
Student name:

Student number:

Examination cover sheet
(to be completed by the examiner)

Course name: Algorithms for Model Checking Course code: 2IW55

Date: 23-06-2015

Start time: 13:30 End time : 16:30

Number of pages: 2

Number of questions: 4

Maximum number of points/distribution of points over questions:100

Method of determining final grade: divide total of points by 10

Answering style: open questions

Exam inspection: With the lecturer

Other remarks:

Instructions for students and invigilators
Permitted examination aids (to be supplied by students):

� Notebook
� Calculator
� Graphic calculator
X� Lecture notes/book
� One A4 sheet of annotations
� Dictionar(y)(ies). If yes, please specify:
X� Other: Notes, sheets of annotations and other written material, see also the next page

Important:
• examinees are only permitted to visit the toilets under supervision
• it is not permitted to leave the examination room within 15 minutes

of the start and within the final 15 minutes of the examination,
unless stated otherwise

• examination scripts (fully completed examination paper, stating
name, student number, etc.) must always be handed in

• the house rules must be observed during the examination
• the instructions of examiners and invigilators must be followed
• no pencil cases are permitted on desks
• examinees are not permitted to share examination aids or lend them

to each other

During written examinations, the following actions will in any case be
deemed to constitute fraud or attempted fraud:
• using another person’s proof of identity/campus card (student iden-

tity card)
• having a mobile telephone or any other type of media-carrying de-

vice on your desk or in your clothes
• using, or attempting to use, unauthorized resources and aids, such

as the internet, a mobile telephone, etc.
• using a clicker that does not belong to you
• having any paper at hand other than that provided by TU/e, unless

stated otherwise
• visiting the toilet (or going outside) without permission or super-

vision

Associated with the Central Examination Regulations

Examination Algorithms for Model Checking (2IW55)
23 June, 2015, 13:30 – 16:30
Important notes:

- The exam consists of four questions.

- Weighting: 1: 25, 2: 25, 3: 25, 4: 25.

- Carefully read and answer the questions. The book, the course notes and other written
material may be used during this examination.

- Use these solutions at your own risk; they may contain typos or even life-threatening flaws.

1. Consider the formula φ given by E G E [p U q], in the context of the following mixed Kripke
Structure, where {p, q, r} is the set of atomic propositions and a is an action.

s0

s1

s2 s3

a

a

a

a

a

a

{r}

{q, r}

{p} {p}

(a) Convert formula φ to an equivalent formula in the µ-calculus. Compute the nesting
depth, the alternation depth and the dependent alternation depth of the formula you
obtained. (10 points)
Solution: The formula E G E [p U q] translates to:

νX.〈a〉X ∧ µY.q ∨ (p ∧ 〈a〉Y)

The nesting depth and the alternation depth of the above formula are both 2; the depen-
dent alternation depth is 1.

(b) Solve the µ-calculus formula νX.([a]X ∧ νY. (q ∨ (p ∧ [a]Y))) using either the naive
model checking algorithm for the µ-calculus, or the Emerson-Lei algorithm. Show the
intermediate steps in your computations. (15 points)
Solution: We will use the naive algorithm and discuss where Emerson-Lei will improve
upon that. The naive algorithm essentially performs two nested fixpoint calculations,
which we will detail below; we write Xi and Y i to indicate X and Y ’s i-th approximation
and Y ij to denote the j-th approximation of Y within the i-th approximation of X.

X0 = {s0, s1, s2, s3}
X1 = Y 1

where Y 1 is given by: Y 1
0 = true
Y 1
1 = {s1, s2, s3}
Y 1
2 = {s1, s2, s3}

X2 = {s0, s1, s2, s3} ∩ Y 2

where Y 2 is given by: Y 2
0 = true
Y 2
1 = {s1, s2, s3}
Y 2
2 = {s1, s2, s3}

X3 = {s0, s1, s2, s3} ∩ Y 3

where Y 3 is given by: Y 3
0 = true
Y 3
1 = {s1, s2, s3}
Y 3
2 = {s1, s2, s3}

1

So the property holds in all states except for state s0. The optimisation of Emerson-Lei
avoids the recomputations performed to compute Y 2 and Y 3.

