Algorithms for Model Checking (2IW55)

Lecture 2
Symbolic Model Checking for CTL
(“Model Checking”, Chapter 2, 6.1, 6.2. Also read Chapter 5.)

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fixed Points

Technische Universiteit
I U Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fixed Points

Model checking complexity:

> In general, there are infinitely many states and transitions.

> Many of the states behave very similarly (e.g. the start value of some variables may
not matter)

» We're interested in an algorithm that can benefit from this.

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fixed Points

Consider a Kripke Structure M = (S, R, L)

In what follows, we (temporarily) ignore the difference between syntax and semantics

» |dentify sets of states and predicates on states
» So, two notations are often mixed:
e subsets: X C S or X € P(S), versus

* predicates: X € 25 or X : S — {0,1}
seXeX(s)=1lands¢ X< X(s)=0

> In general: we identify CTL formulae with the set of states where they hold: f versus
{s|skEf}

» We freely mix V, A and U, N: compare UE G f and false VE G f

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fixed Points

5/26

Predicate Transformers and Monotonicity

Consider a Kripke Structure M = (S, R, L)

» The set (P(S), C) is a complete lattice.

» A predicate transformer is a function on predicates. For example, the relations Pre
and Post that lift the transition relation R to sets of states:

Prer(X) ={se€S|3teX.sRt}
Postr(X) ={t€S|3se X.s Rt}

v

Let 7 : P(S) — P(S) be an arbitrary predicate transformer.
> 7 is monotonic iff P C Q implies 7(P) C 7(Q).
We write 7/(X) for applying 7 i times to X:

{ °(X) =X

v

FX) = (e (X))

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Fixed Points

Let 7: P(S) — P(S).

> A fixed point of 7 is a set Z such that 7(Z) = Z

» The least fixed point of 7, denoted uX.7(X) is a set Z such that:
e Z=1(Z) (i.e. Zis a fixed point)
e for all X, if 7(X) =X, then ZC X

> The greatest fixed point of 7, denoted vX.7(X) is a set Z such that:
e Z=1(Z) (i.e. Zis a fixed point)
e for all X, if 7(X) =X, then X C Z
A theorem by Tarski: a monotonic operator on P(S) always has least and greatest fixed
points:
> pZ.7(Z) =X | 7(X) € X}
» vZ7(Z2)=U{X | X Cr(X)}

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fixed Points

7/26

Assume now that:
> S (hence also P(S)) is finite, and
» 7:P(5) = P(S) is monotonic

Then:
LVir (@) Cr M 0) oo (induction on i and monotonicity)
2. There exists an i such that 7/(9) = 7"*(0) (sets become bigger and S is finite)
3. If 77(0) = 771((), then 77(0) is a fixed point of 7 (by definition)
4. If X is a fixed point of 7, then Vi.7/(B) C X (induction on i and monotonicity)

So an approximant 7' can be found such that 7/(#) = 777*(0), and this set is the least
fixed point of 7.

Similarly, the smallest i such that 7/(S) = 7/t1(S) yields the greatest fixed point.

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Fixed Points

8/26

Algorithms for computing the least fixed point and the greatest fixed point based on the

observations on the previous slide.

function Ifp(7:P(S)—=P(S)) : P(S)
Q =0
Q :=7(Q)
while Q # Q' do
Q:=Q,
Q =7(Q);
end while
return Q;
end function

function gfp(7:P(S)—=P(S)) : P(S)
Q=S5
Q :=71(Q)
while Q # Q' do
Q:=Q,
Q :=7(Q);
end while
return Q;
end function

Department of Mathematics and Computer Science

T U Technische Universiteit
Ei
University of Technology

Fixed Point Algorithm for CTL

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fixed Point Algorithm for CTL

Recall that CTL has the following ten temporal operators:

» A X and E X : for all/some next state

» AF and E F : inevitably and potentially

» A G and E G : invariantly and potentially always
A[U]and E[U]: for all/some paths, until
A[R]and E[R]: for all/some paths, releases

v

v

Besides atomic propositions (AP), the constant true and the Boolean connectives (—, V),
the following temporal operators are sufficient: EX ,E G ,E[U].

Hence: only algorithms for computing formulae of the above form are needed.

