Algorithms for Model Checking (2IMF35) Lecture 3 Symbolic Model Checking: Fairness and Counterexamples Chapter 6.3, 6.4.

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw MF 6.073

Fairness for CTL

Fair Symbolic Model Checking

Counterexamples and Witnesses Witnesses for E [U] Witnesses for fair E G

Exercise

In summary, symbolic model checking:

- Recursively processes subformulae
- Represent the set of states satisfying a subformula by OBDDs
- Treats temporal operators by fixed point computations
- Relies on efficient implementation of equivalence test, and ∧, ∨, ¬ and ∃ connectives on OBDDs.

Fix a Kripke Structure $M = \langle S, R, L \rangle$.

The temporal operators of CTL are characterised by fixed points:

- EF $g = \mu Z.g \lor E X Z$
- $\blacktriangleright \mathsf{E} \mathsf{G} \mathsf{f} = \nu \mathsf{Z}.\mathsf{f} \land \mathsf{E} \mathsf{X} \mathsf{Z}$
- $\blacktriangleright \mathsf{E} [f \mathsf{U} g] = \mu Z.g \lor (f \land \mathsf{E} \mathsf{X} Z)$
- ► Least Fixed Points: start iteration at false (∅)
- Greatest Fixed Points: start iteration at true (S)

Intuition:

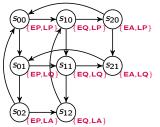
	Eventually	le	ast fixed points
•	Globally	great	est fixed points

CTL model checking with Fixed Points

Function check(*f*) takes a formula *f* and returns the set of states where *f* holds: $\{s \mid s \models f\}$ (given a fixed Kripke Structure $M = \langle S, R, L \rangle$).

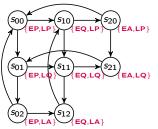
check(<i>true</i>)	S
check(p)	$\{s \mid p \in L(s)\}$
$check(\neg f)$	$S \setminus check(f)$
$check(f \lor g)$	$check(f) \cup check(g)$
check(E X f)	$Pre_R(check(f))$
check(E [f U g])	$lfp(Z \mapsto check(g) \cup (check(f) \cap \mathit{Pre}_R(Z))))$
check(E G f)	$gfp(Z \mapsto check(f) \cap Pre_R(Z))$

Recall: $Pre_R(Z) = \{s \in S \mid \exists t \in Z.s \ R \ t\}$



- Atomic Propositions: EP, EQ, EA, LP, LQ, LA
- Intended meaning: Linus or Emma is either Playing, posing Questions, getting Answers

Requirement: Whenever Linus asks a question, he eventually gets an answer Formula: A G ($LQ \rightarrow A \neq LA$)



- Atomic Propositions: EP, EQ, EA, LP, LQ, LA
- Intended meaning: Linus or Emma is either Playing, posing Questions, getting Answers

Step 1: express using basic operators

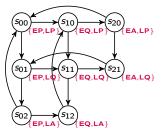
$$= A G (LQ \rightarrow A F LA)$$

$$= -E [true U \neg (\neg LQ \lor \neg E G \neg LA)]$$

$$= -E [true U (LQ \land E G \neg LA)]$$

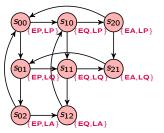
$$= -\mu Y.((LQ \land E G \neg LA) \cup E X Y)$$

TU/e Technische Universite Eindhoven University of Technolo

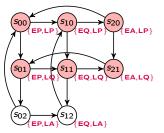


Step 2: compute check(E G $\neg LA$), i.e., compute $\nu Z.(\neg LA \land E X Z)$.

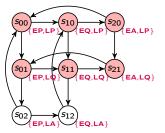
8/28



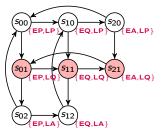
- Step 2: compute check(E G $\neg LA$), i.e., compute $\nu Z.(\neg LA \land E X Z)$.
 - · Greatest fixpoint, so start with approximating from true (i.e. all states)



- Step 2: compute check(E G $\neg LA$), i.e., compute $\nu Z.(\neg LA \land E X Z)$.
 - · Greatest fixpoint, so start with approximating from true (i.e. all states)
 - Stable at $\{s_{00}, s_{10}, s_{20}, s_{01}, s_{11}, s_{21}\}$



Step 3: compute $LQ \land E G \neg LA$



Step 3: compute LQ ∧ E G ¬LA
 LQ ∧ E G ¬LA holds in {s₀₁, s₁₁, s₂₁}

hildren

500 EP,LP 510 EQ,LP (EA,LP) (EA,LP) (EA,LP) (EA,LQ) (EA,LQ

- Step 3: compute $LQ \land E G \neg LA$
 - $LQ \land E \subseteq \neg LA$ holds in $\{s_{01}, s_{11}, s_{21}\}$
- Step 4: compute $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$

