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µ-Calculus: syntax and semantics

Recall: symbolic model checking for CTL was based on fixed points.

Idea of µ-calculus: add fixed point operators as primitives to basic modal logic.

I µ-calculus is very expressive (subsumes CTL, LTL, CTL∗).
I µ-calculus is very pure (“assembly language” for modal logic, cf: λ-calculus for

functional programming).
I drawback: lack of intuition.
I fragments of the µ-calculus are the basis for practical model checkers, such as µCRL,

mCRL2, CADP, Concurrency Workbench.

LTL CTL

CTL∗

µ-calculus
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µ-Calculus: syntax and semantics

Kripke Structures and Labelled Transition Systems

Mix of Kripke Systems and Labelled Transition Systems: M = 〈S ,Act,R, L〉 over a set AP
of atomic propositions:

I S is a set of states
I Act is a set of action labels
I R is a labelled transition relation: R ⊆ S × Act× S

I L is a labelling: L ∈ S → 2AP

Notation: s a−→ t denotes (s, a, t) ∈ R

Special cases:
I Kripke Structures: Act is a singleton (only one transition relation)
I LTS (process algebra): AP is empty (only propositions true and false)
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µ-Calculus: syntax and semantics

Let the following sets be given:
I AP (atomic propositions),
I Act (action labels) and
I Var (formal variables).

The syntax of µ-calculus formulae f , g is defined by the following grammar:

f , g ::= true | p | X | ¬f | f ∧ g | [a]f | νX .f

Note:
I p ∈ AP,X ∈ Var, a ∈ Act.
I [a]f means “for all direct a-successors, f holds” (compare to CTL: A X f ).
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µ-Calculus: syntax and semantics

Some notation and terminology:

I An occurrence of X is bound by a surrounding fixed point symbol νX . Unbound
occurrences of X are called free.

I A formula is closed if it has no free variables, otherwise it is called open
I An environment e interprets the free formal variables X as a set of states

• Mixed Kripke Structure M = 〈S,Act,R, L〉
• e : Var→ 2S
• e[X := V ] is an environment like e, but X is set to V :

e[X := V ](Y ) :=

{
V if Y = X
e(Y ) otherwise

I The semantics of a formula f is a set of states of a Mixed Kripke Structure
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µ-Calculus: syntax and semantics

Fix a system: M = 〈S ,Act,R, L〉
I [[f ]]e denotes the set of states where f holds given context e : Var → 2S :

[[true]]e = S
[[p]]e = {s | p ∈ L(s)}
[[X ]]e = e(X )

[[¬f ]]e = S \ [[f ]]e
[[f ∧ g ]]e = [[f ]]e ∩ [[g ]]e

[[[a]f ]]e = {s | ∀t. s a−→ t ⇒ t ∈ [[f ]]e}

[[νX .f ]]e = ν(Z 7→ [[f ]]e[X :=Z ])

I [[νX .f ]]e requires monotonicity of [[f ]]e[X :=Z ].
I Syntactic Monotonicity Criterion: monotonicity is guaranteed if, in νX .f , formal

variable X occurs under an even number of negations (¬) in f .

The semantics immediately gives rise to a naive algorithm for model checking µ-calculus
(compute gfp by iteration).
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µ-Calculus: Positive Normal Form

I Extend the grammar with the following shorthands with semantics:

false := ¬true [[false]]e = ∅
f ∨ g := ¬((¬f ) ∧ (¬g)) [[f ∨ g ]]e = [[f ]]e ∪ [[g ]]e

〈a〉f := ¬([a](¬f )) [[〈a〉f ]]e = {s | ∃t.s a−→ t ∧ t ∈ [[f ]]e}

µX .f := ¬(νX .¬f [X := ¬X ]) [[µX .f ]]e = µ(Z 7→ [[f ]]e[X :=Z ])

I A µ-calculus formula is in positive normal form if negations occur only in front of
propositions.

