Algorithms for Model Checking (2IW55)

Lecture 8:
Small Progress Measures for Solving Parity Games
Background material:
M. Jurdziński, Small Progress Measures for Solving Parity Games

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

- McNaughton's/Zielonka's Recursive algorithm
- Today: Jurdziński's Small progress measures
- Characterise cycles reachable from each vertex
- Cycles can be used to decide the winner.
- Assign a certain measure to each vertex
- "bad" priority encountered: measure decreases
- "good" priority encountered: measure can increase
- Efficiently compute measure
- fixed point iteration

Cycles

Definition (Even Cycles and Odd Cycles)

An even (resp. odd) cycle is a cycle in which the lowest priority is even (resp. odd)

\square wins a vertex in a parity game iff she can ensure all cycles appearing in plays are odd.

Cycles

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

Definition (Solitaire game)

G is a \bigcirc-solitaire game if for all vertices $v \in V_{\bar{O}}$ we have:

$$
|\{w \in V \mid(v, w) \in E\}| \leq 1
$$

i.e., only one player makes (nontrivial) choices.

A strategy ϱ for player \bigcirc in G induces a solitaire game $G_{\varrho}=\left(V, E_{\varrho}, p,\left(V_{\diamond}, V_{\square}\right)\right)$, where

$$
\left.E_{\varrho}=\left\{(v, w) \in E \mid v \in V_{\bigcirc} \Rightarrow w=\varrho(v)\right\}\right\}
$$

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

- $W \subseteq V$
- strategy ϱ for \diamond closed on W.
- $G_{\varrho} \cap W$ is a solitaire game.

Property

ϱ is winning for player \diamond from all $v \in W$ if and only if all cycles in $G_{\varrho} \cap W$ are even

Small progress measures (Bird's-eye view)

- Characterise cycles reachable from each vertex
- Cycles can be used to decide the winner.
- Assign a certain measure to each vertex
- "bad" priority encountered: measure decreases
- "good" priority encountered: measure can increase
- Efficiently compute measure
- fixed point iteration

We wish to record information about plays such that:

- when, along a play we encounter priority i, we then have the means to ignore information about less significant priorities (i.e., > i)
- the information we record about priorities k outweighs information about $/$ if $k<l$

Represent information as follows:

- Tuples to record information about priorities
- Order tuples lexicographically

Let $\alpha \in \mathbb{N}^{d}$ be a d-tuple of natural numbers

- we number its components from 0 to $d-1$, i.e. $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-1}\right)$,
- $<, \leq,=, \neq, \geq,>$ on tuples denote lexicographic ordering,
- $\left(n_{0}, n_{1}, \ldots, n_{k}\right) \equiv_{i}\left(m_{0}, m_{1}, \ldots, m_{l}\right)$ iff $\left(n_{0}, n_{1}, \ldots, n_{i}\right) \equiv\left(m_{0}, m_{1}, \ldots, m_{i}\right)$, for $\equiv \in\{<, \leq,=, \neq, \geq,>\}$
- When $i>k$ or $i>l$, the tuples will be suffixed with 0s

Example (d-tuples)

- $(0,1,0,1)={ }_{0}(0,2,0,1) \equiv(0)=(0) \equiv$ true
- $(0,1,0,1)<_{1}(0,2,0,1) \equiv(0,1)<(0,2) \equiv$ true
- $(0,1,0,1) \geq_{3}(0,2,0,1) \equiv(0,1,0,1) \geq(0,2,0,1) \equiv$ false

Progress Measures

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Let $d=\max \{p(v) \mid v \in V\}+1$.

- Define $V_{i}=\{v \in V \mid p(v)=i\}$,
- Denote $n_{i}=\left|V_{i}\right|$, the number of vertices with priority i,

Define $\mathbb{M}^{\diamond} \subseteq \mathbb{N}^{d}$ with:

- 0 on even positions
- Natural numbers $\leq n_{i}$ on odd positions i

Example

Determine maximum value of \mathbb{M}^{\diamond} for the following parity game:

- Maximum value of \mathbb{M}^{\diamond} is $(0,2,0,1)$
- $\mathbb{M}^{\triangleright}=\{0\} \times\{0,1,2\} \times\{0\} \times\{0,1\}$

Progress Measures

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

Definition (Parity progress measure)

Let G be an \square-solitaire game. Mapping $\varrho: V \rightarrow \mathbb{M}^{\diamond}$ is a parity progress measure for G if for all $(v, w) \in E$:

- $\varrho(v) \geq_{p(v)} \varrho(w)$ if $p(v)$ is even
- $\varrho(v)>_{p(v)} \varrho(w)$ if $p(v)$ is odd

For all strategies ψ for player \diamond, closed on W :

- ψ is winning for player \diamond from W if and only if all cycles in $G_{\psi} \cap W$ are even
- All cycles in $G_{\psi} \cap W$ are even iff there exists a parity progress measure ϱ for $G_{\psi} \cap W$

Problem: parity progress measures only exist for even-dominated cycles.

