Algorithms for Model Checking (2IW55)

Lecture 2
Symbolic Model Checking for CTL
("Model Checking", Chapter 2, 6.1, 6.2. Also read Chapter 5.)

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

Outline

Fixed Points

Fixed Point Algorithm for CTL

Fixed Points

Model checking complexity:

- In general, there are infinitely many states and transitions.
- Many of the states behave very similarly (e.g. the start value of some variables may not matter)
- We're interested in an algorithm that can benefit from this.

Fixed Points

Consider a Kripke Structure $M=\langle S, R, L\rangle$

In what follows, we (temporarily) ignore the difference between syntax and semantics

- Identify sets of states and predicates on states
- So, two notations are often mixed:
- subsets: $X \subseteq S$ or $X \in \mathcal{P}(S)$, versus
- predicates: $X \in 2^{S}$ or $X: S \rightarrow\{0,1\}$

$$
s \in X \Leftrightarrow X(s)=1 \text { and } s \notin X \Leftrightarrow X(s)=0
$$

- In general: we identify CTL formulae with the set of states where they hold: f versus $\{s \mid s \models f\}$
- We freely mix \vee, \wedge and \cup, \cap : compare $\emptyset \cup E G f$ and false $\vee E G f$

Fixed Points

Predicate Transformers and Monotonicity

Consider a Kripke Structure $M=\langle S, R, L\rangle$

- The set $(\mathcal{P}(S), \subseteq)$ is a complete lattice.
- A predicate transformer is a function on predicates. For example, the relations Pre and Post that lift the transition relation R to sets of states:

$$
\begin{array}{ll}
\operatorname{Pre}_{R}(X) & =\{s \in S \mid \exists t \in X . s R t\} \\
\operatorname{Post}_{R}(X) & =\{t \in S \mid \exists s \in X . s R t\}
\end{array}
$$

- Let $\tau: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ be an arbitrary predicate transformer.
- τ is monotonic iff $P \subseteq Q$ implies $\tau(P) \subseteq \tau(Q)$.
- We write $\tau^{i}(X)$ for applying τi times to X :

$$
\begin{cases}\tau^{0}(X) & =X \\ \tau^{i+1}(X) & =\tau\left(\tau^{i}(X)\right)\end{cases}
$$

Fixed Points

Let $\tau: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$.

- A fixed point of τ is a set Z such that $\tau(Z)=Z$
- The least fixed point of τ, denoted $\mu X . \tau(X)$ is a set Z such that:
- $Z=\tau(Z)$ (i.e. Z is a fixed point)
- for all X, if $\tau(X)=X$, then $Z \subseteq X$
- The greatest fixed point of τ, denoted $\nu X . \tau(X)$ is a set Z such that:
- $Z=\tau(Z)$ (i.e. Z is a fixed point)
- for all X, if $\tau(X)=X$, then $X \subseteq Z$

A theorem by Tarski: a monotonic operator on $\mathcal{P}(S)$ always has least and greatest fixed points:

- $\mu Z . \tau(Z)=\bigcap\{X \mid \tau(X) \subseteq X\}$
- $\nu Z . \tau(Z)=\bigcup\{X \mid X \subseteq \tau(X)\}$

Fixed Points

Assume now that:

- S (hence also $\mathcal{P}(S)$) is finite, and
- $\tau: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ is monotonic

Then:

1. $\forall i . \tau^{i}(\emptyset) \subseteq \tau^{i+1}(\emptyset) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. (induction on i and monotonicity)
2. There exists an i such that $\tau^{i}(\emptyset)=\tau^{i+1}(\emptyset) \ldots \ldots$ (sets become bigger and S is finite)
3. If $\tau^{i}(\emptyset)=\tau^{i+1}(\emptyset)$, then $\tau^{i}(\emptyset)$ is a fixed point of $\tau \ldots \ldots \ldots \ldots \ldots \ldots$ (by definition)
4. If X is a fixed point of τ, then $\forall i . \tau^{i}(\emptyset) \subseteq X \ldots \ldots$ (induction on i and monotonicity)

So an approximant τ^{i} can be found such that $\tau^{i}(\emptyset)=\tau^{i+1}(\emptyset)$, and this set is the least fixed point of τ.

Similarly, the smallest i such that $\tau^{i}(S)=\tau^{i+1}(S)$ yields the greatest fixed point.

