Algorithms for Model Checking (2IW55)

Lecture 5 Boolean Equation Systems

Background material: Chapter 3 and 6 of A. Mader, "Verification of Modal Properties using Boolean Equation Systems", Ph.D. thesis, 1997

> Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw MF 6.073

Model Checking using BESs

Solving BESs

Exercise

Department of Mathematics and Computer Science

2/19

Boolean Equation Systems are systems of fixed point equations.

Given a set Var of propositional variables. A Boolean Expression is defined by:

```
f ::= X \mid \mathsf{true} \mid \mathsf{false} \mid f \land f \mid f \lor f
```

A Boolean Equation is an equation of the form $\mu X = f$ or $\nu X = f$ where $X \in Var$ and f is a Boolean Expression.

A Boolean Equation System is a sequence of Boolean Equations:

$$\mathcal{E} ::= \varepsilon \mid (\mu X = f) \mathcal{E} \mid (\nu X = f) \mathcal{E}$$

Note:

- Negation is not allowed, in order to ensure monotonicity.
- The order of equations is important. The leftmost sign will be given priority.

- ▶ A variable *W* that occurs in a Boolean Expression of a BES *E* is called bound, if there is an equation for *W* in *E*, otherwise *W* is called free.
- If propositional variables are bound uniquely (i.e., at most once), the BES is well-formed; we only consider well-formed BESs.
- If \mathcal{E} contains no free variables, \mathcal{E} is closed, otherwise it is open.
- Henceforth, σ represents either μ or ν if we wish to abstract from its actual polarity.

Example

An example of a closed BES \mathcal{E} with three propositional variables X, Y and Z:

$$(\mu X = (X \land Y) \lor Z) \ (\nu Y = X \land Y) \ (\mu Z = Z \land X)$$

An example of an open BES \mathcal{F} with three propositional variables X, Y and Z:

$$(\mu X = Y \lor Z) \ (\nu Y = X \land Y)$$

An example of a BES that is not well-formed:

 $(\mu X = X) \ (\nu X = X)$

- Let *Val* be the set of all functions $\eta : Var \rightarrow \{ false, true \}$
- The solution of a BES is a valuation: η : Val
- Let $[f](\eta)$ denote the value of boolean expression f under valuation η .
- For the solution η of a BES \mathcal{E} , we wish $\eta(X) = [f](\eta)$ for all equations $\sigma X = f$ in \mathcal{E} .
- Also, we want the smallest (for μ) or greatest (for ν) solution, where leftmost fixed point signs take priority over fixed point signs that follow.

Given a BES \mathcal{E} , we define $\llbracket \mathcal{E} \rrbracket$: $Val \rightarrow Val$ by recursion on \mathcal{E} .

$$\llbracket \varepsilon \rrbracket(\eta) \qquad := \eta$$

$$\llbracket (\mu X = f) \ \mathcal{E} \rrbracket(\eta) \qquad := \llbracket \mathcal{E} \rrbracket(\eta [X := [f](\eta_{\mu})]) \text{ where } \eta_{\mu} := \llbracket \mathcal{E} \rrbracket(\eta [X := false])$$

$$\llbracket (\nu X = f) \ \mathcal{E} \rrbracket(\eta) \qquad := \llbracket \mathcal{E} \rrbracket(\eta [X := [f](\eta_{\nu})]) \text{ where } \eta_{\nu} := \llbracket \mathcal{E} \rrbracket(\eta [X := true])$$

Note: for closed BESs we have $\llbracket \mathcal{E} \rrbracket(\eta)(X) = \llbracket \mathcal{E} \rrbracket(\eta')(X)$ for all η, η' and all bound X

Model Checking using BESs

Solving BESs

Exercise

6/19

Transformation of the $\mu\text{-calculus}$ model checking problem to BES

- Given is the following model checking problem: $M, s \models \sigma X$. f
 - a closed μ -calculus formula σX . f in Positive Normal Form and,
 - a Mixed Kripke Structure $M = \langle S, s_0, Act, R, L \rangle$.
 - s ∈ S is a state
- ▶ We define a BES *E* with the following property:

 $(\llbracket \mathcal{E} \rrbracket(\eta))(X_s) =$ true iff $M, s \models \sigma X. f$

i.e. formula σX . f holds in state s if and only if the solution for X_s yields true.

