Technische Universiteit
Eindhoven
University of Technology

Fxamination cover sheet

(to be completed by the examiner)

Course name: Algorithms for Model Checking

Student name:

Student number:

Course code: 2IMF35

Date: 10-04-2017

Start time: 13:30

End time : 16:30

Number of pages: 2

Number of questions: 4

Maximum number of points/distribution of points over questions:100

Method of determining final grade: divide total of points by 10

Answering style: open questions

Exam inspection: With the lecturer

Other remarks:

Instructions for students and invigilators

Permitted examination aids (to be supplied by students):

0 Notebook

O Calculator

O Graphic calculator

¥ Lecture notes/book

O One A4 sheet of annotations

O Dictionar(y)(ies). If yes, please specify:
i Other: Notes, sheets of annotations and other written material

Important:

examinees are only permitted to visit the toilets under supervision
it is not permitted to leave the examination room within 15 minutes
of the start and within the final 15 minutes of the examination,
unless stated otherwise

examination scripts (fully completed examination paper, stating
name, student number, etc.) must always be handed in

the house rules must be observed during the examination

the instructions of examiners and invigilators must be followed

no pencil cases are permitted on desks

examinees are not permitted to share examination aids or lend them
to each other

During written examinations, the following actions will in any case be

deemed to constitute fraud or attempted fraud:

e using another person’s proof of identity /campus card (student iden-
tity card)

e having a mobile telephone or any other type of media-carrying de-
vice on your desk or in your clothes

e using, or attempting to use, unauthorized resources and aids, such
as the internet, a mobile telephone, etc.

e using a clicker that does not belong to you

e having any paper at hand other than that provided by TU /e, unless
stated otherwise

e visiting the toilet (or going outside) without permission or super-
vision

Associated with the Central Examination Regulations

Examination Algorithms for Model Checking (2IMF35)
10 April, 2017, 13:30 — 16:30
Important notes:

- The exam consists of four questions.

- Weighting: 1: 20, 2: 25, 3: 35, 4: 20.

- Your grade is determined by dividing the points obtained by 10.

- Carefully read and answer the questions.

- The book, the course notes and other written material may be used during this examination.
Laptops and other electronic equipment are not to be used.

1. Consider the following p-calculus formulae interpreted over mixed Kripke structures with
action alphabet {a, b}.:

(A) vX. (()X Alalfalse A pY. ({(B)Y V (a)true))
(B) (uX.([a)X V (b)true)) A (VY. ([blvZ. (a)(Z AY)))
(©) vX. ~@Y. ([a]=X AD]Y)

(a) (For 9pt). Compute, for all three formulae A, B and C, their nesting depth, their
alternation depth and their dependent alternation depth.

(b) (For 11pt). Is there a mixed Kripke structure over action alphabet {a,b} for which
formula A holds for the initial state? If so, give such a mixed Kripke structure and
prove using a transformation to Boolean equation systems and subsequent solving of
the Boolean equation system using Gaufs Elimination that this is the case. If not, prove
that such a mixed Kripke structure cannot exist.

Solution:
(a) We first rewrite formula C to positive normal form, yielding:
vX.puY.({(a)X vV (b)Y)
Next, observe that the nesting depth of the formulae is as follows:
ND(A) =2 ND(B) =2 ND(C)=2
For the alternation depth, we have the following:
AD(A) =2 AD(B) =1 AD(C) =2
For the dependent alternation depth, we have the following:
dAD(A) =1 dAD(B) =1 dAD(C) =2

(b) Informally, formula A states that there must be an infinite b-path through states that
cannot perform an a-transition, but on which an a-transition is possible via a finite
b-path. A mized Kripke structure in which this holds in the initial state is as follows:

b

a

b

We translate the model checking problem to the following Boolean equation system:
(VXso = (Xso V Xsy) NYy) (X, = false) (Y5, =Y, VYs,) (1Ys, = true)

We use Gauf3 Elimination to sove this BES; the table below indicates each iteration
in the algorithm, applying in each step (bottom up) first local solution, replacing every
occurrence of a left-hand side variable X in its right-hand side with either true or false,
dependent on the fizpoint sign, and, next, substitutes the (simplified) right-hand side
expressions upwards, replacing every occurrence of X with this simplified expression.
The local solution and substitution steps are combined in one step in the table below.

| 1 | 2 | 3
vXso = (Xsg VXsy)AYs, | (X VXs))AYs, | Xso VX, | true
vX,, = false false false -
,UYSO = Yeo \% }/51 true - -

uYs, = true - - -

We obtain true for X, which encodes our model checking problem for the initial state,
indicating that the formula holds for state sg.

O

2. Consider the following Kripke Structure K over the set AP = {p,q,r}:

{p,7} {a} {r}

{4} {p,q} {r}

(For 25pt). Determine the set of states in K where the CTL formula E [(E G p) U (E G q)]
holds using the symbolic model checking algorithm (lecture 2) for CTL. Use set notation
to represent states instead of BDDs and include the relevant intermediate steps in your
answer.

