
Department of Mathematics and Computer Science

Algorithms for Model Checking (2IMF35)

Lecture 8:
Small Progress Measures for Solving Parity Games

Background material:

M. Jurdziński, Small Progress Measures for Solving Parity Games

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
MF 6.073

2/49

Department of Mathematics and Computer Science

Algorithms for Parity games

I McNaughton’s/Zielonka’s Recursive algorithm
I Today: Jurdziński’s Small progress measures



4/49

Department of Mathematics and Computer Science

Play values

Let π be a play.
I dominating priority occurring infinitely often on π is odd . . . . . . . . . . . . . . . . π won by �

I dominating priority occurring infinitely often on π is even . . . . . . . . . . . . . . . π won by 3

Observe: dominating priority on π is even iff every ‘odd-dominated stretch’ is finite

Definition (Stretch and k-dominated stretch)

I A stretch of a play π = v0v1v2 ... is a subsequence vivi+1 ... vi+l

I A stretch vivi+1 ... vi+l is k-dominated iff p(vi+j) ≥ k for j ≤ l

Degree of a k-dominated stretch: the number of vertices with priority k in that stretch

5/49

Department of Mathematics and Computer Science

Play values

I Parity game G = (V ,E , p, (V3,V�)) with maximal priority d

I M = Nd+1 ∪ {>} is a set of measures with 0 on even positions (counting from 0)
I ≤ is lexicographic ordering on M with m ≤ > for all m

Definition (Play values)
A play value is a function θ3 : Plays → Nd ∪ {>} defined as:

θ3(π) =


(m0, ... ,md) where, if π is winning for 3, for all odd i ,

mi is the degree of the maximal i-dominated prefix of π
> if π is won by �

Set θ3(v) = min{ max{ θ3(π) | π ∈ Playσ(v) } | σ : V3 → V }.

Observe: player � wins v iff θ3(v) = >



6/49

Department of Mathematics and Computer Science

Play values

Key idea behind Small Progress Measures:

compute some % : V → M such that for all v ∈ V :
I θ3(v) ≤ %(v)

I there is some � strategy σ such that for each π ∈ Playσ(v): θ3(π) ≥ %(v)

Observe:
I M is infinite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . we need to have upper bounds on %(v)

I If the degree of a k-dominated stretch exceeds |Vk | . . . . . . . . . . stretch revisits a vertex
I Revisiting vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cycles

7/49

Department of Mathematics and Computer Science

Play values

Bird’s-eye view of small progress measures

I Solitaire games and reachable cycles
• Cycles can be used to decide the winner.

I Assign a certain measure to each vertex that approximates play values
• solitaire games: parity progress measures
• two-player games: game parity progress measures

I Efficiently compute measure
• fixed point iteration



8/49

Department of Mathematics and Computer Science

Cycles and Solitaire Games

Parity game G = (V ,E , p, (V3,V�))

Definition (Solitaire game)
G is an �-solitaire game if for all vertices v ∈ V3 we have:

|{w ∈ V | (v ,w) ∈ E}| ≤ 1

i.e., only � makes (nontrivial) choices.

Strategy % for player 3 in G induces an � solitaire game G% = (V ,E%, p, (V3,V�)), where

E% = {(v ,w) ∈ E | v ∈ V# ⇒ w = %(v)}}

9/49

Department of Mathematics and Computer Science

Cycles and Solitaire Games

Parity game G = (V ,E , p, (V3,V�)).

I W ⊆ V

I strategy % for 3 closed on W .
I G% ∩W is an � solitaire game.

