Algorithms for Model Checking (2IMF35)
 Lecture 6
 Parity games

Background material: Chapter 3 of
J.J.A. Keiren, An experimental study of algorithms and optimisations for parity games, with an application to Boolean Equation Systems, MSc thesis, 2009

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

Outline

Parity games

Boolean Equation Systems

Boolean equation systems and Parity games correspond

Simplifying parity games

Summary

Exercise

- Model checking mu-calculus = solving BES
- Solving BESs conceptually simpler than model checking mu-calculus . still exponential
- BESs are more elementary than mu-calculus still: fixpoints
- Fixpoints can be understood through an infinite game Parity games

Parity games

The arena:

- total graph
- two players: \diamond (Even) and \square (Odd)
- each vertex:
- has a non-negative priority $\mathrm{p}(v)$
- is owned by one player
- objective: win as many vertices as possible

Parity games

Definition (Parity game)

A parity game is a four tuple $\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ where

- (V, E) is a directed graph
- V a set of vertices partitioned into V_{\diamond} and V_{\square}
- V_{\diamond} : vertices owned by player \diamond
- V_{\square} : vertices owned by player \qquad
- E a total edge relation
- $\mathrm{p}: V \rightarrow \mathbb{N}$ a priority function

Parity game (example)

S2

$$
\begin{aligned}
V_{\diamond} & =\left\{s_{2}, s_{3}\right\} \\
V_{\square} & =\left\{s_{1}\right\} \\
\mathrm{p} & =\left\{s_{1} \mapsto 1, s_{2} \mapsto 2, s_{3} \mapsto 3\right\}
\end{aligned}
$$

Parity games

Parity games

Rules of the game:

1. place a token on some vertex v
2. owner of the vertex v moves token to successor vertex v^{\prime}
3. Repeat step 2

Parity games

Rules of the game:

1. place a token on some vertex v
2. owner of the vertex v moves token to successor vertex v^{\prime}
3. Repeat step 2

Play: infinite sequence of vertices visited by token

Parity games

Rules of the game:

1. place a token on some vertex v
2. owner of the vertex v moves token to successor vertex v^{\prime}
3. Repeat step 2

Play: infinite sequence of vertices visited by token

Definition (Winner of a play)

- Let $\pi=v_{1} v_{2} v_{3} \ldots$ be a play
- Let $\inf (\pi)$ be the set of priorities occurring infinitely often in π

Play π is winning for player \diamond iff $\min (\inf (\pi))$ is even. Likewise for player $\square /$ odd.

Example: winner of a play/winning strategy

Examples of winners of a play:

- Play $\left(s_{1} s_{2}\right)^{\omega}$ won by player \square;
- Play $s_{1} s_{2}^{\omega}$ won by player \diamond;
- Play $\left(s_{1} s_{2} s_{1} s_{3}\right)^{\omega}$ won by player \square.

Parity games

Definition (Strategy)

A strategy for player \diamond (similarly for \square) is a partial function $\varrho_{\diamond}: V^{*} \times V_{\diamond} \rightarrow V$

- $\varrho_{\diamond}\left(v_{1} \ldots v_{n-1}, v_{n}\right) \in\left\{v \mid\left(v_{n}, v\right) \in E\right\} \ldots \ldots . \ldots$................

Parity games

Definition (Strategy)

A strategy for player \diamond (similarly for \square) is a partial function $\varrho_{\diamond}: V^{*} \times V_{\diamond} \rightarrow V$

- $\varrho_{\diamond}\left(v_{1} \ldots v_{n-1}, v_{n}\right) \in\left\{v \mid\left(v_{n}, v\right) \in E\right\} \ldots \ldots . \ldots$................

Definition (Consistent plays)

- Let $\pi=v_{1} v_{2} v_{3} \ldots$ be an infinite play
- Let ϱ_{\circ} be a strategy for player $O \in\{\diamond, \square\}$
- π is consistent with ϱ_{O} iff whenever $\varrho_{\circ}\left(v_{1} \ldots v_{i-1}, v_{i}\right)$ is defined, then it is v_{i+1}

Play $_{\varrho_{\bigcirc}}(v)$ is the set of all plays starting in v that are consistent with ϱ_{\circ}

Strategy (example)

- possible strategy ϱ_{\square} : play token from s_{1} to s_{2} if s_{1} has been visited an even number of times, and to s_{3} otherwise
- possible strategy $\varrho \diamond$ always plays token from s_{2} to s_{2}

Examples of winning strategies:
$-\varrho_{\diamond}\left(\ldots, s_{2}\right)=s_{2}$
$-\varrho \square\left(\ldots, s_{1}\right)=s_{3}$
$\varrho_{\diamond}\left(\ldots, s_{3}\right)= \begin{cases}s_{1} & \text { if number of occurrences of } s_{3} \text { is prime } \\ s_{3} & \text { otherwise }\end{cases}$

Parity games

Definition (Winning strategy)

- $O \in\{\diamond, \square\}$
- ϱ_{\circ} is a strategy for
ϱ_{\bigcirc} is a winning strategy from v if every play in Play $_{\varrho_{O}}(v)$ is winning for O.