Solution: The symbolic model checking algorithm check runs inside-out so it will first compute
the sets of states associated to the subformulae E G p and E G q using the following fizpoint
formulae:

EGp =vZ(EXZAp)
EGq =vW(EXWAQ)

Determining in which states p and in which states q holds is elementary: p holds in {sg, 2, S4, S5}
whereas q holds in {s1,s3,54}. We start by evaluating E G p using the GFP (sub)algorithm:

ZO = {507815527837‘94785}
ZY = {s0,52,54,55}

22 = {82785}

Z3 = {82755}

Next, we evaluate E G ¢, again using the GFP (sub)algorithm:

WO = {s,s1, 82,83, 84, S5}
Wl - {51753384}
W2 = {si,s3,84}

Finally, we transform the original formula E [(E G p) U (E G q)] to a fizpoint formula,
substituting the answers returned by the check procedure for the subformulae that were already
resolved:

Finally, we evaluate E [(E G p) U (E G ¢

E [(E G p) U (E G q)] = MY((VZ.{SQ,SS,} ANE X Y) V {51,83754})

~—

| using the LFP (sub)algorithm:

YO =¢
Yl = {51,53754}
Y2 == {81352a83334785}
Y3 = {81782753784755}
So, the property holds everywhere except for in state sq. O

. Consider the following four constraints for a parity game G = (V, E, p, (Vo, V), consisting
of 6 vertices:

i. for every 1 < i < 6, there is a vertex v; such that p(v;) = i; i.e., all priorities are
different and taken from the range 1...6,
ii. G has at least 10 edges,
iii. player [has a strategy p that guarantees that priority 3 occurs infinitely often on
all plays (i.e. plays starting in arbitrary vertices) consistent with p,
iv. G has an {-dominion consisting of at least two vertices and an [J-dominion con-
sisting of at least two vertices.

(For 5pt). Give a parity game G that meets all of the above constraints.

(For 5pt). Define a strategy p for player O and show that your game G of question
(a) satisfies property (iii).

(For 5pt). Show your game G satisfies property (iv); i.e. state the two respective
dominions and prove that these are dominions.

(For 10pt). Solve your game G using either the recursive algorithm or the small
progress measures algorithm. In case you use the recursive algorithm, clearly indicate
which subgames are solved in each recursive step of the algorithm. For the small
progress measures algorithm clearly indicate the lifting strategy and the intermediate
measures.

(For 10pt). Consider, in addition, the following constraint (v) on G:

v. player { has a strategy o that guarantees that priority 4 occurs infinitely often on
all plays (i.e. plays starting in arbitrary vertices) consistent with o,

Prove that player [always wins the vertex with priority 4 in an arbitrary parity game
that meets requirements (i)—(v), or give a counterexample by providing a parity game
satisfying constraints (i)—(v) in which the vertex with priority 4 is won by player ¢.

Solution:

(a) There are multiple parity games that fulfil all properties. Most importantly, one must

observe that player O must be able to force visiting vertex vs infinitely often from both
dominions. That means that vs can only be part of the & dominion: if if vs were part of
the OO dominion, player O could force play to vs from every vertex x in the) dominion
using strategy p of constraint (i), and thus win vertex x, contradicting that x belongs to
an O-dominion. Since vz belongs to an & dominion and player O can use p to infinitely
often wvisit vz, all such plays must be dominated by a lower even priority, so vy must
belong to the O-dominion as well. The parity game depicted below is a possible solution
to all constraints:

(b)

(d)

(¢)

Vg V2 U3 U1 Vs Ve

Observe that G has exactly 10 edges, and all priorities in between 1 and 6 are present.

Let the strategy p for player O be defined as: p(v1) = vs, p(v2) = v, p(v3) = va, p(vy) =
vg, p(vs) = v1 and p(vg) = vs. Observe that any play that reaches vertex vs will sub-
sequently reach vertex vo. By definition of p, such a play will next again visit vs. So,
every play reaching vs will infinitely often visit vs. Next observe that any play starting
in an arbitrary vertex will reach vs in zero or more steps by following p. So all plays
consistent with p will visit vs eventually, and, hence, infinitely often.

The O-dominion consists of vertices vy, vs and vy: this is a closed subgame (player O
cannot escape from these vertices) and all plays within these vertices are ¢-dominated.
The O-dominion consists of vertices v1,vs and ve. The strategy p given by p(v1) = vs
and p(vs) = v1 and p(vg) = vs ensures that player { cannot escape and the strategy p
s winning for OJ.

A straightforward application of the small progress measures algorithm stabilises after
several liftings. We indicate the lifting scheme in the following table (we only indi-
cate the initialisation and the update of a measure of a vertex, and we omit the ‘even’
positions in the tuples as these are constant 0):

Vertex H ‘ 2 ‘ 3 ‘

41516
(1,0,0) T

1
01 (0,0,0)
Vs (0,0,0)
Vs (0,0,0) (0,1,0)
V4 (0,0,0)
vs (0,0,0)
Vs (0,0,0)

T

T

All vertices lifted to T are won by player 0. The remaining vertices are won by player
0.

