
Department of Mathematics and Computer Science

Algorithms for Model Checking (2IW55)
Lecture 2

Symbolic Model Checking for CTL
(“Model Checking”, Chapter 2, 6.1, 6.2. Also read Chapter 5.)

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
MF 6.073



2/26

Department of Mathematics and Computer Science

Outline

Fixed Points

Fixed Point Algorithm for CTL

Symbolic Model Checking



3/26

Department of Mathematics and Computer Science

Fixed Points

Model checking complexity:

I In general, there are infinitely many states and transitions.
I Many of the states behave very similarly (e.g. the start value of some variables may

not matter)
I We’re interested in an algorithm that can benefit from this.



4/26

Department of Mathematics and Computer Science

Fixed Points

Consider a Kripke Structure M = 〈S ,R, L〉

In what follows, we (temporarily) ignore the difference between syntax and semantics

I Identify sets of states and predicates on states
I So, two notations are often mixed:

• subsets: X ⊆ S or X ∈ P(S), versus
• predicates: X ∈ 2S or X : S → {0, 1}

s ∈ X ⇔ X (s) = 1 and s /∈ X ⇔ X (s) = 0

I In general: we identify CTL formulae with the set of states where they hold: f versus
{s | s |= f }

I We freely mix ∨,∧ and ∪,∩: compare ∅ ∪ E G f and false ∨ E G f



5/26

Department of Mathematics and Computer Science

Fixed Points

Predicate Transformers and Monotonicity

Consider a Kripke Structure M = 〈S ,R, L〉
I The set (P(S),⊆) is a complete lattice.
I A predicate transformer is a function on predicates. For example, the relations Pre

and Post that lift the transition relation R to sets of states:

PreR(X ) = {s ∈ S | ∃t ∈ X . s R t}
PostR(X ) = {t ∈ S | ∃s ∈ X . s R t}

I Let τ : P(S)→ P(S) be an arbitrary predicate transformer.
I τ is monotonic iff P ⊆ Q implies τ(P) ⊆ τ(Q).
I We write τ i (X ) for applying τ i times to X :{

τ0(X ) = X
τ i+1(X ) = τ(τ i (X ))



6/26

Department of Mathematics and Computer Science

Fixed Points

Let τ : P(S)→ P(S).
I A fixed point of τ is a set Z such that τ(Z) = Z
I The least fixed point of τ , denoted µX .τ(X ) is a set Z such that:

• Z = τ(Z) (i.e. Z is a fixed point)
• for all X , if τ(X ) = X , then Z ⊆ X

I The greatest fixed point of τ , denoted νX .τ(X ) is a set Z such that:
• Z = τ(Z) (i.e. Z is a fixed point)
• for all X , if τ(X ) = X , then X ⊆ Z

A theorem by Tarski: a monotonic operator on P(S) always has least and greatest fixed
points:

I µZ .τ(Z) =
⋂
{X | τ(X ) ⊆ X}

I νZ .τ(Z) =
⋃
{X | X ⊆ τ(X )}



7/26

Department of Mathematics and Computer Science

Fixed Points

Assume now that:
I S (hence also P(S)) is finite, and
I τ : P(S)→ P(S) is monotonic

Then:

1. ∀i .τ i (∅) ⊆ τ i+1(∅) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (induction on i and monotonicity)

2. There exists an i such that τ i (∅) = τ i+1(∅) . . . . . (sets become bigger and S is finite)

3. If τ i (∅) = τ i+1(∅), then τ i (∅) is a fixed point of τ . . . . . . . . . . . . . . . . . . . (by definition)

4. If X is a fixed point of τ , then ∀i .τ i (∅) ⊆ X . . . . . . (induction on i and monotonicity)

So an approximant τ i can be found such that τ i (∅) = τ i+1(∅), and this set is the least
fixed point of τ .

Similarly, the smallest i such that τ i (S) = τ i+1(S) yields the greatest fixed point.



