Algorithms for Model Checking (2IW55)

Lecture 5

Boolean Equation Systems

Background material: Chapter 3 and 6 of

A. Mader, "Verification of Modal Properties using Boolean Equation Systems", Ph.D. thesis, 1997

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw MF 6.073

Model Checking using BESs

Solving BESs

Boolean Equation Systems are systems of fixed point equations.

Given a set Var of propositional variables. A Boolean Expression is defined by:

$$f ::= X \mid \text{true} \mid \text{false} \mid f \land f \mid f \lor f$$

A Boolean Equation is an equation of the form $\mu X = f$ or $\nu X = f$ where $X \in Var$ and f is a Boolean Expression.

A Boolean Equation System is a sequence of Boolean Equations:

$$\mathcal{E} ::= \varepsilon \mid \left(\mu X = f\right) \, \mathcal{E} \mid \left(\nu X = f\right) \, \mathcal{E}$$

Note:

- Negation is not allowed, in order to ensure monotonicity.
- ▶ The order of equations is important. The leftmost sign will be given priority.

- A variable W that occurs in a Boolean Expression of a BES \mathcal{E} is called bound, if there is an equation for W in \mathcal{E} , otherwise W is called free.
- If propositional variables are bound uniquely (i.e., at most once), the BES is well-formed; we only consider well-formed BESs.
- ▶ If \mathcal{E} contains no free variables, \mathcal{E} is closed, otherwise it is open.
- lacktriangle Henceforth, σ represents either μ or u if we wish to abstract from its actual polarity.

Example

An example of a closed BES \mathcal{E} with three propositional variables X, Y and Z:

$$(\mu X = (X \wedge Y) \vee Z) (\nu Y = X \wedge Y) (\mu Z = Z \wedge X)$$

An example of an open BES \mathcal{F} with three propositional variables X, Y and Z:

$$(\mu X = Y \vee Z) (\nu Y = X \wedge Y)$$

An example of a BES that is not well-formed:

$$(\mu X = X) (\nu X = X)$$

- ▶ Let *Val* be the set of all functions $\eta: Var \rightarrow \{false, true\}$
- ▶ The solution of a BES is a valuation: η : Val
- Let $[f](\eta)$ denote the value of boolean expression f under valuation η .
- For the solution η of a BES ε, we wish η(X) = [f](η) for all equations σX = f in ε.
 Also, we want the smallest (for μ) or greatest (for ν) solution, where leftmost fixed point signs take priority over fixed point signs that follow.

Given a BES \mathcal{E} , we define $\llbracket \mathcal{E} \rrbracket : Val \rightarrow Val$ by recursion on \mathcal{E} .

```
\begin{cases} & \llbracket \varepsilon \rrbracket(\eta) & := \eta \\ & \llbracket (\mu X = f) \ \mathcal{E} \rrbracket(\eta) & := \llbracket \mathcal{E} \rrbracket(\eta[X := [f](\eta_{\mu})]) \text{ where } \eta_{\mu} := \llbracket \mathcal{E} \rrbracket(\eta[X := \mathsf{false}]) \\ & \llbracket (\nu X = f) \ \mathcal{E} \rrbracket(\eta) & := \llbracket \mathcal{E} \rrbracket(\eta[X := [f](\eta_{\nu})]) \text{ where } \eta_{\nu} := \llbracket \mathcal{E} \rrbracket(\eta[X := \mathsf{true}]) \end{cases}
```

Note: for closed BESs we have $[\![\mathcal{E}]\!](\eta)(X) = [\![\mathcal{E}]\!](\eta')(X)$ for all η, η' and all bound X

 ${\sf Model\ Checking\ using\ BESs}$

Solving BESs

Transformation of the μ -calculus model checking problem to BES

- ▶ Given is the following model checking problem: $M, t \models \sigma X$. f
 - a closed μ -calculus formula σX . f in Positive Normal Form and,
 - a Mixed Kripke Structure $M = \langle S, s_0, Act, R, L \rangle$.
 - $t \in S$ is a state
- ightharpoonup We define a BES ${\cal E}$ with the following property:

$$(\llbracket \mathcal{E} \rrbracket (\eta))(X_t) = \text{true iff } M, t \models \sigma X. f$$

i.e. formula σX . f holds in state t if and only if the solution for X_t yields true.

- This BES is defined as follows:
 - For each subformula $\sigma' Y.g$, we add the following equation for each state $t \in S$:

$$\sigma' Y_t = RHS(t, g)$$

- Important: The order of the equations respects the subterm ordering in the original formula σX. f.
- Intuitively: We wish RHS(t, g) iff $t \models g$