Parity games

Definition (Winning strategy)

- $O \in\{\diamond, \square\}$
- ϱ_{\circ} is a strategy for
ϱ_{\bigcirc} is a winning strategy from v if every play in Play $_{\varrho_{O}}(v)$ is winning for O.
Player \bigcirc wins the vertices in W if from all vertices $v \in W$ she has a winning strategy ϱ_{\circ}.

Parity games

Definition (Winning strategy)

- $O \in\{\diamond, \square\}$
- ϱ_{\circ} is a strategy for
ϱ_{\bigcirc} is a winning strategy from v if every play in Play $_{\varrho_{\bigcirc}}(v)$ is winning for \bigcirc.

Player \bigcirc wins the vertices in W if from all vertices $v \in W$ she has a winning strategy $\varrho_{○}$.

Natural questions

- Is there always at least one player that can win a vertex?
- Is there a unique winner for each vertex?
- Can the winning strategies be of a particular shape or not?
- Can we compute the winning sets W_{\diamond} and W_{\square} ?

Parity games

Theorem (Positional determinacy)

Player \bigcirc wins a vertex w iff she has a memoryless strategy that is winning from w

Parity games

Theorem (Positional determinacy)

Player \bigcirc wins a vertex w iff she has a memoryless strategy that is winning from w

Strategy $\varrho_{0}: V^{*} \times V_{\bigcirc} \rightarrow V$ is memoryless (also history free) if:
for all histories $\lambda v, \lambda^{\prime} v \in V^{+}$for which ϱ_{\circ} is defined, we have $\varrho_{\circ}(\lambda, v)=\varrho_{\circ}\left(\lambda^{\prime}, v\right)$

Parity games

Theorem (Positional determinacy)

Player \bigcirc wins a vertex w iff she has a memoryless strategy that is winning from w

Strategy $\varrho_{0}: V^{*} \times V_{\bigcirc} \rightarrow V$ is memoryless (also history free) if:
for all histories $\lambda v, \lambda^{\prime} v \in V^{+}$for which ϱ_{\circ} is defined, we have $\varrho_{\circ}(\lambda, v)=\varrho_{\circ}\left(\lambda^{\prime}, v\right)$

Consequences:

- we can drop the history and consider strategies $\varrho_{\bigcirc}: V_{\bigcirc} \rightarrow V$
- there are only a finite number of memoryless strategies

Memoryless strategy (example)

$$
\text { Let } \varrho_{\diamond}\left(s_{2}\right)=s_{2}, \varrho_{\diamond}\left(s_{3}\right)=s_{1} \text {, and } \varrho_{\square}\left(s_{1}\right)=s_{3} \text {. }
$$

- ϱ_{\diamond} is winning from $\left\{s_{2}\right\}$
$-\varrho_{\square}$ is winning from $\left\{s_{1}, s_{3}\right\}$

Outline

Boolean Equation Systems

Boolean Equation Systems

Recall Boolean equation systems:

- Boolean expressions: $f, g::=X \mid$ true \mid false $|f \wedge g| f \vee g$
- Boolean equation system: $\mathcal{E}::=\varepsilon|(\mu X=f) \mathcal{E}|(\nu X=f) \mathcal{E}$

Boolean Equation Systems

Recall Boolean equation systems:

- Boolean expressions: $f, g::=X \mid$ true \mid false $|f \wedge g| f \vee g$
- Boolean equation system: $\mathcal{E}::=\varepsilon|(\mu X=f) \mathcal{E}|(\nu X=f) \mathcal{E}$

Lemma ("Tseitin" transformation)

For all Y bound in $\mathcal{E}_{0}, \mathcal{E}_{1}$ or $Y=X$:

$$
\left[\mathcal{E}_{0}(\sigma X=f \wedge g) \mathcal{E}_{1}\right] \eta(Y)=\left[\mathcal{E}_{0}\left(\sigma X=f \wedge X^{\prime}\right)\left(\sigma^{\prime} X^{\prime}=g\right) \mathcal{E}_{1}\right] \eta(Y)
$$