8/26

Department of Mathematics and Computer Science

Fixed Points

Algorithms for computing the least fixed point and the greatest fixed point based on the
observations on the previous slide.

function lfp(τ :P(S)→P(S)) : P(S)
Q := ∅;
Q ′ := τ(Q);
while Q 6= Q ′ do

Q := Q ′;
Q ′ := τ(Q ′);

end while
return Q;

end function

function gfp(τ :P(S)→P(S)) : P(S)
Q := S ;
Q ′ := τ(Q);
while Q 6= Q ′ do

Q := Q ′;
Q ′ := τ(Q ′);

end while
return Q;

end function



9/26

Department of Mathematics and Computer Science

Outline

Fixed Points

Fixed Point Algorithm for CTL

Symbolic Model Checking



10/26

Department of Mathematics and Computer Science

Fixed Point Algorithm for CTL

Recall that CTL has the following ten temporal operators:

I A X and E X : for all/some next state
I A F and E F : inevitably and potentially
I A G and E G : invariantly and potentially always
I A [ U ] and E [ U ]: for all/some paths, until
I A [ R ] and E [ R ]: for all/some paths, releases

Besides atomic propositions (AP), the constant true and the Boolean connectives (¬,∨),
the following temporal operators are sufficient: E X ,E G ,E [ U ].

Hence: only algorithms for computing formulae of the above form are needed.



11/26

Department of Mathematics and Computer Science

Fixed Point Algorithm for CTL

CTL operators can be seen as fixed point operators. Fix a Kripke Structure M = 〈S ,R, L〉.
Identify a CTL formula f with predicate {s | s |= f }.

I A X f = ¬E X ¬f and E X f = PreR(f )
I A F f = µZ .f ∪ A X Z and E F f = µZ .f ∪ E X Z
I A G f = νZ .f ∩ A X Z and E G f = νZ .f ∩ E X Z
I E [f U g ] = µZ .g ∪ (f ∩ E X Z)

Intuition:
I least and greatest fixed points deal differently with loops:

• Greatest fixed point: recursion includes loops, so possibly infinitely many “steps”
• Least fixed point: finite recursion through loops, so only finitely many “steps”

I Eventualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . least fixed points
(a witness of the eventuality is needed in finitely many steps)

I Globally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . greatest fixed points
(an infinite path without error is OK)



12/26

Department of Mathematics and Computer Science

Fixed Point Algorithm for CTL

Proof obligations for E G :

1. The transformer Z 7→ f ∧ E X Z is monotonic, so its fixed point can be computed by
iteration, see lfp and gfp
(If Z1 ⊆ Z2 then f ∧ E X Z1 ⊆ f ∧ E X Z2).

2. E G f is a fixed point of Z 7→ f ∧ E X Z
(E G f = f ∧ E X E G f )

3. E G f is the largest such fixed point
(for all Z : if Z = f ∧ E X Z , then Z ⊆ E G f )

I For 1,2,3: prove X ⊆ Y by ∀s.s ∈ X ⇒ s ∈ Y .
I For 2: prove ⊆ and ⊇.
I For 2,3: use the semantics of CTL-formulae

Proof obligations for E [ U ] are similar (see for yourself)



13/26

Department of Mathematics and Computer Science

Fixed Point Algorithm for CTL

CTL model checking with Fixed Points

Function check(f ) takes a formula f and returns the set of states where f holds:
{s | s |= f } (given a fixed Kripke Structure M = 〈S ,R, L〉).

check(true) S
check(p) {s | p ∈ L(s)}
check(¬f ) S \ check(f )
check(f ∨ g) check(f )∪ check(g)
check(E X f ) PreR(check(f ))
check(E [f U g ]) lfp

(
Z 7→ check(g) ∪ (check(f ) ∩ PreR(Z)))

)
check(E G f ) gfp

(
Z 7→ check(f ) ∩ PreR(Z)