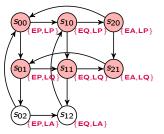
9/28

500 (EP,LP) (EP,LP) (EQ,LP) (EA,LP) (EA,LP) (EA,LP) (EA,LQ) (EA,LQ)

- Step 3: compute $LQ \land E G \neg LA$
 - $LQ \land E \subseteq \neg LA$ holds in $\{s_{01}, s_{11}, s_{21}\}$
- Step 4: compute $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$
 - · Least fixpoint, so start with approximating from false (i.e. no states)

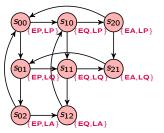
500 {EP,LP} (EQ,LP) (EQ,LP) (EA,LP} (EA,LP) (EA,LQ) (EA,LQ) (EA,LQ) (EA,LQ) (EA,LQ) (EA,LQ)

- Step 3: compute $LQ \land E G \neg LA$
 - $LQ \land E \subseteq \neg LA$ holds in $\{s_{01}, s_{11}, s_{21}\}$
- Step 4: compute $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$
 - · Least fixpoint, so start with approximating from false (i.e. no states)
 - Add states that satisfy $LQ \wedge E \ G \ \neg LA$



- Step 3: compute $LQ \land E G \neg LA$
 - $LQ \land E \subseteq \neg LA$ holds in $\{s_{01}, s_{11}, s_{21}\}$
- Step 4: compute $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$
 - · Least fixpoint, so start with approximating from false (i.e. no states)
 - Add states that satisfy $LQ \wedge E$ G $\neg LA$ and states that go there...

Department of Mathematics and Computer Science



- Step 3: compute $LQ \land E G \neg LA$
 - $LQ \land E \subseteq \neg LA$ holds in $\{s_{01}, s_{11}, s_{21}\}$
- Step 4: compute $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$
 - Least fixpoint, so start with approximating from false (i.e. no states)
 - Add states that satisfy $LQ \wedge E$ G $\neg LA$ and states that go there...and again...

500 (EP,LP) (EP,LP) (EQ,LP) (EA,LP) (EA,LP) (EA,LP) (EA,LQ) (EA,LQ) (EA,LQ) (EA,LQ) (EA,LQ)

- Step 3: compute $LQ \land E G \neg LA$
 - $LQ \land E \subseteq \neg LA$ holds in $\{s_{01}, s_{11}, s_{21}\}$
- Step 4: compute $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$
 - · Least fixpoint, so start with approximating from false (i.e. no states)
 - Add states that satisfy LQ \wedge E G $\neg LA$ and states that go there...and again...
- Step 5: compute negation of $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$
 - μ Y.(($LQ \land E \ G \neg LA$) $\cup E \ X \ Y$) holds everywhere

- Step 3: compute $LQ \land E G \neg LA$
 - $LQ \land E \subseteq \neg LA$ holds in $\{s_{01}, s_{11}, s_{21}\}$
- Step 4: compute $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$
 - · Least fixpoint, so start with approximating from false (i.e. no states)
 - Add states that satisfy LQ \wedge E G $\neg LA$ and states that go there...and again...
- Step 5: compute negation of $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$
 - μ Y.(($LQ \land E \ G \neg LA$) $\cup E \ X \ Y$) holds everywhere
 - $\neg \mu Y$.(($LQ \land E G \neg LA$) $\cup E X Y$) holds nowhere

Department of Mathematics and Computer Science

500 (EP,LP) (EQ,LP) (EQ,LP) (EQ,LP) (EA,LP) (EA,LP) (EA,LP) (EA,LP) (EA,LQ) (EA,LQ)

- Step 3: compute $LQ \land E G \neg LA$
 - $LQ \land E \subseteq \neg LA$ holds in $\{s_{01}, s_{11}, s_{21}\}$
- Step 4: compute $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$
 - · Least fixpoint, so start with approximating from false (i.e. no states)
 - Add states that satisfy LQ \wedge E G $\neg LA$ and states that go there...and again...
- Step 5: compute negation of $\mu Y.((LQ \land E G \neg LA) \cup E X Y)$
 - μ Y.(($LQ \land E \ G \neg LA$) $\cup E \ X \ Y$) holds everywhere
 - $\neg \mu \dot{Y}$.((*LQ* \land E G $\neg \dot{LA}$) \cup E X \dot{Y}) holds nowhere \leftarrow ANSWER

Conclusion:

- ▶ So, A G ($LQ \rightarrow$ A F LA) holds in no state
- The requirement does not hold for the full Kripke Structure
- Why? Because in this case, there is a path in which only Linus is stuck because Emma claims all attention.
- Next, we look at the Kripke Structure with Fairness Constraints

Fairness for CTL

Fair Symbolic Model Checking

Counterexamples and Witnesses Witnesses for E [U] Witnesses for fair E G

Exercise

Department of Mathematics and Computer Science

Sometimes properties are violated by "unrealistic" paths only, for instance due to a scheduler. In this case, one may wish to restrict to fair paths.