Second clause requires $\varrho(v)>_{1} \varrho(v)$

Progress Measures

Dealing with odd-dominated cycles.

- Define $\mathbb{M}^{\diamond, T}=\mathbb{M}^{\diamond} \cup\{\top\}$
- Extend ordering:
- for all $m \in \mathbb{M}^{\diamond}$, define $m<\top, m<_{i} \top, m \neq \top$ and $m \neq{ }_{i} \top$
- $\top={ }_{i} \top$ for all i
- Replace co-domain of parity progress measures with $\mathbb{M}^{\diamond, \top}$.
- For an \square-solitaire game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$:
- $W_{\diamond}=\{v \in V \mid \exists \varrho: \varrho(v) \neq \top\}$
- $W_{\square}=V \backslash W_{\diamond}$.
- Note: $\exists \varrho: \varrho(v) \neq \top$ iff the least ϱ (ordered pointwise) is such that $\varrho(v) \neq \top$

Example

- Observe: $\varrho(u)=\varrho(v)=\top$
- Measure can identify both even and odd reachable cycles in a solitaire game.

Progress Measures

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

Towards measures for two-player games

Definition (Prog)

If $\varrho: V \rightarrow \mathbb{M}^{\diamond, T}$ and $(v, w) \in E$, then $\operatorname{Prog}(\varrho, v, w)$ is the least $m \in \mathbb{M}^{\diamond, \top}$, such that

- if $p(v)$ is even, then $m \geq_{p(v)} \varrho(w)$
- if $p(v)$ is odd, then either $m>_{p(v)} \varrho(w)$, or both $m=\varrho(w)=\top$

Example

Let $\mathbb{M}^{\diamond}=\{0\} \times\{0,1,2\} \times\{0\} \times\{0,1\}$

- Suppose $p(v)=0, \varrho(w)=(0,2,0,0)$.

Then $\operatorname{Prog}(\varrho, v, w)=(0,0,0,0)$

- Suppose $p(v)=1, \varrho(w)=(0,2,0,0)$.

Then $\operatorname{Prog}(\varrho, v, w)=\top$

- Suppose $p(v)=3, \varrho(w)=(0,2,0,0)$.

Then $\operatorname{Prog}(\varrho, v, w)=(0,2,0,1)$

Progress Measures

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

Definition (Game parity progress measure)

Mapping $\varrho: V \rightarrow \mathbb{M}^{\diamond, \top}$ is a game parity progress measure if for all $v \in V$:

- if $v \in V_{\diamond}$, then $\exists_{(v, w) \in E} \varrho(v) \geq_{p(v)} \operatorname{Prog}(\varrho, v, w)$
- if $v \in V_{\square}$, then $\forall_{(v, w) \in E} \varrho(v) \geq_{p(v)} \operatorname{Prog}(\varrho, v, w)$

If ϱ is the least game parity progress measure for G, then:

$$
\begin{gathered}
\varrho(v) \neq \top \\
\Leftrightarrow
\end{gathered}
$$

player \diamond can prevent reaching \square-dominated cycles

- Characterise cycles reachable from each vertex
- Cycles can be used to decide the winner.
- Assign a certain measure to each vertex
- "bad" priority encountered: measure decreases
- "good" priority encountered: measure can increase
- Efficiently compute measure
- fixed point iteration

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

- $\varphi, \varrho: V \rightarrow \mathbb{M}^{\diamond, \top}$.
- Define $\varphi \sqsubseteq \varrho$ if $\varphi(v) \leq \varrho(v)$ for all $v \in V$
- write $\varphi \sqsubset \varrho$ if $\varphi \sqsubseteq \varrho$ and $\varphi \neq \varrho$.

