Algorithms for Model Checking (2IW55)

Lecture 8: Small Progress Measures for Solving Parity Games Background material:

M. Jurdziński, Small Progress Measures for Solving Parity Games

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw MF 6.073

Department of Mathematics and Computer Science

Algorithms for Parity games

McNaughton's/Zielonka's Recursive algorithm

Today: Jurdziński's Small progress measures

TU/e Technische Universiteit Eindhoven University of Technology

- Characterise cycles reachable from each vertex • Cycles can be used to decide the winner.
- Assign a certain *measure* to each vertex
 - "bad" priority encountered: measure decreases
 - "good" priority encountered: measure can increase
- Efficiently compute measure
 - fixed point iteration

4/45

Department of Mathematics and Computer Science

Cycles

Definition (Even Cycles and Odd Cycles)

An even (resp. odd) cycle is a cycle in which the lowest priority is even (resp. odd)

Cycles

Parity game $G = (V, E, p, (V_{\diamond}, V_{\Box}))$

Definition (Solitaire game)

 ${\it G}$ is a $\bigcirc{\text{-solitaire game}}$ if for all vertices $v\in V_{\overline{\bigcirc}}$ we have:

 $|\{w \in V \mid (v, w) \in E\}| \leq 1$

i.e., only one player makes (nontrivial) choices.

A strategy ρ for player \bigcirc in G induces a solitaire game $G_{\rho} = (V, E_{\rho}, p, (V_{\diamond}, V_{\Box}))$, where

 $E_{\varrho} = \{ (v, w) \in E \mid v \in V_{\bigcirc} \Rightarrow w = \varrho(v) \} \}$

Parity game $G = (V, E, p, (V_{\diamond}, V_{\Box})).$

- $W \subseteq V$
- strategy ρ for \diamond closed on W.
- $G_{\varrho} \cap W$ is a solitaire game.

Property

 ϱ is winning for player \diamond from all $v \in W$ if and only if all cycles in $G_{\varrho} \cap W$ are even

Department of Mathematics and Computer Science

7/45

Progress Measures

We wish to record information about plays such that:

- when, along a play we encounter priority *i*, we then have the means to ignore information about less significant priorities (i.e., > *i*)
- the information we record about priorities k outweighs information about I if k < I

Represent information as follows:

- Tuples to record information about priorities
- Order tuples lexicographically

10/45

Department of Mathematics and Computer Science

Progress Measures

Let $\alpha \in \mathbb{N}^d$ be a *d*-tuple of natural numbers

- we number its components from 0 to d-1, i.e. $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{d-1})$,
- ► $<, \leq, =, \neq, \geq, >$ on tuples denote lexicographic ordering,
- $(n_0, n_1, ..., n_k) \equiv_i (m_0, m_1, ..., m_l)$ iff $(n_0, n_1, ..., n_i) \equiv (m_0, m_1, ..., m_i)$, for $\equiv \in \{<, \le, =, \ne, \ge, >\}$
- When i > k or i > l, the tuples will be suffixed with 0s

Example (*d*-tuples)

- $(0, 1, 0, 1) =_0 (0, 2, 0, 1) \equiv (0) = (0) \equiv true$
- $(0, 1, 0, 1) <_1 (0, 2, 0, 1) \equiv (0, 1) < (0, 2) \equiv \mathsf{true}$
- $(0, 1, 0, 1) \ge_3 (0, 2, 0, 1) \equiv (0, 1, 0, 1) \ge (0, 2, 0, 1) \equiv \mathsf{false}$

Department of Mathematics and Computer Science

Progress Measures

Parity game $G = (V, E, p, (V_{\diamond}, V_{\Box})).$

Let $d = \max\{p(v) \mid v \in V\} + 1$.