- This BES is defined as follows:
 - For each subformula $\sigma' Y.g$, we add the following equation for each state $s \in S$:

 $\sigma' Y_{s} = RHS(s,g)$

- Important: The order of the equations respects the subterm ordering in the original formula σX . *f*.
- Intuitively: We wish RHS(s, g) iff $s \models g$

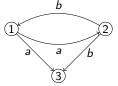
The Right-Hand Side of an equation is defined inductively on the structure of the $\mu\text{-calculus formula:}$

RHS(s, true) RHS(s, false) RHS(s, p) RHS(s, X)	=	$ ext{true} \ ext{false} \ \left\{ egin{array}{cc} ext{true} & ext{if} \ p \in L(s) \ ext{false} & ext{otherwise} \end{array} ight. \ \left. egin{array}{cc} ext{false} & ext{otherwise} \end{array} ight. ight.$
()		$RHS(s, f) \land RHS(s, g)$ $RHS(s, f) \lor RHS(s, g)$
RHS(s, [a]f) $RHS(s, \langle a angle f)$	=	
RHS(s, μX. f) RHS(s, νX. f)		
conventions:		$igwedge_{t\in \mathcal{S}} \emptyset = true \; and \; igvee_{t\in \mathcal{S}} \emptyset = false$

Model Checking using BESs

Example

- ▶ $RHS(1, [a]X) = RHS(2, X) \land RHS(3, X) = X_2 \land X_3.$
- $\mathsf{RHS}(2, \langle b \rangle Y) = \mathsf{RHS}(1, Y) \lor \mathsf{RHS}(3, Y) = Y_1 \lor Y_3.$



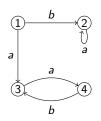
- $RHS(3, \langle b \rangle Y) =$ false (empty disjunction!)
 - RHS(1, $[a]\langle b\rangle \mu Z$. Z) = $RHS(2, \langle b \rangle \mu Z. Z) \wedge RHS(3, \langle b \rangle \mu Z. Z) \wedge$ = $(RHS(1, \mu Z.Z) \lor RHS(3, \mu Z.Z)) \land false$ $= (Z_1 \vee Z_3) \wedge \text{false}$
- Translation of $\mu X \cdot \langle b \rangle$ true $\vee \langle a \rangle X$ to BES:

$$(\mu X_1 = X_3 \lor X_2) \ (\mu X_2 = \text{true}) \ (\mu X_3 = \text{false})$$

b

Example

 μ -calculus formula: $\nu X.([a]X \land \nu Y.\mu Z.(\langle b \rangle Y \lor \langle a \rangle Z))$ Translates to the following BES:



$$\begin{array}{rcl} \nu X_1 & = & X_3 \wedge Y_1 \\ \nu X_2 & = & X_2 \wedge Y_2 \\ \nu X_3 & = & x_4 \wedge Y_3 \\ \nu X_4 & = & true \wedge Y_4 \\ \nu Y_1 & = & Z_1 \\ \nu Y_2 & = & Z_2 \\ \nu Y_3 & = & Z_3 \\ \nu Y_4 & = & Z_4 \\ \mu Z_1 & = & Y_2 \vee Z_3 \\ \mu Z_2 & = & false \vee Z_2 \\ \mu Z_3 & = & false \vee Z_4 \\ \mu Z_4 & = & Y_3 \vee false \end{array}$$

10/19

11/19

Boolean Equation Systems

Model Checking using BESs

Solving BESs

Exercise

TU/e Technische Universiteit Eindhoven University of Technology

- We reduced the model checking problem $M, s \models f$ to the solution of a BES with $\mathcal{O}(|M| \times |f|)$ equations.
- We now want a fast procedure to solve such BESs.
- An extremely tedious way to solve a BES is to unfold its semantics.
- A very appealing solution is to solve it by Gauß Elimination.

Solving BESs

Gauß Elimination uses the following 4 basic operations to solve a BES:

local solution: eliminate X in its defining equation:

$$\begin{array}{l} \mathcal{E}_0 \ (\mu X = f) \ \mathcal{E}_1 \quad \text{becomes} \quad \mathcal{E}_0 \ (\mu X = f[X := \mathsf{false}]) \ \mathcal{E}_1 \\ \mathcal{E}_0 \ (\nu X = f) \ \mathcal{E}_1 \quad \text{becomes} \quad \mathcal{E}_0 \ (\nu X = f[X := \mathsf{true}]) \ \mathcal{E}_1 \end{array}$$

Substitute definitions to the left:

$$\begin{array}{l} \mathcal{E}_0 \ (\sigma_1 X = X \lor Y) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \land X) \ \mathcal{E}_2 \\ \text{becomes:} \quad \mathcal{E}_0 \ (\sigma_1 X = X \lor (Y \land X)) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \land X) \ \mathcal{E}_2 \end{array}$$

Substitute closed equations to the right:

$$\begin{array}{l} \mathcal{E}_0 \ (\sigma_1 X = \mathsf{true}) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \land X) \mathcal{E}_2 \\ \mathsf{becomes:} \quad \mathcal{E}_0 \ (\sigma_1 X = \mathsf{true}) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \land \mathsf{true}) \ \mathcal{E}_2 \end{array}$$

Boolean simplication: At least the following:

 $b \wedge \mathsf{true} \to b$ $b \vee \mathsf{true} \to \mathsf{true}$ $b \wedge \mathsf{false} \to \mathsf{false}$ $b \vee \mathsf{false} \to b$