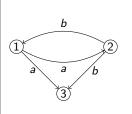
Model Checking using BESs

The Right-Hand Side of an equation is defined inductively on the structure of the μ -calculus formula:

```
RHS(t, true) = true
RHS(t, false) = false
RHS(t, p) = \begin{cases} \text{true} & \text{if } p \in L(t) \\ \text{false} & \text{otherwise} \end{cases}
RHS(t, X) = \hat{X}_t
RHS(t, f \wedge g) = RHS(t, f) \wedge RHS(t, g)
RHS(t, f \vee g) = RHS(t, f) \vee RHS(t, g)
RHS(t, [a]f) = \bigwedge_{u \in S} \{RHS(u, f) \mid t \xrightarrow{a} u\}
RHS(t, \langle a \rangle f) = \bigvee_{u \in S} \{RHS(u, f) \mid t \xrightarrow{a} u\}
RHS(t, \mu X. f) = X_t
RHS(t, \nu X. f) = X_t
                                  \bigwedge_{t \in S} \emptyset = \text{true and } \bigvee_{t \in S} \emptyset = \text{false}
conventions:
```

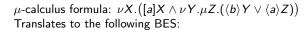
TU/e Technische Universiteit Eindhoven University of Technology

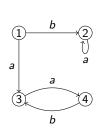
Example



- ► RHS(1, [a]X) = RHS(2, X) \wedge RHS(3, X) = $X_2 \wedge X_3$.
- $RHS(2, \langle b \rangle Y) = RHS(1, Y) \vee RHS(3, Y) = Y_1 \vee Y_3.$
- ▶ $RHS(3, \langle b \rangle Y) = \text{false (empty disjunction!)}$
- RHS(1, $[a]\langle b\rangle \mu Z$. Z)
 - $= RHS(2, \langle b \rangle \mu Z. Z) \wedge RHS(3, \langle b \rangle \mu Z. Z) \wedge$
 - = $(RHS(1, \mu Z.Z) \lor RHS(3, \mu Z.Z)) \land false$
 - $= (Z_1 \lor Z_3) \land \text{false}$
- ▶ Translation of $\mu X.\langle b \rangle$ true $\vee \langle a \rangle X$ to BES:
 - $(\mu X_1 = X_3 \lor X_2)$ $(\mu X_2 = \mathsf{true})$ $(\mu X_3 = \mathsf{false})$

Example





$$\begin{array}{rclrcl} \nu X_1 & = & X_3 \wedge Y_1 \\ \nu X_2 & = & X_2 \wedge Y_2 \\ \nu X_3 & = & X_4 \wedge Y_3 \\ \nu X_4 & = & \operatorname{true} \wedge Y_4 \\ \nu Y_1 & = & Z_1 \\ \nu Y_2 & = & Z_2 \\ \nu Y_3 & = & Z_3 \\ \nu Y_4 & = & Z_4 \\ \mu Z_1 & = & Y_2 \vee Z_3 \\ \mu Z_2 & = & \operatorname{false} \vee Z_2 \\ \mu Z_3 & = & \operatorname{false} \vee Z_4 \\ \mu Z_4 & = & Y_3 \vee \operatorname{false} \end{array}$$

Model Checking using BES

Solving BESs

- We reduced the model checking problem $M, s \models f$ to the solution of a BES with $\mathcal{O}(|M| \times |f|)$ equations.
- We now want a fast procedure to solve such BESs.
- An extremely tedious way to solve a BES is to unfold its semantics.
- ▶ A very appealing solution is to solve it by Gauß Elimination.

Gauß Elimination uses the following 4 basic operations to solve a BES:

▶ local solution: eliminate *X* in its defining equation:

$$\begin{array}{ll} \mathcal{E}_0 \; (\mu X = f) \; \mathcal{E}_1 & \text{becomes} \quad \mathcal{E}_0 \; (\mu X = f[X := \text{false}]) \; \mathcal{E}_1 \\ \mathcal{E}_0 \; (\nu X = f) \; \mathcal{E}_1 & \text{becomes} \quad \mathcal{E}_0 \; (\nu X = f[X := \text{true}]) \; \mathcal{E}_1 \\ \end{array}$$

Substitute definitions to the left:

$$\mathcal{E}_0 \left(\sigma_1 X = X \vee \frac{\mathbf{Y}}{\mathbf{Y}} \right) \mathcal{E}_1 \left(\sigma_2 Y = Y \wedge X \right) \mathcal{E}_2$$
 pecomes:
$$\mathcal{E}_0 \left(\sigma_1 X = X \vee \left(\frac{\mathbf{Y}}{\mathbf{Y}} \wedge X \right) \right) \mathcal{E}_1 \left(\sigma_2 Y = Y \wedge X \right) \mathcal{E}_2$$

Substitute closed equations to the right:

$$\begin{array}{ccc} \mathcal{E}_0 \; (\sigma_1 X = \mathsf{true}) \; \mathcal{E}_1 \; (\sigma_2 Y = Y \wedge \textcolor{red}{X}) \mathcal{E}_2 \\ \mathsf{becomes:} & \mathcal{E}_0 \; (\sigma_1 X = \mathsf{true}) \; \mathcal{E}_1 \; (\sigma_2 Y = Y \wedge \mathsf{true}) \; \mathcal{E}_2 \\ \end{array}$$

