Algorithms for Model Checking (2IW55) Lecture 12 Retrospect + Outlook

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw MF 6.073

Department of Mathematics and Computer Science

Part I: basics

Lecture 1:	Syntax + Semantics of CTL^* $\rightarrow PVR$
Lecture 2:	Symbolic algorithm for CTL and fair CTL
Lecture 3:	Counterexamples and witnesses for fragments of CTL
Lecture 4:	Emerson-Lei algorithm improving over the naive algorithm $\ldots \rightarrow AR$

Retrospect

part II: complexity

- Lecture 5: Boolean equation systems
- Lecture 6: Parity Games
- Lecture 7: Recursive algorithm
- Lecture 8: Small Progress Measures

part III: data

Lecture 9-11: Parameterised	Boolean equation systems	\rightarrow SV
-----------------------------	--------------------------	------------------

- Symbolic encoding the model checking problem as a PBES
- · Redundant parameter detection and elimination
- Instantiating to a BES and solving the BES
- Symbolic approximation + Gauß Elimination

- ▶ Problem is in NP∩co-NP; what is its true complexity?
- Bigstep algorithm (=Recursive+SPM) for Parity Games has best worst-case performance when O(d) ≪ n, viz. roughly O(n^{d/3}), and the Subexponential algorithm has asymptotically best worst-case complexity, viz. roughly O(n^{√n}).

Department of Mathematics and Computer Science

- ▶ Problem is in NP∩co-NP; what is its true complexity?
- ▶ Bigstep algorithm (=Recursive+SPM) for Parity Games has best worst-case performance when $\mathcal{O}(d) \ll n$, viz. roughly $\mathcal{O}(n^{d/3})$, and the Subexponential algorithm has asymptotically best worst-case complexity, viz. roughly $\mathcal{O}(n^{\sqrt{n}})$.

Parity Games:

- Solve Parity Games/BESs using Integer Equation Systems;
- Investigate runtime complexity of parity game algorithms on special games;
- Lower bounds for algorithms?

- ▶ Problem is in NP∩co-NP; what is its true complexity?
- ▶ Bigstep algorithm (=Recursive+SPM) for Parity Games has best worst-case performance when $\mathcal{O}(d) \ll n$, viz. roughly $\mathcal{O}(n^{d/3})$, and the Subexponential algorithm has asymptotically best worst-case complexity, viz. roughly $\mathcal{O}(n^{\sqrt{n}})$.

Parity Games:

- Solve Parity Games/BESs using Integer Equation Systems;
- Investigate runtime complexity of parity game algorithms on special games;
- Lower bounds for algorithms?

PBES technology:

- Symmetry and confluence detection and reduction for reducing the complexity
- Abstract Interpretation and predicate abstraction

- ▶ Problem is in NP∩co-NP; what is its true complexity?
- ▶ Bigstep algorithm (=Recursive+SPM) for Parity Games has best worst-case performance when $\mathcal{O}(d) \ll n$, viz. roughly $\mathcal{O}(n^{d/3})$, and the Subexponential algorithm has asymptotically best worst-case complexity, viz. roughly $\mathcal{O}(n^{\sqrt{n}})$.

Parity Games:

- Solve Parity Games/BESs using Integer Equation Systems;
- Investigate runtime complexity of parity game algorithms on special games;
- Lower bounds for algorithms?

PBES technology:

- Symmetry and confluence detection and reduction for reducing the complexity
- Abstract Interpretation and predicate abstraction

Verification:

- Analyse DSL programs using dedicated transformations to parity games/PBES;
- Probabilistic and quantitative verification using Rational Equation Systems

Control software for the Large Hadron Collider

- Hierarchical system of >25 000 communicating FSMs
- Nearly fully semi-formally described
- BDD-based analysis of a subtree consisting of:
 - 7 FSMs: 5 10⁶ states, 24 10⁶ transitions; +/- 1 minute
 - 9 FSMs: 800 10⁶ states; +/- 10 minutes
 - 11 FSMs: 120 10⁹ states; +/- half a day
- Dedicated verification: SAT solving techniques
- Results:
 - Approx. 5% of all FSMs suffer from livelocks (20% of the FSMs that *can* be affected)
 - Approx. 4% of all FSMs suffer from reachability issues

6/7

Verification for Dezyne

- Dezyne: DSL and toolsuite for modelling and generating software
- Verification of Dezyne models using FDR and, more recently, mCRL2
- Dezyne used at:
 - ASML
 - Fei
 - NSpyre
 - ...

The DIRAC grid solution used at the Large Hadron Collider beauty experiment

- cooperating distributed services
- light-weight agents delivering the workload to the Grid resources
- agents run concurrently
- State spaces of 160 10⁶ states are no exception
- Results:
 - Livelocks
 - Race conditions
 - Dead jobs reviving (zombies)
 - ...

Internship/final projects (possibly at CERN?)/research for fun? Contact me!

