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Symbolic Model Checking

In summary, symbolic model checking:

I Recursively processes subformulae
I Represent the set of states satisfying a subformula by OBDDs
I Treats temporal operators by fixed point computations
I Relies on efficient implementation of equivalence test, and ∧,∨,¬ and ∃ connectives

on OBDDs.
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Symbolic Model Checking

Fix a Kripke Structure M = 〈S ,R, L〉.

The temporal operators of CTL are characterised by fixed points:
I E F g = µZ .g ∨ E X Z

I E G f = νZ .f ∧ E X Z

I E [f U g ] = µZ .g ∨ (f ∧ E X Z)

I Least Fixed Points: start iteration at false (∅)
I Greatest Fixed Points: start iteration at true (S)

Intuition:
I Eventually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . least fixed points
I Globally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . greatest fixed points
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Symbolic Model Checking

CTL model checking with Fixed Points

Function check(f ) takes a formula f and returns the set of states where f holds:
{s | s |= f } (given a fixed Kripke Structure M = 〈S ,R, L〉).

check(true) S
check(p) {s | p ∈ L(s)}
check(¬f ) S \ check(f )
check(f ∨ g) check(f )∪ check(g)
check(E X f ) PreR(check(f ))
check(E [f U g ]) lfp

(
Z 7→ check(g) ∪ (check(f ) ∩ PreR(Z)))

)
check(E G f ) gfp

(
Z 7→ check(f ) ∩ PreR(Z)

)
Recall: PreR(Z) = {s ∈ S | ∃t ∈ Z .s R t}
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

I Atomic Propositions: EP, EQ, EA, LP, LQ, LA
I Intended meaning: Linus or Emma is either

Playing, posing Questions, getting Answers

Requirement: Whenever Linus asks a question, he eventually gets an answer
Formula: A G (LQ → A F LA)
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

I Atomic Propositions: EP, EQ, EA, LP, LQ, LA
I Intended meaning: Linus or Emma is either

Playing, posing Questions, getting Answers

I Step 1: express using basic operators

A G (LQ → A F LA)
≡
¬E [true U ¬(¬LQ ∨ ¬E G ¬LA)]

≡
¬E [true U (LQ ∧ E G ¬LA)]

≡
¬µY .((LQ ∧ E G ¬LA) ∪ E X Y )
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

I Step 2: compute check(E G ¬LA), i.e., compute νZ .(¬LA ∧ E X Z).

• Greatest fixpoint, so start with approximating from true (i.e. all states)

• Stable at {s00, s10, s20, s01, s11, s21}
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s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}
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• Greatest fixpoint, so start with approximating from true (i.e. all states)

• Stable at {s00, s10, s20, s01, s11, s21}
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

I Step 2: compute check(E G ¬LA), i.e., compute νZ .(¬LA ∧ E X Z).
• Greatest fixpoint, so start with approximating from true (i.e. all states)
• Stable at {s00, s10, s20, s01, s11, s21}
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

I Step 3: compute LQ ∧ E G ¬LA

• LQ ∧ E G ¬LA holds in {s01, s11, s21}
I Step 4: compute µY .((LQ ∧ E G ¬LA) ∪ E X Y )

• Least fixpoint, so start with approximating from false (i.e. no states)
• Add states that satisfy LQ ∧ E G ¬LA

I Step 5: compute negation of µY .((LQ ∧ E G ¬LA) ∪ E X Y )

• µY .((LQ ∧ E G ¬LA) ∪ E X Y ) holds everywhere
• ¬µY .((LQ ∧ E G ¬LA) ∪ E X Y ) holds nowhere
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Example: demanding children

Conclusion:

I So, A G (LQ → A F LA) holds in no state
I The requirement does not hold for the full Kripke Structure
I Why? Because in this case, there is a path in which only Linus is stuck because

Emma claims all attention.
I Next, we look at the Kripke Structure with Fairness Constraints
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Temporal Logics: Fairness

Sometimes properties are violated by “unrealistic” paths only, for instance due to a
scheduler. In this case, one may wish to restrict to fair paths.

A Kripke Structure over AP with fairness constraints is a structure M = 〈S ,R, L,F 〉,
where:

I 〈S ,R, L〉 is an “ordinary” Kripke Structure as before
I F ⊆ 2S is a set of fairness constraints

A path is fair if it “hits” each fairness constraint infinitely often:

fair(π) iff ∀C ∈ F . {i | π(i) ∈ C} is an infinite set
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Temporal Logics: Fairness

In CTL∗ with fairness semantics (|=F ), only fair paths will be considered.