Property
% is winning for player 3 from all v ∈W if and only if all cycles in G% ∩W are even



11/49

Department of Mathematics and Computer Science

Parity progress measures and Solitaire games

We will annotate vertices with information (’measures’) about plays such that:
I when, along a play we encounter priority i , we will ignore information about less

significant priorities (i.e., > i)
I the information we record about priorities k outweighs information about l > k

• ’bad’ priority encountered: measure will decrease
• ’good’ priority encountered: measure may increase

Represent information as follows:
I Tuples to record information about priorities
I Order tuples lexicographically (same as measures in play values)

12/49

Department of Mathematics and Computer Science

Parity progress measures and Solitaire games

Let α ∈ Nd be a d-tuple of natural numbers
I we number its components from 0 to d − 1, i.e. α = (α0,α1, ... ,αd−1),
I <,≤, =, 6=,≥,> on tuples denote lexicographic ordering,
I (n0, n1, ... , nk) ≡i (m0,m1, ... ,ml) iff (n0, n1, ... , ni ) ≡ (m0,m1, ... ,mi ), for
≡∈ {<,≤, =, 6=,≥,>}

I When i > k or i > l , the tuples will be suffixed with 0s



13/49

Department of Mathematics and Computer Science

Progress Measures

Example (d-tuples)

I (0, 1, 0, 1) =0 (0, 2, 0, 1) ≡ (0) = (0) ≡ true
I (0, 1, 0, 1) <1 (0, 2, 0, 1) ≡ (0, 1) < (0, 2) ≡ true
I (0, 1, 0, 1) ≥3 (0, 2, 0, 1) ≡ (0, 1, 0, 1) ≥ (0, 2, 0, 1) ≡ false

14/49

Department of Mathematics and Computer Science

Parity progress measures and Solitaire games

Parity game G = (V ,E , p, (V3,V�)).

Let d = max{p(v) | v ∈ V }+ 1.
I Define Vi = {v ∈ V | p(v) = i},
I Denote ni =| Vi |, the number of vertices with priority i ,

Define M3 ⊆ Nd with:
I 0 on even positions
I Natural numbers ≤ ni on odd positions i



15/49

Department of Mathematics and Computer Science

Progress Measures

Example
Determine maximum value of M3 for the following parity game:

3s1 2 s2

1s3

2
s4

1 s5

I Maximum value of M3 is (0, 2, 0, 1)

I M3 = {0} × {0, 1, 2} × {0} × {0, 1}

16/49

Department of Mathematics and Computer Science

Parity progress measures and Solitaire games

Parity game G = (V ,E , p, (V3,V�))

Definition (Parity progress measure)
Let G be an �-solitaire game. Mapping %:V → M3 is a parity progress measure for G if
for all (v ,w) ∈ E :

I %(v) ≥p(v) %(w) if p(v) is even
I %(v) >p(v) %(w) if p(v) is odd

For all strategies ψ for player 3, closed on W :
I ψ is winning for player 3 from W if and only if all cycles in Gψ ∩W are even
I All cycles in Gψ ∩W are even iff there exists a parity progress measure % for Gψ ∩W

I % is a parity progress measure for Gψ ∩W implies for all θ3(v) ≤ %(v)



17/49

Department of Mathematics and Computer Science

Progress Measures

Problem: parity progress measures only exist for even-dominated cycles.

0
u

1
v

Second clause requires %(v) >1 %(v)

18/49

Department of Mathematics and Computer Science

Parity progress measures and Solitaire games

Solitaire games with odd-dominated cycles.

I Define M3,> = M3 ∪ {>}
I Extend ordering:

• for all m ∈ M3, define m < >, m <i >, m 6= > and m 6=i >
• > ≤i > for all i

I The set of mappings ([V → M3,>],v) is a complete lattice
• ϕ, %:V → M3,>.
• Define ϕ v % if ϕ(v) ≤ %(v) for all v ∈ V
• write ϕ < % if ϕ v % and ϕ 6= %.

I Replace co-domain of parity progress measures with M3,>.

Compute least parity progress measure % using a fixpoint of a suitable operator!

For an �-solitaire game G = (V ,E , p, (V3,V�)) and least parity progress measure %:
I W3 = {v ∈ V | ∃% : %(v) 6= >}
I W� = V \W3.



19/49

Department of Mathematics and Computer Science

Progress Measures

Example

0
u

1
v

I Observe: %(u) = %(v) = >
I Measure can identify both even and odd reachable cycles in a solitaire game.