A Kripke Structure over *AP* with fairness constraints is a structure $M = \langle S, R, L, F \rangle$, where:

- $\langle S, R, L \rangle$ is an "ordinary" Kripke Structure as before
- $F \subseteq 2^S$ is a set of fairness constraints

A path is fair if it "hits" each fairness constraint infinitely often:

fair(π) iff $\forall C \in F$. { $i \mid \pi(i) \in C$ } is an infinite set

In CTL* with fairness semantics (\models_F), only fair paths will be considered.

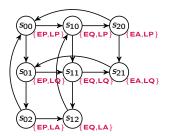
Given a fixed Kripke Structure with fairness constraints $M = \langle S, R, L, F \rangle$, $s \models_F f$ means: formula f holds in state s in the fair CTL^{*} semantics.

The definition of \models_F coincides with \models except for the following four clauses:

 $\begin{array}{ll} s \models_F \text{true} & \text{iff} & \text{there is some fair path starting in } s \\ s \models_F p & \text{iff} & p \in L(s) \text{ and there is some fair path starting in } s \\ s \models_F A f & \text{iff} & \text{for all fair paths } \pi \text{ starting in } s, \text{ we have } \pi \models_F f \\ s \models_F E f & \text{iff} & \text{for some fair path } \pi \text{ starting in } s, \text{ we have } \pi \models_F f \end{array}$

Write \overline{f} if we mean f/wish to compute f under fairness constraints

Temporal Logics: Fairness



- ▶ To exclude runs in which one child gets all attention, we want that both $\neg EQ$ as well as $\neg LQ$ hold infinitely often
- fairness constraints ensuring this: $F = \{\{s_{00}, s_{01}, s_{02}, s_{20}, s_{21}\}, \{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}\}$
- ► Check whether A G (LQ → A F LA) holds fairly!

Fairness for CTL

Fair Symbolic Model Checking

Counterexamples and Witnesses Witnesses for E [U] Witnesses for fair E G

Exercise

Department of Mathematics and Computer Science

Fix a fair Kripke Structure $M = \langle S, R, L, \{F_1, ..., F_n\} \rangle$

Recall that a fair path infinitely often hits some state from each fairness constraint F_i

First, note that in fair CTL (with \models_F),

$$\overline{\mathsf{E} \mathsf{G} \mathsf{f}} \equiv \overline{\mathsf{f}} \land \bigwedge_{k=1}^{n} \mathsf{E} \mathsf{X} \mathsf{E} [\overline{\mathsf{f}} \mathsf{U} (\mathsf{F}_{k} \land \overline{\mathsf{E} \mathsf{G} \mathsf{f}})] \qquad (\mathsf{prove} \subseteq \mathsf{and} \supseteq)$$

Next, if

$$Z \equiv \overline{f} \land \bigwedge_{k=1}^{n} \mathsf{E} \mathsf{X} \mathsf{E} [\overline{f} \mathsf{U} (F_{k} \land Z)]$$

Then $Z \subseteq \overline{\mathsf{E} \mathsf{G} \mathsf{f}}$ (construct a path cycling through F_1, \ldots, F_n)

Hence, we found:

$$\overline{\mathsf{E} \mathsf{G} \mathsf{f}} \equiv \nu Z.\overline{\mathsf{f}} \land \bigwedge_{k=1}^{n} \mathsf{E} \mathsf{X} \mathsf{E} [\overline{\mathsf{f}} \mathsf{U} (\mathsf{F}_{k} \land Z)]$$

TU/e Technische Universiteit Eindhoven University of Technology

The equivalence

$$\overline{\mathsf{E}}\,\overline{\mathsf{G}}\,\overline{\mathsf{f}} \equiv \nu Z.\overline{\mathsf{f}} \wedge \bigwedge_{k=1}^{n} \mathsf{E}\,\mathsf{X}\,\mathsf{E}\,[\overline{\mathsf{f}}\,\mathsf{U}\,(\mathsf{F}_{k}\wedge Z)]$$

leads to the following algorithm:

$$\mathsf{check}_{F}(\mathsf{E} \mathsf{G} f) \quad \mathsf{gfp}(Z \mapsto \mathsf{check}(\overline{f} \cap \bigwedge_{k=1}^{n} \mathsf{E} \mathsf{X} (\mathsf{E} [\overline{f} \mathsf{U} (F_{k} \land Z)])))$$

So, in the greatest fixed point computation for $\overline{E\ G}$, we perform nested least fixed point computations to compute E [U].

