Algorithms for Model Checking (2IW55)

Lecture 6
Parity games
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Tim Willemse
(timw®@win.tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science




Parity games

Technische Universiteit
I U Eindhoven
University of Technology

Department of Mathematics and Computer Science




Parity games
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Model checking mu-calculus = solving BES

v

Solving BESs conceptually simpler than model checking mu-calculus . still exponential

v

BESs are more elementary than mu-calculus.......................... still: fixpoints

> Fixpoints can be understood through an infinite game ................. Parity games
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Parity games

The arena:

> total graph
> two players: & (Even) and O (Odd)
> each vertex:

* has a non-negative priority p(v)
¢ is owned by one player

» objective: win as many vertices as possible
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Parity games

Definition (Parity game)
A parity game is a four tuple (V, E, p, (Vo, Vo)) where
» (V,E)is a directed graph

» V a set of vertices partitioned into Vo and V5

* Vo vertices owned by player &
* V: vertices owned by player (]

> E a total edge relation

» p: V — N a priority function
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Parity game (example)

{52, s3}
VD = {51}
P = {S1'—>1,52>—>2,S3'—>3}
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Parity games

Rules of the game:
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Parity games

Rules of the game:

1. place a token on some vertex v
2. owner of the vertex v moves token to successor vertex v’

3. Repeat step 2
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Parity games

Rules of the game:

1. place a token on some vertex v
2. owner of the vertex v moves token to successor vertex v’

3. Repeat step 2

Play: infinite sequence of vertices visited by token
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Parity games

Rules of the game:

1. place a token on some vertex v
2. owner of the vertex v moves token to successor vertex v’

3. Repeat step 2

Play: infinite sequence of vertices visited by token

Definition (Winner of a play)

> Let m = vivav3 ... be a play
> Let inf(7) be the set of priorities occurring infinitely often in 7

Play 7 is winning for player & iff min(inf(r)) is even. Likewise for player (/odd.
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Example: winner of a play/winning strategy

Examples of winners of a play:
> Play (s152)” won by player [J;
» Play s1s5” won by player <;

> Play (si1s25153)” won by player 0.
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Parity games

Definition (Strategy)
A strategy for player < (similarly for O) is a partial function go:V* X Vo — V

viva €V sequence of visited vertices (history)
PV € Vo vertex owned by ¢
> 0o(Vi Va1, V) €E{v | (Vn, V) EE} .o, rule for moving token from v,
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Parity games

Definition (Strategy)
A strategy for player < (similarly for O) is a partial function go:V* X Vo — V

viva €V sequence of visited vertices (history)
PV € Vo vertex owned by ¢
> 0o(Vi Va1, V) €E{v | (Vn, V) EE} .o, rule for moving token from v,

Definition (Consistent plays)

> Let m = vivavs ... be an infinite play
> Let oo be a strategy for player O € {<, O}

> 7 is consistent with oo iff whenever po(v1 ... vi—1, v;) is defined, then it is vii1

PIayQO(v) is the set of all plays starting in v that are consistent with oo
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Strategy (example)

possible strategy on: play token from s; to s if s has been visited an even number
of times, and to s3 otherwise

> possible strategy oo always plays token from s; to s

Examples of winning strategies:
> {_)o(... , 52) = S2
> .QD(--- ,51) = S3
s1 if number of occurrences of s;3 is prime

> e, S =
oo( 2) s3  otherwise
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Parity games

Definition (Winning strategy)
» 0 € {00}
> 00 is a strategy for O

00 is a winning strategy from v if every play in Playgo(v) is winning for O.
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Parity games

Definition (Winning strategy)

» 0 € {00}
> 00 is a strategy for O

00 is a winning strategy from v if every play in Playgo(v) is winning for O.

Player O wins the vertices in W if from all vertices v € W she has a winning strategy oo .
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Parity games

Definition (Winning strategy)
» 0 € {00}
> 00 is a strategy for O

00 is a winning strategy from v if every play in Playgo(v) is winning for O.
Player O wins the vertices in W if from all vertices v € W she has a winning strategy oo .

Natural questions

» |s there always at least one player that can win a vertex?

> |s there a unique winner for each vertex?

» Can the winning strategies be of a particular shape or not?
» Can we compute the winning sets Wo and Wg?
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Parity games

Theorem (Positional determinacy)
Player O wins a vertex w iff she has a memoryless strategy that is winning from w
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Parity games

Theorem (Positional determinacy)
Player O wins a vertex w iff she has a memoryless strategy that is winning from w

Strategy po:V* x Vo — V is memoryless (also history free) if:

for all histories A v, X' v € VT for which g is defined, we have oo (A, v) = oo(N, v)
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Parity games

Theorem (Positional determinacy)
Player O wins a vertex w iff she has a memoryless strategy that is winning from w

Strategy po:V* x Vo — V is memoryless (also history free) if:

for all histories A v, X' v € VT for which g is defined, we have oo (A, v) = oo(N, v)

Consequences:
> we can drop the history and consider strategies oo:Vo — V

> there are only a finite number of memoryless strategies
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Memoryless strategy (example)

Let po(s2) = s2, 00(s3) = s1, and go(s1) = ss.