21/49

Department of Mathematics and Computer Science

Game Parity Progress Measures

Parity game G = (V ,E , p, (V3,V�))

Towards measures for two-player games

Definition (Prog)
If %:V → M3,> and (v ,w) ∈ E , then Prog(%, v ,w) is the least m ∈ M3,>, such that

I if p(v) is even, then m ≥p(v) %(w)

I if p(v) is odd, then either m >p(v) %(w), or both m = %(w) = >



22/49

Department of Mathematics and Computer Science

Game Parity Progress Measures

Example
Let M3 = {0} × {0, 1, 2} × {0} × {0, 1}

I Suppose p(v) = 0, %(w) = (0, 2, 0, 0).
Then Prog(%, v ,w) = (0, 0, 0, 0)

I Suppose p(v) = 1, %(w) = (0, 2, 0, 0).
Then Prog(%, v ,w) = >

I Suppose p(v) = 3, %(w) = (0, 2, 0, 0).
Then Prog(%, v ,w) = (0, 2, 0, 1)

23/49

Department of Mathematics and Computer Science

Game Parity Progress Measures

Parity game G = (V ,E , p, (V3,V�))

Definition (Game parity progress measure)
Mapping %:V → M3,> is a game parity progress measure if for all v ∈ V :

I if v ∈ V3, then ∃(v ,w)∈E%(v) ≥p(v) Prog(%, v ,w)

I if v ∈ V�, then ∀(v ,w)∈E%(v) ≥p(v) Prog(%, v ,w)

If % is the least game parity progress measure for G , then:

%(v) 6= >
⇔

player 3 can prevent reaching �-dominated cycles

For the least game parity progress measure % we have:
I θ3(v) ≤ %(v)

I there is some � strategy σ such that for each π ∈ Playσ(v): θ3(π) ≥ %(v)



25/49

Department of Mathematics and Computer Science

Computing Least Game Parity Progress Measures

Recall: the set of mappings ([V → M3,>],v) is a complete lattice

Define Liftv (%) for v ∈ V as follows:{
%[v := %(v) max min{Prog(%, v ,w) | (v ,w) ∈ E}] if v ∈ V3

%[v := %(v) max max{Prog(%, v ,w) | (v ,w) ∈ E}] if v ∈ V�

Observe:
I For every v ∈ V , Liftv is v-monotone.
I A mapping %:V → M3,> is a game parity progress measure if and only if Liftv (%) v %

for all v ∈ V .
I Least game parity progress measure computable by fixpoint iteration (algorithm Lfp

of Lecture 2)

26/49

Department of Mathematics and Computer Science

Computing Least Game Parity Progress Measures

Algorithm SPM(G )

% : V → M3,> ← λv ∈ V .(0, ... , 0)
while % < Liftv (%) for some v ∈ V do
%← Liftv (%)

end while

Post condition:
I % is least game parity progress measure
I {v ∈ V | %(v) 6= >} is winning set for player 3
I {v ∈ V | %(v) = >} is winning set for player �



27/49

Department of Mathematics and Computer Science

Small progress measures (example)

Consider parity game G :

1X

1X ′

2 Y ′

2 Y

3

Z

3Z ′ 3 W

Maximum value of M3 is (0, 2, 0, 3)

28/49

Department of Mathematics and Computer Science

Small progress measures (example) (1)

Initially: %← λv ∈ V .(0, 0, 0, 0), so

v %(v)

X (0, 0, 0, 0)
X ′ (0, 0, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ (0, 0, 0, 0)
W (0, 0, 0, 0)



29/49

Department of Mathematics and Computer Science

Small progress measures (example) (2)

Step 2: %← LiftX (%) = %[X := max{Prog(%, X , X ′),Prog(%, X , X )}] = %[X := max{(0, 1, 0, 0), (0, 1, 0, 0)}] = %[X :=
(0, 1, 0, 0)]

v %(v)

X (0, 1, 0, 0)
X ′ (0, 0, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ (0, 0, 0, 0)
W (0, 0, 0, 0)

