# Algorithms for Model Checking (2IMF35) <br> Lecture 8: <br> Small Progress Measures for Solving Parity Games <br> Background material: <br> M. Jurdziński, Small Progress Measures for Solving Parity Games 

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

- McNaughton's/Zielonka's Recursive algorithm
- Today: Jurdziński's Small progress measures

Let $\pi$ be a play.

- dominating priority occurring infinitely often on $\pi$ is odd $\pi$ won by
- dominating priority occurring infinitely often on $\pi$ is even $\pi$ won by $\diamond$

Observe: dominating priority on $\pi$ is even iff every 'odd-dominated stretch' is finite

## Definition (Stretch and $k$-dominated stretch)

- A stretch of a play $\pi=v_{0} v_{1} v_{2} \ldots$ is a subsequence $v_{i} v_{i+1} \ldots v_{i+1}$
- A stretch $v_{i} v_{i+1} \ldots v_{i+1}$ is $k$-dominated iff $p\left(v_{i+j}\right) \geq k$ for $j \leq I$

Degree of a $k$-dominated stretch: the number of vertices with priority $k$ in that stretch

## Play values

- Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ with maximal priority $d$
- $M=\mathbb{N}^{d+1} \cup\{T\}$ is a set of measures with 0 on even positions (counting from 0 )
- $\leq$ is lexicographic ordering on $M$ with $m \leq \top$ for all $m$


## Definition (Play values)

A play value is a function $\theta_{\diamond}:$ Plays $\rightarrow \mathbb{N}^{d} \cup\{\top\}$ defined as:

$$
\theta_{\diamond}(\pi)= \begin{cases}\left(m_{0}, \ldots, m_{d}\right) & \text { where, if } \pi \text { is winning for } \diamond, \text { for all odd } i, \\ & m_{i} \text { is the degree of the maximal } i \text {-dominated prefix of } \pi \\ \top & \text { if } \pi \text { is won by } \square\end{cases}
$$

Set $\theta_{\diamond}(v)=\min \left\{\max \left\{\theta_{\diamond}(\pi) \mid \pi \in \operatorname{Play}_{\sigma}(v)\right\} \mid \sigma: V_{\diamond} \rightarrow V\right\}$.

Observe: player $\square$ wins $v$ iff $\theta_{\diamond}(v)=T$

Key idea behind Small Progress Measures:
compute some $\varrho: V \rightarrow M$ such that for all $v \in V$ :

- $\theta_{\diamond}(v) \leq \varrho(v)$
- there is some $\square$ strategy $\sigma$ such that for each $\pi \in \operatorname{Play}_{\sigma}(v): \theta_{\diamond}(\pi) \geq \varrho(v)$

Observe:

- $M$ is infinite we need to have upper bounds on $\varrho(v)$
- If the degree of a $k$-dominated stretch exceeds $\left|V_{k}\right| \ldots \ldots \ldots$. stretch revisits a vertex
- Revisiting vertices cycles


## Play values

Bird's-eye view of small progress measures

- Solitaire games and reachable cycles
- Cycles can be used to decide the winner.
- Assign a certain measure to each vertex that approximates play values
- solitaire games: parity progress measures
- two-player games: game parity progress measures
- Efficiently compute measure
- fixed point iteration

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

## Definition (Solitaire game)

$G$ is an $\square$-solitaire game if for all vertices $v \in V_{\diamond}$ we have:

$$
|\{w \in V \mid(v, w) \in E\}| \leq 1
$$

ie., only $\square$ makes (nontrivial) choices.

Strategy $\varrho$ for player $\diamond$ in $G$ induces ansolitaire game $G_{\varrho}=\left(V, E_{\varrho}, p,\left(V_{\diamond}, V_{\square}\right)\right)$, where

$$
\left.E_{\varrho}=\left\{(v, w) \in E \mid v \in V_{\bigcirc} \Rightarrow w=\varrho(v)\right\}\right\}
$$

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

- $W \subseteq V$
- strategy $\varrho$ for $\diamond$ closed on $W$.
- $G_{\varrho} \cap W$ is an $\square$ solitaire game.