I Transform a formula into positive normal form by driving negations inward.
I Syntactic monotonicity prevents single negations in front of formal variables.
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Complexity

Complexity of naive µ-Calculus algorithm

I We check formula f with at most k nested fixed points on the Kripke Structure
M = 〈S ,R,Act, L〉.

I In νX1. 〈a〉
(
µX2. (X1 ∧ h) ∨ 〈a〉X2

)
:

• The outermost (greatest) fixed point can decrease at most |S | times (recall that S is
finite)

• In total, the innermost fixed point of formula f is evaluated at most |S |2 times.

I In general: the innermost fixed point of formula f is evaluated at most |S |k times.
I Each iteration requires up to |M| × |f | steps.
I Total time complexity of naive algorithm: O((|S |+ |R|)× |f | × |S |k).

A more careful analysis will yield a more optimal treatment for nested fixed points of the
same type.
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Complexity

I Let Act = {a}:
• E G f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .νX .f ∧ 〈a〉X
• E [f U g ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µX .g ∨ (f ∧ 〈a〉X )

• Every p is inevitably followed by a q: νX1.

((
p ⇒ (µX2. q ∨ [a]X2)

)
∧ [a]X1

)
I Special case: X1 does not occur within the scope of µX2.
I The last formula can therefore be evaluated “inside-out”:

X 0
2 = false X 0

1 = true
X 1

2 = q ∨ [a]X 0
2 X 1

1 = (p ⇒ Xω
2 ) ∧ [a]X 0

1
X 2

2 = q ∨ [a]X 1
2 =⇒ X 2

1 = (p ⇒ Xω
2 ) ∧ [a]X 1

1
... Xω

2 = q ∨ [a]Xω
2 ... Xω

1 = (p ⇒ Xω
2 ) ∧ [a]Xω

1
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Complexity

A more difficult case

I On some path, h holds infinitely often: νX1. 〈a〉
(
µX2. (X1 ∧ h) ∨ 〈a〉X2

)
I Problem: the inner fixed point depends crucially on X1.

X 0
1 = true

X 00
2 = false

X 01
2 = (X 0

1 ∧ h) ∨ 〈a〉X 00
2

X 02
2 = (X 0

1 ∧ h) ∨ 〈a〉X 01
2

... X 0ω
2 = (X 0

1 ∧ h) ∨ 〈a〉X 0ω
2

X 1
1 = 〈a〉X 0ω

2
X 10

2 = false
X 11

2 = (X 1
1 ∧ h) ∨ 〈a〉X 10

2
... X 1ω

2 = (X 1
1 ∧ h) ∨ 〈a〉X 1ω

2
X 2

1 = 〈a〉X 1ω
2

... Xω
1 = 〈a〉Xωω

2
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Complexity

The complexity of a µ-calculus formula depends on the fixed points (analogue: the
complexity of first-order formulae depends on the universal/existential quantifiers and their
alternations)

I Basic idea: find a syntactic complexity measure that approaches the semantic
complexity

I Nesting Depth:
maximum number of nested fixed points in a positive normal form

ND(f ) := 0 for f ∈ {p,¬p,X}
ND( a©f ) := ND(f ) for a© ∈ {[a], 〈a〉}
ND(f�g) := max(ND(f ),ND(g)) for � ∈ {∧,∨}

ND(µν X .f ) := 1+ ND(f ) for µ
ν∈ {µ, ν}

I Example: ND
(
(µX1. νX2. X1 ∨ X2) ∧ (µX3. µX4. (X3 ∧ µX5. p ∨ X5))

)

I X3,X4 and X5 have no alternation between fixed point signs
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Complexity

I Capture alternation
I Alternation Depth: number of alternating fixed points of a formula in positive normal

form.

