the translation is via PDL-4, however, it is not succinct.
3Alternatively, we can define |p] as the size of the syntax tree for p; see section 4.

3

subformulae of p.

The fixpoint operators u and v are somewhat analogous to the quantifiers 3 and V. Each occurrence
of a propositional variable X in a subformula pX.p(X) (or vX.p(X)) of a formula is said to be bound. All
other occurrence are free. By renaming variables if necessary we can assume that the expression pX.p(X) (or
vX.p(X)) occurs at most once for each X.

A sentence (or closed formula) is a formula that contains no free propositional variables, 1.e., every
variable is bound by either u or v. A formula is said to be in positive normal form (PNF) provided that no
variable is quantified twice and all the negations are applied to atomic propositions only. Note that every
formula can be put in PNF by driving the negations in as deep as possible using DeMorgan’s Laws and the
dualities —pY.p(Y) = vY.~p(=Y), =vY.p(Y) = uY.-p(=Y) (This can at most double the length of the
formula). Subsentences and proper subsentences are defined in the same way as subformulae and proper
subformulae.

Let o denote either g or v. If Y is a bound variable of formula p, there is a unique p or v subformula
oY.p(Y) of p in which Y is quantified. Denote this subformula by oY. Y is called a p-variable if oY=pY;
otherwise, Y is called a v-variable. A o-subformula (o-subsentence, resp.) is a subformula (subsentence)
whose main connective is either u or v. We say that q is a top-level o-subformula of p provided q 1s a proper

o-subformula of p but not a proper o-subformula of any other o-subformula of p. Finally, a basic modality
is a o-sentence that has no proper o-subsentences.

2.2. Semantics.

We are given a set AP whose elements are called atomic (or propositional) constants and a set [T

whose elements are (atomic) program letters. Sentences of the propositional Mu-Calculus Ly are interpreted

with respect to a structure M = (S, R, L), where

S is a nonempty set of states,
R: Iy — ZSXS assigns a binary relation on S to each atomic program,

1:S — QAP is a labelling which assigns to each state a set of atomic propositions true in the state
The size of a structure M=(S, R, L), written |M], is defined to be |S| + ZJAGHOIR(A)I, i.e., the sum of the
number of states in S and the number of transitions in K.
The power set of S, 28, may be viewed as the complete lattice (28, S, 9, C, U, N). Intuitively, we
identify a predicate with the set of states which make it true. Thus, false which corresponds to the empty
set is the bottom element, true which corresponds to S is the top element, and implication (Vs€S[P(s) =

Q(s)]) which corresponds to simple set-theoretic containment (P C Q) provides the partial ordering on the

lattice.

Let = 25 — 25 be given; then we say that r is monotonic provided that P C Q implies {P) C #Q), =
is U-continuous provided that Py C P, C P, C ... implies T’(Ui Pi) = T(Pi), and that ris N-continuous
provided that PO) P1 2 P2 2 ... implies T(ﬂi Pi) =N, T(Pi). Either type of continuity can easily be
shown to imply monotonicity. Furthermore, if S is finite, then any monotonic functional is also both
U-continuous and M-continuous.

A monotonic functional 7 always has both a least fixpoint, xX.7(X), and a greatest fixpoint vX. 1(X):

Theorem 2.1 [Tarski-Knaster]. Let . 95 95 be a given monotonic functional. Then

(a): 1XAX) = N {X: AX) = X} = 1 {X : AX) € X,
(b). X XAX) =U{X: X)) =X} = U {X: T(X) 2 X},
(¢). If 7 is U-continuous then uX.#(X) = U Tl'(false), and
(d). If 7 is Mrcontinuous then vX.A(X) = N, 7 [true].

A formula p with free variables Xl’ ey Xn is thus interpreted as a mapping pM from (QS)n to QS, ie.,
it is interpreted as a predicate transformer. We write p(Xl, . Xn) to denote that all free variables of p are
among X, ..., X . A valuation V = (Vl’ ey Vn) is an assignment of subsets of S (Vl’ .., V) to free vari-
ables (X, ..., X). We use pM(V) to denote the value of p on the (actual) arguments V, ..., vV, (cf. [EC80],
[Pr81], [Ko83]). The operator pM is defined inductively as follows:

(1). PM('V) = {s: s € S and P € L(s)} for any atomic propositional constant PEAP
@). XMy = v,

3)- (0 A M) = PV N (V)

(4). CoM(V) = s\ (M)

(5)- (<A>p)M(V) = {s: 3ep™(V), (s, 1)ER(A)}

(6). X.p(X)M(V) = (s Cs: M)

Note that our syntactic restrictions on monotonicity ensure that least and greatest fixpoints are well-
defined.

Usually we write M, s e p (M, s £ p(V), resp.) instead of s € pM (s € pM('V)) to mean that sentence
(formula) p is true in structure M at state s (under valuation V). When M is understood, we write simply s
Ep.

2.3. Alternation Depth.

We introduce the notion of alternation depth of formulae in Ly which plays an important role in the
complexity analysis of our model checking algorithm. Although the intuition for alternation depth is quite
obvious, it turns out that the formal definition is rather subtle. In the delinition below we assume that f is

in PNF. (For any formula f not in PNF, A(f) is defined as A(f’), where {” = { is in PNF.)

ADI1.

AD2.
AD3.
AD4.
AD5.
ADG.
AD7.
ADS.
AD9.

Definition 2.2: The alternation depth of a formula f, A(f), is defined recursively as follows:

If f contains proper o-subsentences p,, ..., p , then A(f) = max(4(p,), ..., A(p,), A(l")), where f’
is obtained from f by substituting fresh atomic propositional constants Pl,...,Pn, for py,..c5pp
resp., in f.

A(P) = 0, for any atomic proposition constant P

A(Y) = 0, for any atomic proposition variable Y

Alp A q) = max(4(p), A(q))

A(p V q) = max(4(p), A(q))

A(—p) = Alp)

A(<A>p) = A(p), for any program letter A

A([Alp) == A(p), for any program letter A

A(pX.p) = max(1, A(p), 1+A(wY,.qq), ..., 1+A(¥Y .q), where vY .4y, -, ¥Y .q are the top-
level v-subformulae of p.