2. Consider the mixed Kripke Structure below, where {p, q, r} is the set of atomic propositions
and a and b are the actions.

s0 s1

s2

s3 s4
a

a

a

a

a

b

a

a

{p} {p, r}

{q, r}

{p, q} {r}

Consider the µ-calculus formula φ defined as νX.([a]X∧µY.(〈b〉true∨([a]Y ∧〈a〉true))). Con-
struct a Boolean equation system that can be used to solve which states of the mixed Kripke
structure satisfy φ. Solve the resulting Boolean equation system using Gauß Elimination
and answer which states satisfy φ. (25 points)

Solution: We first construct a Boolean equation system by combining the mixed Kripke struc-
ture and the formula. This results in the following:

νX0 = (X1 ∧X2) ∧ Y0
νX1 = (X1 ∧X3) ∧ Y1
νX2 = X2 ∧ Y2
νX3 = X2 ∧X4 ∧ Y3
νX4 = Y4
µY0 = Y1 ∧ Y2
µY1 = Y1 ∧ Y3
µY2 = Y2
µY3 = Y4 ∧ Y2
µY4 = true

Solving the above equation system using Gauß Elimination proceeds as follows. Note that
we combine the local solving and substitution to the left (up, in this case) and perform some
on-the-fly simplification; the equation currently being dealt with by the algorithm is indicated
by a (∗):

νX0 = X1 ∧X2 ∧ Y0 X1 ∧X2 ∧ Y0 X1 ∧X2 ∧ Y0 X1 ∧X2 ∧ Y0 X1 ∧X2 ∧ Y0 false
νX1 = X1 ∧X3 ∧ Y1 X1 ∧X3 ∧ Y1 X1 ∧X3 ∧ Y1 X1 ∧X3 ∧ Y1 false false
νX2 = X2 ∧ Y2 X2 ∧ Y2 X2 ∧ Y2 false false false
νX3 = X2 ∧X4 ∧ Y3 X2 ∧X4 ∧ Y3 X2 ∧X4 ∧ Y2 false false false
νX4 = Y4 true true true true true
µY0 = Y1 ∧ Y2 Y1 ∧ Y2 Y1 ∧ Y2 false false false(∗)

µY1 = Y1 ∧ Y3 Y1 ∧ Y3 Y1 ∧ Y2 false false(∗)

µY2 = Y2 Y2 Y2 false(∗)

µY3 = Y4 ∧ Y2 Y2 Y
(∗)
2

µY4 = true true(∗)

Running the entire procedure just once yields solutions to all variables, except for Y3. Substi-
tuting Y2 = false to the right (down, in this case, which is permitted since it is a solved equa-
tion), solves Y3. This results in all variables to have solution false, except for X4 = Y4 = true.
Therefore, φ only holds in s4.

3. This question is composed of four subquestions.

(a) For 5pt, give a parity game G = (V,E, p, (V♦, V�)), consisting of 10 vertices and ensure
that G is such that:

2

i. |V1| = 1, |V2| = 2, |V3| = 3 and |V4| = 4, where Vi ⊆ V is the set of vertices with
priority i,

ii. G has at least 16 edges,
iii. all vertices in G are won by player ♦.
iv. player ♦ has no strategy σ guaranteeing that priority 4 occurs infinitely often on

all plays consistent with σ (i.e. plays starting in arbitrary vertices),
v. player � has a memoryless strategy ρ such that for all plays π (starting in

arbitrary vertices) consistent with ρ, at some point 2 vertices with odd priority
appear in π, without any vertex with priority 2 in between these two vertices.

Solution: There is an easy solution that meets all requirements, which is to construct
an even-dominated loop containing all vertices in |V3| and every other vertex pointing
into this loop directly or indirectly. The graph depicted below is an instance:

1

v1

2

v2

2

v3

3

v4

3

v5

3

v6

4

v7

4

v8

4

v9

4

v10

(b) Prove, for 5pt, that your game G of question (a) satisfies property (iv).
Solution: observe player � does not own any vertices and can therefore not influence
the game play; the proof therefore follows if we can show that from any vertex, all paths
through the graph have a finite number of vertices with priority 4. But this is obvious,
as all paths eventually reach the subgame {v3, v4, v5, v6}, from which there is no escape.

(c) For 5pt, define a memoryless strategy ρ for player � and show that the game G of
question (a) satisfies property (v).
Solution: since player � owns none of the vertices, the domain of the memoryless
strategy ρ is empty. Again, every play eventually reaches the subgame {v3, v4, v5, v6},
from which there is no escape, and in which all plays must visit at least 3 consecutive
vertices with priority 3 without any lower priority in between.