AD(f ) := 0 for f ∈ {p,¬p,X}
AD( a©f ) := AD(f ) for a© ∈ {[a], 〈a〉}
AD(f�g) := max(AD(f ),AD(g)) for � ∈ {∧,∨〉}
AD(µX .f ) := 1+max{AD(g) | g is a ν-subformula of f }
AD(νX .f ) := 1+max{AD(g) | g is a µ-subformula of f }

I Examples:

AD

(
(µX1. νX2. X1 ∨ X2) ∧ (µX3.µX4. (X3 ∧ µX5.p ∨ X5))

)
AD

(
(µX1. νX2. X1 ∨ X2) ∧ (µX3.νX4. (X3 ∧ µX5.p ∨ X5))

)

I X5 does not depend on X3 and X4
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Complexity

I Dependent Alternation Depth (dAD): number of alternating fixed points, such that
the innermost fixed point depends on the outermost.

I The definition of dAD is identical to AD, except for

dAD(µX .f ) := max(dAD(f ),
1+max{dAD(g) |

g is a ν-subformula of f and X occurs in g}
dAD(νX .f ) := max(dAD(f ),

1+max{dAD(g) |
g is a µ-subformula of f and X occurs in g}

I Examples:

dAD

(
(µX1. νX2. X1 ∨ X2) ∧ (µX3.µX4. (X3 ∧ µX5.p ∨ X5))

)
dAD

(
(µX1. νX2. X1 ∨ X2) ∧ (µX3.νX4. (X3 ∧ µX5.p ∨ X5))

)
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Emerson-Lei Algorithm

I Given a finite set S and a monotonic τ : 2S → 2S in the partial order (2S ,⊆).
I We used to compute the least fixed point from ∅:

∅ ⊆ τ(∅) ⊆ τ2(∅) ⊆ ... ⊆ τ i (∅) = τ i+1(∅)

then µX .τ(X ) = τ i (∅)
I Actually, instead of ∅, we can start in any set known to be smaller than the fixed

point:

• Assume W ⊆ µX .τ(X ), so we have:

∅ ⊆W ⊆ τ i (∅)
• By monotonicity and the definition of fixed points:

τ i (∅) ⊆ τ i (W ) ⊆ τ2i (∅) = τ i (∅)
• So if W ⊆ µX .τ(X ) we compute the least fixed point as:

W , τ(W ), τ2(W ), ... , τ j (W ) = τ j+1(W )

This converges at some j ≤ i (may be j < i)
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Emerson-Lei Algorithm

I The observations on the previous slide can speed up computations of nested fixed
points.

I Consider two nested µ-fixed points: µX1.f (X1,µX2. g(X1,X2))

I Start approximation of X1 and X2 with X 0
1 = X 0

2 = false:

X 0
1 = false

X 00
2 = false

X 01
2 = g(X 0

1 ,X
00
2 )

... X 0ω
2 = g(X 0

1 ,X
0ω
2 )

X 1
1 = f (X 0

1 ,X
0ω
2 )

I Clearly, X 0
1 ⊆ X 1

1 , so also X 0ω
2 = µX2.g(X

0
1 ,X2) ⊆ µX2.g(X

1
1 ,X2) = X 1ω

2 .
So, approximating X2 can start at X 0ω

2 instead of at false:

X 10
2 = X 0ω

2
... X 1ω

2 = g(X 1
1 ,X

1ω
2 )

X 2
1 = f (X 1

1 ,X
1ω
2 )
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Emerson-Lei Algorithm

Given:
I Mixed Kripke Structure: M = 〈S ,R,Act, L〉
I A µ-Calculus formula f and an environment e

Returns: [[f ]]e , the set of states in S where f holds.