)
Recall: PreR(Z) = {s ∈ S | ∃t ∈ Z .s R t}



14/26

Department of Mathematics and Computer Science

Fixed Point Algorithm for CTL

Example

s1 s2 s3 s4

s5 s6 s7 s8

p p p r

q p p p

I To check: E [p U q]
I Compute: µZ .q ∨ (p ∧ E X Z) (with lfp)

Z0 = false = ∅
Z1 = q ∨ (p ∧ E X Z0) = {s5}
Z2 = q ∨ (p ∧ E X Z1) = {s5, s6}
Z3 = q ∨ (p ∧ E X Z2) = {s5, s6, s7}
Z4 = q ∨ (p ∧ E X Z3) = {s2, s5, s6, s7}
Z5 = q ∨ (p ∧ E X Z4) = {s1, s2, s3, s5, s6, s7}
Z6 = q ∨ (p ∧ E X Z5) = {s1, s2, s3, s5, s6, s7}

Z5 = Z6, so this is the least fixed point.



15/26

Department of Mathematics and Computer Science

Outline

Fixed Points

Fixed Point Algorithm for CTL

Symbolic Model Checking



16/26

Department of Mathematics and Computer Science

Symbolic Model Checking

Example (GCD)
Consider the following program:

repeat
if x > y− > x := x − y ;
[]x < y− > y := y − x ;
fi

until false

This program uses:
I variables: {x , y}, with an (implicit) domain of variables: N
I States of this program are functions of type: {x , y} → N
I An example state could be: {x 7→ 5, y 7→ 15}
I An execution is a sequence of transitions: e.g.

{x 7→ 5, y 7→ 15} → {x 7→ 5, y 7→ 10} → {x 7→ 5, y 7→ 5} → {x 7→ 5, y 7→ 5} → ...



17/26

Department of Mathematics and Computer Science

Symbolic Model Checking

Example (SWAP)
Consider the following program fragment:

z := x ; % l1
x := y ; % l2
y := z ; % l3

I Besides variables x , y , z : N, this program has a program counter, whose values are
labels (line numbers)

I Let pc : {l1, l2, l3}. Now, a state is a function that gives a value to {x , y , z , pc}
I A possible execution is the following sequence:

{x 7→ 5, y 7→ 15, z 7→ 500, pc 7→ l1}
→ {x 7→ 5, y 7→ 15, z 7→ 5, pc 7→ l2}
→ {x 7→ 15, y 7→ 15, z 7→ 5, pc 7→ l3}
→ {x 7→ 15, y 7→ 5, z 7→ 5, pc 7→ l4}



18/26

Department of Mathematics and Computer Science

Symbolic Model Checking

Idea: the set of states can be represented very concisely by a number of formulae
I for GCD:

• initial set of states: x < 100 ∧ y < 100
• next state predicate:

(x > y ∧ x ′ = x − y ∧ y ′ = y) ∨ (x < y ∧ y ′ = y − x ∧ x ′ = x)

I for SWAP:
• initial states: x = 5 ∧ y = 15
• next state predicate:

(pc = l1 ∧ pc′ = l2 ∧ z ′ = x ∧ ...) ∨ ...



19/26

Department of Mathematics and Computer Science

Symbolic Model Checking

The system specification is represented by propositional logic formula

I Let V be a set of variables v0, v1, ... , vn

I Let D be the domain of these variables
I The states of the Kripke Structure will be functions v : V → D
I A formula S0(V ) represents the initial states
I Let V ′ be a copy of the variables in V : v ′

0, v ′
1, ... , v ′

n
I A formula R(V ,V ′) represents the transition relation.

• V denotes the value of the variables before the transition
• V ′ denotes the value of the variables after the transition.