AD10. A(vX.p) = max(1, A(p), 1+ﬂ(uY1.ql), . 1+ﬂ(uYn.qn)), where Y, .q;, ..., #Y_.q are the top-

level g-subformulae of p.

Examples:
1. A(pY.P Vv <A>Y) =1, by AD9
2. A(pY.(uZ.P V [A]Z) V <A>Y)) = 1, by ADI then AD9
3. A(pY.((VZ.P A [A]Z) V <A>Y)) = 1, by AD1 then AD9 and AD10
4

tion of active variables introduced in [Ko83]. Let Pg be a basic modality of Lpu. i.e., a sentence with no
proper o-subsentences. Draw the syntax tree for Py in the usual way; then, for each node corresponding to
an occurrence of a o-variable X, draw a directed arc from the node for X to the node for ¢X. (See Figure

2-1) We say that variable X is active in subformula q in sentence Py provided that there is a directed path

from

<A>Z)) A Y)) from above is of alternation depth 3 because it contains a chain of 2 consecutive
"active" alternations of o-variables: In the chain uX ... vY ... pZ, the alternation uX ... Y is active because

X is active in »Y (indeed, it occurs free in »Y) while the alternation »Y ... uZ is active because Y is active in

AL VL [AJ(~P V ~Z,) A Zp) = AL, .nZy.<A>((P A Z))V Zy)), put it in PNF

=1+ A(uZy <A>((P ANZ))V Z,)), by AD10
== 2, by AD9

AL, 1Ty <A (Y i Yy <A>((P AY,) VY)A Zy) V Z,)

= max{A(WZ .nZ,.((KA>Q A L))V Zy)), ApY 4Yy <A>((P A Y;) VY,))}, by AD1
== 2, by AD9 and AD10

CAEXY.(P V (RZ.(X V <A>Z)) A Y))) = 3, by AD9 then AD10 and then AD9 again

Remark: One possibly helpful way to understand our definition of alternation depth is to use the no-

(the root node for) q to (the node for) oX. Then, for example, the formula pX2Y.(P Vv ((pZ.(X V

1Z (even though Y does not occur free in puZ).

Definition 2.3: We denote by Ly the fragment of Ly restricted to alternation depth k.
3. Model Checking Algorithms.

In this section we develop a model checking algorithm for Lu. We also show that the com plexity of
our algorithm for Ly, is a polynomial of degree k+1 in both of the input structure and the input specifica-
tion.

The algorithm of Figure 3-1 for model checking in the Mu-Calculus is a straightforward implemen-
tation of the semantics and the Tarski-KKnaster Theorem (Theorem 2.1) for evaluating fixpoints.

We can improve the performance of the algorithm by observing that subsentences need only be
evaluated once. Moreover, we can exploit the simultaneous monotonicity induced by o-variables of the
same type by using the following variant of the Tarski-Knaster Theorem:

Theorem 3.1: If p(Y): 25 95 is U-continuous, then pY.p(Y) = U pi(YO) for any initial set Y, C
#Y.p(Y), and if p(Y) is N-continuous then vY.p(Y) = N pi(Yo) for any iliiigml set Y 2 vY.p(Y). o

For example, consider p = ”Yl’pl(Yl) where p11(>'191) contains the subformula ©Y,.py(Y,, Y,)- Based
on Theorem 3.1, to evaluate le.pl(Yl), we successively compute p,(false), p?(false), (i.e., pl(pl(false))),
p‘;’(false), ... until stabilization. In order to compute p,(false) we must first evaluate the subformula
ng.pz(false, Yz). We can then again use Theorem 3.1 to calculate pg(false, false), pg(false, false), (i.e.,
py(false, py(false, false))), pg(false, false), ... until stabilization. The calculation of uY2.p2(false, Y,) can
involve up to |M]| steps.

Similarly, to compute pil(false), we compute subformula pYQ.pQ(pil'l(fa,lse), Y,) by means of a sub-
computation p2(pi1'1(false), false), pg(pil'l(false), false), pg(pil'l(false), false), ... of up to |M| steps. Thus
O(]MlQ) evaluations of ij(piI(false), false) are performed. In general, if we have a o-formula nested k deep,
the body of the innermost o-subformula will be evaluated O(]M}k) times. Since the depth k of nesting
o-subformula can be > (|pg|), we get an algorithm of superexponential complexity, (|M|-lp0|)ctp0i, for some
constant ¢ >0.

However, whenever the nested o-subformulae are all of the same type (all p’s or all v’s) we can do
better. In the above example, we must compute p,(false), pi‘(false), pi’(false), ... and for each pil(false) we
need to compute uYz.pg(pil'l(false), false). But, it is not necessary to restart the 1Y, subcomputation with
the Y, variable = false each time. Since pil’l(false) - pil(false) and pQ(Yl, Y2) is monotonic in Yl’ we
have that uYz.pQ(pil'l(false), Yz) - ;LY2.1)2(1)i1(false), Y,z). Thus we can start the computation for
MYQ.pQ(pil(false), YZ) with the Y, variable equal to the previously computed MYQ.pQ(pil’l(false), Yg). Only
about O(|M]) calculations of pgpil‘l(false), false) are needed.

In general, instead of reinitializing the p-variable Y each time the subformula pY.p(Y) is ev aluated, it

suffices to reinitialize Y just when the v-variable Z of the closest surrounding v-formula vZ.q changes4. We

can use the following rule, inserted at the beginning of the evaluation of pY.p(Y).

if the surrounding o-formula of xY is vZ
then Y = §;
for each open subformula X of xY such that there is no

subformula vW of uY containing uX, set X = %;5
A symmetric rule is used for reinitializing v-variables. The improved algorithm is shown in Figure 3-2.

Theorem 3.2: The algorithm in Figure 3-2 is of time complexity O{(lpOI-IMDﬂ(pOHl] where A(p) is
the alternation depth of Py (defined above).

proof: It suffices to consider the case where Py does not contain any proper o-subsentence (i.e., is a
basic modality), since each subsentence is evaluated only once.

