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Boolean Equation Systems

» Boolean Equation Systems are systems of fixed point equations.

Given a set Var of propositional variables. A Boolean Expression is defined by:
fu=X|true|false | fAFf|FfVF

A Boolean Equation is an equation of the form uX = f or vX = f where X € Var and f

is a Boolean Expression.

A Boolean Equation System is a sequence of Boolean Equations:
Ex=e|(wWX=FHE|WX=fE

Note:
» Negation is not allowed, in order to ensure monotonicity.
» The order of equations is important. The leftmost sign will be given priority.

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science




Boolean Equation Systems

4/19

» A variable W that occurs in a Boolean Expression of a BES € is called bound, if
there is an equation for W in &, otherwise W is called free.

> If propositional variables are bound uniquely (i.e., at most once), the BES is
well-formed; we only consider well-formed BESs.

» If £ contains no free variables, £ is closed, otherwise it is open.

» Henceforth, o represents either p or v if we wish to abstract from its actual polarity.

Example
An example of a closed BES &£ with three propositional variables X, Y and Z:

WX =(XAY)VZ)(vY=XAY)(uZ=2ZAX)

An example of an open BES F with three propositional variables X, Y and Z:
(pX=YVZ)(vY=XAY)

An example of a BES that is not well-formed:
(1X = X) (X = X)
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> Let Val be the set of all functions n : Var — {false, true}

» The solution of a BES is a valuation: 7 : Val

> Let [f](n) denote the value of boolean expression f under valuation 7.

> For the solution 7 of a BES &, we wish n(X) = [f](n) for all equations X = f in £.

> Also, we want the smallest (for u) or greatest (for ) solution, where leftmost fixed
point signs take priority over fixed point signs that follow.

Given a BES &, we define [£] : Val — Val by recursion on &.

[e1(m) =
[(wX = 1) Eln) = [E)(nIX := [f](nu.)]) where n, := [E](n[X := false])
[(wX =1)Eln) = €)X := [f](n.)]) where n, := [E](n[X := true])
Note: for closed BESs we have [E](7)(X) = [E](n")(X) for all n,n" and all bound X
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Transformation of the p-calculus model checking problem to BES

> Given is the following model checking problem: M, t |=oX. f

* a closed p-calculus formula o X. f in Positive Normal Form and,
* a Mixed Kripke Structure M = (S, sp, Act, R, L).
° t €S is a state

» We define a BES & with the following property:
([ET(M)(Xe) = true iff M, t = o X. f

i.e. formula o X. f holds in state t if and only if the solution for X; yields true.
> This BES is defined as follows:
¢ For each subformula ¢’ Y.g, we add the following equation for each state t € S:
o'Ye = RHS(t,g)

e Important: The order of the equations respects the subterm ordering in the original
formula o X. f.
e Intuitively: We wish RHS(t, g) iff t = g
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The Right-Hand Side of an equation is defined inductively on the structure of the
p-calculus formula:

RHS(t, true) = true
RHS(t, false) = false

_ true if p € L(t)
RHS(t. p) o { false otherwise
RHS(t, X) = X
RHS(t,f ANg) = RHS(t,f)ARHS(t, g)

RHS(t,fV g) RHS(t, f)V RHS(t, g)

RHS(t, [a]f)
RHS(t, (a)f)

Aues {RHS(u, f) | t = u}
Vies {RHS(u, f) | t = u}

RHS(t, uX. f) X
RHS(t,vX. f) = X

conventions: Nics® = true and V, s 0 = false
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RHS(1, [a]X) = RHS(2, X) A RHS(3, X) = Xo A Xs.
RHS(2, (b)Y)= RHS(1, Y)V RHS(3, Y)= Y1V Ys.
RHS(3, (b)Y') = false (empty disjunction!)
RHS(1, [a]{b)uZ. Z)
= RHS(2, (b)uZ. Z) ARHS(3, (byuZ. Z)A
(RHS(1, uZ.Z)V RHS(3, pnZ.Z)) A false
= (4 V Z3) Nfalse

Translation of pX.(b)true V (a)X to BES:

v

\{

v

\4

(/J,Xl = X3V Xz) (,qu = true) (/J,X3 false)
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Example
p-caleulus formula: vX.([a]X AvY.uZ.((b)Y V (a)Z))
Translates to the following BES:

vXi = XsAY:
vXa = XoAYs
vXs = XaAYs
vXs = trueAYs
14 Yl = Zl
l/Y2 = Zz
14 Y3 = Z3
I/Y4 = Z4

b pZy = Y2VZs
nZ, = falsev 2z,
/.LZ3 = falseV Z4
nZs = YsVfalse
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Solving BESs

We reduced the model checking problem M, s = f to the solution of a BES with
O(|M| x |f]) equations.

