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Lecture 7:
Recursively Solving Parity Games

Background material:

O. Friedmann, Recursive Solving of Parity Games Requires Exponential Time

M. Gazda and T.A.C. Willemse, Zielonka’s Recursive Algorithm:
dull, weak and solitaire games and tighter bounds
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Parity games—recap
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I two players: 3 (Even) and � (Odd)
I every node has an owner (V = V3 ∪ V�)

I moving token indefinitely;
node owner chooses the next vertex

I play = infinite path through the game
I vertices labelled with natural numbers

(priorities)
I winner of a play: determined by the parity of

the minimal priority occurring infinitely often
(3 wins even parity, � wins odd parity)
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Parity games—recap
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I strategy
• winning strategy
• memoryless strategy

I winning partition
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Objective

Parity game G = (V , E , p, (V3, V�)).

Determinacy implies there is a unique partition (W3, W�) of V such that:
I 3 has winning strategy %3 from W3, and
I � has winning strategy %� from W�.

Objective of parity game algorithms
Compute partition (W3, W�) with strategies %3 and %� of V such that:
I %3 is winning for player 3 from W3

I %� is winning for player � from W�.
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Parity game algorithms

Deterministic algorithms for solving parity games

I Recursive (this lecture) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . McNaughton ’93, Zielonka ’98
I Local algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stevens & Stirling ’98
I Small progress measures (next lecture). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Jurdziński, ’00
I Strategy improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vöge & Jurziński ’00
I (Deterministic) Subexponential . . . . . . . . . . . . . . . . . . . . Jurdziński, Paterson & Zwick ’06
I Bigstep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schewe ’07
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Concepts

Parity game G = (V , E , p, (V3, V�)).

Notation:
I # is the ‘arbitrary’ player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .# ∈ {3,�}
I # is the opponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 = � and � = 3

Definition (Arena restriction)
The game G \ U = (V ′, E ′, p′, (V ′3, V ′�)), for U ⊆ V , is the game confined to V \ U:
I V ′ = V \ U and E ′ = E ∩ (V ′ × V ′),
I p′(v) = p(v) for v ∈ V \ U,
I V ′3 = V3 \ U, and V ′� = V� \ U
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Concepts

Parity game G = (V , E , p, (V3, V�)).

Definition (Closed strategies)
Strategy %3:V3 → V is closed on W ⊆ V if for all v ∈W , we have:
I v ∈ V3 implies %3(v) ∈W , and
I v ∈ V� implies that w ∈W for all (v , w) ∈ E

For %3 closed on W , plays consistent with %3 and starting in W stay within W

Definition (Closed sets)
Set W ⊆ V is 3-closed if 3 has a strategy closed on W . Likewise for �-closed.
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Concepts

Parity game G = (V , E , p, (V3, V�)).

Definition (Dominion)
D ⊆W ⊆W# is a dominion of #, if she has a memoryless strategy % that is:
I winning for # from all v ∈ D
I closed on D
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Concepts

Example (Dominions)

Consider parity game G :

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

I {X}, {Z ′, Z , W } are �-dominions
I Note that {Z , W } and {Y , Y ′} are

no dominions (why?)
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Concepts

Parity game G = (V , E , p, (V3, V�)).

Definition (Attractor sets)
The attractor set to U ⊆ V for # (denoted #-Attr (G , U)) is the least set of vertices:
I containing U
I such that # can force any play to reach U.

Inductively: #-Attr (G , U) =
⋃

k∈N
#-Attrk(G , U) where

#-Attr0(G , U) = U
#-Attrk+1(G , U) = #-Attrk(G , U) ∪

{v ∈ V# | ∃v ′ ∈ V : (v , v ′) ∈ E ∧ v ′ ∈ #-Attrk(G , U)} ∪

{v ∈ V# | ∀v ′ ∈ V : (v , v ′) ∈ E =⇒ v ′ ∈ #-Attrk(G , U)})
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Concepts

Example (Attractor sets)

3

v1

1

v2

0 v3 1 v4

1

v5

2

v6

#-Attr (G , U): vertices from which # can force
the play to reach set U

Consider 3-Attr (G , {v3})

3-Attr0(G , {v3}) = {v3}
3-Attr1(G , {v3}) = {v1, v3}
3-Attr2(G , {v3}) = {v1, v2, v3, v5}

Time to compute attractor: O(|V |+ |E |)
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Concepts

Parity game G = (V , E , p, (V3, V�)).

If U is a 3-dominion (dually for �-dominion) in G then (by definition)
I there is a strategy % such that 3 wins U
I 3 can always choose to stay in U
I � cannot leave U (it is a trap)

...but also:
I A = 3-Attr (G , U) is an 3-dominion;
I 3 cannot leave V \ A
I If (W3, W�) is solution of G \ A, then (W3 ∪ A, W�) is solution of G .
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Concepts

Visually:

V3

V�

W3 W� A U

I U is a 3-dominion
I A = -Attr3(G , U)

I A is a 3-dominion
I (W3, W�) winning sets G \ A
I (W3 ∪ A, W�) winning sets G \ A
I � cannot leave A
I 3 can stay in A
I 3 cannot leave V \ A
I � can avoid A from V \ A
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Recursively solving parity games

Divide and conquer
I Base: trivial games with at most one priority
I Step:

• Compute dominion
• Solve remaining subgame
• Assemble winning sets/strategies from winning sets/strategies of subgames
• Attractor strategy for one of players reaching set of nodes with minimal priority in the
game
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Recursive solving parity games

Parity game G = (V , E , p, (V3, V�)).