(d) For 10pt, prove using either Zielonka’s recursive algorithm or Jurdziński’s Small Progress
Measures algorithm that your solution meets property (iii). For the recursive algorithm,
clearly indicate which subgames are solved in each recursive step. For the Small Progress
Measures algorithm, show the intermediate measures.
Solution: we use Zielonka’s algorithm, and we only sketch the steps taken by the algo-
rithm. Vertex v1 has the lowest value in the game, but its �-attractor is {v1}. We must
therefore recursively solve the subgame V \ {v1}. The vertices with the lowest value in
the game, viz. {v2, v3}, have an even priority; computing the attractor into {v2, v3}
leads to the entire subgame, which is then won by player ♦. So the subgame is solved.
We must then enter the second recursive call, which is performed on an empty game,
as v1 is attracted into the subgame V \ {v1}. Hence, the full game is won by player ♦.

4. LetN be the natural numbers. Let E be the parameterised Boolean equation system depicted
below:

νX(n : N) = ∃k : N.Y (n, k)
νY (n : N, k : N) = ((n = k) ∧ Y (k + 1, n+ 1)) ∨ ((n 6= k) ∧X(k))

Compute the solution to X(0), where X is defined by E . Clearly indicate all steps and
transformations you use in your computation. (25 points)

3

Solution: Observe that we do not expect that there are parameters that we can eliminate
since in Y , all parameters are used. We therefore perform a straightforward symbolic ap-
proximation, starting at Y :

Y 0(n, k) = true
Y 1(n, k) = ((n = k) ∧ true) ∨ ((n 6= k) ∧X(k))

= (n = k) ∨ ((n 6= k) ∧X(k))
Y 2(n, k) = ((n = k) ∧ ((k + 1 = n+ 1) ∨ ((k + 1 6= n+ 1) ∧X(n+ 1)))) ∨ ((n 6= k) ∧X(k))

= ((n = k) ∧ ((k = n) ∨ ((k 6= n) ∧X(n+ 1)))) ∨ ((n 6= k) ∧X(k))
= (n = k) ∨ ((n 6= k) ∧X(k))
= Y 1(n, k)

Next, we substitute the solution to Y in the equation for X:

νX(n : N) = ∃k : N.((n = k ∨ ((n 6= k) ∧X(k))))

Solving X again using an approximation yields:

X0(n) = true
X1(n) = ∃k : N.((n = k ∨ n 6= k))

= true

Hence, X(n) is true for all values of n; in particular, X(0) is true.
While not asked for, a proof graph explaining that X(0) is true is depicted below:

(X, 0)

0

(Y, 0, 1)

0

(X, 1)

0

(Y, 1, 0)

0

Note that this proof graph has exactly one infinite path starting in (X, 0) and that path is
even-dominated. Furthermore, we observe that the proof graph fulfils the true-dependency
graph conditions, as we sketch below:

• For vertex (X, 0), we observe that

[[∃k : N.Y (n, k)]](X, 0)•trueε[n := 0]

is equivalent to (0, v) ∈ ((X, 0)•true)(Y) for some natural number v, which, since (X, 0)• =
{(Y, 0, 1)}, is exactly the case for v = 1.
• For vertex (X, 1), we observe that

[[∃k : N.Y (n, k)]](X, 1)•trueε[n := 1]

is equivalent to (1, v) ∈ ((X, 1)•true)(Y) for some natural number v, which, since (X, 1)• =
{(Y, 1, 0)}, is exactly the case for v = 0.
• For vertex (Y, 0, 1), we observe that

[[((n = k) ∧ Y (k + 1, n+ 1)) ∨ ((n 6= k) ∧X(k))]](Y, 0, 1)•trueε[n := 0, k := 1]

is equivalent to 1 ∈ ((Y, 0, 1)•true)(X) which, since (Y, 0, 1)• = {(X, 1)}, is the case.
• For vertex (Y, 1, 0), we observe that

[[((n = k) ∧ Y (k + 1, n+ 1)) ∨ ((n 6= k) ∧X(k))]](Y, 0, 1)•trueε[n := 1, k := 0]

is equivalent to 0 ∈ ((Y, 1, 0)•true)(X) which, since (Y, 1, 0)• = {(X, 0)}, is the case.

�

4