Note: likewise for f, likewise for $f \vee g$

Boolean Equation Systems

Recall Boolean equation systems:

- Boolean expressions: $f, g::=X \mid$ true \mid false $|f \wedge g| f \vee g$
- Boolean equation system: $\mathcal{E}::=\varepsilon|(\mu X=f) \mathcal{E}|(\nu X=f) \mathcal{E}$

Lemma ("Tseitin" transformation)

For all Y bound in $\mathcal{E}_{0}, \mathcal{E}_{1}$ or $Y=X$:

$$
\left[\mathcal{E}_{0}(\sigma X=f \wedge g) \mathcal{E}_{1}\right] \eta(Y)=\left[\mathcal{E}_{0}\left(\sigma X=f \wedge X^{\prime}\right)\left(\sigma^{\prime} X^{\prime}=g\right) \mathcal{E}_{1}\right] \eta(Y)
$$

Note: likewise for f, likewise for $f \vee g$

Lemma (Constant elimination)

For all Y bound in \mathcal{E} :

$$
[\mathcal{E}] \eta(Y)=\left[\mathcal{E}\left[\text { true }:=X_{\text {true }}\right]\left(\nu X_{\text {true }}=X_{\text {true }}\right)\right] \eta(Y)
$$

Note: similarly for false (with $\mu X_{\text {false }}=X_{\text {false }}$)

BES (example)

Consider the following BES:

$$
\begin{aligned}
\mu X & =X \wedge(Y \vee Z) \\
\nu Y & =W \vee(X \wedge Y) \\
\mu Z & =\text { false } \\
\mu W & =Z \vee(Z \vee W)
\end{aligned}
$$

This corresponds to the following BES in SRF:

$$
\begin{array}{ll}
\mu X & =X \wedge X^{\prime} \\
\mu X^{\prime} & =Y \vee Z \\
\nu Y & =W \vee Y^{\prime} \\
\nu Y^{\prime} & =X \wedge Y \\
\mu Z & =X_{\text {false }} \\
\mu W & =Z \vee(Z \vee W) \\
\mu X_{\text {false }} & =X_{\text {false }}
\end{array}
$$

Boolean Equation Systems

Definition (Standard Recursive Form)

A BES is in Standard Recursive Form (SRF) if all right hand sides of Boolean equations adhere to the following syntax:

$$
f:=X|\bigvee F| \bigwedge F
$$

- X is a proposition variable
- F is a non-empty set of proposition variables

Boolean Equation Systems

Definition (Standard Recursive Form)

A BES is in Standard Recursive Form (SRF) if all right hand sides of Boolean equations adhere to the following syntax:

$$
f:=X|\bigvee F| \bigwedge F
$$

- X is a proposition variable
- F is a non-empty set of proposition variables

Observe that:

- all BESs can be transformed into a BES in SRF preserving the solution
- how: repeatedly use "Tseitin" transformation and constant elimination
- the total transformation can be done in polynomial time

Boolean Equation Systems

Definition (Blocks and ranks)

- a μ-block is a BES of μ-signed equations; likewise: ν-block
- let $\mathcal{E}=\mathcal{B}_{1} \cdots \mathcal{B}_{n}$ for blocks $\mathcal{B}_{1}, \ldots, \mathcal{B}_{n}$
- Assume for all i, signs of blocks \mathcal{B}_{i} and \mathcal{B}_{i+1} differ

$$
\text { for all }(\sigma X=f) \in \mathcal{B}_{i}, \operatorname{rank}(X)= \begin{cases}i & \text { if } \mathcal{B}_{1} \text { is } \mu \text {-block } \\ i-1 & \text { otherwise }\end{cases}
$$

Boolean Equation Systems

Definition (Blocks and ranks)

- a μ-block is a BES of μ-signed equations; likewise: ν-block
- let $\mathcal{E}=\mathcal{B}_{1} \cdots \mathcal{B}_{n}$ for blocks $\mathcal{B}_{1}, \ldots, \mathcal{B}_{n}$
- Assume for all i, signs of blocks \mathcal{B}_{i} and \mathcal{B}_{i+1} differ

$$
\text { for all }(\sigma X=f) \in \mathcal{B}_{i}, \operatorname{rank}(X)= \begin{cases}i & \text { if } \mathcal{B}_{1} \text { is } \mu \text {-block } \\ i-1 & \text { otherwise }\end{cases}
$$

Observe:

- $\operatorname{rank}(X)=\operatorname{rank}(Y)$ if both X and Y occur in the same block
- $\operatorname{rank}(X)$ is odd iff X is defined in a μ-equation

