Algorithms for Model Checking (2IMF35)

 Lecture 7:

 Lecture 7: Recursively Solving Parity Games Recursively Solving Parity Games
 Background material:

O. Friedmann, Recursive Solving of Parity Games Requires Exponential Time
M. Gazda and T.A.C. Willemse, Zielonka's Recursive Algorithm: dull, weak and solitaire games and tighter bounds

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

Parity games-recap

- two players: \diamond (Even) and \square (Odd)
- every node has an owner $\left(V=V_{\diamond} \cup V_{\square}\right)$
- moving token indefinitely; node owner chooses the next vertex
- play $=$ infinite path through the game
- vertices labelled with natural numbers (priorities)
- winner of a play: determined by the parity of the minimal priority occurring infinitely often (\diamond wins even parity, \square wins odd parity)

Parity games-recap

- strategy
- winning strategy
- memoryless strategy
- winning partition

Objective

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Determinacy implies there is a unique partition $\left(W_{\diamond}, W_{\square}\right)$ of V such that:

- \diamond has winning strategy ϱ_{\diamond} from W_{\diamond}, and
- \square has winning strategy ϱ_{\square} from W_{\square}.

Objective

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Determinacy implies there is a unique partition $\left(W_{\diamond}, W_{\square}\right)$ of V such that:

- \diamond has winning strategy $\varrho \diamond$ from W_{\diamond}, and
- \square has winning strategy ϱ_{\square} from W_{\square}.

Objective of parity game algorithms

Compute partition ($W_{\diamond}, W_{\square}$) with strategies ϱ_{\diamond} and ϱ_{\square} of V such that:

- ϱ_{\diamond} is winning for player \diamond from W_{\diamond}
ϱ_{\square} is winning for player \square from W_{\square}.

Parity game algorithms

Deterministic algorithms for solving parity games

- Recursive (this lecture) McNaughton '93, Zielonka '98
- Local algorithm Stevens \& Stirling '98
- Small progress measures (next lecture)... Jurdziński, '00
- Strategy improvement

Vöge \& Jurziński '00

- (Deterministic) Subexponential........................ Jurdziński, Paterson \& Zwick '06
- Bigstep Schewe '07

Concepts

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Notation:

- \bigcirc is the 'arbitrary' player... $\bigcirc \in\{\diamond, \square\}$
- \bar{O} is the opponent $\nabla=\square$ and $\bar{\square}=\diamond$

Definition (Arena restriction)

The game $G \backslash U=\left(V^{\prime}, E^{\prime}, p^{\prime},\left(V_{\diamond}^{\prime}, V_{\square}^{\prime}\right)\right)$, for $U \subseteq V$, is the game confined to $V \backslash U$:

- $V^{\prime}=V \backslash U$ and $E^{\prime}=E \cap\left(V^{\prime} \times V^{\prime}\right)$,
- $p^{\prime}(v)=p(v)$ for $v \in V \backslash U$,
- $V_{\diamond}^{\prime}=V_{\diamond} \backslash U$, and $V_{\square}^{\prime}=V_{\square} \backslash U$

Concepts

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Definition (Closed strategies)

Strategy $\varrho_{\diamond}: V_{\diamond} \rightarrow V$ is closed on $W \subseteq V$ if for all $v \in W$, we have:

- $v \in V_{\diamond}$ implies $\varrho_{\diamond}(v) \in W$, and
- $v \in V_{\square}$ implies that $w \in W$ for all $(v, w) \in E$

For ϱ_{\diamond} closed on W, plays consistent with ϱ_{\diamond} and starting in W stay within W

Definition (Closed sets)

Set $W \subseteq V$ is \diamond-closed if \diamond has a strategy closed on W. Likewise for \square-closed.

Concepts

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Definition (Dominion)

$D \subseteq W_{\bigcirc}$ is a dominion of \bigcirc, if she has a memoryless strategy ϱ that is:

- winning for \bigcirc from all $v \in D$
- closed on D

Concepts

Example (Dominions)

Consider parity game G :

- $\{X\},\left\{Z^{\prime}, Z, W\right\}$ are \square-dominions
- Note that $\{Z, W\}$ and $\left\{Y, Y^{\prime}\right\}$ are no dominions (why?)

Concepts

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Definition (Attractor sets)

The attractor set to $U \subseteq V$ for \bigcirc (denoted $\bigcirc-\operatorname{Attr}(G, U))$ is the least set of vertices:

- containing U
- such that O can force any play to reach U.