- Define $V_i = \{v \in V \mid p(v) = i\}$,
- Denote $n_i = |V_i|$, the number of vertices with priority *i*,

Define $\mathbb{M}^{\diamond} \subseteq \mathbb{N}^{d}$ with:

- 0 on even positions
- Natural numbers $\leq n_i$ on odd positions *i*

TU/e Technische Universiteit Eindhoven University of Technology

Example

Determine maximum value of \mathbb{M}^{\diamond} for the following parity game:

- Maximum value of \mathbb{M}^{\diamond} is (0, 2, 0, 1)
- $\blacktriangleright \mathbb{M}^{\diamond} = \{0\} \times \{0, 1, 2\} \times \{0\} \times \{0, 1\}$

Department of Mathematics and Computer Science

Progress Measures

Parity game $G = (V, E, p, (V_{\diamond}, V_{\Box}))$

Definition (Parity progress measure)

Let G be an \Box -solitaire game. Mapping $\varrho: V \to \mathbb{M}^{\diamond}$ is a parity progress measure for G if for all $(v, w) \in E$:

- $\varrho(v) \ge_{\rho(v)} \varrho(w)$ if $\rho(v)$ is even
- $\varrho(v) >_{p(v)} \varrho(w)$ if p(v) is odd

For all strategies ψ for player \diamondsuit , closed on W:

- ψ is winning for player \diamond from W if and only if all cycles in $G_{\psi} \cap W$ are even
- All cycles in $G_\psi \cap W$ are even iff there exists a parity progress measure ϱ for $G_\psi \cap W$

TU/e Technische Universiteit Eindhoven University of Technology

Progress Measures

Problem: parity progress measures only exist for even-dominated cycles.

Second clause requires $\varrho(v) >_1 \varrho(v)$

16/45

Department of Mathematics and Computer Science

Progress Measures

Dealing with odd-dominated cycles.

- Define $\mathbb{M}^{\diamond,\top} = \mathbb{M}^{\diamond} \cup \{\top\}$
- Extend ordering:
 - for all $m \in \mathbb{M}^{\diamond}$, define $m < \top$, $m <_i \top$, $m \neq \top$ and $m \neq_i \top$
 - $\top =_i \top$ for all *i*
- Replace co-domain of parity progress measures with $\mathbb{M}^{\diamond,\top}$.
- ► For an \Box -solitaire game $G = (V, E, p, (V_{\diamond}, V_{\Box}))$:
 - $W_{\diamond} = \{ v \in V \mid \exists \varrho : \varrho(v) \neq \top \}$ • $W_{\Box} = V \setminus W_{\diamond}.$

▶ Note: $\exists \varrho : \varrho(v) \neq \top$ iff the least ϱ (ordered pointwise) is such that $\varrho(v) \neq \top$

Example

• Observe: $\varrho(u) = \varrho(v) = \top$

Measure can identify both even and odd reachable cycles in a solitaire game.

18/45

Department of Mathematics and Computer Science

Progress Measures

Parity game $G = (V, E, p, (V_{\diamond}, V_{\Box}))$

Towards measures for two-player games

Definition (Prog)

If $\varrho: V \to \mathbb{M}^{\diamond, \top}$ and $(v, w) \in E$, then $Prog(\varrho, v, w)$ is the least $m \in \mathbb{M}^{\diamond, \top}$, such that

- if p(v) is even, then $m \ge_{p(v)} \varrho(w)$
- if p(v) is odd, then either $m >_{p(v)} \varrho(w)$, or both $m = \varrho(w) = \top$

Example

Let $\mathbb{M}^{\diamond}=\{0\}\times\{0,1,2\}\times\{0\}\times\{0,1\}$

- Suppose p(v) = 0, $\varrho(w) = (0, 2, 0, 0)$. Then $Prog(\varrho, v, w) = (0, 0, 0, 0)$
- Suppose p(v) = 1, $\varrho(w) = (0, 2, 0, 0)$. Then $Prog(\varrho, v, w) = \top$
- Suppose p(v) = 3, $\varrho(w) = (0, 2, 0, 0)$. Then $Prog(\varrho, v, w) = (0, 2, 0, 1)$

20/45

Department of Mathematics and Computer Science

Progress Measures

Parity game $G = (V, E, p, (V_{\diamond}, V_{\Box}))$

Definition (Game parity progress measure)