Fixed Points

Algorithms for computing the least fixed point and the greatest fixed point based on the observations on the previous slide.
function $\operatorname{Ifp}(\tau: \mathcal{P}(S) \rightarrow \mathcal{P}(S)): \mathcal{P}(S)$
$Q:=\emptyset ;$
$Q^{\prime}:=\tau(Q)$;
while $Q \neq Q^{\prime}$ do

$$
\begin{aligned}
Q & :=Q^{\prime} \\
Q^{\prime} & :=\tau\left(Q^{\prime}\right) ;
\end{aligned}
$$

end while
return Q;
end function

```
function gfp(\tau:\mathcal{P}(S)->\mathcal{P}(S)):\mathcal{P}(S)
    Q:=S;
    Q
    while }Q\not=\mp@subsup{Q}{}{\prime}\mathrm{ do
        Q := Q';
        \mp@subsup{Q}{}{\prime}}:=\tau(\mp@subsup{Q}{}{\prime})
    end while
    return Q;
end function
```


Outline

Fixed Point Algorithm for CTL

Fixed Point Algorithm for CTL

Recall that CTL has the following ten temporal operators:

- AX and EX: for all/some next state
- AF and EF: inevitably and potentially
- A G and E G: invariantly and potentially always
- A [U] and E [U]: for all/some paths, until
- A [R] and E [R]: for all/some paths, releases

Besides atomic propositions $(A P)$, the constant true and the Boolean connectives (\neg, \vee), the following temporal operators are sufficient: $E X, E G, E[U]$.

Hence: only algorithms for computing formulae of the above form are needed.

Fixed Point Algorithm for CTL

CTL operators can be seen as fixed point operators. Fix a Kripke Structure $M=\langle S, R, L\rangle$. Identify a CTL formula f with predicate $\{s \mid s \models f\}$.

- $\mathrm{A} \times f=\neg \mathrm{E} \times \neg f$ and $\mathrm{E} \times f=\operatorname{Pre}_{R}(f)$
- AFf= $f=f \cup \mathrm{AXZ}$ and $\mathrm{EF} f=\mu Z . f \cup \mathrm{EXZ}$
- $\mathrm{AG} f=\nu Z . f \cap \mathrm{AX} Z$ and $\mathrm{EG} f=\nu Z . f \cap \mathrm{EXZ}$
- $\mathrm{E}[f \cup g]=\mu Z . g \cup(f \cap \mathrm{EXZ})$

Intuition:

- least and greatest fixed points deal differently with loops:
- Greatest fixed point: recursion includes loops, so possibly infinitely many "steps"
- Least fixed point: finite recursion through loops, so only finitely many "steps"
- Eventualities
least fixed points
(a witness of the eventuality is needed in finitely many steps)
- Globally greatest fixed points (an infinite path without error is OK)

Fixed Point Algorithm for CTL

Proof obligations for E G:

1. The transformer $Z \mapsto f \wedge E X Z$ is monotonic, so its fixed point can be computed by iteration, see Ifp and gfp
(If $Z_{1} \subseteq Z_{2}$ then $f \wedge E X Z_{1} \subseteq f \wedge E \times Z_{2}$).
2. $\mathrm{E} G f$ is a fixed point of $Z \mapsto f \wedge E X Z$
($\mathrm{E} G f=f \wedge \mathrm{E} \times \mathrm{E} G f$)
3. $E G f$ is the largest such fixed point (for all Z : if $Z=f \wedge E \times Z$, then $Z \subseteq E G f$)

- For 1,2,3: prove $X \subseteq Y$ by $\forall s . s \in X \Rightarrow s \in Y$.
- For 2: prove \subseteq and \supseteq.
- For 2,3: use the semantics of CTL-formulae

Proof obligations for E [U] are similar (see for yourself)

Fixed Point Algorithm for CTL

CTL model checking with Fixed Points

Function check (f) takes a formula f and returns the set of states where f holds: $\{s \mid s \models f\}$ (given a fixed Kripke Structure $M=\langle S, R, L\rangle$).

```
check(true) S
check(p) {s|p\inL(s)}
check(\negf) S \ check(f)
check(f\veeg) check (f)\cup check (g)
check(EXf) Pre
check(E [f U g]) Ifp (Z\mapsto check (g) \cup( }\operatorname{check}(f)\cap\mp@subsup{\operatorname{Pre}}{R}{}(Z)))
check(E G f) gfp (Z\mapsto check(f)\cap Pre
```