> 0o is winning from {sz}

> oo is winning from {si, s3}
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Boolean Equation Systems
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Boolean Equation Systems

Recall Boolean equation systems:
> Boolean expressions: f, g ::= X |true |false | fAg|fVg
> Boolean equation system: £ i=¢ | (WX =f)E| (WX =1f) &
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Boolean Equation Systems

Recall Boolean equation systems:
> Boolean expressions: f, g ::= X |true |false | fAg|fVg
> Boolean equation system: £ i=¢ | (WX =f)E| (WX =1f) &

Lemma (“Tseitin” transformation)
For all Y bound in £y, E1 or Y = X:

[0 (0X =f Ag) &aln(Y) =0 (X = A X') (o'X" = g) &aln(Y)

Note: likewise for f, likewise for f V g
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Boolean Equation Systems

Recall Boolean equation systems:
> Boolean expressions: f, g ::= X |true |false | fAg|fVg
> Boolean equation system: £ i=¢ | (WX =f)E| (WX =1f) &

Lemma (“Tseitin” transformation)

For all Y bound in £y, E1 or Y = X:
[Co (oX =f Ag) &adn(Y) =[Eo (6 X = FAX') (o'X" = g) Eun(Y)

Note: likewise for f, likewise for f V g

Lemma (Constant elimination)
For all'Y bound in &:

[5]7]( Y) = [5[“‘“9 = Xtrue] (VXtrue = Xtrue)]n( Y)

Note: similarly for false (with uXfise = Xalse)
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BES (example)

Consider the following BES:

This corresponds to the following BES in SRF:

uX = XAX

uX = XA(YVZ) uX’ = YVZ

vY = WV(XAY) vY = WvYy'

uZ = false vY’ = XAY

uW = Zv(Zv W) nZ = Xfalse
uW = ZV(ZVvW)
NXfaIse = Xfalse
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Boolean Equation Systems

Definition (Standard Recursive Form)

A BES is in Standard Recursive Form (SRF) if all right hand sides of Boolean equations
adhere to the following syntax:

f=X|\/FI \F

» X is a proposition variable

» F is a non-empty set of proposition variables
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Boolean Equation Systems

Definition (Standard Recursive Form)

A BES is in Standard Recursive Form (SRF) if all right hand sides of Boolean equations
adhere to the following syntax:

f=X|\/FI \F

» X is a proposition variable

» F is a non-empty set of proposition variables

Observe that:
> all BESs can be transformed into a BES in SRF preserving the solution
» how: repeatedly use “Tseitin” transformation and constant elimination
» the total transformation can be done in polynomial time
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Boolean Equation Systems

Definition (Blocks and ranks)

> a u-block is a BES of p-signed equations; likewise: v-block
> let £ =By B, for blocks By, ..., B,
> Assume for all i, signs of blocks B; and B, differ

i if By is p-block

for all (X = f) € B, rank(X) = { i—1  otherwise

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science




Boolean Equation Systems

Definition (Blocks and ranks)

> a u-block is a BES of p-signed equations; likewise: v-block
> let £ =By B, for blocks By, ..., B,
> Assume for all i, signs of blocks B; and B, differ

i if By is p-block

for all (X = f) € B, rank(X) = { i—1  otherwise

Observe:
> rank(X) = rank(Y) if both X and Y occur in the same block
> rank(X) is odd iff X is defined in a u-equation
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Rank examples

rank(_)
(1) uX = XA(YVZ)
(2) vY = WV(XAY)
3) uZ = false
(3) pW = Zv(ZvWw)
rank(_)
(1) uX = XAX
(1) pX' = YVZ
(2) vy = WvYy
(2) vY’ = XAY
(3) 4 = Xalse
3) uWw = ZVv(ZVv W)
(3) NXfaIse = Xalse
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Boolean equation systems and Parity games correspond
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Boolean equation systems and Parity games correspond

Let G = (V,E,p,(Vo, Vo)) be a parity game

Definition (Parity game to BES)

Define the BES &g as follows:
» equations (ov Xy = A{Xw | (v, w) € E}) for vertices v € Vg
» equations (o, X, = V{Xw | (v, w) € E}) for vertices v € Vo
> o, = pif p(v) is odd, o, = v otherwise
» ensure rank(X,) < rank(X,) if p(v) < p(u)
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Boolean equation systems and Parity games correspond

Let G = (V,E,p,(Vo, Vo)) be a parity game

Definition (Parity game to BES)

Define the BES &g as follows:
» equations (ov Xy = A{Xw | (v, w) € E}) for vertices v € Vg
» equations (o, X, = V{Xw | (v, w) € E}) for vertices v € Vo
> o, = pif p(v) is odd, o, = v otherwise
» ensure rank(X,) < rank(X,) if p(v) < p(u)

Theorem
Solution to X, is true <> player & has winning strategy from v
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Parity game to BES example
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Parity game to BES example

Corresponds to the following BES:

I’I’XSI = st A X53
vXs, =X VXs
uXsy = Xs V Xsy
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Parity game to BES intuition

Assume £ is a closed BES in SRF from hereon, unless indicated otherwise.