Solving BESs

Example

 $|ocal \rightarrow$ simplifications \rightarrow substitution backwards \rightarrow simplifications \rightarrow substitution backwards \rightarrow $\mathsf{local} \rightarrow$ substitution to the right ightarrow

$$(\mu X = X \lor Y) (\nu Y = X \lor (Y \land Z)) (\mu Z = Y \land Z)$$
$$(\mu X = \text{false} \lor Y) (\nu Y = X \lor (\text{true} \land Z)) (\mu Z = Y \land \text{false})$$
$$(\mu X = Y) (\nu Y = X \lor Z)) (\mu Z = \text{false})$$
$$(\mu X = Y) (\nu Y = X \lor \text{false}) (\mu Z = \text{false})$$
$$(\mu X = Y) (\nu Y = X) (\mu Z = \text{false})$$
$$(\mu X = X) (\nu Y = X) (\mu Z = \text{false})$$
$$(\mu X = \text{false}) (\nu Y = X) (\mu Z = \text{false})$$
$$(\mu X = \text{false}) (\nu Y = X) (\mu Z = \text{false})$$
$$(\mu X = \text{false}) (\nu Y = \text{false}) (\mu Z = \text{false})$$

Solving BESs

Input: a BES $(\sigma_1 X_1 = f_1) \dots (\sigma_n X_n = f_n)$. Returns: the solution for X_1 .

```
for i = n downto 1 do

if \sigma_i = \mu then f_i := f_i[X_i := \text{false}]

else f_i := f_i[X_i := \text{true}]

end if

for j = i - 1 downto 1 do f_j := f_j[X_i := f_i]

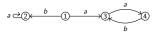
end for
```

end for

Note:

- Invariants of the outer loop:
 - f_i contains only variables X_j with $j \leq i$.
 - for all $i < j \le n$, X_j does not occur in f_j .
- Upon termination (i = 0), $\sigma_1 X_1 = f_1$ is closed and evaluates to true or false.
- One could substitute the solution for X₁ to the right and repeat the procedure to solve X₂, etcetera.

Example



Encoding the μ -calculus formula: $\nu X.([a]X \land \nu Y.\mu Z.(\langle b \rangle Y \lor \langle a \rangle Z))$ leads to the below BES; solving using Gauß Elimination (each column is one iteration of the algorithm):

νX_1	=	$X_3 \wedge Y_1$		true					
νX_2	=	$X_2 \wedge Y_2$		false					
νX_3	=	$X_4 \wedge Y_3$		true					
ν Χ 4	=	Y ₄	Y ₄	Y4	Y4	Y ₄	Y_3		true
νY_1	=	Z1	Z1	Z1	Z1	$Y_2 \vee Y_3$	$Y_2 \vee Y_3$		true
νY_2	=	Z2	Z2	Z2	false	false	false		false
νY_3	=	Z3	Z ₃	Y ₃	Y ₃	Y ₃	Y_3		true
νY_4	=	Z4	Y ₃	Y ₃	Y ₃	Y ₃	Y ₃ *		true
μZ_1	=	$Y_2 \vee Z_3$	$Y_2 \vee Z_3$	$Y_2 \vee Y_3$	$Y_2 \vee Y_3$	$Y_2 \vee Y_3 *$	$Y_2 \vee Y_3 *$		true
μZ_2	=	Z2	Z ₂	Z ₂	false*	false*	false*		false
μZ_3	=	Z4	Y ₃	Y3*	Y3*	Y3*	Y ₃ *		true
μZ_4	=	Y_3	Y ₃ *	Y _{3*}	Y ₃ *	Y ₃ *	Y ₃ *		true

16/19

Complexity of Gauß Elimination.

- Note that in $\mathcal{O}(n^2)$ substitutions, we obtain the final answer for X_1 .
- ▶ However, f_1 can have $\mathcal{O}(2^n)$ different copies of e_n as subterms, so intermediate expressions could become exponentially big.
- Practical efficiency increases a lot if one keeps all intermediate terms simplified all the time.
- Gauß Elimination can be sped up if a forward dependency analysis is conducted (so-called local model checking).
- Precise efficiency depends heavily on the set of simplification rules.
- Precise complexity of solving Boolean Equation Systems is still unknown.
- Complexity of Gauß Elimination is independent of the alternation depth (see Proposition 6.4 [Mader]).

18/19

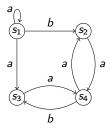
Boolean Equation Systems

Model Checking using BESs

Solving BESs

Exercise

Exercise



Consider the following μ -Calculus formula f:

 $\nu X.([a]X \wedge \nu Y.\mu Z.(\langle b \rangle Y \vee \langle a \rangle Z))$

- Use the Emerson-Lei algorithm for computing whether $M, s_1 \models f$.
- ▶ Translate the model checking question $M \models f$ to a BES; indicate how $M, s \models \phi$ corresponds to the variables in the BES.
- Solve the BES by Gauß Elimination.

