
Department of Mathematics and Computer Science

Algorithms for Model Checking (2IW55)
Lecture 1

The temporal logics CTL∗, CTL and LTL: syntax and semantics

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
MF 6.073

2/25

Department of Mathematics and Computer Science

Outline

Motivation

Kripke Structures

Temporal Logics
CTL∗

CTL and LTL

Exercise

3/25

Department of Mathematics and Computer Science

Motivation

Model checking is an automated verification method. It can be used to check that a
requirement holds for a model of a system.

I A (software or hardware) system is usually modelled in a particular specification
language

I The requirements are specified as properties in some temporal logic
I As an intermediate step, a state space is generated from the specification. This is a

graph, representing all possible behaviours
I A model checking algorithm decides whether the property holds for the model: the

property can be verified or refuted. Sometimes, witnesses or counter examples can be
provided

In practice, model checking proves to be an effective method to detect many bugs in early
design phases

4/25

Department of Mathematics and Computer Science

Motivation

Example
I What: control system for the Compact

Muon Sollenoid detector at the LHC
(CERN)

I Bugs: various kinds of livelocks

I What: Medical/health device
communication standard IEEE 11073

I Bugs: devices can interpret data in
different units of measurements

I What: Implantable Pulse Generators
(pacemaker)

I Bugs: deadlock

5/25

Department of Mathematics and Computer Science

Motivation

Complexity of model checking arises from:

I State space explosion: the state space is usually much larger than the specification
I Expressive logics have complex model checking algorithms

Ways to deal with the state space explosion:

I equivalence reduction: remove states with identical potentials from a state space
I on-the-fly: integrate the generation and verification phases, to prune the state space
I symbolic model checking: represent sets of states by clever data structures
I partial-order reduction: ignore some executions, because they are covered by others
I abstraction: remove details by working on approximations

6/25

Department of Mathematics and Computer Science

Outline

Motivation

Kripke Structures

Temporal Logics
CTL∗

CTL and LTL

Exercise

7/25

Department of Mathematics and Computer Science

Kripke Structures

The behaviour of a system is modelled by a graph consisting of:
I nodes, representing states of the system (e.g. the value of a program counter,

variables, registers, stack/heap contents, etc.)
I edges, representing state transitions of the system (e.g. events, input/output actions,

internal computations)

Information can be put in states or on transitions (or both).
I Kripke Structures (KS): information on states, called atomic propositions
I Labelled Transition Systems (LTS): information on edges, called action labels

Today: only Kripke Structures

8/25

Department of Mathematics and Computer Science

Kripke Structures

Let AP be a set of atomic propositions. A Kripke Structure over AP is a structure
M = 〈S , S0,R, L〉, where

I S is a finite set of states
I S0 ⊆ S is a non-empty set of initial states
I R ⊆ S × S is a total binary relation on S , representing the set of transitions.

totality: for all s ∈ S , there exists t ∈ S , such that (s, t) ∈ R.
I L:S → 2AP, labels each state with the set of atomic propositions that hold in that

state

Conventions:
I Sometimes S0 is irrelevant and dropped; sometimes it is a single state, in which case

it is written as s0
I Instead of (s, t) ∈ R, we write sRt

9/25

Department of Mathematics and Computer Science

Kripke Structures

s0

s2

s1 s3

{p, q}

{q}

{p}

This is a Kripke Structure over AP, M =
〈S ,S0,R, L〉 as follows:

I AP = {p, q}
I S = {s0, s1, s2, s3}
I S0 = {s0}
I R = {(s0, s1), (s1, s0), (s1, s3),

(s3, s3), (s0, s2), (s2, s1)}
I L(s0) = ∅, L(s1) = {p, q}

L(s2) = {q}, L(s3) = {p}

Note: without the self-loop (s3, s3), R
would not be total and we would not have
a Kripke structure

10/25

Department of Mathematics and Computer Science

Kripke Structures

s0

s2

s1 s3

{p, q}

{q}

{p}

Terminology
Given a fixed Kripke Structure M =
〈S ,R, L〉.

I A path π is an infinite sequence
of states s0 s1 ... such that for
all i ∈ N: si ∈ S and siRsi+1

I Given a path π = s0 s1 s2 ...
• π(i) denotes the i-th state
(counting from 0): si

• πi denotes the suffix of π
starting at i : si si+1 ...

I path(s) denotes the set of paths
starting at s: {π | π(0) = s}

In the Kripke Structure above:
(s0 s2 s1)ω ∈ path(s0), ((s0 s2 s1)ω)(3) = s0, ((s0 s2 s1)ω)3 = (s0 s2 s1)ω

10/25

Department of Mathematics and Computer Science

Kripke Structures

s0

s2

s1 s3

{p, q}

{q}

{p}

Terminology
Given a fixed Kripke Structure M =
〈S ,R, L〉.