Boolean simplication: At least the following:

$$b \land \mathsf{true} \to b$$
 $b \lor \mathsf{true} \to \mathsf{true}$ $b \land \mathsf{false} \to \mathsf{false}$ $b \lor \mathsf{false} \to b$

$$(\mu X = X \vee Y) \ (\nu Y = X \vee (Y \wedge Z)) \ (\mu Z = Y \wedge Z)$$

$$\mathsf{simplifications} \to$$

$$(\mu X = Y) (\nu Y = X \vee Z)) (\mu Z = \text{false})$$

 $(\mu X = \mathsf{false} \lor Y) \ (\nu Y = X \lor (\mathsf{true} \land Z)) \ (\mu Z = Y \land \mathsf{false})$

$$(\mu X = Y) (\nu Y = X \lor Z)) (\mu Z = \text{false})$$
$$(\mu X = Y) (\nu Y = X \lor \text{false}) (\mu Z = \text{false})$$

substitution backwards
$$\rightarrow$$

simplifications \rightarrow

$$(\mu X = Y) (\nu Y = X) (\mu Z = \text{false})$$

substitution backwards
$$ightarrow$$

$$(\mu X = X) (\nu Y = X) (\mu Z = false)$$

$$\mathsf{local} o$$

$$(\mu X = \text{false}) \ (\nu Y = X) \ (\mu Z = \text{false})$$

substitution to the right
$$ightarrow$$

$$(\mu X = \text{false}) (\nu Y = \text{false}) (\mu Z = \text{false})$$

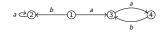
Gauß Elimination is a decision procedure for computing the solution to a BES.

```
Input: a BES (\sigma_1 X_1 = f_1) ... (\sigma_n X_n = f_n). Returns: the solution for X_1. for i = n downto 1 do
   if \sigma_i = \mu then f_i := f_i[X_i := \text{false}]
   else f_i := f_i[X_i := \text{true}]
   end if
   for j = i - 1 downto 1 do f_j := f_j[X_i := f_i]
   end for
end for
```

Note:

- Invariants of the outer loop:
 - f_j contains only variables X_j with $j \leq i$.
 - for all $i < j \le n$, X_j does not occur in f_j .
- ▶ Upon termination (i = 0), $\sigma_1 X_1 = f_1$ is closed and evaluates to true or false.
- One could substitute the solution for X_1 to the right and repeat the procedure to solve X_2 , etcetera.

Example



Encoding the μ -calculus formula: $\nu X.([a]X \wedge \nu Y.\mu Z.(\langle b \rangle Y \vee \langle a \rangle Z))$ leads to the below BES; solving using Gauß Elimination (each column is one iteration of the algorithm):

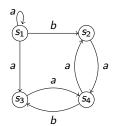
νX_1	=	$X_3 \wedge Y_1$	 true					
νX_2	=	$X_2 \wedge Y_2$	 false					
νX_3	=	$X_4 \wedge Y_3$	 true					
νX_4	=	Y_4	Y4	Y4	Y4	Y4	Y ₃	 true
νY_1	=	Z_1	Z_1	Z_1	Z_1	$Y_2 \vee Y_3$	$Y_2 \vee Y_3$	 true
νY_2	_	Z_2	Z ₂	Z ₂	false	false	false	 false
νY_3	=	Z_3	Z ₃	Y ₃	Y ₃	Y ₃	Y ₃	 true
νY_4	=	Z_4	Y ₃	Y ₃	Y ₃	Y ₃	Y3*	 true
μZ_1	=	$Y_2 \vee Z_3$	$Y_2 \vee Z_3$	$Y_2 \vee Y_3$	$Y_2 \vee Y_3$	$Y_2 \vee Y_3*$	Y ₂ ∨ Y ₃ *	 true
μZ_2	=	Z_2	Z_2	Z_2	false*	false*	false*	 false
μZ_3	=	Z_4	Y ₃	Y3*	Y3*	Y3*	Y3*	 true
μZ_4	=	Y_3	Y3*	Y3*	Y3*	Y3*	Y3*	 true

Complexity of Gauß Elimination.

- Note that in $\mathcal{O}(n^2)$ substitutions, we obtain the final answer for X_1 .
- However, f_1 can have $\mathcal{O}(2^n)$ different copies of e_n as subterms, so intermediate expressions could become exponentially big.
- Practical efficiency increases a lot if one keeps all intermediate terms simplified all the time.
- Gauß Elimination can be sped up if a forward dependency analysis is conducted (so-called local model checking).
- Precise efficiency depends heavily on the set of simplification rules.
- Precise complexity of solving Boolean Equation Systems is still unknown.
- Complexity of Gauß Elimination is independent of the alternation depth (see Proposition 6.4 [Mader]).

Model Checking using BESs

Solving BESs



Consider the following μ -Calculus formula f:

$$\nu X. \big([a]X \wedge \nu Y. \mu Z. \big(\langle b \rangle Y \vee \langle a \rangle Z\big)\big)$$

- Use the Emerson-Lei algorithm for computing whether $M, s_1 \models f$.
- ▶ Translate the model checking question $M \models f$ to a BES; indicate how $M, s \models \phi$ corresponds to the variables in the BES.
- Solve the BES by Gauß Elimination.