## Property

$\varrho$ is winning for player $\diamond$ from all $v \in W$ if and only if all cycles in $G_{\varrho} \cap W$ are even

We will annotate vertices with information ('measures') about plays such that:

- when, along a play we encounter priority $i$, we will ignore information about less significant priorities (i.e., > i)
- the information we record about priorities $k$ outweighs information about $l>k$
- 'bad' priority encountered: measure will decrease
- 'good' priority encountered: measure may increase

Represent information as follows:

- Tuples to record information about priorities
- Order tuples lexicographically (same as measures in play values)


## Parity progress measures and Solitaire games

Let $\alpha \in \mathbb{N}^{d}$ be a $d$-tuple of natural numbers

- we number its components from 0 to $d-1$, i.e. $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-1}\right)$,
$><, \leq,=, \neq, \geq,>$ on tuples denote lexicographic ordering,
- $\left(n_{0}, n_{1}, \ldots, n_{k}\right) \equiv_{i}\left(m_{0}, m_{1}, \ldots, m_{l}\right)$ iff $\left(n_{0}, n_{1}, \ldots, n_{i}\right) \equiv\left(m_{0}, m_{1}, \ldots, m_{i}\right)$, for $\equiv \in\{<, \leq,=, \neq, \geq,>\}$
- When $i>k$ or $i>l$, the tuples will be suffixed with 0 s


## Example (d-tuples)

- $(0,1,0,1)={ }_{0}(0,2,0,1) \equiv(0)=(0) \equiv$ true
- $(0,1,0,1)<_{1}(0,2,0,1) \equiv(0,1)<(0,2) \equiv$ true
- $(0,1,0,1) \geq_{3}(0,2,0,1) \equiv(0,1,0,1) \geq(0,2,0,1) \equiv$ false

Parity progress measures and Solitaire games

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$.

Let $d=\max \{p(v) \mid v \in V\}+1$.

- Define $V_{i}=\{v \in V \mid p(v)=i\}$,
- Denote $n_{i}=\left|V_{i}\right|$, the number of vertices with priority $i$,

Define $\mathbb{M}^{\diamond} \subseteq \mathbb{N}^{d}$ with:

- 0 on even positions
- Natural numbers $\leq n_{i}$ on odd positions $i$


## Example

Determine maximum value of $\mathbb{M}^{\diamond}$ for the following parity game:


- Maximum value of $\mathbb{M}^{\diamond}$ is $(0,2,0,1)$
- $\mathbb{M}^{\diamond}=\{0\} \times\{0,1,2\} \times\{0\} \times\{0,1\}$


## Parity progress measures and Solitaire games

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

## Definition (Parity progress measure)

Let $G$ be an $\square$-solitaire game. Mapping $\varrho: V \rightarrow \mathbb{M}^{\diamond}$ is a parity progress measure for $G$ if for all $(v, w) \in E$ :

- $\varrho(v) \geq_{p(v)} \varrho(w)$ if $p(v)$ is even
- $\varrho(v)>_{p(v)} \varrho(w)$ if $p(v)$ is odd

For all strategies $\psi$ for player $\diamond$, closed on $W$ :

- $\psi$ is winning for player $\diamond$ from $W$ if and only if all cycles in $G_{\psi} \cap W$ are even
- All cycles in $G_{\psi} \cap W$ are even iff there exists a parity progress measure $\varrho$ for $G_{\psi} \cap W$
- $\varrho$ is a parity progress measure for $G_{\psi} \cap W$ implies for all $\theta_{\diamond}(v) \leq \varrho(v)$

Problem: parity progress measures only exist for even-dominated cycles.


Second clause requires $\varrho(v)>_{1} \varrho(v)$

## Parity progress measures and Solitaire games

Solitaire games with odd-dominated cycles.

- Define $\mathbb{M}^{\diamond, T}=\mathbb{M}^{\diamond} \cup\{\top\}$
- Extend ordering:
- for all $m \in \mathbb{M}^{\diamond}$, define $m<\top, m<_{i} \top, m \neq \top$ and $m \neq i \top$
- $\top \leq_{i} \top$ for all $i$
- The set of mappings $\left(\left[V \rightarrow \mathbb{M}^{\diamond, \top}\right], \sqsubseteq\right)$ is a complete lattice
- $\varphi, \varrho: V \rightarrow \mathbb{M}^{\diamond, \top}$.
- Define $\varphi \sqsubseteq \varrho$ if $\varphi(v) \leq \varrho(v)$ for all $v \in V$
- write $\varphi \sqsubset \varrho$ if $\varphi \sqsubseteq \varrho$ and $\varphi \neq \varrho$.
- Replace co-domain of parity progress measures with $\mathbb{M}^{\diamond, \top}$.