If Py 1s of alternation depth O, so it contains no o-subformulae, then it is easy to see that the algo-
rithm takes time O(|M]-|py|). Let us next consider Py of alternation depth 1 so that it contains only
o-subformula of the same type, say, p-subformula (A symmetric argument applies when it consists only of
v-subformulae). Define the u-depth in Pg of subformula ”Yi’ D(pYi), to be the number of p-subformulae
surrounding ”Yi‘ Suppose we have qu is a proper subformula of “Yk~1 ... 1is a proper subformula of le
is a proper subformula of no p-subformula of p,. Write # __evals(p;) for the total number of times eval(p;)

is called when evaluating Po- Now,

1. #__evals(p;) < [S| + 1 since each time, except the last, Py is evaluated the size of Y, increases,
and

2. #~evals(pi+1) < IS| + # _evals(p,) since there can be up to |S] calls to eval(
crease Y; , , in addition to 1 call to eval(p; ,) for each call to eval(p,).

pi+1) which in-

Thus, for any subformula q of py, # _evals(q) < [pyl-|M|. Now, the total cost to evaluate p, can be cal-

culated as:

total cost < 22 (local cost to evaluate q once)-(total number of times q is evaluated)
= qeSF(py)
Here, the local cost to evaluate q once is the time required for a single evaluation of q exclusive of the time
spent (in recursive calls) to evaluate the immediate subformulae. Plainly, when q is not a o-subformula, the
local cost of ¢ is at most cl~|M], for some constant ¢y For example if q = P; A\ Py, it Is essentially the time

required to intersect the sets of states associated with Py and Py the time required to evaluate Py and Py is

4Actually, we only need to reset Y when a surrounding v-variable Z which is active in p changes. (See the remark
near the end of subsection 2.3.)

5For future reference, call such an open formula uX of §Y an unguarded open subformula.

8

not charged to the local cost of q, but rather to Py and Py respectively.

For q = aYi.pi, the local cost can include the charges for resetting Si and any Sj corresponding to
open unguarded o-subformulae, and for storing (the old value of) Si in Si’ and comparing Si’ with (the new
value of) S (obtained after evaluating the body p;)- This can yield a local cost of O(|q|-[M| +]M|2)
However, the total cost estimate will not decrease if we calculate it on the basis an appropriately modified
local cost.

Observe that it is, for example, allowable to modify the local costs of formulae q and ¢’ by subtracting
an amount a-b from q and adding amount a to q’, provided that q’ is evaluated at least b times for each
time q is evaluated. Therefore, for, say, a “Yi formula such that the surrounding o-formula is a ~formula
(or has no surrounding o-formula), we charge to its (modified) local cost the cost to reinitialize S; to 0,
which is at most 02'1Ml for some constant ¢y However, the cost to reinitialize Sj for MYJ., an open un-
guarded subformula of uYi, is charged to the (modified) local cost of ij. Since qu will be evaluated at
least once for each ”Yi evaluation, this is allowable. Also, for an evaluation of in.pi we store Si in and
compare S; with S.” some number b times, where b is the number of times the body p; is evaluated during
this evaluation of ”Yi'pi' The cost of a single such store and subsequent comparison is some amount a <
cg-lM], for some cg. The total contribution of all storing and comparing of S, to the local cost of an evalua-
tion of ”Yi'pi is thus a-b. By our observation above, we can therefore modify the local costs of ”Yi'pi and p;
by subtracting a-b from ”Yi'pi and adding a to p;- We can similarly modify the local costs for
v-subformulae.

Now the modified local cost of each subformula, whatever its main connective, is < c-|M]| for some
constant c. Thus the total cost of evaluating Py < ngF(pO) (modified local cost to evaluate q once)-(total
number of times q is evaluated) < |py|-(maximum of the modified local cost of any q € SF(py))-(maximum
of the total number of times any q € SF(p) is evaluated) < [pgl-(e-M)-(Ipgl-IM]) < c(IpOHM])2

We can now argue by induction on the alternation depth, that a formula of alternation depth k can be
evaluated in time c'(lpol‘lM{)k%ﬁl, where ¢ the the constant mentioned in the previous paragraph. The basis
step for k < 1 is as above. For the induction step, let Py be a sentence of alternation depth k-+1. We as-
sume that all o-subformula in Pg of alternation depth k+1 are p-subformulae (The case where they are

v-subformulae is symmetric). Then Py can be expressed as a composition of the form p’[vY,, ..., VYl} where

TR
the vY.’s are the top-level v~-subformulae, each of alternation depth <k, and p’ is the formula obtained from
Py by replacing each VYi with a "fresh® variable Zi; p’ is of alternation depth 1.

In a manner similar to that used for the basis case, we can calculate the total cost for evaluating Py as

follows: total cost < qéSF(p’) (total number of times ¢ is evaluated)-(modified local cost of evaluating q

9

once), where the modified local cost of evaluating Zi is the cost of evaluating VYi --- which is
c~([pYi|-lM])k+1 by induction hypothesis plus the additional cost due to the "modification" discussed above
which is ¢:|[M]|. Since p’ is of alternating depth 1, we have, as above, that the maximal number of times say

subformula q of p’ is evaluated is < |p’|-|[M]|. Hence the total cost

< (lp,l'IMI)'(qESF(p’)i?{Zl,...Zl} (modified local cost of evaluating q once) + Z‘%:l(:.ﬂuYii.lMDk*”l))
< (1Pl IMI)-(1p’]-(e- M) + e-((Ipl-lp’l)- M FY)
< (Il MJ)-c-(|pgl-MI<F!

< o(|pgl- M2

4. Expressiveness

Since A(pgy) = £A|pyl) our improved algorithm still has exponential worst case complexity (|M|~]pol)cip0|, for
some constant ¢ > 0. However, almost all useful modalities can be expressed in the Mu-Calculus with alter-
nation depth 1 or 2. Indeed, the expressive power of the Mu-Calculus of limited alternation depth is under-
scored by the results below which establish that PDL-A (Propositional Dynamic Logic with Looping, cf
[St82]) and FCTLS (Fair Computation Tree Logic, cf [EL85]) can be succinctly encoded into Ly, while
(ordinary) PDL (cf. [FL79]) and CTL (cf. [CES1]) can be succinctly encoded into Ly, . In practice, we there-
fore have a model checker for the useful portion of Mu-Calculus of small polynomial time complexity.