Mapping $\rho: V \to \mathbb{M}^{\diamond, \top}$ is a game parity progress measure if for all $v \in V$:

- if $v \in V_{\diamond}$, then $\exists_{(v,w) \in E} \varrho(v) \ge_{p(v)} Prog(\varrho, v, w)$
- ▶ if $v \in V_{\Box}$, then $\forall_{(v,w) \in E} \varrho(v) \ge_{p(v)} Prog(\varrho, v, w)$

If ρ is the least game parity progress measure for G, then:

$$\varrho(\mathbf{v}) \neq \top$$

player \diamond can prevent reaching \Box -dominated cycles

- Characterise cycles reachable from each vertex
 - Cycles can be used to decide the winner.
- Assign a certain measure to each vertex
 - "bad" priority encountered: measure decreases
 - "good" priority encountered: measure can increase
- Efficiently compute measure
 - fixed point iteration

22/45

Department of Mathematics and Computer Science

Computing Least Game Parity Progress Measures

Parity game $G = (V, E, p, (V_{\diamond}, V_{\Box}))$

- $\varphi, \varrho: V \to \mathbb{M}^{\diamond, \top}$.
- Define $\varphi \sqsubseteq \varrho$ if $\varphi(v) \le \varrho(v)$ for all $v \in V$
- write $\varphi \sqsubseteq \varrho$ if $\varphi \sqsubseteq \varrho$ and $\varphi \neq \varrho$.

The set of mappings $([V \to \mathbb{M}^{\diamond, \top}], \sqsubseteq)$ is a complete lattice

Define $Lift_{v}(\varrho)$ for $v \in V$ as follows:

$$\begin{cases} \varrho[v := \varrho(v) \max \min\{\operatorname{Prog}(\varrho, v, w) \mid (v, w) \in E\}] & \text{if } v \in V_{\diamond} \\ \varrho[v := \varrho(v) \max \max\{\operatorname{Prog}(\varrho, v, w) \mid (v, w) \in E\}] & \text{if } v \in V_{\Box} \end{cases}$$

23/45

TU/e Technische Universiteit Eindhoven University of Technology

Observe:

- ▶ For every $v \in V$, *Lift*_v is \sqsubseteq -monotone.
- A mapping $\varrho: V \to \mathbb{M}^{\diamond, \top}$ is a game parity progress measure if and only if $Lift_v(\varrho) \sqsubseteq \varrho$ for all $v \in V$.
- Least game parity progress measure computable by fixpoint iteration (algorithm Lfp) of Lecture 2)

Department of Mathematics and Computer Science

Computing Least Game Parity Progress Measures
Algorithm SPM(G)

$$\varrho: V \to \mathbb{M}^{\diamond, \top} \leftarrow \lambda v \in V.(0, ..., 0)$$

while $\varrho \sqsubset Lift_v(\varrho)$ for some $v \in V$ do
 $\varrho \leftarrow Lift_v(\varrho)$
end while
Post condition
• ϱ is least game parity progress measure
• $\{v \in V \mid \varrho(v) \neq \top\}$ is winning set for player \diamond
• $\{v \in V \mid \varrho(v) = \top\}$ is winning set for player \Box

Small progress measures (example)

Consider parity game G:

Department of Mathematics and Computer Science

Small progress measures (example) (1)

Initially: $\rho \leftarrow \lambda v \in V.(0, 0, 0, 0)$, so

v	$\varrho(\mathbf{v})$
X	(0, 0, 0, 0)
<i>X'</i>	(0, 0, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0, 0, 0, 0)
Ζ'	(0, 0, 0, 0)
W	(0, 0, 0, 0)

/ \

TU/e Technische Universiteit Eindhoven University of Technology

26/45

 $\mathsf{Step 2:} \ \varrho \leftarrow \mathit{Lift}_{\boldsymbol{X}}(\varrho) = \varrho[\boldsymbol{X} := \mathsf{max}\{\mathit{Prog}(\varrho, \boldsymbol{X}, \boldsymbol{X}'), \mathit{Prog}(\varrho, \boldsymbol{X}, \boldsymbol{X})\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 1, 0, 0)\}]$ (0, 1, 0, 0)]

v	$\varrho(\mathbf{v})$
X	(0, 1, 0, 0)
Χ'	(0, 0, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0, 0, 0, 0)
Z'	(0, 0, 0, 0)
W	(0, 0, 0, 0)