Compute least parity progress measure $\varrho$ using a fixpoint of a suitable operator!
For an $\square$-solitaire game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$ and least parity progress measure $\varrho$ :

- $W_{\diamond}=\{v \in V \mid \exists \varrho: \varrho(v) \neq \top\}$
- $W_{\square}=V \backslash W_{\diamond}$.


## Example



- Observe: $\varrho(u)=\varrho(v)=\top$
- Measure can identify both even and odd reachable cycles in a solitaire game.


## Game Parity Progress Measures

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

Towards measures for two-player games

## Definition (Prog)

If $\varrho: V \rightarrow \mathbb{M}^{\diamond, \top}$ and $(v, w) \in E$, then $\operatorname{Prog}(\varrho, v, w)$ is the least $m \in \mathbb{M}^{\diamond, \top}$, such that

- if $p(v)$ is even, then $m \geq_{p(v)} \varrho(w)$
- if $p(v)$ is odd, then either $m>_{p(v)} \varrho(w)$, or both $m=\varrho(w)=\top$


## Example

Let $\mathbb{M}^{\diamond}=\{0\} \times\{0,1,2\} \times\{0\} \times\{0,1\}$

- Suppose $p(v)=0, \varrho(w)=(0,2,0,0)$.

Then $\operatorname{Prog}(\varrho, v, w)=(0,0,0,0)$

- Suppose $p(v)=1, \varrho(w)=(0,2,0,0)$.

Then $\operatorname{Prog}(\varrho, v, w)=\top$

- Suppose $p(v)=3, \varrho(w)=(0,2,0,0)$.

Then $\operatorname{Prog}(\varrho, v, w)=(0,2,0,1)$

## Game Parity Progress Measures

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

## Definition (Game parity progress measure)

Mapping $\varrho: V \rightarrow \mathbb{M}^{\diamond, \top}$ is a game parity progress measure if for all $v \in V$ :

- if $v \in V_{\diamond}$, then $\exists_{(v, w) \in E} \varrho(v) \geq_{p(v)} \operatorname{Prog}(\varrho, v, w)$
- if $v \in V_{\square}$, then $\forall_{(v, w) \in E} \varrho(v) \geq_{p(v)} \operatorname{Prog}(\varrho, v, w)$

If $\varrho$ is the least game parity progress measure for $G$, then:

$$
\varrho(v) \neq \top
$$

$$
\Leftrightarrow
$$

player $\diamond$ can prevent reaching $\square$-dominated cycles

For the least game parity progress measure $\varrho$ we have:

- $\theta_{\diamond}(v) \leq \varrho(v)$
- there is somestrategy $\sigma$ such that for each $\pi \in \operatorname{Play}_{\sigma}(v): \theta_{\diamond}(\pi) \geq \varrho(v)$

Recall: the set of mappings $\left(\left[V \rightarrow \mathbb{M}^{\diamond, \top}\right], \sqsubseteq\right)$ is a complete lattice

Define $\operatorname{Lift}_{v}(\varrho)$ for $v \in V$ as follows:

$$
\begin{cases}\varrho[v:=\varrho(v) \max \min \{\operatorname{Prog}(\varrho, v, w) \mid(v, w) \in E\}] & \text { if } v \in V_{\diamond} \\ \varrho[v:=\varrho(v) \max \max \{\operatorname{Prog}(\varrho, v, w) \mid(v, w) \in E\}] & \text { if } v \in V_{\square}\end{cases}
$$

Observe:

- For every $v \in V$, Lift ${ }_{v}$ is $\sqsubseteq$-monotone.
- A mapping $\varrho: V \rightarrow \mathbb{M}^{\diamond, \top}$ is a game parity progress measure if and only if $\operatorname{Lift}_{v}(\varrho) \sqsubseteq \varrho$ for all $v \in V$.
- Least game parity progress measure computable by fixpoint iteration (algorithm Lfp of Lecture 2)


## Algorithm SPM(G)

$\varrho: V \rightarrow \mathbb{M}^{\diamond, \top} \leftarrow \lambda v \in V .(0, \ldots, 0)$
while $\varrho \sqsubset \operatorname{Lift}_{v}(\varrho)$ for some $v \in V$ do $\varrho \leftarrow \operatorname{Lift}_{v}(\varrho)$
end while