4.1. Mu-Calculus and Propositional Dynamic Logic

We denote by pt the Mu-Calculus translation of PDL-A formula p, where the translation t is defined
by the following rules (cf. [Pr79], [Ko83])

T1. P* = P for atomic propositional constants P

T2. Y = Y for atomic propositional variables Y

T3. (-p)* = —p

T4 (<A>p)' = <A>p'

T5. (<a U b>p)' = (<a>p)' v (p)

T6. (<p?>q)' = p' A ¢

T7. (<a;b>p)' = (<a>p)"

T8. (<a*>p)' = uY.(p* V (<a>Y)"), for “fresh" variable Y
T9. (Aa)' = vY.(<a>Y)" for “fresh" variable Y

6A brief description of PDL-A and FCTL is given in Appendix.

10

Since p is duplicated in translating <a U b>p, lpt| the length of pt considered as a string of symbols
in the usual way, can be exponential in |p|. However, if we have an intelligent representation scheme which
consolidates common subformulae (so that, e.g., the parse "graph® of <a>p V p would have the
form of Figure 4-1), then llpt[l, the size of the representation of p (e.g., the size of its parse graph) is linear
in |p|. In the sequel, we will assume that the "size" of a formula is measured by the size its parse graph

instead of number of symbols. We thus have

Proposition 4.1: For every PDL-A formula f(Xl, . Xn) having free variables Xl’ ety Xn’ ft(Xl, .
Xn) is an Ly formula also having free variables X oo X, which is equivalent to f; i.e., V structure M = (8,
R, L), V state s of M, and for every valuation V = (Vi o V) M s e (V) iff M, s & V). Moreover, |[|fY]|
= O(|f]).

Proof: The proof is given in the Appendix. o

Theorem 4.2: For any PDL sentence p, pt is an equivalent Mu-Calculus sentence of alternation
depth < 1. Thus, PDL is succinctly translatable into L,u1 in linear time.

Proof: Correctness and succinctness of the translation follow from Proposition 4.1, and the obser-
vation that translation rules T1-9 can plainly be implemented in linear time.

To see that pt is of alternation depth < 1, note that the translation rules T1-9 above define a map-
ping from PDL sentences to Mu-Calculus sentences. Since we only introduce least fixpoint operators (u)
during the translation and negations are only applied to subsentences, it is clear that pt, the Mu-Calculus
counterpart of the the PDL sentence p, is of alternation depth at most 1 according to definition 2.2. u|

Since the Ly, formula pX.[A]<<A>X is not expressible in PDL (cf. [Ko83]), we have the following:

Corollary 4.3: L“l is strictly more expressive than PDL. |

Let p be a PDL-A formula and q be a subsentence of p. We observe that the translation t has the
following property: [p(q/Q)%(Q%/q%) = (p(a/Q)%(Q/q") = p*, where Q is a fresh atomic variable not occur-
ring in p and p(x/y) denotes the substitution of y for x in p.

Theorem 4.4: For any PDL-A sentence p, pt is a Mu-Calculus sentence of alternation depth < 2.
Thus, PDL-A is succinctly translatable into Lu_z in linear time.

Proof: The correctness and succinctness of the translation follow immediately from Proposition 4.1
and 1t is clear that the translation can be implemented in linear time complexity. To see that the alter-
nation depth is < 2, we argue as follows: Let p be an arbitrary PDL-A sentence, we will prove by induc-
tion on #A(p), the number of A operators in p, that A(p%)<2.

Basis: If #A(p) = 0 then ﬂ(pt)gl by Theorem 4.2. If #A(p)==1, let Aa be the unique A-sentence of
p, then (Aa)t:uY.(< a>Y)t. Let q;, ..., q be all the top-level subsentences of <a>Y. Let <<a'>Y =

11

<a>Y[q1/Q1, e, q /Q]. By the above observation, we have (<a>Y)t = (<a’>Y)t(Q1/qi, . Qn/qfl).
By definition 2.2, A((<a>Y)") = max(A((<a >Y)"),4(q1 qn) Since, q; is a sentence of PDL ﬂ(qi’) <
1 by Theorem 4.2. Note that the only negations in <<a>Y are applied to subsentences (because Aa is a
sentence). Since any negation of a subsentence is a subsentence and we replace all top-level proper subsen-
tences of a by atomic propositional constants to get a’, a’ is negation free. Therefore, (<a’>Y)t’ contains
only u operators (if it contains any c-operators) and is in PNF. Applying definition 2.2, ﬂ((<a’>Y)t’) <1
Hence, A((<a>Y)") — max(ﬂ((<a’>Y))ﬂ(q1 ﬂ(qn) < max(l, 1, ..., 1) = 1. By definition 2.2,
A(82)%) < 1+ A((<a>Y)Y) < 2. Now, we can evaluate A(pY). A(pY) < max(2, A((p))"), where p’ is ob-
tained from p by replacing Aa with a fresh atomic propositional constant. Since p’ is an ordinary PDL for-
mula, A((p’)*) < 1 by Theorem 4.2. Therefore ApY) < 2.

Induction step: Assume #A(p) =k + 1 > 2. Let Ab be a A-sentence of p with #A(Ab) < k. By
induction hypothesis, A((Ab)") < 2. By rule AD1 of Definition 2.2, A(p%) < max[2, A(p’")], where p’ is the

formula p with Ab replaced by a "fresh" atomic proposition. Again by induction hypothesis, ﬂ(p’f’) < 2

Therefore, A(p%) < 2. o

In [Ni84] it has been shown that vX.(<A>X A X) is not expressible in PDL-A, we thus have

the following corollary:

Corollary 4.5: LM2 is more expressive than PDL-A. n|

Theorem 4.6: There exists an algorithm for model checking in PDL-A which runs in time
O[(]M!lpol)g] for input structure M and sentence p,.

Proof: If we modify the model checking algorithm given in the previous section so that it does not
evaluate common subformulae twice, it is then straightforward to see that the modified model checking al-

gorithm runs in time O[(||py||- [M]) (Pg +1] instead of O[(|py|- IMI) (pg +1]. The theorem thus follows from

Theorem 4.4 and the modified algorithm. o
4.2. Mu-Calculus and FCTL.

To compare the Mu-Calculus with endogenous Temporal Logics such as CTL and FCTL we only have
to consider Ly over one program letter. In the sequel, we therefore assume that HO:{A}.

Theorem 4.7. There is a succinct, efficient (i.e., linear size and computable in linear time) trans-
lation of CTL into L”l over 1 program letter. Moreover, L,u1 over 1 program letter is strictly more expres-
sive than CTL.