Department of Mathematics and Computer Science

Small progress measures (example) (3) 28/45 $\mathsf{Step 3:} \ \varrho \leftarrow \mathsf{Lift}_{\boldsymbol{X}}(\varrho) = \varrho[\boldsymbol{X} := \mathsf{max}\{\mathsf{Prog}(\varrho, \boldsymbol{X}, \boldsymbol{X}'), \mathsf{Prog}(\varrho, \boldsymbol{X}, \boldsymbol{X})\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), (0, 2, 0, 0)\}]$ (0, 2, 0, 0) $\varrho(\mathbf{v})$ X Y Y' Z Z' W (0, 2, 0, 0)(0, 0, 0, 0)(0, 0, 0, 0) (0, 0, 0, 0)(0, 0, 0, 0)(0, 0, 0, 0) (0, 0, 0, 0)TU/e Technische Universiteit Eindhoven University of Technology

 $\mathsf{Step 4:} \ \varrho \leftarrow \mathsf{Lift}_{\boldsymbol{X}}(\varrho) = \varrho[\boldsymbol{X} := \mathsf{max}\{\mathsf{Prog}(\varrho, \boldsymbol{X}, \boldsymbol{X}'), \mathsf{Prog}(\varrho, \boldsymbol{X}, \boldsymbol{X})\}] = \varrho[\boldsymbol{X} := \mathsf{max}\{(0, 1, 0, 0), \top\}] = \varrho[\boldsymbol{X} := \top]$

v	$\varrho(\mathbf{v})$
X X' Y	(0, 0, 0, 0) (0, 0, 0, 0)
Y' Z Z' W	(0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

Department of Mathematics and Computer Science

Small progress measures (example) (5)

Step

 $5:Lift_{\mathbf{Y}'}(\varrho) = \varrho[\mathbf{Y}' := \min\{Prog(\varrho, \mathbf{Y}', \mathbf{X}), Prog(\varrho, \mathbf{Y}', \mathbf{Y})\}] = \varrho[\mathbf{Y}' := \min\{\top, (0, 0, 0, 0)\}] = \varrho[\mathbf{Y}' := (0, 0, 0, 0)]$ $Lift_{\mathbf{Y}}(\varrho) = \varrho[\mathbf{Y} := \max\{Prog(\varrho, \mathbf{Y}, W), Prog(\varrho, \mathbf{Y}, \mathbf{Y}')\}] = \varrho[\mathbf{Y} := \max\{(0, 0, 0, 0), (0, 0, 0, 0)\}] = \varrho[\mathbf{Y} := (0, 0, 0, 0)]$ $\varrho \leftarrow Lift_{\mathbf{X}'}(\varrho) = \varrho[\mathbf{X}' := \min\{Prog(\varrho, \mathbf{X}', \mathbf{Y}), Prog(\varrho, \mathbf{X}', \mathbf{Z})\}] = \varrho[\mathbf{X}' := \min\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[\mathbf{X}' := (0, 1, 0, 0)]$

30/45

 $\mathsf{Step 6:} \ \varrho \leftarrow \mathit{Lift}_{\mathbf{Z'}}(\varrho) = \varrho[\mathbf{Z'} := \min\{\mathit{Prog}(\varrho, \mathbf{Z'}, \mathbf{Z'})\}] = \varrho[\mathbf{Z'} := \min\{(0, 0, 0, 1)\}] = \varrho[\mathbf{Z'} := (0, 0, 0, 1)]$

v	$\varrho(\mathbf{v})$
X	T
Χ'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0, 0, 0, 0)
Ζ'	(0, 0, 0, 1)
W	(0, 0, 0, 0)