## Post condition:

- $\varrho$ is least game parity progress measure
- $\{v \in V \mid \varrho(v) \neq \top\}$ is winning set for player $\diamond$
- $\{v \in V \mid \varrho(v)=\top\}$ is winning set for player $\square$


## Consider parity game $G$ :



Maximum value of $\mathbb{M}^{\diamond}$ is $(0,2,0,3)$



## Small progress measures (example) (2)

Step 2: $\varrho \leftarrow \operatorname{Lift}_{X}(\varrho)=\varrho\left[X:=\max \left\{\operatorname{Prog}\left(\varrho, X, X^{\prime}\right), \operatorname{Prog}(\varrho, X, X)\right\}\right]=\varrho[X:=\max \{(0,1,0,0),(0,1,0,0)\}]=\varrho[X:=$ (0, 1, 0, 0)]

| $v$ | $\varrho(v)$ |
| :---: | ---: |
| $X$ | $(0,1,0,0)$ |
| $X^{\prime}$ | $(0,0,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $(0,0,0,0)$ |
| $Z^{\prime}$ | $(0,0,0,0)$ |
| $W$ | $(0,0,0,0)$ |

## Small progress measures (example) (3)

Step 3: $\varrho \leftarrow \operatorname{Lift}_{X}(\varrho)=\varrho\left[X:=\max \left\{\operatorname{Prog}\left(\varrho, X, X^{\prime}\right), \operatorname{Prog}(\varrho, X, X)\right\}\right]=\varrho[X:=\max \{(0,1,0,0),(0,2,0,0)\}]=\varrho[X:=$ (0, 2, 0, 0)]

| $v$ | $\varrho(v)$ |
| :--- | ---: |
| $X$ | $(0,2,0,0)$ |
| $X^{\prime}$ | $(0,0,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $(0,0,0,0)$ |
| $Z^{\prime}$ | $(0,0,0,0)$ |
| $W$ | $(0,0,0,0)$ |

Step 4: $\varrho \leftarrow \operatorname{Lift}_{X}(\varrho)=\varrho\left[X:=\max \left\{\operatorname{Prog}\left(\varrho, X, X^{\prime}\right), \operatorname{Prog}(\varrho, X, X)\right\}\right]=\varrho[X:=\max \{(0,1,0,0), \top\}]=\varrho[X:=\top]$

| $v$ | $\varrho(v)$ |
| :--- | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,0,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $(0,0,0,0)$ |
| $Z^{\prime}$ | $(0,0,0,0)$ |
| $W$ | $(0,0,0,0)$ |

## Small progress measures (example) (5)

Step 5: $\operatorname{Lift} Y^{\prime}(\varrho)=\varrho\left[Y^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Y^{\prime}, X\right), \operatorname{Prog}\left(\varrho, Y^{\prime}, Y\right)\right\}\right]=\varrho\left[Y^{\prime}:=\min \{\top,(0,0,0,0)\}\right]=\varrho\left[Y^{\prime}:=(0,0,0,0)\right]$ $\operatorname{Lift}_{Y}(\varrho)=\varrho\left[Y:=\max \left\{\operatorname{Prog}(\varrho, Y, W), \operatorname{Prog}\left(\varrho, Y, Y^{\prime}\right)\right\}\right]=\varrho[Y:=\max \{(0,0,0,0),(0,0,0,0)\}]=\varrho[Y:=(0,0,0,0)]$ $\varrho \leftarrow \operatorname{Lift}_{X^{\prime}}(\varrho)=\varrho\left[X^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, X^{\prime}, Y\right), \operatorname{Prog}\left(\varrho, X^{\prime}, Z\right)\right\}\right]=\varrho\left[X^{\prime}:=\min \{(0,1,0,0),(0,1,0,0)\}\right]=\varrho\left[X^{\prime}:=\right.$ (0, 1, 0, 0)]

| $v$ | $\varrho(v)$ |
| :--- | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $(0,0,0,0)$ |
| $Z^{\prime}$ | $(0,0,0,0)$ |
| $W$ | $(0,0,0,0)$ |