Idea:
I The function eval(f ) proceeds by recursion on f , using iteration for the fixed points.
I The value of the current approximation for variable Xi is stored in array A[i ], in order

to reuse it in later iterations.
I Reset A[i ] only if:

• a higher Xj of different sign changed, and
• µ
ν Xi .f contains free variables.
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Emerson-Lei algorithm

Initialisation:
for all variables Xi do

if Xi is bound by a µ then A[i ] := false;
else if Xi is bound by a ν then A[i ] := true;
else A[i ] := e(Xi )
end if

end for
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Emerson-Lei algorithm

function eval(f )
if f = Xi then return A[i ]
else if f = g1 ∨ g2 then return eval(g1) ∪ eval(g2)
else if ... then ...
else if f = µXi .g(Xi ) then

if the surrounding binder of f is a ν then
for all open subformulae of f of the form µXk .g do A[k] := false
end for

end if
repeat

Xold := A[i ]; {continue from previous value}
A[i ] := eval(g);

until A[i ] = Xold

return A[i ]
end if

end function
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Emerson-Lei algorithm

Given a formula νX1.νX2.µX3.µX4.(X1 ∨ X2 ∨ (µX5.X5 ∧ p))

I When computing νX2, µX4 and µX5: no reset is needed because the surrounding
binder has the same sign.

I When computing X3:
• Reset X3,X4: their subformula contains X1 and X2 as free variables
• Do not reset X5: the subformula (µX5.X5 ∧ p) is closed

Modifications with respect to the book (p. 105):

I We identified e and A[i ] (they play the same role)
I The restriction to reset open formulae only makes the algorithm more efficient. This

is essential for CTL (see later).
I The book has a slightly different algorithm (correctness unclear to me): we presented

the original Emerson and Lei algorithm (1986).
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Emerson-Lei algorithm

Complexity analysis

I Let formula f be given, with dependent alternation depth dAD(f ) = d .
I Let the Kripke Structure be 〈S ,Act,R, L〉.
I Take a block of fixed points of the same type:

• its length is at most |f |.
• the value of each fixed point in it can grow/shrink at most |S| times.

I In total, the innermost block will have no more than (|f | · |S |)d iterations of the
repeat-loop.

I Each iteration requires time at most O(|f | · (|S |+ |R|)).
I Hence: the overall complexity of the Emerson-Lei algorithm is
O(|f | · (|S |+ |R|) · (|f | · |S |)d)
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Embedding CTL-formulae

Again, assume Act = {a}. Given the fixed point characterisation of CTL, there is a
straightforward translation of CTL to the µ-calculus:

I Tr(p) = p

I Tr(¬f ) = ¬Tr(f )
I Tr(f ∧ g) = Tr(f ) ∧ Tr(g)

I Tr(E X f ) = 〈a〉 Tr(f )
I Tr(E G f ) = νY .(Tr(f ) ∧ 〈a〉 Y )

I Tr(E [f U g ]) = µY .(Tr(g) ∨ (Tr(f ) ∧ 〈a〉 Y ))

Note:
I Tr(f ) is syntactically monotone
I Tr(f ) is a closed µ-calculus formula
I dAD(Tr(f )) ≤ 1, which is called the alternation free fragment of the µ-calculus
I AD(Tr(f )) is not bounded!
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Conclusions

I the µ-calculus incorporates least and greatest fixed points directly in the logic.
I the naive algorithm is exponential in the nesting depth of fixed points.
I a careful analysis leads to an algorithm which is exponential in the (dependent)

alternation depth only,
I Hence: alternation free µ-calculus is linear in the Kripke Structure and polynomial in

the formula.
I CTL translates into the alternation free fragment of the µ-calculus.
I for the latter we essentially needed the dependent alternation depth.
I fairness constraints typically lead to one extra alternation (dAD(f ) = 2)
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Exercise

Consider the following µ-calculus formula φ and LTS L:

φ := νX .

(
[a]X ∧ νY .µZ .(〈b〉Y ∨ 〈a〉Z)

)
s1 s2

s3 s4

a

a

b

b
a

I Compute the set of states where φ holds with the naive algorithm (give all
intermediate approximations).

I Compute the set of states where φ holds with the Emerson-Lei’s algorithm (give all
intermediate approximations).

I Explain in natural language the meaning of formula φ.
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