Recall: $\operatorname{Pre}_{R}(Z)=\{s \in S \mid \exists t \in Z . s R t\}$

Fixed Point Algorithm for CTL

Example

- To check: $\mathrm{E}[p \mathrm{U} q]$
- Compute: $\mu Z . q \vee(p \wedge E \times Z)$ (with Ifp)

$$
\begin{aligned}
& Z_{0}=\text { false }=\emptyset \\
& Z_{1}=q \vee\left(p \wedge E \times Z_{0}\right)=\left\{s_{5}\right\} \\
& Z_{2}=q \vee\left(p \wedge E \times Z_{1}\right)=\left\{s_{5}, s_{6}\right\} \\
& Z_{3}=q \vee\left(p \wedge E \times Z_{2}\right)=\left\{s_{5}, s_{6}, s_{7}\right\} \\
& Z_{4}=q \vee\left(p \wedge E \times Z_{3}\right)=\left\{s_{2}, s_{5}, s_{6}, s_{7}\right\} \\
& Z_{5}=q \vee\left(p \wedge E \times Z_{4}\right)=\left\{s_{1}, s_{2}, s_{3}, s_{5}, s_{6}, s_{7}\right\} \\
& Z_{6}=q \vee\left(p \wedge E \times Z_{5}\right)=\left\{s_{1}, s_{2}, s_{3}, s_{5}, s_{6}, s_{7}\right\}
\end{aligned}
$$

$Z_{5}=Z_{6}$, so this is the least fixed point.

Outline

Symbolic Model Checking

Example (GCD)

Consider the following program:

repeat

if $x>y->x:=x-y$;
[] $x<y->y:=y-x$;
fi
until false
This program uses:

- variables: $\{x, y\}$, with an (implicit) domain of variables: \mathbb{N}
- States of this program are functions of type: $\{x, y\} \rightarrow \mathbb{N}$
- An example state could be: $\{x \mapsto 5, y \mapsto 15\}$
- An execution is a sequence of transitions: e.g.

$$
\{x \mapsto 5, y \mapsto 15\} \rightarrow\{x \mapsto 5, y \mapsto 10\} \rightarrow\{x \mapsto 5, y \mapsto 5\} \rightarrow\{x \mapsto 5, y \mapsto 5\} \rightarrow \ldots
$$

Symbolic Model Checking

Example (SWAP)

Consider the following program fragment:

$$
\begin{array}{ll}
z:=x ; & \% 11 \\
x:=y ; & \% 12 \\
y:=z ; & \% 13
\end{array}
$$

- Besides variables $x, y, z: \mathbb{N}$, this program has a program counter, whose values are labels (line numbers)
- Let $p c:\left\{I_{1}, l_{2}, l_{3}\right\}$. Now, a state is a function that gives a value to $\{x, y, z, p c\}$
- A possible execution is the following sequence:

$$
\begin{aligned}
&\left\{x \mapsto 5, y \mapsto 15, z \mapsto 500, p c \mapsto I_{1}\right\} \\
& \rightarrow\left\{x \mapsto 5, y \mapsto 15, z \mapsto 5, p c \mapsto I_{2}\right\} \\
& \rightarrow \quad\left\{x \mapsto 15, y \mapsto 15, z \mapsto 5, p c \mapsto I_{3}\right\} \\
& \rightarrow\left\{x \mapsto 15, y \mapsto 5, z \mapsto 5, p c \mapsto I_{4}\right\}
\end{aligned}
$$

Symbolic Model Checking

Idea: the set of states can be represented very concisely by a number of formulae

- for GCD:
- initial set of states: $x<100 \wedge y<100$
- next state predicate:

$$
\left(x>y \wedge x^{\prime}=x-y \wedge y^{\prime}=y\right) \vee\left(x<y \wedge y^{\prime}=y-x \wedge x^{\prime}=x\right)
$$

- for SWAP:
- initial states: $x=5 \wedge y=15$
- next state predicate:

$$
\left(p c=I_{1} \wedge p c^{\prime}=I_{2} \wedge z^{\prime}=x \wedge \ldots\right) \vee \ldots
$$

Symbolic Model Checking

The system specification is represented by propositional logic formula

- Let V be a set of variables $v_{0}, v_{1}, \ldots, v_{n}$
- Let D be the domain of these variables
- The states of the Kripke Structure will be functions $v: V \rightarrow D$
- A formula $S_{0}(V)$ represents the initial states
- Let V^{\prime} be a copy of the variables in V : $v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{n}^{\prime}$
- A formula $\mathcal{R}\left(V, V^{\prime}\right)$ represents the transition relation.
- V denotes the value of the variables before the transition
- V^{\prime} denotes the value of the variables after the transition.