20/26

Department of Mathematics and Computer Science

Symbolic Model Checking

Example

I V = {TL1,TL2},
I D = {r(ed), y(ellow), g(reen)}
I S0(TL1,TL2) := TL1 = r ∧ TL2 = r
I R(TL1,TL2,TL′

1,TL′
2) := R1 ∨ R2 ∨ R3 ∨ R4 ∨ R5 ∨ R6, where:

• R1 := TL1 = r ∧ TL′
1 = g ∧ TL′

2 = TL2
• R2 := TL1 = g ∧ TL′

1 = y ∧ TL′
2 = TL2

• R3 := TL1 = y ∧ TL′
1 = r ∧ TL′

2 = TL2
• R4 := TL2 = r ∧ TL′

2 = g ∧ TL′
1 = TL1

• R5 := TL2 = g ∧ TL′
2 = y ∧ TL′

1 = TL1
• R6 := TL2 = y ∧ TL′

2 = r ∧ TL′
1 = TL1

Notes:
I this corresponds to a Kripke Structure modelling an unsafe traffic light system at a

junction
I a specification for n traffic lights gives O(3n) states ⇒ State space explosion



21/26

Department of Mathematics and Computer Science

Symbolic Model Checking

We wish to avoid representing the state space and its subsets explicitly. To efficiently
implement symbolic model checking, we need:

I A concise representation of sets of states
I Quick operations for:

• Boolean operators ∧,∨,¬
• Existential quantification (for the relational composition)
• Equivalence test

Solution: Ordered Binary Decision Diagrams (OBDD)



22/26

Department of Mathematics and Computer Science

Implementing Symbolic Model Checking

I Symbolic model checking is restricted to finite Kripke Structures
I All finite data can be encoded in “bits”
I Boolean functions can be represented concisely as (Ordered) Binary Decision

Diagrams
I Binary Decision Diagrams are directed acyclic graphs, with the following ingredients:

1 0

p

A B

True False if p then A else B



23/26

Department of Mathematics and Computer Science

Symbolic Model Checking

BDD representation of (p1 ∧ p2) ∨ (¬q1 ∧ q2):

p1

p2

q1

q2

1 0

I In ordered BDDs, tests along a path occur in a
fixed order (e.g. p1 < p2 < q1 < q2).

I Theorem[Bryant’86]: OBDDs are a unique
representation for Boolean Functions.

I Claim: many practical formulae have a concise
OBDD representation due to maximal sharing

I Disclaimer 1: some small formulae have only
exponentially large BDDs. (multiplier)

I Disclaimer 2: the size of an OBDD can crucially
depend on the ordering of the variables



24/26

Department of Mathematics and Computer Science

Symbolic Model Checking

More on OBDDs:

I OBDDs are implemented as maximally shared pointer structures in memory.
I The order of variables is fixed (some implementations feature dynamic reordering)
I Equivalence test can be performed in constant time, in particular, also checking for

satisfiability and tautology.
I Boolean operations can be performed efficiently. Let B1 and B2 be OBDDs with m

and n nodes, respectively, then:
• OBDDs for B1 ∧ B2 and B1 ∨ B2 can be computed in O(m · n) time.
• OBDDs for ¬B1 can be computed in O(m) time.
• the OBDD of ∃x .B1 can be computed in O(m2) time.

I Note: still a formula of size O(n) may have a BDD of size O(2n).

Attend Automated Reasoning (2IW15) for more information on OBDDs (Semester A.2).



25/26

Department of Mathematics and Computer Science

Symbolic Model Checking

I The implementation of a symbolic model checking relies on a representation of all
sets in check, lfp and gfp by OBDDs.

I Hence, in summary, symbolic model checking:
• Recursively processes subformulae
• Represent the set of states satisfying a subformula by OBDDs
• Treats temporal operators by fixed point computations
• Relies on efficient implementation of equivalence test, and ∧,∨,¬ and ∃ connectives on
OBDDs.



26/26

Department of Mathematics and Computer Science

Exercise

Consider the following Kripke Structure:

s0 s1

s2

s3

{p}

{p}

{q}

{p}

Consider the following formulae, where p and q are atomic propositions:

(A) A(F(q))
(B) A[q R p]

Determine the set of states where (A) and (B) hold using the symbolic model checking
algorithm for CTL . You may use explicit set notation to represents states.


	Fixed Points
	Fixed Point Algorithm for CTL
	Symbolic Model Checking