TU/e Technische Universiteit Eindhoven University of Technology

Department of Mathematics and Computer Science

Small progress measures (example) (7) Step 7: $e \leftarrow Lift_{Z'}(e) = e[Z' := min\{Prog(e, Z', Z')\}] = e[Z' := min\{(0, 0, 0, 2)\}] = e[Z' := (0, 0, 0, 2)]$ $\frac{\frac{v | e(v)}{X' | (0, 1, 0, 0)}}{Y' | (0, 0, 0, 0)}$ $\frac{z' | (0, 0, 0, 0)}{Z' | (0, 0, 0, 0)}$ Step 8: $\varrho \leftarrow Lift_{Z'}(\varrho) = \varrho[Z' := \min\{Prog(\varrho, Z', Z')\}] = \varrho[Z' := \min\{(0, 0, 0, 3)\}] = \varrho[Z' := (0, 0, 0, 3)]$

v	$\varrho(\mathbf{v})$
X	Т
Χ'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
\mathbf{Y}'	(0, 0, 0, 0)
Ζ	(0, 0, 0, 0)
Ζ'	(0, 0, 0, 3)
W	(0, 0, 0, 0)

Department of Mathematics and Computer Science

Step 9: $\rho \leftarrow Lift(\rho, Z') = \rho[Z' := \min\{Prog(\rho, Z', Z')\}] = \rho[Z' := \min\{(0, 1, 0, 0)\}] = \rho[Z' := (0, 1, 0, 0)]$ $\frac{v | \rho(v)|}{X | (0, 1, 0, 0)|}$ $\frac{V | \rho(v)|}{Y | (0, 0, 0, 0)|}$

Step 10: $\rho \leftarrow Lift_{Z'}(\rho) = \rho[Z' := \min\{Prog(\rho, Z', Z')\}] = \rho[Z' := \min\{(0, 1, 0, 1)\}] = \rho[Z' := (0, 1, 0, 1)]$

v	$\varrho(\mathbf{v})$
X	Т
Χ'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Ζ	(0, 0, 0, 0)
Ζ'	(0, 1, 0, 1)
W	(0, 0, 0, 0)

35/45

TU/e Technische Universiteit Eindhoven University of Technology

Department of Mathematics and Computer Science

Small progress measures (example) (11) 36/45 Step 11*: Repeat lifting Z' even more often $\varrho \leftarrow Lift_{Z'}(\varrho) = \varrho[Z' := \min\{Prog(\varrho, Z', Z')\}] = \varrho[Z' := \min\{\top\}] = \varrho[Z' := \top]$ v X' Y Y' Z Z' W $\varrho(\mathbf{v})$ (0, 1, 0, 0)(0, 0, 0, 0)(0, 0, 0, 0)(0, 0, 0, 0)(0, 0, 0, 0)TU/e Technische Universiteit Eindhoven University of Technology $\mathsf{Step 12:} \ \varrho \leftarrow \mathit{Lift}_{\boldsymbol{Z}}(\varrho) = \varrho[\boldsymbol{Z} := \min\{\mathit{Prog}(\varrho, \boldsymbol{Z}, \boldsymbol{Z}')\}] = \varrho[\boldsymbol{Z} := \min\{\top\}] = \varrho[\boldsymbol{Z} := \top]$

v	$\varrho(\mathbf{v})$
X' Y Y' Z Z' W	$ \begin{array}{c} & \top \\ (0, 1, 0, 0) \\ (0, 0, 0, 0) \\ (0, 0, 0, 0) \\ & \top \\ & \top \\ (0, 0, 0, 0) \end{array} $

Department of Mathematics and Computer Science

Small progress measures (example) (13) $Step 13: \\ \varrho \leftarrow Lift_{W}(\varrho) = \varrho[W := \min\{Prog(\varrho, W, Z), Prog(\varrho, W, W')\}] = \varrho[W := \min\{\top, (0, 0, 0, 1)\}] = \varrho[W := (0, 0, 0, 1)]$ $\frac{v \mid \varrho(v)}{X \mid (0, 1, 0, 0)}$ $Y' \mid (0, 0, 0, 0)$ $Z' \mid (0, 0, 0, 0)$ $Z' \mid (0, 0, 0, 1)$