Concepts

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Definition (Attractor sets)

The attractor set to $U \subseteq V$ for \bigcirc (denoted $\bigcirc-\operatorname{Attr}(G, U))$ is the least set of vertices:

- containing U
- such that \bigcirc can force any play to reach U.

Inductively: $\bigcirc-\operatorname{Attr}(G, U)=\bigcup_{k \in \mathbb{N}} \bigcirc-\operatorname{Attr}^{k}(G, U)$ where

$$
\bigcirc-\operatorname{Attr}^{0}(G, U) \quad=U
$$

Concepts

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Definition (Attractor sets)

The attractor set to $U \subseteq V$ for \bigcirc (denoted $\bigcirc-\operatorname{Attr}(G, U))$ is the least set of vertices:

- containing U
- such that \bigcirc can force any play to reach U.

Inductively: $\bigcirc-\operatorname{Attr}(G, U)=\bigcup_{k \in \mathbb{N}} \bigcirc-\operatorname{Attr}^{k}(G, U)$ where

$$
\begin{array}{ll}
\bigcirc-\operatorname{Attr}^{0}(G, U) & =U \\
\bigcirc-\operatorname{Attr}^{k+1}(G, U) & =\bigcirc-\operatorname{Attr}^{k}(G, U) \cup
\end{array}
$$

Concepts

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Definition (Attractor sets)

The attractor set to $U \subseteq V$ for \bigcirc (denoted $\bigcirc-\operatorname{Attr}(G, U))$ is the least set of vertices:

- containing U
- such that \bigcirc can force any play to reach U.

Inductively: $\bigcirc-\operatorname{Attr}(G, U)=\bigcup_{k \in \mathbb{N}} \bigcirc-\operatorname{Attr}^{k}(G, U)$ where

$$
\begin{array}{ll}
\bigcirc-\operatorname{Attr}^{0}(G, U) & =U \\
\bigcirc-\operatorname{Attr}^{k+1}(G, U) & =\bigcirc-\operatorname{Attr}^{k}(G, U) \cup \\
& \left\{v \in V_{\bigcirc} \mid \exists v^{\prime} \in V:\left(v, v^{\prime}\right) \in E \wedge v^{\prime} \in \bigcirc-\operatorname{Attr}^{k}(G, U)\right\} \cup
\end{array}
$$

Concepts

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Definition (Attractor sets)

The attractor set to $U \subseteq V$ for \bigcirc (denoted $\bigcirc-\operatorname{Attr}(G, U))$ is the least set of vertices:

- containing U
- such that \bigcirc can force any play to reach U.

Inductively: $\bigcirc-\operatorname{Attr}(G, U)=\bigcup_{k \in \mathbb{N}} \bigcirc-\operatorname{Attr}^{k}(G, U)$ where

$$
\begin{aligned}
\bigcirc-\operatorname{Attr}^{0}(G, U) & =U \\
\bigcirc-\operatorname{Attr}^{k+1}(G, U) & =\bigcirc-\operatorname{Attr}^{k}(G, U) \cup \\
& \left\{v \in V_{\bigcirc} \mid \exists v^{\prime} \in V:\left(v, v^{\prime}\right) \in E \wedge v^{\prime} \in \bigcirc-A_{t t r^{k}}(G, U)\right\} \cup \\
& \left.\left\{v \in V_{\bar{O}} \mid \forall v^{\prime} \in V:\left(v, v^{\prime}\right) \in E \Longrightarrow v^{\prime} \in \bigcirc-\operatorname{Attr}^{k}(G, U)\right\}\right)
\end{aligned}
$$

Concepts

Example (Attractor sets)

$O-\operatorname{Attr}(G, U)$: vertices from which \bigcirc can force the play to reach set U

Consider $\diamond-\operatorname{Attr}\left(G,\left\{v_{3}\right\}\right)$

$$
\begin{aligned}
\diamond-\operatorname{Attr}^{0}\left(G,\left\{v_{3}\right\}\right) & =\left\{v_{3}\right\} \\
\diamond-\operatorname{Attr}^{1}\left(G,\left\{v_{3}\right\}\right) & =\left\{v_{1}, v_{3}\right\} \\
\diamond-\operatorname{Atr}^{2}\left(G,\left\{v_{3}\right\}\right) & =\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}
\end{aligned}
$$

Time to compute attractor: $\mathcal{O}(|V|+|E|)$

Concepts

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

If U is a \diamond-dominion (dually for \square-dominion) in G then (by definition)

- there is a strategy ϱ such that \diamond wins U
- \diamond can always choose to stay in U
- \square cannot leave U (it is a trap)

Concepts

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

If U is a \diamond-dominion (dually for \square-dominion) in G then (by definition)

- there is a strategy ϱ such that \diamond wins U
- \diamond can always choose to stay in U
- \square cannot leave U (it is a trap)
...but also:
- $A=\diamond$ - $\operatorname{Attr}(G, U)$ is an \diamond-dominion;
- \diamond cannot leave $V \backslash A$
- If $\left(W_{\diamond}, W_{\square}\right)$ is solution of $G \backslash A$, then $\left(W_{\diamond} \cup A, W_{\square}\right)$ is solution of G.