Proof sketch: The existence of the desired translation follows from the following fixpoint charac-
terizations of the basic CTL modalities: EXP = <A>P, EFP = yYP vV <A>Y, EGP = vYP A
<A>Y, and E[P U Q] = uY.[Q V (P A <A>Y)]. To see that CTL is strictly less expressive than Lu,

12

over 1 program letter, observe that the formula vY.[P A <A><A>Y] which asserts that p occurs every
other time is not expressible in CTL (cf. [Wo81]). o

It can be shown that CTL cannot express correctness properties such as E%OP (along some path P oc-
curs infinitely often) which are important in dealing with fairness (cf. [EH83].) Thus, in [EL85] we extended
CTL to Fair CTL (FCTL). An FCTL specification (Py ?p) consists of a functional assertion py, Which is a
state formula, and an underlying fairness assumption P which is a pure path formula. The functional
assertion Po is expressed in essentially CTL syntax with basic modalities of the form either A¢ ("for all fair
paths") or E(b ("for some fair path") followed by one of the linear time operators F, G, X, or U. We sub-
script the path quantifiers with the symbol ¢ to emphasize that they range over paths meeting the fairness
constraint Py and to syntactically distinguish FCTL from CTL. A fairness constraint Py is a boolean com-
bination of the infinitary linear time operators %Opﬁ(" infinitely often p") and 8p ("almost always p"), ap-
plied to propositional arguments (cf. [EC80], [Ha86]). We can then view a subformula such as A ZFP of
functional assertion Py 2s an abbreviation for the CTL* formula A[¢0 = Fp|. Similarly, EgbGP abbreviates
E[q50 A GP].

One key result of [EL85] was that almost all practical types of fairness notions can be succinctly ex-

n o 00
pressed using the canonical form & = A (Fpi \% qu). We will show, in this section, how the fairness
i=1
canonical form can be succinctly expressed in L,uQ. In the following discussion we take the liberty of slightly
n
mixing CTL and Lpu operators7. Also, we let & = A (Fpi vV Gq), and {Y) =
=1

n
A [EXE(Y U (py AY))V (g; A EXY)]. Then we have the following succinet characterization of E® in Lpy:
i=1
Proposition 4.8: E¢ = EFvY.AY).
Proof: We first establish the following lemmas:

Lemma 4.9: vY.«Y) C Eo.

Proof: We will argue that if Y = #{Y) then Y C E¢, from which it will follow that vY.AY) C Eo.
Suppose sy € Y. Then for each j€[1:n], 5, ¥ EXE(Y U (pj AY))V (qj A EXY). Consider a fixed jo&[1:n]. We

have two cases:

Case (a): s, ¥ EXE(Y U (pjo A Y)), in which case there exists a finite sequence (sy=t,), by, e b==5,)
of states, each satisfying Y, which starts at sp and ends at state s, such that 5; F P A
0O

Y. Denote this sequence by So o s

A B
Case (b): 5 ¥ (qu A EXY) A =EXE(Y U (pj /\ Y)), in which case s, has a successor s; such that s, &
Y. Denote this sequence (SO, Sl) by s “Jp_’li__) Si-

7By Theorem 4.7 we can view CTL formulae as abbreviations for Lul formulae if we wish

13

In either case, there is a finite sequence [rom sg to sy, which we can denote by So ™ Sp where for simplicity

we suppress which case applies.

We will construct an infinite path x of the form Sg ~* S; ™ S

ments of the form S, = S in such a way as to ensure that x £ ¢. The ground rules are (1) at time 1, try

— s3> . by splicing together seg-
to handle py, q where k =1 + i mod n, and (2) always favor Case (a) to Case (b), if possible. So initially
the path is just s, Inductively, the path is of the form Sg Sy .- s Let k =1+ 1mod n. If s, F
EXE[Y U (p A Y)] (case (a)) then take s; — s;

1+
tobes, kb s, .. Letxbe the infinite path sy —s; — s, — ... obtained by repeating this process for

(tobes, _ka _s. ;;otherwise (case (b)) take s; — s, ¢

each IEN. Observe that, since Sg F Y and Y holds of each state of each s, — S (1) Y holds of every state

along x.

We claim that if s; k —EXE[Y U (p, A Y)] then g, holds of every state along the infinite suffix X’ = s,
— 8, — 8,9 - of x. To see this, assume s; & —EXE[Y U (p, A Y)] and suppose the claim is false. Let t
be the first state along x’ after s, such that q is false at t. Since Y holds at every state along x, t k
Y. Since Y = oY), t e EXE[Y U (p,. A Y)]. However, every state between s; and t satisflies Y. This implies
that s, k EXE[Y U (p, A Y)] contradicting our assumption that s; ¥ ~EXE[Y U (p. A Y)]. Thus, each state
along x’ satisfies s thereby establishing the Lemma.

It is now easy to verify that the path x thus constructed satisfies & For each j€[1:n], either Case (a)
applied at every time i for which 1 + 1 mod n = j -- so that x k ?pk -- or eventually there is a time i, such

0
that 1 + 1 mod n = j and Case (b) applies -- so that, by the claim, x k qu. Hence, Y C E& for any

fixpoint Y of 7. This completes our proof. |

Lemma 4.10: E¢’ C vY.«Y).

Proof: It suffices to show that E®* C AE®’) since vY.A{Y) = U{Z: Z C #Z)}. Suppose s k E&’.
Then there exists a path x = (SO, S1» So) ...) such that x ¥ ’. Moreover, for each state 5 on X, 8 E E®’. We
will show that s, £ {E®’).

For each i € [1in], if x k Gq; then s k q; A EXE®’. Otherwise, x & f‘.*opi. In this case, s, » EXE[E®* U
(p; A E®’)]. Thus, s; » EXE[E®’ U (p; A E®)] V (q; A EXE®) for each i € [1m]. Le, sk :—/l_zl[EXE{E@’ u
(p; A E®)| V (g; A EXE®)] = E®’). Therefore, E®” C vY.AY). o

Lemma 4.11: EFE® = E¢.

Proof: Obvious. Left to the reader.

Lemma 4.12: EFE®’ = E¢.