Lemma
There is a conjunctive BES in SRF &' constructed from £ by replacing each disjunctive
equation o X; = \/ F; with cX; =Y for Y € F; such that:

[€1=€1

In the same vein, there is a disjunctive BES in SRF that has the same solution as £.
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Parity game to BES intuition

Definition (p-dominated lasso)
A p-dominated lasso starting in some Xj is a finite sequence X1 Xz - - - X, such that:
> We have Xiy1 € F; for o;X; = A\ Fi or 0iXi = \/ F;

> We have X, € Xj for some 1 < j < n.

» min{rank(X;) | j <i < n} is odd.

Lemma
Assume & is conjunctive. Then:

[E](X) = false iff there is a p-dominated lasso starting in X
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Parity game to BES intuition

Theorem
Solution to X, is true < player & has winning strategy from v

Proof.

> =
* Assume player & has a winning strategy o from vertex v.
e Let £ be the BES obtained from the parity game.
e Construct & from & by replacing every disjunctive equation as follows:

(oXu = \/ F) becomes (0 Xu = Xy(u))

¢ Towards a contradiction, suppose [E'](X,) = false

e Then there must be a y-dominated lasso starting in X,

* But that means that the lowest rank on the lasso is odd

* Hence, by the transformation, there must be an infinite path in the parity game on
which the lowest priority is odd

¢ Hence, g is not winning for &. Contradiction

¢ Dually, assume O has a winning strategy and prove [£](X,) = false.

(|
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Boolean equation systems and Parity games correspond

Let £ be a closed BES in SRF.

Definition (BES to parity game)
Define a parity game Gg = (V, E, p, (Vo, V1)) as follows:

v

vx € V iff there is an equation for X in &

> (vx, vy) € E iff propositional variable Y occurs in f in o X = f
p(vx) = rank(X) for all equations (6 X = f) in &

vx € Vo iff the equation for X is of the form (¢ X = A F)

- Vo =V\ Vq

v

v
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Boolean equation systems and Parity games correspond

Let £ be a closed BES in SRF.

Definition (BES to parity game)
Define a parity game Gg = (V, E, p, (Vo, V1)) as follows:

v

vx € V iff there is an equation for X in &

> (vx, vy) € E iff propositional variable Y occurs in f in o X = f
p(vx) = rank(X) for all equations (6 X = f) in &

vx € Vo iff the equation for X is of the form (¢ X = A F)

- Vo =V\ Vq

v

v

Theorem
Player & has winning strategy from vx <> the solution of X is true
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BES vs parity game (example)

Its parity game is:

Consider the following BES:

uX = XAX

uX' = YvZz

vY = wvY’

vY’ = XAY

MZ = Xalse

uW = ZV(ZVW)
NXFalse = Xfalse
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Simplifying parity games
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Simplifying parity games

Self-loop elimination

g
e

o ®

uX =XAf uX =X | vX=XVf vX =X
to %_' to O—
vX=XATf vX=f | pX=XVTF uX =

Department of Mathematics and Computer Science
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Simplifying parity games

Self-loop elimination

to \Q/\ to &

uX =XAf uX =X | vX=XVf vX =X
to %_' to O—
vX=XATf vX=f | pX=XVTF uX =

Priority compaction
O to <3>

In case priority 4 does not occur in the parity game. Evenness must be preserved!
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Simplifying parity games

Priority propagation

Corresponds to re-ordering of equations in BES, which is generally unsafe!
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Summary
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Computing winners in parity games = solving BESs

v

Reduction parity games <+ BESs is polynomial
Operational interpretation of fixpoints:

e p-fixpoint: odd priorities; can only be won by < if it ensures stretches are finite
* v-fixpoint: even priorities; benign for player &

v

v

Simplifications

v

No algorithm yet. .. ... .. but
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Computing winners in parity games = solving BESs

» Reduction parity games <+ BESs is polynomial
» Operational interpretation of fixpoints:
e p-fixpoint: odd priorities; can only be won by < if it ensures stretches are finite
* v-fixpoint: even priorities; benign for player &
» Simplifications
> No algorithm yet. . ... but
Next week:

» Recursive algorithm
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Exercise
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Consider the following modal p-calculus formula f:

vX (XA (Y)Y VDY)V (uZ.(([1Z A [s]12) V (s)true))))

v

Translate the model checking question M E f to a BES.

\4

Transform the resulting BES into a parity game.
» Determine whether f holds in sp by solving the obtained parity game, and

» provide a winning strategy that justifies this solution.
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