I A path π is an infinite sequence
of states s0 s1 ... such that for
all i ∈ N: si ∈ S and siRsi+1

I Given a path π = s0 s1 s2 ...
• π(i) denotes the i-th state
(counting from 0): si

• πi denotes the suffix of π
starting at i : si si+1 ...

I path(s) denotes the set of paths
starting at s: {π | π(0) = s}

In the Kripke Structure above:
(s0 s2 s1)ω ∈ path(s0), ((s0 s2 s1)ω)(3) = s0, ((s0 s2 s1)ω)3 = (s0 s2 s1)ω

11/25

Department of Mathematics and Computer Science

Outline

Motivation

Kripke Structures

Temporal Logics
CTL∗

CTL and LTL

Exercise

12/25

Department of Mathematics and Computer Science

Temporal Logics: CTL∗

CTL∗ is the Full Computation Tree Logic

I CTL∗ formulae express properties over states or paths
I CTL∗ has the following temporal operators, which are used to express properties of

paths: neXt, Future, Globally, Until, Releases
The operators have the following intuitive meaning:

• X f : f holds in the next state in this path
• F f : f holds somewhere in this path
• G f : f holds everywhere on this path
• [f U g]: g holds somewhere on this path, and f holds in all preceding states
• [f R g]: g holds as long as f did not hold before

Example
F G p versus G F p: almost always versus infinitely often

13/25

Department of Mathematics and Computer Science

Temporal Logics: CTL∗

CTL∗ consists of:
I Atomic propositions (AP)
I Boolean connectives: ¬ (not), ∨ (or), ∧ (and)
I Temporal operators (on paths, see previous slide)
I Path quantifiers (on states, see below)

Path quantifiers are capable of expressing properties on a system’s branching structure:

for All paths versus there Exists a path

Path quantifiers have the following intuitive meaning:
I A f : f holds for all paths from this state
I E f : f holds for at least one path from this state

14/25

Department of Mathematics and Computer Science

Temporal Logics: CTL∗

CTL∗ state formulae (S) and path formulae (P) are defined simultaneously by induction:

S ::= true | false | AP | ¬S | S ∧ S | S ∨ S | E P | A P
P ::= S | ¬P | P ∧ P | P ∨ P | X P | F P | G P | [P U P] | [P R P]

Summarising:
I State formulae (S) are:

• constants true and false and atomic propositions (basis)
• Boolean combinations of state formulae
• quantified path formulae

I Path formulae (P) are:
• state formulae (basis)
• Boolean combinations of path formulae
• temporal combinations of path formulae

15/25

Department of Mathematics and Computer Science

Temporal Logics: CTL∗

The semantics of CTL∗ state formulae and path formulae is defined relative to a fixed
Kripke Structure M = 〈S ,S0,R, L〉 over AP:

For state formulae:

s |= true
s 6|= false
s |= p iff p ∈ L(s)
s |= ¬f iff s 6|= f
s |= f ∧ g iff s |= f and s |= g
s |= f ∨ g iff s |= f or s |= g
s |= E f iff for some π ∈ path(s),π |= f
s |= A f iff for all π ∈ path(s),π |= f

16/25

Department of Mathematics and Computer Science

Temporal Logics: CTL∗

The semantics of CTL∗ state formulae and path formulae is defined relative to a fixed
Kripke Structure M = 〈S ,S0,R, L〉 over AP:

For path formulae:

π |= f iff π(0) |= f (if f is a state formula)
π |= ¬f iff π 6|= f
π |= f ∧ g iff π |= f and π |= g
π |= f ∨ g iff π |= f or π |= g
π |= X f iff π1 |= f
π |= F f iff for some i ≥ 0,πi |= f
π |= G f iff for all i ≥ 0,πi |= f
π |= [f U g] iff ∃i ≥ 0. πi |= g ∧ ∀j < i . πj |= f
π |= [f R g] iff ∀j ≥ 0. ((∀i < j . πi 6|= f)⇒ πj |= g)

17/25

Department of Mathematics and Computer Science

Temporal Logics: CTL∗

A property f is satisfied by a Kripke Structure M = 〈S , S0,R, L〉, denoted M |= f , iff
∀s ∈ S0. M, s |= f .

Equivalence between two CTL∗ properties is defined as follows:

f ≡ g iff ∀M ∀s .(M, s |= f ⇔ M, s |= g)

According to the semantics, we can derive several dualities:

I ¬G f ≡ F (¬f)
I ¬¬f ≡ f
I ¬(f ∧ g) ≡ ¬f ∨ ¬g
I ¬A f ≡ E (¬f)

I ¬[f R g] ≡ [(¬f) U (¬g)]
I ¬X f ≡ X (¬f)
I F f ≡ [true U f]

So all CTL∗ properties can be expressed using only: ¬, true,∨,X , [U],E

18/25

Department of Mathematics and Computer Science

Temporal Logics: CTL and LTL

Two simpler sublogics of CTL∗ are defined:
I LTL: linear time logic

• checks temporal operators along single paths
• pro: -counter examples are easy: “lasso”

-nice automata-theoretic algorithm
• typical tool: SPIN

I CTL: computation tree logic
• branching time logic
• temporal operators should be preceded by path quantifiers
• pro: -efficient model checking algorithm

-amenable to symbolic techniques
• typical tool: nuSMV

The expressive power of LTL and CTL is incomparable.