Proof: C : Since E¢’ C E¢, EFE® C EFE® by monotonicity of EF operator. Hence, EFE®’ C Eo
by Lemma 4.11.

14

2 If 8o F E¢®, then there exists a fullpath x = (SO, Sp» S, ...) such that x ¥ &. It is quite straightfor-

ward to verify that there exists a state s; on X such that 5; F E®’. Thus Sg F EFE®’. Therefore, EFE® DO

Eo. o

To complete the proof of Proposition 4.8, we use the following “"squeezing" argument to show that
EFvY.f(Y) = E®. Since E¢’ C vY.(Y) (Lemma 4.10) C E®¢ (Lemma 4.9), we have E¢ = EFE®’ (Lemma
4.12) C EFvY.7(Y) (by monotonicity of EF) C EFE$ = E& (Lemma 4.11).

Thus E® C EFvY.{Y) C E®, and the theorem is proved. o

Remark: We feel that the existence of a succinct fixpoint characterization in Lp, of E® is a rather
nonobvious point. Now, in the case where & contains only a single conjunct, then E& pretty obviously has
the fixpoint characterization »vY.EGEF((q; A Y) V EG(p,; A Y)). But this fixpoint characterization does not
appear to generalize to n > 1 conjuncts. An alternative approach would be to multiply out the n conjuncts,
but then the resulting formula is of length about 2 and the fixpoint characterization will not be succinct.
We also point out that our succinct fixpoint characterization is correct for arbitrary sets of states Py 9 and
not just in the (easier) case when, e.g., p; = executed,, and q; = —enabled, (cf. [EC80], [deR81].)

Theorem 4.13: There is a succinct, efficient (i.e., linear size and computable in linear time) trans-
lation of FCTL into L,u2 over 1 program letter. Moreover, Lug over 1 program letter is strictly more ex-
pressive than FCTL.

Proof Sketch: Since all temporal operators in FCTL can be defined in terms of the basic modalities
EgXq, EgGq and Eglp U q], it suffices to show how to encode these formulae in Luy. For EgXq and Egp U
q, it is quite straightforward to get the fixpoint characterizations because E¢Xq = EX(q A E®), Eé[p U q
= E[p U (q A E®)], and we have the fixpoint characterization of E® in Lp, by Proposition 4.8.

It remains to show how E(qu is expressed in L“"Z‘ It is not hard to verify that E¢Gq = E[q U E(Gq
A @’)]. Using the same squeezing technique used to established Proposition 4.8 above, we can show that the
corresponding Ly, formula for E[q U E(Gq A ¢’)] is E[q U VY.{_I/I\ [EXE(Y U (P AY)) V(g A EXY)] A q}].

Finally, it can be shown that the Lug (in fact, Lul) follzlliﬂa vY.p A AXAXY is not expressible in

CTL*, and hence not in FCTL. o

Note that since the canonical form FCTL is as expressive as the full FCTL (but less succinct), we con-

clude that L“Q is more expressive than FOTL.2

8The reader who is familiar with GFCTL will note that Theorem 4.13 also holds for GFCTL as well as FCTL (cf.
[EL85)).

15

5. Conclusion

In this paper we have considered the problem of model checking in the propositional Mu-calculus L.
It provides a least fixpoint operator (1) and greatest fixpoint operator (v) which make it possible to give
fixpoint characterizations of temporal modalities. For the full logic Ly our model checking algorithm has
exponential time worst case complexity. However, we show that for each k, for the restricted fragment L“k
where the depth of alternating nestings of p’s and v’s is at most k, our algorithm runs in polynomial time
with the degree of the polynomial = k+1. It turns out that these restricted fragments of the Mu-Calculus
have considerable expressive power. Indeed, we show that PDL and CTL can be succinctly translated into
(and are strictly less expressive than) Ly, while PDL-A and FCTL can be succinctly translated into (and are
strictly less expressive than) Lpu,. (CTL* can be translated into Ly, also, but our translation is not
succinet.) In practice, we therefore have an efficient model checking algorithm for a language Luz which
subsumes a number of commonly used program logics. An additional advantage is that L,u2 provides a
uniform framework for handling fairness constraints as in [EL85|, extended temporal operators similar to

those in [Wo83], and (branching) past-tense modalities (through the use of converse relations.)

Appendix.
A.l: PDI~A and FCTL.

For the convenience of the reader, we briefly describe the syntax and semantics of PDL-A and FCTL
in this appendix.

For PDL-A, we are given a set v whose elements are called atomic propositions and a set I, whose

elements are (atomic) program letters. The set of programs, I7, and the set of formulae, ¥, of PDL-A are
then defined inductively as follows:

(P1) I, € 11

(P2) if a, b € IT then a;b, aUb, a* € IT

(P3)if p € ¥ then p? € I1

(F1) vy C ¥

(F2)if p € ¥ then pE Y

(F3)if ael ITand p € ¥ then <a>p, Aa €Y

Sentences of PDL-A are interpreted with respect to a structure M == (S, R, L) as defined in section 2.3.
Intuitively, IT is a set of regular languages over 1, and tests. If p is a formula, the test p? is a program
equivalent to ’if p then skip else abort’. Thus <p?>>q is true at a state s iff p A q is true at s. If a € II, the
formula <<a>p is true at a state s when there is a a path labelled by some word matching the regular ex-
pression a leading from s to a state satisfying p, and the formula Aa is true at a state s when there is an

infinite chain of edges labelled with an infinite word from the w-regular language a®.

16

Basic modalities of FCTL are formed by fair path quantifiers Ay (along every fair computation path
satisfying the underlying fairness constraint @0) and Eq5 (along some fair path) followed by one of the usual

linear time temporal operators X (nexttime), F (sometime), G (always), or U (until). Formally, formulae of

FCTL are formed as follows:

1. Any atomic proposition P is a formula.
2. If p, q are formulae then so are —p, and (p A q).
3. If p, q are formulae then so are A zXp, E ;Xp, Aqs{p U ¢J, and Eqs{p U q].

A propositional formula is one formed by rules 1, 2 above. A fairness constraint is then formed by the fol-

lowing rules:

[ele] 0
4. If p, q are propositional formulae then Fp (infinitely often p), Gp (almost always p) are
fairness constraints.