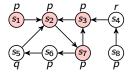
Next, we can compute $fair := gfp(Z \mapsto check(\bigwedge_{k=1}^{n} E X (E [true U (F_k \land Z)])))$. The remaining temporal operators can then be encoded as follows:

 $\begin{array}{ll} \mathsf{check}_F(p) & \mathsf{check}(p) \cap \mathit{fair} \\ \mathsf{check}_F(\mathsf{E} \mathsf{X} f) & \mathsf{check}(\mathsf{E} \mathsf{X} (\overline{f} \wedge \mathit{fair})) \\ \mathsf{check}_F(\mathsf{E} [f \ \mathsf{U} \ g]) & \mathsf{check}(\mathsf{E} [\overline{f} \ \mathsf{U} (\overline{g} \wedge \mathit{fair})]) \end{array}$

TU/e Technische Universiteit Eindhoven University of Technology

Department of Mathematics and Computer Science

Example



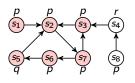
- To check: E G p
- ► Fairness constraint: {¬r}
- Compute: νZ .check($p \land E X (E [p \cup (\neg r \land Z)]))$
- ► Set $\phi(Z) = \operatorname{lfp}(Y \mapsto (\operatorname{check}(\neg r) \cap Z) \cup (\operatorname{check}(p) \cap \operatorname{pre}_R(Y)))$

$$\begin{aligned} Z_0 &= S \\ Z_1 &= \operatorname{check}(p) \cap \operatorname{pre}_R(\phi(S)) = \{s_1, s_2, s_3, s_6, s_7\} \\ Z_2 &= \operatorname{check}(p) \cap \operatorname{pre}_R(\phi(\{s_1, s_2, s_3, s_6, s_7\})) \\ &= \{s_1, s_2, s_3, s_7\} \\ Z_3 &= \operatorname{check}(p) \cap \operatorname{pre}_R(\phi(\{s_1, s_2, s_3, s_7\})) \\ &= \{s_1, s_2, s_3, s_7\} \end{aligned}$$

 $Z_2 = Z_3$, so this is the greatest fixed point. Note: computing $\phi(Z)$ requires approximations of its own in each step.

18/28

Example



- To check: E [p U q]
- ► Fairness constraint: {¬r}
- Compute fair (= S)
- Compute: $\mu Z.(\overline{q} \wedge fair) \lor (\overline{p} \wedge \mathsf{E} \times Z)$ (with lfp)

$$\begin{array}{ll} Z_0 &= \mathsf{false} = \emptyset \\ Z_1 &= q \lor (p \land \mathsf{E} \lor Z_0) = \{s_5\} \\ Z_2 &= q \lor (p \land \mathsf{E} \lor Z_1) = \{s_5, s_6\} \\ Z_3 &= q \lor (p \land \mathsf{E} \lor Z_2) = \{s_5, s_6, s_7\} \\ Z_4 &= q \lor (p \land \mathsf{E} \lor Z_3) = \{s_2, s_5, s_6, s_7\} \\ Z_5 &= q \lor (p \land \mathsf{E} \lor Z_4) = \{s_1, s_2, s_3, s_5, s_6, s_7\} \\ Z_6 &= q \lor (p \land \mathsf{E} \lor Z_5) = \{s_1, s_2, s_3, s_5, s_6, s_7\} \end{array}$$

 $Z_5 = Z_6$, so this is the least fixed point.

Fairness for CTL

Fair Symbolic Model Checking

Counterexamples and Witnesses Witnesses for E [U] Witnesses for fair E C

Witnesses for fair E G

Exercise

Department of Mathematics and Computer Science

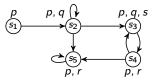
Motivation:

- · In practice, a model checker is often used as an extended debugger
- If a bug is found, the model checker should provide a particular trace, which shows it
- A formula with a universal path quantifier has a counterexample consisting of one trace
- A formula with an existential path quantifier has a witness consisting of one trace
- Due to the dualities in CTL, we only have to consider:
 - a finite trace witnessing E [f U g]
 - an infinite trace witnessing E G f; for finite systems, the latter is a so-called lasso, consisting of a prefix and a loop
- For fair counter examples we require that the loop contains a state from each fairness constraint

- $\blacktriangleright \mathsf{E} [f \mathsf{U} g] = \mu Z. g \lor (f \land \mathsf{E} \mathsf{X} Z)$
- Unfolding the recursion, we get:

- So, the fixed point computation corresponds to a backward reachability analysis
- ► Z_i contains those states that can reach g in at most i 1 steps (and f holds in between).
- Assume $s_0 \models E [f \cup g]$. To find a minimal witness from state s_0 , we start in the smallest N such that $s_0 \in Z_N$.
- For $i \in 1, ..., N-1$, we define s_i to be a state in Z_{N-i} satisfying $s_{i-1} R s_i$.