» We now want a fast procedure to solve such BESs.

> An extremely tedious way to solve a BES is to unfold its semantics.

» A very appealing solution is to solve it by GauR Elimination.

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science




Solving BESs

GauR Elimination uses the following 4 basic operations to solve a BES:

> local solution: eliminate X in its defining equation:

E (WX =f) & becomes & (uX = X = false]) &
& (WX =f) & becomes & (vX = f[X :=true]) &

» Substitute definitions to the left:

o (0’1X=X\/ Y) &1 (UzYZ Y/\X) &>
becomes: &o (0‘1X:X\/(Y/\X)) &1 (UzY:Y/\X) &>

» Substitute closed equations to the right:

&o (O'1X = true) &1 (O’zy =YA X)gg
becomes: & (01X = true) & (o2 = Y Atrue) &

» Boolean simplication: At least the following:

b Atrue — b bV true — true b A false — false bV false — b
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Solving BESs

Example
(X =XVY) (WY =XV(YAZ) (uZ=Y AZ)
local —
(uX =false VY) (vY = XV (true A Z)) (pZ = Y A false)
simplifications —
(X =Y) (wY =XV 2Z) (uZ = false)
substitution backwards —
(X =Y) (vY = X Vfalse) (uZ = false)
simplifications —
(X =Y) (vY = X) (uZ = false)
substitution backwards —
(pX =X) (vY = X) (nZ = false)
local —
(pX =false) (vY = X) (uZ = false)
substitution to the right —
(pX = false) (vY = false) (uZ = false)
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Solving BESs

Gaul Elimination is a decision procedure for computing the solution to a BES.

Input: a BES (01X1 = f1) ... (0sXs = f,). Returns: the solution for Xj.

for i = n downto 1 do
if oj = p then i ;= fi[X; := false]
else f; ;= fi[X; := true]
end if
for j =i — 1 downto 1 do fj := ;[ X; := f;]
end for

end for

Note:

> Invariants of the outer loop:
* f; contains only variables X; with j <.
e forall i < j < n, X; does not occur in f;.

» Upon termination (i = 0), 01Xy = f1 is closed and evaluates to true or false.

» One could substitute the solution for Xj to the right and repeat the procedure to
solve Xs, etcetera.
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Model Checking using BES

Example
ie——0——a
b

Encoding the p-calculus formula: vX.([a]X AvY.uZ.((b)Y V (a)Z)) leads to the below
BES; solving using GauB Elimination (each column is one iteration of the algorithm):

vXy = XasAYr | XaAYr | XasAYr | X3AYr | XsaAYy X3 A Yy cee true
vXa = XaAYa | XaAYa | XaAYa | XaAYa | X2 AYa X2 A Ya cee false
vXs = XaAYs | XaAYs | XaANYs | XaANYs | XaAYs Xa NYs S true
vXa = Ya Ya Ya Ya Ya Y3 cee true
vYa, = Z3 p Z3 p Y2V Ys Y2V Y3 s true
vYs = 27> Za Z> false false false cee false
vYs = Z3 Z3 Y3 Y3 Y3 Y3 cee true
vYa = Za Y3 Y3 Ys Y3 Y3 * cee true
pnZi =  YaVZ3 YV Z3 Y2VY3s | YaV Y3 Y2V Y3k | YaV Yzx | --- true
nZz = 27> Za Z> falsex falsex falsex cee false
nZs = Za Ys Y3* Y3 * Y3* Y3* cee true
nZa = Y3 Y3 * Y3* Y3* Y3* Y3* cee true
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Solving BESs

Complexity of GauR Elimination.

> Note that in O(n?) substitutions, we obtain the final answer for X;.

> However, fi can have O(2") different copies of e, as subterms, so intermediate
expressions could become exponentially big.

» Practical efficiency increases a lot if one keeps all intermediate terms simplified all the
time.

» GauR Elimination can be sped up if a forward dependency analysis is conducted
(so-called local model checking).

> Precise efficiency depends heavily on the set of simplification rules.
> Precise complexity of solving Boolean Equation Systems is still unknown.

» Complexity of GauR Elimination is independent of the alternation depth (see
Proposition 6.4 [Mader]).
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Consider the following p-Calculus formula f:

vX.([a)X AvY.pZ.((b)Y V(a)Z))

> Use the Emerson-Lei algorithm for computing whether M, s; = f.

> Translate the model checking question M = f to a BES; indicate how M, s = ¢
corresponds to the variables in the BES.

> Solve the BES by GauR Elimination.
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