## Small progress measures (example) (6)

Step 6: $\varrho \leftarrow \operatorname{Lift}_{Z^{\prime}}(\varrho)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{(0,0,0,1)\}\right]=\varrho\left[Z^{\prime}:=(0,0,0,1)\right]$

| $v$ | $\varrho(v)$ |
| :--- | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $(0,0,0,0)$ |
| $Z^{\prime}$ | $(0,0,0,1)$ |
| $W$ | $(0,0,0,0)$ |

Small progress measures (example) (7)

Step 7: $\varrho \leftarrow \operatorname{Lift}_{Z^{\prime}}(\varrho)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{(0,0,0,2)\}\right]=\varrho\left[Z^{\prime}:=(0,0,0,2)\right]$

| $v$ | $\varrho(v)$ |
| :---: | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $(0,0,0,0)$ |
| $Z^{\prime}$ | $(0,0,0,2)$ |
| $W$ | $(0,0,0,0)$ |

## Small progress measures (example) (8)

Step 8: $\varrho \leftarrow \operatorname{Lift}_{Z^{\prime}}(\varrho)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{(0,0,0,3)\}\right]=\varrho\left[Z^{\prime}:=(0,0,0,3)\right]$

| $v$ | $\varrho(v)$ |
| :---: | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $(0,0,0,0)$ |
| $Z^{\prime}$ | $(0,0,0,3)$ |
| $W$ | $(0,0,0,0)$ |

## Small progress measures (example) (9)

Step 9: $\varrho \leftarrow \operatorname{Lift}\left(\varrho, Z^{\prime}\right)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{(0,1,0,0)\}\right]=\varrho\left[Z^{\prime}:=(0,1,0,0)\right]$

| $v$ | $\varrho(v)$ |
| :---: | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $(0,0,0,0)$ |
| $Z^{\prime}$ | $(0,1,0,0)$ |
| $W$ | $(0,0,0,0)$ |

## Small progress measures (example) (10)

Step 10: $\varrho \leftarrow \operatorname{Lift}_{Z^{\prime}}(\varrho)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{(0,1,0,1)\}\right]=\varrho\left[Z^{\prime}:=(0,1,0,1)\right]$

| $v$ | $\varrho(v)$ |
| :---: | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $(0,0,0,0)$ |
| $Z^{\prime}$ | $(0,1,0,1)$ |
| $W$ | $(0,0,0,0)$ |

## Small progress measures (example) (11)

Step 11*: Repeat lifting $Z^{\prime}$ even more often
$\varrho \leftarrow \operatorname{Lift}_{Z^{\prime}}(\varrho)=\varrho\left[Z^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Z^{\prime}, Z^{\prime}\right)\right\}\right]=\varrho\left[Z^{\prime}:=\min \{\top\}\right]=\varrho\left[Z^{\prime}:=\top\right]$

| $v$ | $\varrho(v)$ |
| :--- | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $(0,0,0,0)$ |
| $Z^{\prime}$ | $\top$ |
| $W$ | $(0,0,0,0)$ |

Step 12: $\varrho \leftarrow \operatorname{Lift}_{Z}(\varrho)=\varrho\left[Z:=\min \left\{\operatorname{Prog}\left(\varrho, Z, Z^{\prime}\right)\right\}\right]=\varrho[Z:=\min \{\top\}]=\varrho[Z:=\top]$

| $v$ | $\varrho(v)$ |
| :--- | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $T$ |
| $Z^{\prime}$ | $\top$ |
| $W$ | $(0,0,0,0)$ |

## Small progress measures (example) (13)

Step 13:
$\varrho \leftarrow \operatorname{Lift}_{W}(\varrho)=\varrho\left[W:=\min \left\{\operatorname{Prog}(\varrho, W, Z), \operatorname{Prog}\left(\varrho, W, W^{\prime}\right)\right\}\right]=\varrho[W:=\min \{\top,(0,0,0,1)\}]=\varrho[W:=(0,0,0,1)]$

| $v$ | $\varrho(v)$ |
| :--- | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $\top$ |
| $Z^{\prime}$ | $\top$ |
| $W$ | $(0,0,0,1)$ |

Step 14*: Repeat lifting of $W$ often
$\varrho \leftarrow \operatorname{Lift}_{W}(\varrho)=\varrho\left[W:=\min \left\{\operatorname{Prog}(\varrho, W, Z), \operatorname{Prog}\left(\varrho, W, W^{\prime}\right)\right\}\right]=\varrho[W:=\min \{\top, \top\}]=\varrho[W:=\top]$

| $v$ | $\varrho(v)$ |
| :--- | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $(0,0,0,0)$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $\top$ |
| $Z^{\prime}$ | $T$ |
| $W$ | $\top$ |