19/25

Department of Mathematics and Computer Science

Temporal Logics: CTL and LTL

LTL state formulae (S) and path formulae (P):

S ::= A P
P ::= true | false | AP | ¬P | P ∧ P | P ∨ P

| X P | F P | G P | [P U P] | [P R P]

Summarising:
I The only state formulae are:

• all-quantified path formulae (hence, the A is sometimes omitted)
I Path formulae are:

• constants true and false and atomic propositions
• Boolean combinations of path formulae
• temporal combinations of path formulae

Example
LTL expressions: A F G p, A (¬(G F p) ∨ F q);
syntactically not in LTL: A F A G p, A G E F p

Question: A F G p
?≡ A F A G p

20/25

Department of Mathematics and Computer Science

Temporal Logics: CTL and LTL

CTL state formulae (S) and path formulae (P):

S ::= true | false | AP | ¬S | S ∨ S | E P | A P
P ::= X S | F S | G S | [S U S] | [S R S]

Summarising:
I State formulae are:

• constants true and false and atomic propositions
• Boolean combinations of state formulae
• quantified path formulae

I The only path formulae are:
• temporal combinations of state formulae

Example
CTL expressions: A G E F p, E [p U (E X q)];
not in CTL: A F G p, A X X p, E [p U (X q)]

Question: A X X p
?≡ A X A X p

21/25

Department of Mathematics and Computer Science

Temporal Logics: CTL and LTL

Alternative view: CTL has only state formulae, with the following ten temporal
combinators:

I A X and E X : for all/some next state
I A F and E F : inevitably and potentially
I A G and E G : invariantly and potentially always
I A [U] and E [U]: for all/some paths, until
I A [R] and E [R]: for all/some paths, releases

E F black E G black A F black A G black

22/25

Department of Mathematics and Computer Science

Temporal Logics: CTL and LTL

For CTL, only the following operators are needed:
I Boolean connectives: ¬, ∨ and constants true and AP
I Temporal combinations: E X , E G , E [U]

Standard transformations (derived from CTL∗):

1. E F f ≡ E [true U f]

2. A X f ≡ ¬E X (¬f)
3. A G f ≡ ¬E F (¬f)

4. A F f ≡ ¬E G (¬f)
5. A [f R g] ≡ ¬E [(¬f) U (¬g)]
6. E [f R g] ≡ ¬A [(¬f) U (¬g)]

To remove A [U], note that:
I [f R g] ≡ [g U (f ∧ g)] ∨ G g
I A [f U g] ≡ ¬E [(¬f) R (¬g)] (rule 6)
I E (f ∨ g) ≡ E f ∨ E g

from this, we obtain A [f U g] ≡ ¬E [(¬g) U (¬(f ∨ g))] ∧ ¬E G (¬g)

23/25

Department of Mathematics and Computer Science

Temporal Logics: CTL and LTL

Example (CTL versus LTL)
Is there an equivalent CTL formula for the LTL formula A F (p ∧ X p)?

M1

p

p

pp

M2

p

p

p

I A F (p ∧ X p) 6≡ A F (p ∧ A X p): M1 |= A F (p ∧ X p) but M1 6|= A F (p ∧ A X p)
I A F (p ∧ X p) 6≡ A F (p ∧ E X p): M2 6|= A F (p ∧ X p) but M2 |= A F (p ∧ E X p)

I Actually: A F (p ∧ X p) is not expressible in CTL (does not follow from these
observations)

I Open problem: which LTL formulae admit equivalent CTL formulae.
I The reverse problem (which CTL formulae are equivalent to an LTL formula) is

solved [Clarke and Draghicescu]

24/25

Department of Mathematics and Computer Science

Outline

Motivation

Kripke Structures

Temporal Logics
CTL∗

CTL and LTL

Exercise

25/25

Department of Mathematics and Computer Science

Exercise

s0

s1

s2

s3

{p, q}

{q}

{p}

CTL∗ formulae: p, E [q R p], E F G p, A G F p,
A G E F p, A G F (p ∧ X q), A G (¬q ∨ F p),
A ((G p) ∨ (F q))

I For each formula, indicate whether it is (syntactically) in LTL and/or CTL
I Determine for each formula in which states of the above Kripke Structure it holds

	Motivation
	Kripke Structures
	Temporal Logics
	CTL*
	CTL and LTL

	Exercise

