PBES Exercises, March 25, 2015

Consider the LPE description of a lossy channel system, where actions r, s and l represent receiving, sending and losing, respectively, and the action τ represents some internal behaviour of the system.

$$
\begin{aligned}
P(b: B o o l, n: N a t) & =\sum_{m: N a t} \neg b \longrightarrow r(m) \cdot P(\text { true }, m) \\
& +b \longrightarrow s(n) \cdot P(\text { false }, n) \\
& +b \longrightarrow l \cdot P(\text { true }, n)
\end{aligned}
$$

Let ϕ be the first-order modal μ-calculus formula given below:

$$
\nu X . \mu Y .(([\neg l] X \wedge(\nu Z . \exists j: N a t .\langle r(j) \vee l\rangle Z)) \vee[\neg l] Y)
$$

1. Compute the PBES that is the result of the transformation $\mathbf{E}(\phi)$ applied to P.
2. Solve the resulting PBES using symbolic approximation. Show all steps in all your computations.
3. Solve the resulting PBES using instantiation. Hint: first eliminate redundant parameters of the given PBES, and use logic to rewrite the right-hand side of the PBES. Show all steps in all your computations.