Example



- Witness for $s_1 \models E [p \cup s]$
- $\blacktriangleright Z_1 = \{s_3\}$
- $Z_2 = \{s_2, s_3, s_4\}$
- $Z_3 = \{s_1, s_2, s_3, s_4\}$
- Hence, path from $Z_3 \rightarrow Z_2 \rightarrow Z_1$ is via $s_1 \rightarrow s_2 \rightarrow s_3$.

Counterexamples and Witnesses – Witnesses for fair E G

- ▶ We want an initial path to a cycle on which each fairness constraint {F₁,..., F_n} occurs (i.e. the cycle must contain at least one state from all F_i).
- $\blacktriangleright \overline{\mathsf{E}} \overline{\mathsf{G}} \overline{\mathsf{f}} = \nu Z.\overline{\mathsf{f}} \wedge \bigwedge_{k=1}^{n} \mathsf{E} \mathsf{X} \mathsf{E} [\overline{\mathsf{f}} \mathsf{U} (\mathsf{F}_{k} \wedge Z)]$
- Unfolding the recursion, we get:

$$Z_0 = \text{true}$$
...
$$Z_L = \overline{f} \wedge \bigwedge_{k=1}^n \text{E X } \text{E} [\overline{f} \cup (F_k \wedge Z_{L-1})]$$

- Let $Z := Z_L = Z_{L-1} = \overline{E \ G \ f}$ be the fixed point
- To compute Z, we compute for each k (1 ≤ k ≤ n), E [*f* ∪ (F_k ∧ Z)] using backward reachability. So, we have for each k the approximations: Q₀^k ⊆ Q₁^k ⊆ Q₂^k ⊆ ... ⊆ Q_{ik}^k
- From the E [U] case, recall that Q^k_i contains those states that can reach F_k ∧ Z in at most i steps

Assume $s_0 \in \overline{E \ G \ f}$, hence, $s_0 \in Z$

- We will now inductively construct a path $s_0 \rightarrow^* s_1 \rightarrow^* \dots \rightarrow^* s_n$, such that:
 - f holds fairly along the whole path
 - $s_k \in Z \land F_k$ (for $1 \le k \le n$)
- Observe: by induction $s_{k-1} \models Z$, so, by definition of Z: $s_{k-1} \in E \times E[\overline{f} \cup (Z \land F_k)]$
- For $1 \le k \le n$ do:
 - 1. Determine the minimal M such that s_{k-1} has a successor $t_0^k \in Q_M^k$.
 - 2. Construct (as the witness for E [U]):

$$s_{k-1} \rightarrow t_0^k \rightarrow \cdots \rightarrow t_M^k \in Z \wedge F_k$$

- 3. Define $s_k := t_M^k$.
- heuristic improvement: Visit the F_k in a different order: continue with the closest F_k that has not yet been visited.

- Finally, we must close the loop, but this is not always possible: Check if $s_n \in E \times E[\overline{f} \cup \{s_1\}]$.
- If so: the E [U]-witness closes the loop
- If not: the cycle cannot be closed. Hence:
 - The sequence so far $s_0 \to \cdots \to s_n$ is in the prefix of the lasso, not yet on the loop.
 - Restart the whole procedure of the previous slide, now starting in $s_n \in Z$.
- Eventually, this process must terminate:
 - We only restart if s_n cannot reach s_1
 - so we moved to the next Strongly Connected Component
 - The SCC graph cannot contain cycles
- Optimisation: By precomputing E [f U {s₁}], one can detect earlier that closing the cycle will not be possible.

Fairness for CTL

Fair Symbolic Model Checking

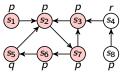
Counterexamples and Witnesses Witnesses for E [U] Witnesses for fair E G

Exercise

Department of Mathematics and Computer Science

Exercise

Example



- Check that $s_1 \models_F E G (p \lor q)$
- ► Fairness constraint: ¬r and q
- Construct a witness for $s_1 \models_F E G (p \lor q)$