Step 14*: Repeat lifting of W often $\varrho \leftarrow Lift_{W}(\varrho) = \varrho[W := \min\{Prog(\varrho, W, Z), Prog(\varrho, W, W')\}] = \varrho[W := \min\{\top, \top\}] = \varrho[W := \top]$

v	$\varrho(\mathbf{v})$
X	⊤
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	⊤
Z'	⊤
W	⊤

Small progress measures (example) (15)
Step 15:
$$\varrho \leftarrow Lift_{\mathbf{Y}}(\varrho, \mathbf{Y}) = \varrho[\mathbf{Y} := \max\{Prog(\varrho, \mathbf{Y}, W), Prog(\varrho, \mathbf{Y}, \mathbf{Y}')\}] = \varrho[\mathbf{Y} := \max\{\top, (0, 0, 0, 0)\}] = \varrho[\mathbf{Y} := \top]$$

$$\frac{\frac{v | \varrho(v)}{X' | (0, 1, 0, 0)}}{Y' | (0, 0, 0, 0)}$$

$$\frac{z}{Z' | T}{W | T}$$

TU/e Technische Universiteit Eindhoven University of Technology

 $\mathsf{Step 16:} \ \varrho \leftarrow \mathsf{Lift}_{\mathbf{X}'}(\varrho) = \varrho[\mathbf{X}' := \min\{\mathsf{Prog}(\varrho, \mathbf{X}', \mathbf{Z}), \mathsf{Prog}(\varrho, \mathbf{X}', \mathbf{Y})\}] = \varrho[\mathbf{X}' := \min\{\top, \top\}] = \varrho[\mathbf{X}' := \top]$

v	$\varrho(\mathbf{v})$
X	Т
Χ'	Т
Y	Т
Y'	(0, 0, 0, 0)
Ζ	Ť
Ζ'	Т
W	T

Department of Mathematics and Computer Science

Small progress measures (example) (17) Step 17: $\varrho \leftarrow Lift_{\mathbf{Y}'}(\varrho) = \varrho[\mathbf{Y}' := \min\{Prog(\varrho, \mathbf{Y}', \mathbf{X}), Prog(\varrho, \mathbf{Y}', \mathbf{Y})\}] = \varrho[\mathbf{Y}' := \min[\top, \top]] = \varrho[\mathbf{Y}' := \top]$ $\frac{\frac{v \mid \varrho(v)}{X' \mid \top}}{Y' \mid \top}$ $\frac{y' \mid \varrho(v)}{T}$ $\frac{y' \mid \varphi' \mid \nabla}{Z' \mid \top}$ $\frac{z' \mid \nabla}{T}$ $\frac{z' \mid \nabla}{Z' \mid \nabla}$ $\frac{z' \mid \nabla}{T}$ $\frac{z' \mid \nabla}{Z' \mid \nabla}$ $\frac{z' \mid \nabla}{T}$ $\frac{z' \mid \nabla}{T}$

Department of Mathematics and Computer Science

Complexity and Strategies

Parity game $G = (V, E, p, (V_{\diamond}, V_{\Box}))$

Set
$$n = |V|$$
, $m = |E|$, $d = \max\{p(v) \mid v \in V\}$.

Worst-case running time complexity:

$$\mathcal{O}(d \cdot m \cdot (\frac{n}{\lfloor d/2 \rfloor})^{\lfloor d/2 \rfloor})$$

Lowerbound on worst-case:

$$\Omega((\lceil n/d \rceil)^{\lceil d/2 \rceil})$$

Summary Part II

 Model checking L_µ = solving Boolean equation systems Gauß Elimination for solving BES O(2^E) Solving BES = solving Parity games
• Recursive $\mathcal{O}(m \cdot n^d)$
• Small progress measures $\mathcal{O}(d \cdot m \cdot (\frac{n}{\lfloor d/2 \rfloor})^{\lfloor d/2 \rfloor})$
• bigstep (combination of the two above) $\approx \mathcal{O}(n^{d/3})$

Department of Mathematics and Computer Science