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Fixed Point Algorithm for CTL

CTL operators can be seen as fixed point operators. Fix a Kripke Structure M = (S, R, L).
Identify a CTL formula f with predicate {s | s = f}.
» AXf=-EX~fand EX f = Preg(f)
» AFf=pZfUAXZandEFf=pZfUEXZ
» AGFf=vZfNAXZandEGFf=vZfNEXZ
»E[fUgl=pZgU(fNEXZ)
Intuition:

» least and greatest fixed points deal differently with loops:

¢ Greatest fixed point: recursion includes loops, so possibly infinitely many “steps”
¢ Least fixed point: finite recursion through loops, so only finitely many “steps”

» Eventualities least fixed points
(a witness of the eventuality is needed in finitely many steps)
> Globally ... greatest fixed points

(an infinite path without error is OK)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fixed Point Algorithm for CTL

Proof obligations for E G :

1.

The transformer Z — f A E X Z is monotonic, so its fixed point can be computed by
iteration, see Ifp and gfp
(|fZ1§Zzthen fFAEX Z4 gf/\EX22).

E G fis a fixed point of Z+— f AEX Z
(EGFf=fAEXEGH)

E G f is the largest such fixed point
(forall Z: if Z=FfANEX Z, then ZCEG)

For 1,2,3: prove X C Y byVsse X =se€Y.
For 2: prove C and D.

For 2,3: use the semantics of CTL-formulae

Proof obligations for E [U] are similar (see for yourself)

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Fixed Point Algorithm for CTL

CTL model checking with Fixed Points

Function check(f) takes a formula f and returns the set of states where f holds:
{s | s E f} (given a fixed Kripke Structure M = (S, R, L)).

check(true) S

check(p) {s|peL(s)}

check(—f) S\ check(f)

check(f V g) check(f)U check(g)

check(E X f) Prer(check(f))

check(E [f U g]) Ifp(Z > check(g) U (check(f) N Prer(Z))))
check(E G f) gfp(Z — check(f) N Prer(Z2))

Recall: Preg(Z)={se S|3te Zs R t}

Technische Uni
U Eindh
Department of Mathematics and Computer Science I Unive chno

Fixed Point Algorithm for CTL

» To check: E [p U q]
» Compute: uZ.qV (p ANE X Z) (with Ifp)

p

Jo]

'U@ 9\

Zo =false=0

71 :q\/(p/\EXZo)Z{Ss}

Z> :qV(p/\EXZ1):{55,Sﬁ}

Z3s =qV(pANEX Z2)={ss s6 5}

Zy =qV(pANEX Z3) = {s2, 55,56, 57}

Zs =qV(pANEX Z)={s1,s52, 53,55, 5,57}
Zs =qV(pANEX Zs)={s1,52, 53,55, 5,57}

o

P P

p

&)

)
q

Zs = Zs, so this is the least fixed point.

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

Example (GCD)

Consider the following program:

repeat
ifx>y—>x=x—-y;
Ix<y->yw=y-x
fi

until false

This program uses:
» variables: {x,y}, with an (implicit) domain of variables: N
> States of this program are functions of type: {x,y} - N
> An example state could be: {x +— 5,y — 15}

» An execution is a sequence of transitions: e.g.

{x—=5,y—15} 5 {x—5y—10} > {x—5y—5} = {x—5y—5}— ..

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

Example (SWAP)

Consider the following program fragment:

Z:=X; % 11
x =y, % 12
y=z; %I3

» Besides variables x, y, z : N, this program has a program counter, whose values are
labels (line numbers)
> Let pc: {h, b, s}. Now, a state is a function that gives a value to {x, y, z, pc}

» A possible execution is the following sequence:

{x—5,y+— 15,z 500, pc+— L}
— {x—5,y—152z—5pc— bk}
— {x—15y— 15z~ 5 pc— s}
— {x— 15,y —5z—5 pcr 4}

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

Idea: the set of states can be represented very concisely by a number of formulae
» for GCD:

e initial set of states: x < 100 A y < 100
* next state predicate:

(x>yAX =x—yAy =y)V(x<yAy =y —xAx =x)
» for SWAP:

* initial states: x =5Ay =15
* next state predicate:

(pc=hApcd =hAZ =xA..)V..