30/49

Department of Mathematics and Computer Science

Small progress measures (example) (3)

Step 3: %← LiftX (%) = %[X := max{Prog(%, X , X ′),Prog(%, X , X )}] = %[X := max{(0, 1, 0, 0), (0, 2, 0, 0)}] = %[X :=
(0, 2, 0, 0)]

v %(v)

X (0, 2, 0, 0)
X ′ (0, 0, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ (0, 0, 0, 0)
W (0, 0, 0, 0)



31/49

Department of Mathematics and Computer Science

Small progress measures (example) (4)

Step 4: %← LiftX (%) = %[X := max{Prog(%, X , X ′),Prog(%, X , X )}] = %[X := max{(0, 1, 0, 0),>}] = %[X := >]

v %(v)

X >
X ′ (0, 0, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ (0, 0, 0, 0)
W (0, 0, 0, 0)

32/49

Department of Mathematics and Computer Science

Small progress measures (example) (5)

Step 5:LiftY ′ (%) = %[Y ′ := min{Prog(%, Y ′, X ),Prog(%, Y ′, Y )}] = %[Y ′ := min{>, (0, 0, 0, 0)}] = %[Y ′ := (0, 0, 0, 0)]
LiftY (%) = %[Y := max{Prog(%, Y ,W ),Prog(%, Y , Y ′)}] = %[Y := max{(0, 0, 0, 0), (0, 0, 0, 0)}] = %[Y := (0, 0, 0, 0)]
%← LiftX ′ (%) = %[X ′ := min{Prog(%, X ′, Y ),Prog(%, X ′, Z)}] = %[X ′ := min{(0, 1, 0, 0), (0, 1, 0, 0)}] = %[X ′ :=
(0, 1, 0, 0)]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ (0, 0, 0, 0)
W (0, 0, 0, 0)



33/49

Department of Mathematics and Computer Science

Small progress measures (example) (6)

Step 6: %← LiftZ′ (%) = %[Z ′ := min{Prog(%, Z ′, Z ′)}] = %[Z ′ := min{(0, 0, 0, 1)}] = %[Z ′ := (0, 0, 0, 1)]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ (0, 0, 0, 1)
W (0, 0, 0, 0)

34/49

Department of Mathematics and Computer Science

Small progress measures (example) (7)

Step 7: %← LiftZ′ (%) = %[Z ′ := min{Prog(%, Z ′, Z ′)}] = %[Z ′ := min{(0, 0, 0, 2)}] = %[Z ′ := (0, 0, 0, 2)]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ (0, 0, 0, 2)
W (0, 0, 0, 0)



35/49

Department of Mathematics and Computer Science

Small progress measures (example) (8)

Step 8: %← LiftZ′ (%) = %[Z ′ := min{Prog(%, Z ′, Z ′)}] = %[Z ′ := min{(0, 0, 0, 3)}] = %[Z ′ := (0, 0, 0, 3)]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ (0, 0, 0, 3)
W (0, 0, 0, 0)

36/49

Department of Mathematics and Computer Science

Small progress measures (example) (9)

Step 9: %← Lift(%, Z ′) = %[Z ′ := min{Prog(%, Z ′, Z ′)}] = %[Z ′ := min{(0, 1, 0, 0)}] = %[Z ′ := (0, 1, 0, 0)]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ (0, 1, 0, 0)
W (0, 0, 0, 0)



37/49

Department of Mathematics and Computer Science

Small progress measures (example) (10)

Step 10: %← LiftZ′ (%) = %[Z ′ := min{Prog(%, Z ′, Z ′)}] = %[Z ′ := min{(0, 1, 0, 1)}] = %[Z ′ := (0, 1, 0, 1)]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ (0, 1, 0, 1)
W (0, 0, 0, 0)

38/49

Department of Mathematics and Computer Science

Small progress measures (example) (11)

Step 11*: Repeat lifting Z ′ even more often
%← LiftZ′ (%) = %[Z ′ := min{Prog(%, Z ′, Z ′)}] = %[Z ′ := min{>}] = %[Z ′ := >]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z (0, 0, 0, 0)
Z ′ >
W (0, 0, 0, 0)