Rank examples

```
rank(_)
    (1) \(\quad \mu X=X \wedge(Y \vee Z)\)
    (2) \(\nu Y=W \vee(X \wedge Y)\)
    (3) \(\mu Z=\) false
    (3) \(\quad \mu W=Z \vee(Z \vee W)\)
```

rank(_)
(1) $\quad \mu X=X \wedge X^{\prime}$
(1) $\mu X^{\prime}=Y \vee Z$
(2) $\nu Y=W \vee Y^{\prime}$
(2) $\quad \nu Y^{\prime}=X \wedge Y$
(3) $\mu Z=X_{\text {false }}$
(3) $\quad \mu W \quad=\quad Z \vee(Z \vee W)$
(3) $\quad \mu X_{\text {false }}=X_{\text {false }}$

Outline

Boolean equation systems and Parity games correspond

Boolean equation systems and Parity games correspond

Let $G=\left(V, E, p,\left(V_{\diamond,} V_{\square}\right)\right)$ be a parity game

Definition (Parity game to BES)

Define the BES \mathcal{E}_{G} as follows:

- equations $\left(\sigma_{v} X_{v}=\bigwedge\left\{X_{w} \mid(v, w) \in E\right\}\right)$ for vertices $v \in V_{\square}$
- equations $\left(\sigma_{v} X_{v}=\bigvee\left\{X_{w} \mid(v, w) \in E\right\}\right)$ for vertices $v \in V_{\diamond}$
- $\sigma_{v}=\mu$ if $p(v)$ is odd, $\sigma_{v}=\nu$ otherwise
- ensure $\operatorname{rank}\left(X_{v}\right) \leq \operatorname{rank}\left(X_{u}\right)$ if $p(v)<p(u)$

Boolean equation systems and Parity games correspond

Let $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ be a parity game

Definition (Parity game to BES)

Define the BES \mathcal{E}_{G} as follows:

- equations ($\sigma_{v} X_{v}=\bigwedge\left\{X_{w} \mid(v, w) \in E\right\}$) for vertices $v \in V_{\square}$
- equations ($\sigma_{v} X_{v}=\bigvee\left\{X_{w} \mid(v, w) \in E\right\}$) for vertices $v \in V_{\diamond}$
- $\sigma_{v}=\mu$ if $p(v)$ is odd, $\sigma_{v}=\nu$ otherwise
- ensure $\operatorname{rank}\left(X_{v}\right) \leq \operatorname{rank}\left(X_{u}\right)$ if $p(v)<p(u)$

Theorem

Solution to X_{v} is true \Leftrightarrow player \diamond has winning strategy from v

Parity game to BES example

Parity game to BES example

Corresponds to the following BES:
$\begin{aligned} \mu X_{s_{1}} & =X_{s_{2}} \wedge X_{s_{3}} \\ \nu X_{s_{2}} & =X_{s_{2}} \vee X_{s_{1}} \\ \mu X_{s_{3}} & =X_{s_{1}} \vee X_{s_{3}}\end{aligned}$

Parity game to BES intuition

Assume \mathcal{E} is a closed BES in SRF from hereon, unless indicated otherwise.

Lemma

There is a conjunctive BES in SRF \mathcal{E}^{\prime} constructed from \mathcal{E} by replacing each disjunctive equation $\sigma X_{i}=\bigvee F_{i}$ with $\sigma X_{i}=Y$ for $Y \in F_{i}$ such that:

$$
[\varepsilon]=\left[\varepsilon^{\prime}\right]
$$

In the same vein, there is a disjunctive BES in SRF that has the same solution as \mathcal{E}.

Parity game to BES intuition

Definition (μ-dominated lasso)

A μ-dominated lasso starting in some X_{1} is a finite sequence $X_{1} X_{2} \cdots X_{n}$, such that:

- We have $X_{i+1} \in F_{i}$ for $\sigma_{i} X_{i}=\bigwedge F_{i}$ or $\sigma_{i} X_{i}=\bigvee F_{i}$
- We have $X_{n} \in X_{j}$ for some $1 \leq j \leq n$.
- $\min \left\{\operatorname{rank}\left(X_{i}\right) \mid j \leq i \leq n\right\}$ is odd.

Lemma

Assume \mathcal{E} is conjunctive. Then:
$[\mathcal{E}](X)=$ false iff there is a μ-dominated lasso starting in X

Parity game to BES intuition

Theorem

Solution to X_{v} is true \Leftrightarrow player \diamond has winning strategy from v

Proof.