The set of mappings ([V $\left.\rightarrow \mathbb{M}^{\diamond, T}\right], \sqsubseteq$) is a complete lattice

Define $\operatorname{Lift}_{v}(\varrho)$ for $v \in V$ as follows:

$$
\begin{cases}\varrho[v:=\varrho(v) \max \min \{\operatorname{Prog}(\varrho, v, w) \mid(v, w) \in E\}] & \text { if } v \in V_{\diamond} \\ \varrho[v:=\varrho(v) \max \max \{\operatorname{Prog}(\varrho, v, w) \mid(v, w) \in E\}] & \text { if } v \in V_{\square}\end{cases}
$$

Observe:

- For every $v \in V$, Lift ${ }_{v}$ is \sqsubseteq-monotone.
- A mapping $\varrho: V \rightarrow \mathbb{M}^{\diamond, \top}$ is a game parity progress measure if and only if $\operatorname{Lift}_{v}(\varrho) \sqsubseteq \varrho$ for all $v \in V$.
- Least game parity progress measure computable by fixpoint iteration (algorithm Lfp of Lecture 2)

Department of Mathematics and Computer Science ,

Computing Least Game Parity Progress Measures

Algorithm SPM(G)

$\varrho: V \rightarrow \mathbb{M}^{\diamond, \top} \leftarrow \lambda v \in V .(0, \ldots, 0)$
while $\varrho \sqsubset \operatorname{Lift}_{v}(\varrho)$ for some $v \in V$ do
$\varrho \leftarrow \operatorname{Lift}_{v}(\varrho)$
end while

Post condition:

- ϱ is least game parity progress measure
- $\{v \in V \mid \varrho(v) \neq \top\}$ is winning set for player \diamond
- $\{v \in V \mid \varrho(v)=\top\}$ is winning set for player \square

Consider parity game G :

Maximum value of \mathbb{M}^{\diamond} is $(0,2,0,3)$

Small progress measures (example) (1)

Initially: $\varrho \leftarrow \lambda v \in V .(0,0,0,0)$, so

v	$\varrho(v)$
X	$(0,0,0,0)$
X^{\prime}	$(0,0,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,0)$
W	$(0,0,0,0)$

Small progress measures (example) (2)

Step 2: $\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{X}}(\varrho)=\varrho\left[\boldsymbol{X}:=\max \left\{\operatorname{Prog}\left(\varrho, \boldsymbol{X}, \boldsymbol{X}^{\prime}\right), \operatorname{Prog}(\varrho, \boldsymbol{X}, \boldsymbol{X})\right\}\right]=\varrho[\boldsymbol{X}:=\max \{(0,1,0,0),(0,1,0,0)\}]=\varrho[\boldsymbol{X}:=$ (0, 1, 0, 0)]

v	$\varrho(v)$
X	$(0,1,0,0)$
X^{\prime}	$(0,0,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,0)$
W	$(0,0,0,0)$

Small progress measures (example) (3)

Step 3: $\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{X}}(\varrho)=\varrho\left[X:=\max \left\{\operatorname{Prog}\left(\varrho, \boldsymbol{X}, \boldsymbol{X}^{\prime}\right), \operatorname{Prog}(\varrho, \boldsymbol{X}, \boldsymbol{X})\right\}\right]=\varrho[\boldsymbol{X}:=\max \{(0,1,0,0),(0,2,0,0)\}]=\varrho[X:=$ (0, 2, 0, 0)]

v	$\varrho(v)$
X	$(0,2,0,0)$
X^{\prime}	$(0,0,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,0)$
W	$(0,0,0,0)$

Small progress measures (example) (4)

Step 4: $\varrho \leftarrow \operatorname{Lift} \boldsymbol{X}(\varrho)=\varrho\left[\boldsymbol{X}:=\max \left\{\operatorname{Prog}\left(\varrho, \boldsymbol{X}, \boldsymbol{X}^{\prime}\right), \operatorname{Prog}(\varrho, \boldsymbol{X}, \boldsymbol{X})\right\}\right]=\varrho[\boldsymbol{X}:=\max \{(0,1,0,0), \top\}]=\varrho[\boldsymbol{X}:=\top]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,0,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,0)$
W	$(0,0,0,0)$

Small progress measures (example) (5)

Step

5: Lift $\boldsymbol{Y}^{\prime}(\varrho)=\varrho\left[Y^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Y^{\prime}, X\right), \operatorname{Prog}\left(\varrho, Y^{\prime}, Y\right)\right\}\right]=\varrho\left[Y^{\prime}:=\min \{T,(0,0,0,0)\}\right]=\varrho\left[Y^{\prime}:=(0,0,0,0)\right]$ $\operatorname{Lift}_{\boldsymbol{Y}}(\varrho)=\varrho\left[Y:=\max \left\{\operatorname{Prog}(\varrho, Y, W), \operatorname{Prog}\left(\varrho, Y, Y^{\prime}\right)\right\}\right]=\varrho[Y:=\max \{(0,0,0,0),(0,0,0,0)\}]=\varrho[Y:=(0,0,0,0)]$ $\varrho \leftarrow \operatorname{Lift} \boldsymbol{X}^{\prime}(\varrho)=\varrho\left[X^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, \boldsymbol{X}^{\prime}, Y\right), \operatorname{Prog}\left(\varrho, X^{\prime}, Z\right)\right\}\right]=\varrho\left[X^{\prime}:=\min \{(0,1,0,0),(0,1,0,0)\}\right]=\varrho\left[X^{\prime}:=\right.$ (0, 1, 0, 0)]