Given a fixed Kripke Structure with fairness constraints M = 〈S ,R, L,F 〉, s |=F f means:
formula f holds in state s in the fair CTL∗ semantics.

The definition of |=F coincides with |= except for the following four clauses:

s |=F true iff there is some fair path starting in s
s |=F p iff p ∈ L(s) and there is some fair path starting in s
s |=F A f iff for all fair paths π starting in s, we have π |=F f
s |=F E f iff for some fair path π starting in s, we have π |=F f

Write f if we mean f /wish to compute f under fairness constraints
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Temporal Logics: Fairness

s00

s01

s02

s10 s20

s11 s21

s12

{EP,LP} {EQ,LP} {EA,LP}

{EP,LQ}

{EP,LA}

{EQ,LQ} {EA,LQ}

{EQ,LA}

I To exclude runs in which one child gets all attention, we want that both ¬EQ as well
as ¬LQ hold infinitely often

I fairness constraints ensuring this: F = {{s00, s01, s02, s20, s21}, {s00, s10, s20, s02, s12}}
I Check whether A G (LQ → A F LA) holds fairly!
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Fair Symbolic Model Checking

Fix a fair Kripke Structure M = 〈S ,R, L, {F1, ... ,Fn}〉

Recall that a fair path infinitely often hits some state from each fairness constraint Fi

I First, note that in fair CTL (with |=F ),

E G f ≡ f ∧
n∧

k=1

E X E [f U (Fk ∧ E G f )] (prove ⊆ and ⊇)

I Next, if

Z ≡ f ∧
n∧

k=1

E X E [f U (Fk ∧ Z)]

Then Z ⊆ E G f (construct a path cycling through F1, ... ,Fn)
I Hence, we found:

E G f ≡ νZ .f ∧
n∧

k=1

E X E [f U (Fk ∧ Z)]
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Fair Symbolic Model Checking

The equivalence

E G f ≡ νZ .f ∧
n∧

k=1

E X E [f U (Fk ∧ Z)]

leads to the following algorithm:

checkF (E G f ) gfp
(
Z 7→ check(f ∩

n∧
k=1

E X (E [f U (Fk ∧ Z)])))

So, in the greatest fixed point computation for E G , we perform nested least fixed point
computations to compute E [ U ].

Next, we can compute fair := gfp(Z 7→ check(
n∧

k=1
E X (E [true U (Fk ∧ Z)]))).

The remaining temporal operators can then be encoded as follows:

checkF (p) check(p) ∩ fair

checkF (E X f ) check(E X (f ∧ fair))

checkF (E [f U g ]) check(E [f U (g ∧ fair)])
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Fair Symbolic Model Checking

Example

s1 s2 s3 s4

s5 s6 s7 s8

p p p r

q p p p

I To check: E G p

I Fairness constraint: {¬r}
I Compute: νZ .check(p ∧ E X (E [p U (¬r ∧ Z)]))

I Set
φ(Z) = lfp(Y 7→ (check(¬r)∩Z)∪(check(p)∩preR(Y )))

Z0 = S
Z1 = check(p) ∩ preR(φ(S)) = {s1, s2, s3, s6, s7}
Z2 = check(p) ∩ preR(φ({s1, s2, s3, s6, s7}))

= {s1, s2, s3, s7}
Z3 = check(p) ∩ preR(φ({s1, s2, s3, s7}))

= {s1, s2, s3, s7}

Z2 = Z3, so this is the greatest fixed point.
Note: computing φ(Z) requires approximations of its own in each step.
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Fair Symbolic Model Checking

Example

s1 s2 s3 s4

s5 s6 s7 s8

p p p r

q p p p

I To check: E [p U q]

I Fairness constraint: {¬r}
I Compute fair (= S)
I Compute: µZ .(q ∧ fair) ∨ (p ∧ E X Z) (with lfp)

Z0 = false = ∅
Z1 = q ∨ (p ∧ E X Z0) = {s5}
Z2 = q ∨ (p ∧ E X Z1) = {s5, s6}
Z3 = q ∨ (p ∧ E X Z2) = {s5, s6, s7}
Z4 = q ∨ (p ∧ E X Z3) = {s2, s5, s6, s7}
Z5 = q ∨ (p ∧ E X Z4) = {s1, s2, s3, s5, s6, s7}
Z6 = q ∨ (p ∧ E X Z5) = {s1, s2, s3, s5, s6, s7}

Z5 = Z6, so this is the least fixed point.
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Counterexamples and Witnesses