$-\Leftarrow$

- Assume player \diamond has a winning strategy ϱ from vertex v.
- Let \mathcal{E} be the BES obtained from the parity game.
- Construct \mathcal{E}^{\prime} from \mathcal{E} by replacing every disjunctive equation as follows:

$$
\left(\sigma X_{u}=\bigvee F\right) \text { becomes }\left(\sigma X_{u}=X_{\varrho(u)}\right)
$$

- Towards a contradiction, suppose $\left[E^{\prime}\right]\left(X_{v}\right)=$ false
- Then there must be a μ-dominated lasso starting in X_{v}
- But that means that the lowest rank on the lasso is odd
- Hence, by the transformation, there must be an infinite path in the parity game on which the lowest priority is odd
- Hence, ϱ is not winning for \diamond. Contradiction
- \Rightarrow
- Dually, assume \square has a winning strategy and prove $[\mathcal{E}]\left(X_{v}\right)=$ false.

Boolean equation systems and Parity games correspond

Let \mathcal{E} be a closed BES in SRF.

Definition (BES to parity game)

Define a parity game $G_{\mathcal{E}}=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ as follows:

- $v_{X} \in V$ iff there is an equation for X in \mathcal{E}
- $\left(v_{X}, v_{Y}\right) \in E$ iff propositional variable Y occurs in f in $\sigma X=f$
- $p\left(v_{X}\right)=\operatorname{rank}(X)$ for all equations $(\sigma X=f)$ in \mathcal{E}
$v_{X} \in V_{\square}$ iff the equation for X is of the form $(\sigma X=\Lambda F)$
- $V_{\diamond}=V \backslash V_{\square}$

Boolean equation systems and Parity games correspond

Let \mathcal{E} be a closed BES in SRF.

Definition (BES to parity game)

Define a parity game $G_{\mathcal{E}}=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ as follows:

- $v_{x} \in V$ iff there is an equation for X in \mathcal{E}
- $\left(v_{X}, v_{Y}\right) \in E$ iff propositional variable Y occurs in f in $\sigma X=f$
- $p\left(v_{X}\right)=\operatorname{rank}(X)$ for all equations $(\sigma X=f)$ in \mathcal{E}
- $v_{X} \in V_{\square}$ iff the equation for X is of the form $(\sigma X=\Lambda F)$
- $V_{\diamond}=V \backslash V_{\square}$

Theorem

Player \diamond has winning strategy from $v_{X} \Leftrightarrow$ the solution of X is true

BES vs parity game (example)

Consider the following BES:

$$
\begin{array}{ll}
\mu X & =X \wedge X^{\prime} \\
\mu X^{\prime} & =Y \vee Z \\
\nu Y & =W \vee Y^{\prime} \\
\nu Y^{\prime} & =X \wedge Y \\
\mu Z & =X_{\text {false }} \\
\mu W & =Z \vee(Z \vee W) \\
\mu X_{\text {false }} & =X_{\text {false }}
\end{array}
$$

Outline

Simplifying parity games

Self-loop elimination

Simplifying parity games

Self-loop elimination

Priority compaction

to

In case priority 4 does not occur in the parity game. Evenness must be preserved!

Simplifying parity games

Priority propagation

Corresponds to re-ordering of equations in BES, which is generally unsafe!

Outline

Summary

- Computing winners in parity games = solving BESs
- Reduction parity games \leftrightarrow BESs is polynomial
- Operational interpretation of fixpoints:
- μ-fixpoint: odd priorities; can only be won by \diamond if it ensures stretches are finite
- ν-fixpoint: even priorities; benign for player \diamond
- Simplifications
- No algorithm yet. but

Summary

- Computing winners in parity games = solving BESs
- Reduction parity games \leftrightarrow BESs is polynomial
- Operational interpretation of fixpoints:
- μ-fixpoint: odd priorities; can only be won by \diamond if it ensures stretches are finite
- ν-fixpoint: even priorities; benign for player \diamond
- Simplifications
- No algorithm yet. but

Next week:

- Recursive algorithm

Outline

Exercise

Exercise

Consider the following modal μ-calculus formula f :

$$
\nu X .([r] X \wedge((\nu Y .\langle\tau\rangle Y \vee\langle I\rangle Y) \vee(\mu Z .(([/] Z \wedge[s] Z) \vee\langle s\rangle \text { true }))))
$$

- Translate the model checking question $M \vDash f$ to a BES.
- Transform the resulting BES into a parity game.
- Determine whether f holds in s_{0} by solving the obtained parity game, and
- provide a winning strategy that justifies this solution.