## Small progress measures (example) (15)

Step 15: $\varrho \leftarrow \operatorname{Lift} Y(\varrho, Y)=\varrho\left[Y:=\max \left\{\operatorname{Prog}(\varrho, Y, W), \operatorname{Prog}\left(\varrho, Y, Y^{\prime}\right)\right\}\right]=\varrho[Y:=\max \{T,(0,0,0,0)\}]=\varrho[Y:=\mathrm{T}]$

| $v$ | $\varrho(v)$ |
| :--- | ---: |
| $X$ | $\top$ |
| $X^{\prime}$ | $(0,1,0,0)$ |
| $Y$ | $\top$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $\top$ |
| $Z^{\prime}$ | $\top$ |
| $W$ | $\top$ |

Step 16: $\varrho \leftarrow \operatorname{Lift}_{X^{\prime}}(\varrho)=\varrho\left[X^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, X^{\prime}, Z\right), \operatorname{Prog}\left(\varrho, X^{\prime}, Y\right)\right\}\right]=\varrho\left[X^{\prime}:=\min \{\top, \top\}\right]=\varrho\left[X^{\prime}:=\top\right]$

| $v$ | $\varrho(v)$ |
| :--- | ---: |
| $X$ | $T$ |
| $X^{\prime}$ | $T$ |
| $Y$ | $\top$ |
| $Y^{\prime}$ | $(0,0,0,0)$ |
| $Z$ | $T$ |
| $Z^{\prime}$ | $\top$ |
| $W$ | $T$ |

## Small progress measures (example) (17)

Step 17: $\varrho \leftarrow \operatorname{Lift}_{Y^{\prime}}(\varrho)=\varrho\left[Y^{\prime}:=\min \left\{\operatorname{Prog}\left(\varrho, Y^{\prime}, X\right), \operatorname{Prog}\left(\varrho, Y^{\prime}, Y\right)\right\}\right]=\varrho\left[Y^{\prime}:=\min \{\top, \top\}\right]=\varrho\left[Y^{\prime}:=\top\right]$

| $v$ | $\varrho(v)$ |
| :---: | ---: |
| $X$ | $T$ |
| $X^{\prime}$ | $\top$ |
| $Y$ | $\top$ |
| $Y^{\prime}$ | $\top$ |
| $Z$ | $\top$ |
| $Z^{\prime}$ | $\top$ |
| $W$ | $\top$ |

$\varrho$ is least game parity progress measure, and $\{v \in V \mid \varrho(v) \neq T\}=\emptyset$ is winning set for player $\diamond$. Hence player $\square$ wins from all vertices

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right)$

Let $\varrho: V \rightarrow \mathbb{M}^{O^{\top}}$ be the least game parity progress measure.

- Define strategy $\psi: V_{\diamond} \rightarrow V$ for player $\diamond$, by setting $\psi(v)$ to be a successor $w$ of $v \in V_{\diamond}$ that minimises $\varrho(w)$
- $\psi$ is a winning strategy for player $\diamond$ from $\{v \in V \mid \varrho(v) \neq \top\}$
- Strategy for $\square$ cannot be inferred directly
- ...but can be computed on-the-fly

Gazda\&Willemse'14

Department of Mathematics and Computer Science
TU/e
Technische Universiteit Technische University of Technology

## Complexity and Strategies

Parity game $G=\left(V, E, p,\left(V_{\diamond}, V_{\square}\right)\right.$

Set $n=|V|, m=|E|, d=\max \{p(v) \mid v \in V\}$.

Worst-case running time complexity:

$$
\mathcal{O}\left(d \cdot m \cdot\left(\frac{n}{\lfloor d / 2\rfloor}\right)^{\lfloor d / 2\rfloor}\right)
$$

Lowerbound on worst-case:

$$
\Omega\left((\lceil n / d\rceil)^{\lceil d / 2\rceil}\right)
$$

- Model checking $L_{\mu}=$ solving Boolean equation systems
- Gauß Elimination for solving BES
- Solving BES = solving Parity games
- Recursive . $\mathcal{O}\left(m \cdot n^{d}\right)$

- bigstep (combination of the two above) $\ldots \ldots \ldots\left(n^{d / 3}\right)$