I Motivation:
• In practice, a model checker is often used as an extended debugger
• If a bug is found, the model checker should provide a particular trace, which shows it

I A formula with a universal path quantifier has a counterexample consisting of one
trace

I A formula with an existential path quantifier has a witness consisting of one trace
I Due to the dualities in CTL, we only have to consider:

• a finite trace witnessing E [f U g ]
• an infinite trace witnessing E G f ; for finite systems, the latter is a so-called lasso,
consisting of a prefix and a loop

I For fair counter examples we require that the loop contains a state from each fairness
constraint
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Counterexamples and Witnesses – Witnesses for E [ U ]

I E [f U g ] = µZ . g ∨ (f ∧ E X Z)

I Unfolding the recursion, we get:

Z0 = false
Z1 = g
Z2 = g ∨ (f ∧ E X g)
Z3 = g ∨ (f ∧ E X (g ∨ (f ∧ E X g)))

I So, the fixed point computation corresponds to a backward reachability analysis
I Zi contains those states that can reach g in at most i − 1 steps (and f holds in

between).
I Assume s0 |= E [f U g ]. To find a minimal witness from state s0, we start in the

smallest N such that s0 ∈ ZN .
I For i ∈ 1, ... ,N−1, we define si to be a state in ZN−i satisfying si−1 R si .
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Counterexamples and Witnesses – Witnesses for E [ U ]

Example

s1 s2 s3

s4s5

p p, q p, q, s

p, rp, r

I Witness for s1 |= E [p U s]

I Z1 = {s3}
I Z2 = {s2, s3, s4}
I Z3 = {s1, s2, s3, s4}
I Hence, path from Z3 → Z2 → Z1 is via s1 → s2 → s3.
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Counterexamples and Witnesses – Witnesses for fair E G

I We want an initial path to a cycle on which each fairness constraint {F1, ... ,Fn}
occurs (i.e. the cycle must contain at least one state from all Fi ).

I E G f = νZ .f ∧
n∧

k=1
E X E [f U (Fk ∧ Z)]

I Unfolding the recursion, we get:

Z0 = true
...

ZL = f ∧
n∧

k=1
E X E [f U (Fk ∧ ZL−1)]

I Let Z := ZL = ZL−1 = E G f be the fixed point
I To compute Z , we compute for each k (1 ≤ k ≤ n), E [f U (Fk ∧ Z)] using backward

reachability. So, we have for each k the approximations: Qk
0 ⊆ Qk

1 ⊆ Qk
2 ⊆ ... ⊆ Qk

jk

I From the E [ U ] case, recall that Qk
i contains those states that can reach Fk ∧ Z in

at most i steps
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Counterexamples and Witnesses – Witnesses for fair E G

I Assume s0 ∈ E G f , hence, s0 ∈ Z
I We will now inductively construct a path s0 →∗ s1 →∗ ...→∗ sn, such that:

• f holds fairly along the whole path
• sk ∈ Z ∧ Fk (for 1 ≤ k ≤ n)

I Observe: by induction sk−1 |= Z , so, by definition of Z : sk−1 ∈ E X E [f U (Z ∧ Fk)]
I For 1 ≤ k ≤ n do:

1. Determine the minimal M such that sk−1 has a successor tk0 ∈ Qk
M .

2. Construct (as the witness for E [ U ]):

sk−1 → tk0 → · · · → tkM ∈ Z ∧ Fk

3. Define sk := tkM .

I heuristic improvement: Visit the Fk in a different order: continue with the closest Fk

that has not yet been visited.
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Counterexamples and Witnesses – Witnesses for fair E G

I Finally, we must close the loop, but this is not always possible: Check if
sn ∈ E X E [f U {s1}].

I If so: the E [ U ]-witness closes the loop
I If not: the cycle cannot be closed. Hence:

• The sequence so far s0 → · · · → sn is in the prefix of the lasso, not yet on the loop.
• Restart the whole procedure of the previous slide, now starting in sn ∈ Z .

I Eventually, this process must terminate:
• We only restart if sn cannot reach s1
• so we moved to the next Strongly Connected Component
• The SCC graph cannot contain cycles

I Optimisation: By precomputing E [f U {s1}], one can detect earlier that closing the
cycle will not be possible.
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Exercise

Example

s1 s2 s3 s4

s5 s6 s7 s8

p p p r

q p p p

I Check that s1 |=F E G (p ∨ q)

I Fairness constraint: ¬r and q

I Construct a witness for s1 |=F E G (p ∨ q)
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