Applying the recursive algorithm will first compute the O-attractor into vy, yielding the
vertices {v1,vs,v6}. Recursively solving the subgame restricted to vertices {va,vs,v4},
the algorithm concludes that this subgame is won entirely by player {. As a result,
the algorithm will compute the O-attractor into the set {va, vs,v4}, yielding {ve, v, vy}
and solving the subgame restricted to {vi,vs,v6}. For the latter it will conclude that
player O wins this entire subgame. Combining all information, the recursive algorithm
will then return the partition ({va,vs,va}, {v1,vs,v6}) of vertices won by player & and
player O, respectively.

We prove that all games satisfying constraints (i)—(v) are such that vertex vy is won by
player O. First, we illustrate that there are parity games that meet all constraints.

Us V2 v3 Vg v1 Ve

Let o be an arbitrary strategy for player { such that vertex vy is visited infinitely often
on all plays consistent with o. Denote the non-empty UJ-dominion by Dg, and denote
the closed, winning strategy for this dominion by oq.

We show that v4s € Dg. Pick a vertex v € Dp; since D is non-empty, such a vertex
must exist. Consider the (unique) play 7 that emerges, starting in v, while playing

consistently with oq and o. Then vy occurs infinitely often on w, and, since og is
closed on Dg this can only be when vq4 € Dp. But since Dy is an -dominion, this
means that vy is won by player .

O
4. Consider the following parameterised Boolean equation system:

(vX(n: Nat) = (odd(n) A X(n+ 1)) V (modd(n) A Y (n,n)))
(Y (k: Nat,n: Nat) =Y (k,n+1)VvX(k+1))

Here, Nat represents the natural numbers, odd(n) yields true iff n is odd, and + denotes
addition.

(a) (For 10pt). Compute the solution to X (0) in the above parameterised Boolean equa-
tion system using Gauft Elimination and Symbolic approximation. Include the impor-
tant steps in the computations in your answer.

(b) (For 10pt). In case X (0) has solution false, give a refutation graph, and, in case X (0)
has solution true, give a proof graph that explains this. In both cases, formally justify
that this is a proof/refutation graph. That is, formally state the set of vertices, edges
and labelling of the graph (or, if the graph is finite, draw the graph and clearly indicate
the labelling of the graph) and show that it meets the properties of a refutation graph
or a proof graph.

Solution:

(a) We first solve the equation for'Y wusing symbolic approximation. The solution to 'Y is
then inserted in the equation for X. Symbolic approximation of X yields the following:

YO(k,n) = false
Yi(k,n) = falsev X(k+1)
=X(k+1)
Y2(k,n) =Xk+1)VX(k+1)
=X(k+1)
Since we have Y <+ Y2, Y? is the stable solution for Y. We next substitute solution
Y? forY in the right-hand side of the equation for X, yielding:

(vX(n: Nat) = (odd(n) A X(n+1)) V (modd(n) A X (n + 1))
Again using a symbolic approzimation, we obtain:

X%n) = true
Xt(n) = (odd(n) A true) V (—odd(n) A true)
= true

Clearly, X° <+ X', so we find that X (v) = true for all v € N. In particular, X(0) =
true.

(b) Given that the solution to X (0) is true, we should construct a proof graph. Despite the
fact that we could simply prove that X (0) has solution true, the proof graph underlying
this fact is infinite. Consider the graph G = (V, R, L), where:

o Vertices V = {(X,1),(Y,(2i,20)) | i € N};
e Edges RCV xV are given by:

R = {{(X,2i),(Y,2i,29)), ((X,2i + 1), (X, 2i + 2)), (Y, 2,29), (X, 20 + 1)) }

e Labelling L((X,4)) =0, L((Y,(2i,21))) = 1 for all i.

Observe that there is exactly one infinite path through the proof graph starting in vertex
(X,0), and this path is even-dominated as we infinitely often pass through a vertex of
the form (X, 1), which has the lowest rank. To see that the graph is a true-dependency
graph, note that:

o For vertex (X,2i) we have:
[(odd(n) A X(n+ 1)) V (modd(n) ANY (n,n))](X,2i)*,,,.£[2i/n]
= {20 is not odd}
(21,2i) € (X, 20)3,(Y)

true since (Y,2i,2i) € (X,24)®

e For vertex (X,2i+ 1) we have:

[(odd(n) AN X (n+ 1))V (modd(n) ANY (n,n))](X,2i)*,,,£2i + 1/n]
{2i 4+ 1 is odd}

(2i+1)+1€ (X,2+1)%,(Y)

true since (X,2i+2) € (X,2i+1)°

e For vertex (Y, 2i,2i) we have:

IV (k,n+ 1) v X (k + D](Y, 2i,20)°, £[2i/k, 2i/n]

true

(20,2 +1) € (Y, 20, 20)3,,(Y)) or 2i +1 € (Y, 2, 20)3,,e(X)

true since (X,2i + 1) € (Y,2i,21)°