5. If p, q are fairness constraints then so are —p, and (p A q).

The other connectives can then be defined as abbreviations in the usual way: AgFq abbreviates A¢[true U
al, Engq abbreviates Eq-)[true U q, Agqu abbreviates *-IEQBF—wq, Egqu abbreviates —nAéFﬁq. A gain, for-
mulae of FCTL is interpreted in a structure M == (S, R, L) as defined in section 2.3 except that R is simply
a binary relation over S. For example, the formula Equp is true at a state s when there is a path starting at
s which meets the underlying fairness constraint %0 and p is true at some state of the path. The formulae
A@[P U q] is true at a state s iff along every fair path starting at s, p holds until q becomes true. The reader
is referred to [EL85] for more details.

We define the language LX to be the set of formulae formed by the rules of Ly, FCTL, and PDL-A.
Since FCTL and PDL-A are just sublanguages of Ly, LX is not more expressive than Lu. However, it is
clear that by allowing mixing FCTL, PDL-4, and Ly modalities the task of specification will be much more
easier. Moreover, it is straightforward to modify our model checking algorithm to accept formulae in LX.
A.2: Proof of Theorem 4.1.

The proof is by induction on the lexicographic order of (#A(f), |f|, 1d(f)), where #A(f) is the mumber of
A-operators in f, and 1d(f) is the length of the leading diamond of f (i.e., 1d(f) = |a| if f = <a>p, otherwise
1d(f) = 0).

In the following, we will use p instead of p(V) if the valuation V is obvious.

1. If f=P (an atomic propositional constant), clearly M, s e P iff M, s & Pt

2. If ==X, (an atomic propositional variable), M, s ¢ X;(V) iff M, s ¢ Xit('V).

3. f==—p: By induction hypothesis, M, s ep iff M, s & pt‘ Therefore, M, s e —p iff M| s & ﬂpt iff M,
sk (-p)"

17

. f=<A>p: By induction hypothesis, M, s ¥ <A>p iff 3(s, t)ER(A)[M, t & p] iff (s, t)ER(A)[M,
tEpYiff M, s & <A>pUiff M, s (<A>p).

. f==<Za U b>p: By induction hypothesis, M, s k <a>p iff M, s ¢ (<a>p)t, and M, s e p iff
M, s £ (b)". Therefore, M, s k <a U b>piff M, s k <a>p or M, s k p iff M, s &
(<a>p)lor M, sk (b) iff M, sk (<a U b>p).

. f=<p?>q: By induction hypothesis, M, s e p iff M, s & pt, and M, seqiff M, sk qt. Therefore,
M, sk <p?>qiff M,sep Aqiff M,sepand M, s eqiff M, skep’and M, sk q Viff M, s = (p A
QVif M, s & (<p?>q)t.

AMA=<ab>p: M, s £ <ab>p iff M, s k¥ <a>p. Note that #A(<ab>p) =
#FA(<a>p), |<a;b>p| = |<a>p|, and ld(<a>p) < ld(<a;b>p). There-
fore, M, s k <a>pilf M, sk (<a> p)lD by induction hypothesis.

.f=<a*>p: Since <a*>p is the least fixpoint of p V <a>Y, M, sk <a*>piff M, sk uY.[p V
(<a>Y)]. By induction hypothesis, M, s ¥ p iff M, s k pt and M, s ¥ <a>Y iff M, s &k
(<a>Y)". Therefore, M, s k <a*>p iff M, s £ uY.[p" V (<a>Y)"]

. f==Aa: Since Aa is the greatest fixpoint of <a>Y, M, sk Aa iff M, s k vY.<<a>Y. By induc-
tion hypothesis, M, s ¥ <a>Y Uf M, s k (<a>Y)t. Therefore, M, s ¥ Aa iff M, s &

VY (<a>Y)b o

References

[CES83] Clarke, E. M., Emerson, E. A., and Sistla, A. P., Automatic Verification of Finite State Concur-
rent System Using Temporal Logic, 10th Annual ACM Symp. on Principles of Programming Lan-
guages, 1983,

[deB80] DeBakker, J. W., Mathematical Theory of Program Correctness, Prentice-Hall, Englewood Cliffs,
NJ, 1980.

[deR81] deRoever, W. P., A Formalism for Reasoning about Fair Termination, Proceedings of the IBM
Workshop on Logics of Programs, Springer-Verlag, Lecture Notes in Computer Science #131,
1981.

[EC80] Emerson, E. A., and Clarke, E. M., Characterizing Correctness Properties of Parallel Programs as
Fixpoints. Proc. 7th Int. Colloquium on Automata, Languages, and Programming, Lecture Notes
in Computer Science #85, Springer-Verlag, 1981.

[EC82] Emerson, E. A., and Clarke, E. M., Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons, Tech. Report TR-208, Univ. of Texas, 1982.

[EH83] Emerson, E. A., and Halpern, J. Y., ’Sometimes’ and "Not Never’ Revisited: On Branching versus
Linear Time 10th Annual ACM Symp. on Principles of Programming Languages, January 1983.

[EL85] Emerson, E. A, and Lei, C. L., Modalities for Model Checking: Branching Time Strikes Back,
12th Annual ACM Symp. on Principles of Programming Languages, pp. 84-96, 1985.

[FL79] Fischer, M. J., and Ladner, R. E, Propositional Dynamic Logic of Regular Programs, JCSS vol.
18, pp. 194-211, 1979.

[Ha86] Harel, D., Effective Transformations on Inifinite Trees, with Applications to High Undecidability,
Dominoes, and Fairness, JACM, vol. 33, no. 1, pp. 224-248, Jan. 1986.

[Ko83] Kozen, D., Results on the Propositional Mu-Calculus, Theoretical Computer Science, pp. 333-354,

December 83.

18

[La80]

[La83]
ILP85]

[LPZ85]
[Nis4]

[Pn84]

[Pn85]
[Pr76]

[Pr81]
[St82]

[SEs4]

[Wos81]
[Va85]

[VW84]

Lamport, L., Sometimes is Sometimes "Not Never" - on the temporal logic of programs, 7th An-
nual ACM Symp. on Principles of Programming Languages, 1980, pp. 174-185.

Lamport, L., What Good is Temporal Logic?, Proceedings IFIP (1983), pp. 657-668.