Concepts

Visually:

- U is a \diamond-dominion
- $A=-A t t r^{\diamond}(G, U)$
- A is a \diamond-dominion
- $\left(W_{\diamond}, W_{\square}\right)$ winning sets $G \backslash A$
- $\left(W_{\diamond} \cup A, W_{\square}\right)$ winning sets $G \backslash A$
- \square cannot leave A
- \diamond can stay in A
- \diamond cannot leave $V \backslash A$
- \square can avoid A from $V \backslash A$

Recursively solving parity games

Divide and conquer

- Base: trivial games with at most one priority
- Step:
- Compute dominion
- Solve remaining subgame
- Assemble winning sets/strategies from winning sets/strategies of subgames
- Attractor strategy for one of players reaching set of nodes with minimal priority in the game

Recursively solving parity games

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.
Recursive (G) : recursively solve parity game G Return: partitioning ($W_{\diamond}, W_{\square}$) where \diamond wins from W_{\diamond}, and \square wins from W_{\square}

```
\(m \leftarrow \min \{p(v) \mid v \in V\}\)
\(h \leftarrow \max \{p(v) \mid v \in V\}\)
if \(h=m\) or \(V=\emptyset\) then
        if \(m\) is even or \(V=\emptyset\) then
            return \((V, \emptyset)\)
        else
            return \((\emptyset, V)\)
        end if
end if
```

10: $O \leftarrow \diamond$ if m is even and \square otherwise
11: $U \leftarrow\{v \in V \mid p(v)=m\}$
12: $A \leftarrow \bigcirc-\operatorname{Attr}(G, U)$
13: $\left(W_{\diamond}^{\prime}, W_{\square}^{\prime}\right) \leftarrow \operatorname{Recursive}(G \backslash A)$

4: if m is even or $V=\emptyset$ then return (V, \emptyset)
else
return (\emptyset, V)
end if
end if

Recursively solving parity games

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.
Recursive (G) : recursively solve parity game G Return: partitioning $\left(W_{\diamond}, W_{\square}\right)$ where \diamond wins from W_{\diamond}, and \square wins from W_{\square}

```
\(m \leftarrow \min \{p(v) \mid v \in V\}\)
\(h \leftarrow \max \{p(v) \mid v \in V\}\)
if \(h=m\) or \(V=\emptyset\) then
    if \(m\) is even or \(V=\emptyset\) then
            return \((V, \emptyset)\)
        else
            return \((\emptyset, V)\)
        end if
end if
```

```
10: \(O \leftarrow \diamond\) if m is even and
```

```otherwise
```

11: $U \leftarrow\{v \in V \mid p(v)=m\}$
12: $A \leftarrow \bigcirc-\operatorname{Attr}(G, U)$
13: $\left(W_{\diamond}^{\prime}, W_{\square}^{\prime}\right) \leftarrow \operatorname{Recursive}(G \backslash A)$
14: if $W_{\bar{O}}^{\prime}=\emptyset$ then
15: $\quad W_{\bigcirc} \leftarrow A \cup W_{\bigcirc}^{\prime}$
16: $\quad W_{\bar{O}} \leftarrow \emptyset$
17: else

Recursively solving parity games

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.
Recursive (G) : recursively solve parity game G Return: partitioning $\left(W_{\diamond}, W_{\square}\right)$ where \diamond wins from W_{\diamond}, and \square wins from W_{\square}

```
m\leftarrow\operatorname{min}{p(v)|v\inV}
h\leftarrow\operatorname{max}{p(v)|v\inV}
if }h=m\mathrm{ or }V=\emptyset\mathrm{ then
    if m}\mathrm{ is even or }V=\emptyset\mathrm{ then
            return (V,\emptyset)
        else
            return ( }\emptyset,V
        end if
end if
```

```
10: \(O \leftarrow \diamond\) if m is even and \(\square\) otherwise
11: \(U \leftarrow\{v \in V \mid p(v)=m\}\)
12: \(A \leftarrow O-\operatorname{Attr}(G, U)\)
13: \(\left(W_{\diamond}^{\prime}, W_{\square}^{\prime}\right) \leftarrow \operatorname{Recursive}(G \backslash A)\)
14: if \(W_{\bar{\prime}}^{\prime}=\emptyset\) then
15: \(\quad W_{\bigcirc} \leftarrow A \cup W_{\bigcirc}^{\prime}\)
16: \(\quad W_{\bar{O}} \leftarrow \emptyset\)
17: else
18: \(\quad B \leftarrow \bar{O}-\operatorname{Attr}\left(G, W_{\bar{O}}^{\prime}\right)\)
19: \(\quad\left(W_{\diamond}, W_{\square}\right) \leftarrow \operatorname{Recursive}(G \backslash B)\)
20: \(\quad W_{\bar{O}} \leftarrow W_{\bar{O}} \cup B\)
21: end if
22: return \(\left(W_{\diamond}, W_{\square}\right)\)
```