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,0)$
W	$(0,0,0,0)$

Small progress measures (example) (6)

Step 6: $\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{Z}^{\prime}}(\varrho)=\varrho\left[\boldsymbol{Z}^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, \boldsymbol{Z}^{\prime}, \boldsymbol{Z}^{\prime}\right)\right\}\right]=\varrho\left[\boldsymbol{Z}^{\prime}:=\min \{(\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{1})\}\right]=\varrho\left[\boldsymbol{Z}^{\prime}:=(\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{1})\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,1)$
W	$(0,0,0,0)$

Small progress measures (example) (7)

Step 7: $\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{Z}^{\prime}}(\varrho)=\varrho\left[\boldsymbol{Z}^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, \boldsymbol{Z}^{\prime}, \boldsymbol{Z}^{\prime}\right)\right\}\right]=\varrho\left[\boldsymbol{Z}^{\prime}:=\min \{(0,0,0,2)\}\right]=\varrho\left[\boldsymbol{Z}^{\prime}:=(0,0,0,2)\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,2)$
W	$(0,0,0,0)$

Small progress measures (example) (8)

Step 8: $\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{Z}^{\prime}}(\varrho)=\varrho\left[\boldsymbol{Z}^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, \boldsymbol{Z}^{\prime}, \boldsymbol{Z}^{\prime}\right)\right\}\right]=\varrho\left[\boldsymbol{Z}^{\prime}:=\min \{(0,0,0,3)\}\right]=\varrho\left[\boldsymbol{Z}^{\prime}:=(0,0,0,3)\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,0,0,3)$
W	$(0,0,0,0)$

Small progress measures (example) (9)

Step 9: $\varrho \leftarrow \operatorname{Lift}\left(\varrho, Z^{\prime}\right)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{(0,1,0,0)\}\right]=\varrho\left[Z^{\prime}:=(0,1,0,0)\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,1,0,0)$
W	$(0,0,0,0)$

Small progress measures (example) (10)

Step 10: $\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{Z}^{\prime}}(\varrho)=\varrho\left[\boldsymbol{Z}^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, \boldsymbol{Z}^{\prime}, \boldsymbol{Z}^{\prime}\right)\right\}\right]=\varrho\left[\boldsymbol{Z}^{\prime}:=\min \{(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1})\}\right]=\varrho\left[\boldsymbol{Z}^{\prime}:=(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1})\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	$(0,1,0,1)$
W	$(0,0,0,0)$

Small progress measures (example) (11)

Step 11*: Repeat lifting Z^{\prime} even more often
$\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{Z}^{\prime}}(\varrho)=\varrho\left[\boldsymbol{Z}^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, \boldsymbol{Z}^{\prime}, \boldsymbol{Z}^{\prime}\right)\right\}\right]=\varrho\left[\boldsymbol{Z}^{\prime}:=\min \{\top\}\right]=\varrho\left[\boldsymbol{Z}^{\prime}:=\top\right]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	$(0,0,0,0)$
Z^{\prime}	\top
W	$(0,0,0,0)$

Step 12: $\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{Z}}(\varrho)=\varrho\left[\boldsymbol{Z}:=\min \left\{\operatorname{Prog}\left(\varrho, \boldsymbol{Z}, \boldsymbol{Z}^{\prime}\right)\right\}\right]=\varrho[\boldsymbol{Z}:=\min \{\top\}]=\varrho[\boldsymbol{Z}:=\top]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
Z	T
Z^{\prime}	\top
W	$(0,0,0,0)$

Small progress measures (example) (13)

Step 13:
$\varrho \leftarrow \operatorname{Lift} \boldsymbol{w}(\varrho)=\varrho\left[W:=\min \left\{\operatorname{Prog}(\varrho, W, Z), \operatorname{Prog}\left(\varrho, W, W^{\prime}\right)\right\}\right]=\varrho[W:=\min \{\top,(0,0,0,1)\}]=\varrho[W:=(0,0,0,1)]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
Y^{\prime}	$(0,0,0,0)$
\boldsymbol{Z}	T
Z^{\prime}	\top
W	$(0,0,0,1)$