Lichtenstein, O. and Pnueli, A., Checking that Finite State Concurrent Programs Satisfy their
Linear Specification, POPLS85, pp. 97-107, Jan. 85.

Lichtenstein, O., Pnueli, A., and Lenore, Z., The Glory of The Past, ICALP 1985, pp. 196-218.
Niwinski, D., The Propositional Mu-Calculus is More Expressive than the Propositional Dynamic
Logic of Looping, manuscript, 1984.

Pnueli, A., In transition from Global to Modular Temporal Reasoning about Programs, Advanced
NATO Institute on Logic and Models for Verification and Specification of Concurrent Systems,
La Colle-Sur-Loupe (Oct. 1984).

Pnueli, A., Linear and Branching Structures in the Semantics and Logics of Reactive Systems,
Proceedings of the 12th ICALP, pp. 15-32, 1985.

Pratt, V., Semantical Considerations on Floyd-Hoare Logic, 17th FOCS, pp. 109-121, 1976.

Pratt, V., A Decidable Mu-Calculus, 22nd FOCS, pp. 421-427, 1981.

Streett, R., Propositional Dynamic Logic of Looping and Converse, Information and Control 54,
121-141, 1982. (Full version: Propositional Dynamic Logic of Looping and Converse, PhD Thesis,
MIT Lab for Computer Science, 1981.)

Streett, R. S., and Emerson, E. A., The Propositional Mu-Calculus is Elementarily Decidable,
Proc. of the 11th Int’l Coll. on Automata, Languages, and Programming, Springer-Verlag LNCS
#172, pp. 465-472, Antwerpen, Belgium, July 1984.

Wolper, P., Temporal Logic Can Be More Expressive, Proc. of the 22nd Annual Symp. on Foun-
dation of Computer Science, pp. 340-348, 1981.

Vardi, M., Automatic Verification of Probabilistic Concurrent Finite State Programs, pp.
327-338, FOCSS8s.

Vardi, M. and Wolper, P., Automata Theoretic Techniques for Modal Logics of Programs, pp.
446-455, STOCS4.

Acknowledgement We would like to thank Amir Pnueli for helpful discussions which helped refine

our understanding of the significance of the Mu-calculus.

19

vY

I

|

v

J)
P/\A

X <A>
l
|
v
Z

In uXvY.(PV (uZ.(X V <A>Z) A Y)): In uXvY.(XV (uZ.PV <A>Z) A Y)):

X is active in both vY and pZ X is active in vY but not uZ

Y is active in both uX and uZ Y is active in pX but not p.

Z is active in both pX and vY Z is not active in either uX or Y

(a) (b)

Figure 2-1: Active Variables in Mu-Calculus

20

Algorithm 3-1: model checking for a u-calculus sentence

Input: given a structure M==(S, R, L), and a sentence p, which contains variables Y, Y, ...
Output: determine whether M is a model for p

Step 1. Convert p, to its equivalent PNF p’o.
Step 2. S” = eval p’O); /* Compute the set of states at which p’y holds */
Step 3. if 8’540 then M is a model for p, else M is not a model for p,

Recursive function eval(f); var S7, S*;
/* return the set of states which satisfy f */
begin
case f of the form
P (atomic prop.): S'=={s€S: P€L(s)};
Y; (o-variable): §'=5,;
-p: S'=S\eval(p);
pAq: S’==eval(p) N eval(q);
pVq: S’==eval(p) U eval(q);
<A>p: S*=eval(p); S'=={s€S: FteS"[(s,t)ER(A)]};
[A]p: S*==eval(p); S’={s€S: Vt€S|(s,t)ER(A) = tES"]};
uYi.pi:
begin
Si==®;
repeat 8’ = S; 8, = eval(p;) until S’=S
end;
VYi.pi:
begin
S, =35;
repeat S’ = Si; Si == eval(pi) until S’zSi;
end;

P

end;
return(S’);
end.

Figure 3-1: Model Checker for Mu-Calculus

\Y Vv
/ \ / \
/ \ / \
/ \ / \
<a> <a>
| | \ /
I | \ /
I | \ /
P P P
(a) Parse Tree (b) Parse Graph

Figure 4-1: Representation of <a>pV p

Algorithm 3-2: model checking for a p-calculus sentence

Input: given a structure M=(S, R, L), and a sentence Py which contains variables Yl’ YQ, Yn
Output: determine whether M is a model for Pg

Step 1. Convert Py to its equivalent PNF p’ o
Step 2. for i=1 to n do if Y, is a p-variable then S, =0 else S.=S;
/* set appropriate initial conditions for iteration */
for each subsentence q of p’y do already- eval(q)==false;
/* already-eval() is a global boolean array used to prevent redundant evaluation
of a subsentence. When a subsentence q of p is evaluated, its value is kept in the global
array value(). Whenever the value of q is needed agam we simply return value(q). */
Step 3. 8’ = eval(p’); /* Compute the set of states at which p’; holds */
Step 4. if 8’70 then M is a model for p, else M is not a model for P

Recursive function eval(f); var S’, S*;
/* return the set of states which satisfy { */
begin
if already-eval(f) then return(value(f));
case f of the form
P (atomic prop.): S’=={s€S: P€L(s)};
Y, (o-variable): 8’==S;
-p: §’=S\eval(p);
pAq: S'=eval(p) N eval(q);
pVq: S’=eval(p) U eval(q);
<A>p: St=eval(p); S'={s€S: IteS"(s,t)ER(A)]};
[A]p: S"==eval(p); S'={s€S: Vt€S[(s,t)ER(A) = t€S"]};
“Yi'pi("" Yi’)

begin
if the surrounding o-formula of ”Yi is vZ
then S, = 0,

for each open subformula ¢Y, of uY such that there is no
subformula ¥W of xY; containing ,uY set SJ #;

repeat S’ = Si; Si == eval(pi) until S’:Si;

end;
VYi'pi.("" Y,)
begin
if the surrounding o-formula of uYi is uZ
then S, = 5;

f01 each open subformula UYJ of vY, such that there is no
subformula ¢W of I/Yl containing I/YJ set S = 5;
repeat S’ = S;; 8, = eval(p;) until S’=5;;
end;

end;

if { is a sentence then begin already-eval(f) = true; value(f) = S’ end;

return(S’);

end.

Figure 3-2: Improved Model Checker for Mu-Calculus

ko
b