Recursive(G): recursively solve parity game G
Return: partitioning (W3, W�) where 3 wins from W3, and � wins from W�

1: m← min{p(v) | v ∈ V }
2: h← max{p(v) | v ∈ V }
3: if h = m or V = ∅ then
4: if m is even or V = ∅ then
5: return (V , ∅)
6: else
7: return (∅, V )
8: end if
9: end if

10: #← 3 if m is even and � otherwise
11: U ← {v ∈ V | p(v) = m}
12: A← #-Attr (G , U)
13: (W ′3, W ′�)← Recursive(G \ A)

14: if W ′
#

= ∅ then
15: W# ← A ∪W ′#
16: W# ← ∅
17: else
18: B ← #-Attr (G , W ′

#
)

19: (W3, W�)← Recursive(G \ B)
20: W# ←W# ∪ B
21: end if
22: return (W3, W�)
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Assume that the minimal priority in G is even

G
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Assume that the minimal priority in G is even

U (min. priority)

G

line 11

18/32

Department of Mathematics and Computer Science

Assume that the minimal priority in G is even

U (min. priority)

Attr3(U)

G

line 12
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Assume that the minimal priority in G is even

U (min. priority)

Attr3(U)

Rec(G \ Attr3(U)

G

line 13
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Assume that the minimal priority in G is even

U (min. priority)

Attr3(U)

W ′
3

G

line 14 (case W ′
� = ∅)
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Assume that the minimal priority in G is even

W3

G

line 15, 16 & 22 (case W ′
� = ∅)
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Assume that the minimal priority in G is even

U (min. priority)

Attr3(U)

W ′
3 W ′

�

G

line 17 (case W ′
� 6= ∅)
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Assume that the minimal priority in G is even

U (min. priority)

Attr3(U)

W ′
3 W ′

�

Attr�(W ′
�)

G

line 18
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Assume that the minimal priority in G is even

W�

Rec(G \ (W�)

G

line 19
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Assume that the minimal priority in G is even

W�W3

G

line 22
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Observations

I Lines 1-9: base case, straightforward.
I Lines 10-13: try to establish a dominion. Two cases:

• Lines 12-15: (# wins all):# wins in G \ A, then # wins all of G , since if # visits A,
then # plays towards U using attractor, visiting A infinitely often, hence m infinitely
often. If A not visited, game stays in G \ A.

• Lines 16-20: (#-dominion found): W ′
#

is a #-dominion in G \ A. Since # cannot leave

G \ A also W ′
#

is #-dominion in G . Then solve remaining game recursively and fix
solution, compose strategies.
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Exercise

Apply the recursive algorithm to the following parity game G

3

Z
3Z ′ 3 W

m ← 3
h ← 3
return (∅, {W , Z , Z ′})
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Exercise

Apply the recursive algorithm to the following parity game G

2 Y ′

2 Y

3

Z
3Z ′ 3 W

1: m ← 2
2: h ← 3
3: . . .
10: #← 3
11: U ← {v ∈ V | p(v) = 2} = {Y , Y ′}
12: A← -Attr3(G , U) = {Y , Y ′}
13: (W ′3, W ′

�
)← Recursive(G \ {Y , Y ′}) = (∅, {Z , Z ′, W})

14: if W ′
�

= ∅ then
15: . . .
17: else
18: B ← -Attr�(G , W ′

�
) = {Y , Y ′, Z , Z ′, W}

19: (W3, W�)← Recursive(G \ B) = (∅, ∅)

20: W� ← W� ∪ B = B = {Y , Y ′, Z , Z ′, W}
21: end if
22: return (W3, W�) = (∅, {Y , Y ′, Z , Z ′, W})
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Exercise

Consider parity game G :

1X

1X ′

2 Y ′

2 Y

3

Z
3Z ′ 3 W

1: m ← 1
2: h ← 3
3: . . .
10: #← �
11: U ← {v ∈ V | p(v) = 1} = {X , X ′}
12: A← -Attr�(G , U) = {X , X ′}
13: (W ′3, W ′

�
)← Recursive(G \ {X , X ′}) = (∅, {Y , Y ′, Z , Z ′, W})

14: if W ′3 = ∅ then
15: W� ← A ∪W ′

�
= {X , X ′, Y , Y ′, Z , Z ′, W}

16: W3 ← ∅
17: else
18: . . .
21: end if
22: return (W3, W�) = (∅, {X , X ′, Y , Y ′, Z , Z ′, W})

So, player � wins from all vertices!
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Complexity

Parity game G = (V , E , p, (V3, V�)).

n = |V |, m = |E |, d = |{p(v) | v ∈ V }|.

I Worst-case running time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(m · nd )

I Lowerbound on worst-case (Gazda&Willemse ’13) . . . . . . . . . . . . . . . . . . . . . . . . . Ω(2n/3)

Special cases (Gazda&Willemse ’13):
I Basic algorithm:

• weak games (Gazda&Willemse ’13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O(d · (n + m))
• (nested) solitaire games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ω(2n/3)
• dull games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ω(2n/3)

I Optimised with SCC decomposition
• (nested) solitaire games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(n · (n + m))
• dull games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(n · (n + m))
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Wrap up

I Recursive algorithm:
• Divide and conquer
• Dominions
• Attractor sets
• O(m · nd )
• Exponential examples available

I Other algorithms:
• Iterative (e.g. small progress measures)
• Variations of recursive: start with other dominions
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Exercise

Consider the following parity game:

1
s1

2

s2
3

s3

I Compute the winning sets W3, W� for players 3 and � in this parity game using the
recursive algorithm.

I Translate this parity game to BES and solve the BES using Gauss elimination.
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