Step 14*: Repeat lifting of W often
$\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{W}}(\varrho)=\varrho\left[W:=\min \left\{\operatorname{Prog}(\varrho, W, \boldsymbol{Z}), \operatorname{Prog}\left(\varrho, W, W^{\prime}\right)\right\}\right]=\varrho[W:=\min \{\top, \top\}]=\varrho[W:=\top]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	$(0,0,0,0)$
\boldsymbol{Y}^{\prime}	$(0,0,0,0)$
\boldsymbol{Z}	\top
\boldsymbol{Z}^{\prime}	\top
W	\top

Small progress measures (example) (15)

Step 15: $\varrho \leftarrow \operatorname{Lift} \boldsymbol{Y}(\varrho, Y)=\varrho\left[Y:=\max \left\{\operatorname{Prog}(\varrho, Y, W), \operatorname{Prog}\left(\varrho, Y, Y^{\prime}\right)\right\}\right]=\varrho[Y:=\max \{\top,(0,0,0,0)\}]=\varrho[Y:=\top]$

v	$\varrho(v)$
X	\top
X^{\prime}	$(0,1,0,0)$
Y	T
Y^{\prime}	$(0,0,0,0)$
Z	T
Z^{\prime}	T
W	T

Step 16: $\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{X}^{\prime}}(\varrho)=\varrho\left[X^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, X^{\prime}, Z\right), \operatorname{Prog}\left(\varrho, X^{\prime}, Y\right)\right\}\right]=\varrho\left[X^{\prime}:=\min \{\top, \top\}\right]=\varrho\left[X^{\prime}:=\top\right]$

v	$\varrho(v)$
X	T
X^{\prime}	T
Y	\top
Y^{\prime}	$(0,0,0,0)$
Z	T
Z^{\prime}	T
W	T

Small progress measures (example) (17)

Step 17: $\varrho \leftarrow \operatorname{Lift}_{\boldsymbol{Y}^{\prime}}(\varrho)=\varrho\left[Y^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Y^{\prime}, X\right), \operatorname{Prog}\left(\varrho, Y^{\prime}, Y\right)\right\}\right]=\varrho\left[Y^{\prime}:=\min \{\top, \top\}\right]=\varrho\left[Y^{\prime}:=\top\right]$

v	$\varrho(v)$
\boldsymbol{X}	\top
\boldsymbol{X}^{\prime}	\top
\boldsymbol{Y}	\top
\boldsymbol{Y}^{\prime}	\top
\boldsymbol{Z}	\top
\boldsymbol{Z}^{\prime}	\top
\boldsymbol{W}	\top

ϱ is least game parity progress measure, and $\{v \in V \mid \varrho(v) \neq \top\}=\emptyset$ is winning set for player \diamond. Hence player \square wins from all vertices

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

Let $\varrho: V \rightarrow \mathbb{M}^{O^{\top}}$ be the least game parity progress measure.

- Define strategy $\varrho: V_{\diamond} \rightarrow V$ for player \diamond, by setting $\varrho(v)$ to be a successor w of $v \in V_{\diamond}$ that minimises $\varrho(w)$
- ϱ is a winning strategy for player \diamond from $\{v \in V \mid \varrho(v) \neq \top\}$
- Strategy for \square cannot be inferred directly
- ...but can be computed on-the-fly

Gazda\&Willemse'13

Department of Mathematics and Computer Science
TU/e
Technische Universiteit Technische University of Technology

Complexity and Strategies

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right.$

Set $n=|V|, m=|E|, d=\max \{p(v) \mid v \in V\}$.

Worst-case running time complexity:

$$
\mathcal{O}\left(d \cdot m \cdot\left(\frac{n}{\lfloor d / 2\rfloor}\right)^{\lfloor d / 2\rfloor}\right)
$$

Lowerbound on worst-case:

$$
\Omega\left((\lceil n / d\rceil)^{\lceil d / 2\rceil}\right)
$$

- Model checking $L_{\mu}=$ solving Boolean equation systems
- Gauß Elimination for solving BES
- Solving BES = solving Parity games
- Recursive $\mathcal{O}\left(m \cdot n^{d}\right)$
- Small progress measures.. $\left(d \cdot m \cdot\left(\frac{n}{[d / 2\rfloor}\right)^{\lfloor d / 2\rfloor}\right)$
- bigstep (combination of the two above) $\left.\ldots \ldots \mathcal{A} \ldots \ldots \ldots^{d / 3}\right)$