- Lines 1-9: base case, straightforward.
- Lines 10-13: try to establish a dominion. Two cases:
- Lines 12-15: (\bigcirc wins all): \bigcirc wins in $G \backslash A$, then \bigcirc wins all of G, since if \bar{O} visits A, then \bigcirc plays towards U using attractor, visiting A infinitely often, hence m infinitely often. If A not visited, game stays in $G \backslash A$.
- Lines 16-20: (\bar{O}-dominion found): $W_{\bar{O}}^{\prime}$ is a $\bar{\bigcirc}$-dominion in $G \backslash A$. Since \bigcirc cannot leave $G \backslash A$ also $W_{\bar{O}}^{\prime}$ is $\overline{\mathrm{O}}$-dominion in G. Then solve remaining game recursively and fix solution, compose strategies.

Exercise

Apply the recursive algorithm to the following parity game G

$$
\begin{aligned}
& m \leftarrow 3 \\
& h \leftarrow 3 \\
& \text { return }\left(\emptyset,\left\{W, z, z^{\prime}\right\}\right)
\end{aligned}
$$

Exercise

Apply the recursive algorithm to the following parity game G

Exercise

Consider parity game G :

So, player \square wins from all vertices!

Complexity

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.
$n=|V|, m=|E|, d=|\{p(v) \mid v \in V\}|$.

- Worst-case running time complexity
$\mathcal{O}\left(m \cdot n^{d}\right)$
- Lowerbound on worst-case (Gazda\&Willemse '13) $\Omega\left(2^{n / 3}\right)$

Complexity

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.
$n=|V|, m=|E|, d=|\{p(v) \mid v \in V\}|$.

- Worst-case running time complexity $\mathcal{O}\left(m \cdot n^{d}\right)$
- Lowerbound on worst-case (Gazda\&Willemse '13) $\Omega\left(2^{n / 3}\right)$

Special cases (Gazda\&Willemse '13):

- Basic algorithm:
- weak games (Gazda\&Willemse '13) .. $\mathcal{O}(d \cdot(n+m))$
- (nested) solitaire games .. $\Omega\left(2^{n / 3}\right)$
- dull games.. $\Omega\left(2^{n / 3}\right)$

Complexity

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.
$n=|V|, m=|E|, d=|\{p(v) \mid v \in V\}|$.

- Worst-case running time complexity $\mathcal{O}\left(m \cdot n^{d}\right)$
- Lowerbound on worst-case (Gazda\&Willemse '13) $\Omega\left(2^{n / 3}\right)$

Special cases (Gazda\&Willemse '13):

- Basic algorithm:
- weak games (Gazda\&Willemse '13) .. $\mathcal{O}(d \cdot(n+m))$
- (nested) solitaire games ... $\Omega_{\left(2^{n / 3}\right)}$
- dull games... $\left.2^{n / 3}\right)$
- Optimised with SCC decomposition
- (nested) solitaire games... $(n \cdot(n+m))$
- dull games.. $\mathcal{O}(n \cdot(n+m))$

Wrap up

- Recursive algorithm:

Wrap up

- Recursive algorithm:
- Divide and conquer
- Dominions
- Attractor sets
- $\mathcal{O}\left(m \cdot n^{d}\right)$
- Exponential examples available

Wrap up

- Recursive algorithm:
- Divide and conquer
- Dominions
- Attractor sets
- $\mathcal{O}\left(m \cdot n^{d}\right)$
- Exponential examples available
- Other algorithms:
- Iterative (e.g. small progress measures)
- Variations of recursive: start with other dominions

Exercise

Consider the following parity game:

- Compute the winning sets $W_{\diamond}, W_{\square}$ for players \diamond and \square in this parity game using the recursive algorithm.
- Translate this parity game to BES and solve the BES using Gauss elimination.