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

The system specification is represented by propositional logic formula

» Let V be a set of variables vo, v1, ..., v

Let D be the domain of these variables

v

v

The states of the Kripke Structure will be functions v : V — D

v

A formula So(V') represents the initial states

v

Let V' be a copy of the variables in V: v, vi, ..., v},
A formula R(V/, V') represents the transition relation.

¢ V denotes the value of the variables before the transition
e V'’ denotes the value of the variables after the transition.

v

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

Example

> V = {TLy, TLo},

» D ={r(ed), y(ellow), g(reen)}

> So(TLy, TLo):= TLi=rATly=r

» R(TLy, TLa, TLy, TL5) := RiV R2V R3V RsV Rs V Rs, where:

* Ri:= TLi=rATL, =gATL,=TL,
* Ry:= TLi=gATLy=yATL,=Tl>
° R3:= TL1:y/\TL/1:r/\TL'2:TL2
* Ry:= Tlo=rATL,=gATLy =Tl
° Ry := TL2=g/\TL/2=y/\TL1=TL1
* Re := TL2:y/\TL'2:r/\TL'1:TL1

Notes:

» this corresponds to a Kripke Structure modelling an unsafe traffic light system at a
junction

> a specification for n traffic lights gives O(3") states = State space explosion

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

We wish to avoid representing the state space and its subsets explicitly. To efficiently
implement symbolic model checking, we need:

> A concise representation of sets of states
» Quick operations for:

¢ Boolean operators A, V, =
* Existential quantification (for the relational composition)
¢ Equivalence test

Solution: Ordered Binary Decision Diagrams (OBDD)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Implementing Symbolic Model Checking

Symbolic model checking is restricted to finite Kripke Structures

All finite data can be encoded in “bits”

v

v

Boolean functions can be represented concisely as (Ordered) Binary Decision
Diagrams

v

Binary Decision Diagrams are directed acyclic graphs, with the following ingredients:

[0] A B

True False if p then A else B

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

BDD representation of (p1 A p2) V (—q1 A g2):

@ > In ordered BDDs, tests along a path occur in a
fixed order (e.g. p1 < p2 < q1 < G2).

@ N » Theorem[Bryant'86]: OBDDs are a unique
~ N representation for Boolean Functions.

~ » Claim: many practical formulae have a concise
OBDD representation due to maximal sharing

4 » Disclaimer 1: some small formulae have only
@ exponentially large BDDs. (multiplier)

N » Disclaimer 2: the size of an OBDD can crucially
m depend on the ordering of the variables

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

More on OBDDs:

» OBDDs are implemented as maximally shared pointer structures in memory.
> The order of variables is fixed (some implementations feature dynamic reordering)

» Equivalence test can be performed in constant time, in particular, also checking for
satisfiability and tautology.

» Boolean operations can be performed efficiently. Let B; and B> be OBDDs with m
and n nodes, respectively, then:

¢ OBDDs for By A Ba and By V Bz can be computed in O(m - n) time.
e OBDDs for =Bj can be computed in O(m) time.
e the OBDD of 3x.B; can be computed in O(m?) time.

Note: still a formula of size O(n) may have a BDD of size O(2").

v

Attend Automated Reasoning (2IW15) for more information on OBDDs (Semester A.2).

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Symbolic Model Checking

> The implementation of a symbolic model checking relies on a representation of all
sets in check, Ifp and gfp by OBDDs.

» Hence, in summary, symbolic model checking:

e Recursively processes subformulae

* Represent the set of states satisfying a subformula by OBDDs

e Treats temporal operators by fixed point computations

¢ Relies on efficient implementation of equivalence test, and A, V, = and 3 connectives on
OBDDs.

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Consider the following Kripke Structure:

(s2) {a}
{p} ’
(s)——(=)

{p}

(ss) {p}

Consider the following formulae, where p and g are atomic propositions:

(A) A(F(q))
(B) AlgRp]

Determine the set of states where (A) and (B) hold using the symbolic model checking
algorithm for CTL . You may use explicit set notation to represents states.

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

	Fixed Points
	Fixed Point Algorithm for CTL
	Symbolic Model Checking