39/49

Department of Mathematics and Computer Science

Small progress measures (example) (12)

Step 12: %← LiftZ (%) = %[Z := min{Prog(%, Z , Z ′)}] = %[Z := min{>}] = %[Z := >]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z >
Z ′ >
W (0, 0, 0, 0)

40/49

Department of Mathematics and Computer Science

Small progress measures (example) (13)

Step 13:
%← LiftW (%) = %[W := min{Prog(%,W , Z),Prog(%,W ,W ′)}] = %[W := min{>, (0, 0, 0, 1)}] = %[W := (0, 0, 0, 1)]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z >
Z ′ >
W (0, 0, 0, 1)



41/49

Department of Mathematics and Computer Science

Small progress measures (example) (14)

Step 14*: Repeat lifting of W often
%← LiftW (%) = %[W := min{Prog(%,W , Z),Prog(%,W ,W ′)}] = %[W := min{>,>}] = %[W := >]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y (0, 0, 0, 0)
Y ′ (0, 0, 0, 0)
Z >
Z ′ >
W >

42/49

Department of Mathematics and Computer Science

Small progress measures (example) (15)

Step 15: %← LiftY (%, Y ) = %[Y := max{Prog(%, Y ,W ),Prog(%, Y , Y ′)}] = %[Y := max{>, (0, 0, 0, 0)}] = %[Y := >]

v %(v)

X >
X ′ (0, 1, 0, 0)
Y >
Y ′ (0, 0, 0, 0)
Z >
Z ′ >
W >



43/49

Department of Mathematics and Computer Science

Small progress measures (example) (16)

Step 16: %← LiftX ′ (%) = %[X ′ := min{Prog(%, X ′, Z),Prog(%, X ′, Y )}] = %[X ′ := min{>,>}] = %[X ′ := >]

v %(v)

X >
X ′ >
Y >
Y ′ (0, 0, 0, 0)
Z >
Z ′ >
W >

44/49

Department of Mathematics and Computer Science

Small progress measures (example) (17)

Step 17: %← LiftY ′ (%) = %[Y ′ := min{Prog(%, Y ′, X ),Prog(%, Y ′, Y )}] = %[Y ′ := min{>,>}] = %[Y ′ := >]

v %(v)

X >
X ′ >
Y >
Y ′ >
Z >
Z ′ >
W >

% is least game parity progress measure, and {v ∈ V | %(v) 6= >} = ∅ is winning set for player 3. Hence player � wins
from all vertices



46/49

Department of Mathematics and Computer Science

Complexity and Strategies

Parity game G = (V ,E , p, (V3,V�))

Let %:V → M#,> be the least game parity progress measure.

I Define strategy ψ:V3 → V for player 3, by setting ψ(v) to be a successor w of
v ∈ V3 that minimises %(w)

I ψ is a winning strategy for player 3 from {v ∈ V | %(v) 6= >}
I Strategy for � cannot be inferred directly

• ...but can be computed on-the-fly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gazda&Willemse’14

47/49

Department of Mathematics and Computer Science

Complexity and Strategies

Parity game G = (V ,E , p, (V3,V�)

Set n = |V |,m = |E |, d = max{p(v) | v ∈ V }.

Worst-case running time complexity:

O(d ·m · ( n

bd/2c )bd/2c)

Lowerbound on worst-case:

Ω((dn/de)dd/2e)



49/49

Department of Mathematics and Computer Science

Summary Part II

I Model checking Lµ = solving Boolean equation systems
• Gauß Elimination for solving BES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(2|E|)

I Solving BES = solving Parity games
• Recursive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(m · nd )
• Small progress measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .O(d ·m · ( n

bd/2c )
bd/2c)

• bigstep (combination of the two above) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≈ O(nd/3)


	Play values
	Parity progress measures and Solitaire games
	Game parity progress measures and Two-player games
	Computing least game parity progress measures
	Complexity and Strategies
	Conclusions