Symbolic Model Checking

Example

- $V=\left\{T L_{1}, T L_{2}\right\}$,
- $D=\{r(e d), y($ ellow $), g(r e e n)\}$
- $\mathcal{S}_{0}\left(T L_{1}, T L_{2}\right):=T L_{1}=r \wedge T L_{2}=r$
- $\mathcal{R}\left(T L_{1}, T L_{2}, T L_{1}^{\prime}, T L_{2}^{\prime}\right):=R_{1} \vee R_{2} \vee R_{3} \vee R_{4} \vee R_{5} \vee R_{6}$, where:
- $R_{1}:=T L_{1}=r \wedge T L_{1}^{\prime}=g \wedge T L_{2}^{\prime}=T L_{2}$
- $R_{2}:=T L_{1}=g \wedge T L_{1}^{\prime}=y \wedge T L_{2}^{\prime}=T L_{2}$
- $R_{3}:=T L_{1}=y \wedge T L_{1}^{\prime}=r \wedge T L_{2}^{\prime}=T L_{2}$
- $R_{4}:=T L_{2}=r \wedge T L_{2}^{\prime}=g \wedge T L_{1}^{\prime}=T L_{1}$
- $R_{5}:=T L_{2}=g \wedge T L_{2}^{\prime}=y \wedge T L_{1}^{\prime}=T L_{1}$
- $R_{6}:=T L_{2}=y \wedge T L_{2}^{\prime}=r \wedge T L_{1}^{\prime}=T L_{1}$

Notes:

- this corresponds to a Kripke Structure modelling an unsafe traffic light system at a junction
- a specification for n traffic lights gives $O\left(3^{n}\right)$ states \Rightarrow State space explosion

Symbolic Model Checking

We wish to avoid representing the state space and its subsets explicitly. To efficiently implement symbolic model checking, we need:

- A concise representation of sets of states
- Quick operations for:
- Boolean operators \wedge, \vee, \neg
- Existential quantification (for the relational composition)
- Equivalence test

Solution: Ordered Binary Decision Diagrams (OBDD)

Implementing Symbolic Model Checking

- Symbolic model checking is restricted to finite Kripke Structures
- All finite data can be encoded in "bits"
- Boolean functions can be represented concisely as (Ordered) Binary Decision Diagrams
- Binary Decision Diagrams are directed acyclic graphs, with the following ingredients:

Symbolic Model Checking

BDD representation of $\left(p_{1} \wedge p_{2}\right) \vee\left(\neg q_{1} \wedge q_{2}\right)$:

- In ordered BDDs, tests along a path occur in a fixed order (e.g. $p_{1}<p_{2}<q_{1}<q_{2}$).
- Theorem[Bryant'86]: OBDDs are a unique representation for Boolean Functions.
- Claim: many practical formulae have a concise OBDD representation due to maximal sharing
- Disclaimer 1: some small formulae have only exponentially large BDDs. (multiplier)
- Disclaimer 2: the size of an OBDD can crucially depend on the ordering of the variables

Symbolic Model Checking

More on OBDDs:

- OBDDs are implemented as maximally shared pointer structures in memory.
- The order of variables is fixed (some implementations feature dynamic reordering)
- Equivalence test can be performed in constant time, in particular, also checking for satisfiability and tautology.
- Boolean operations can be performed efficiently. Let B_{1} and B_{2} be OBDDs with m and n nodes, respectively, then:
- OBDDs for $B_{1} \wedge B_{2}$ and $B_{1} \vee B_{2}$ can be computed in $\mathcal{O}(m \cdot n)$ time.
- OBDDs for $\neg B_{1}$ can be computed in $\mathcal{O}(m)$ time.
- the OBDD of $\exists x \cdot B_{1}$ can be computed in $\mathcal{O}\left(m^{2}\right)$ time.
- Note: still a formula of size $\mathcal{O}(n)$ may have a BDD of size $\mathcal{O}\left(2^{n}\right)$.

Attend Automated Reasoning (2IW15) for more information on OBDDs (Semester A.2).

Symbolic Model Checking

- The implementation of a symbolic model checking relies on a representation of all sets in check, Ifp and gfp by OBDDs.
- Hence, in summary, symbolic model checking:
- Recursively processes subformulae
- Represent the set of states satisfying a subformula by OBDDs
- Treats temporal operators by fixed point computations
- Relies on efficient implementation of equivalence test, and \wedge, \vee, \neg and \exists connectives on OBDDs.

Exercise

Consider the following Kripke Structure:

Consider the following formulae, where p and q are atomic propositions:
(A) $\mathbf{A}(\mathbf{F}(q))$
(B) $\mathbf{A}[q \mathrm{R} p]$

Determine the set of states where (A) and (B) hold using the symbolic model checking algorithm for CTL. You may use explicit set notation to represents states.

