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Verification Methodology:

[,LL—Calculus Formula qb] [ Linear Process Equation P]

PB@D manipulations

transformation

BES &

Solving £ answers P = ¢
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Parameterised Boolean Equation Systems

Problem Description

. Given a process X(e) described by an LPE X over Act
. Given a first-order modal p-calculus formula ¢

1

2

3. Given environments 7, €

4. Check whether X(e) = ¢ holds, where:

X(e) = ¢ iff e € [¢]ne

» Decidable for finite data types

e Compute LTS [X(e)]
* Evaluate ¢ on [X(e)] using standard model checking algorithms

» In general undecidable

» Transform problem to Parameterised Boolean Equation Systems (PBESs)
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Grammar for predicate formulae
o, =b| X(e)|oANYp | oV |Vd:D.¢p|3d: D.¢
> bis a boolean expression .......... ... n+m>5
» X € P is a sorted predicate variable (or relation)................... ... ... ... X:2P
» e is an expression of sort D
» Interpreting ¢ requires two environments................. ¢ (for data) and n:P — 2°

true  if e(b)
false else

true if e(e) € n(X)
false else

[6]ne = { [X(e)lne = {

[¢ Adlne = [¢lne and [¥]ne [oVlne = lglne or [¥]ne

[Vd:D.¢]ne = for all veD: [3d:D.¢]|ne = for some veD:
[¢ln(eld := v]) [¢ln(eld := v])
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Parameterised Boolean Equation Systems

A parameterised Boolean equation is an equation of the form o X(d : D) = ¢
» o is a least fixed point sign u or a greatest fixed point sign v.
» ¢ is a predicate formula, X a predicate variable

» a parameterised Boolean equation system is a sequence of such equations

v

bound (bnd), free, well-formedness, open, close, rank as in BESs

v

As in BESs, the order of equations is important.

v

Assume, for simplicity, that all equations range over sort D only
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The solution of a PBES £ is an environment: n: P — 2b.

We define [E]ne by recursion on .

( [elne =1

[(uX(d : D) = ¢) Elne = [EIn[X = u®Fe Je

- N

| [(vX(d: D) =¢) Elne = [EIn[X = vozy e

E.n.e

Note: v®3'¢ _ is the greatest fixpoint to the following monotone functional:

®zne(Z) = {v e D | [$I([EIIX = Z]e)eld == v]}
We write X(v) = true iff v € [E]ne(X)
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Parameterised Boolean Equation Systems

Let:

> n:P — 2P be a predicate environment and ¢ a data environment
» sig(€) ={(X,v) | X € bnd(€), v € D} be the signatures

Definition (Signature Environments)

Assume S C sig(€).
> Strue is the environment defined as Sirue(X) = {v | (X, v) € S} for all X
> Staise is the environment defined as Sqse(X) = {v | (X, v) ¢ S} for all X
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Definition (Dependency Graphs)

Let b be a Boolean.

A structure (S, R, L) is a b-dependency graph for closed £ and data environment ¢ if:
> S Csig(€)
» L(X, v) = rank(X)
» R C S x S such that: if for oX(d: D) =¢ in &, (X,v) € S then

* If b = true, we require: [ol((X, v)®)trueeld := v]

* If b = false, we require: [l ((X, v)®)taisec|d := V]
Where
» (X, v)*={(Z,w)eS|(X,v)R(Z w)}
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Example
Consider the following equation system £.

uX(b: Bit)=Y(b)Vb=1
vY(b: Bit) =Y(b) Vv (X(1) A Z(b))
pZ(b: Bit) = Z(b)

Below are two true-dependency graphs (S, R, L) with (X,0) € S.
Note that sig(£) = {(U,0),(U,1) | U= X, Y, Z}.

1 (X,O) (X,l) 1 1 (X,O) (X,l) 1
C_ (v,0) 2 (Y,0) 2

C(2.0) 3
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Example (Continued)

To see that the graph on the left satisfies the true-dependency graph property:

for (X,0): [Y(b)V b=1]{(Y,0)}trued[b := 0] = true
for (X,1): [Y(b) V b = 1]|0trued[b := 1] = true
for (Y,0): [Y(b) V X(1)J{(Y,0), (X, 1)}true]d[b := 0] = true

» Any infinite path goes through states with label 2, hence, it satisfies the true-proof
graph property.

» Note that in this true-dependency graph, (Y,0) — (X, 1) can be left out, because
the right hand side of the equation for Y is disjunctive and the left disjunct is true.
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Parameterised Boolean Equation Systems

Definition (Proof Graphs)

A true-dependency graph (S, R, L) is a proof graph iff for all s € S and all infinite paths
7 € path(s):

min{r | label r occurs infinitely often on 7} is even

Theorem
For all closed PBESs £ and all n, e:

v € [E]ne(X) iff there is a proof graph (S, R, L) such that (X,v) € S
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Dually:

Definition (Refutation Graphs)

A false-dependency graph (S, R, L) is a refutation graph iff for all s € S and all infinite
paths 7 € path(s):

min{r | label r occurs infinitely often on 7} is odd

Theorem
For all closed PBESs £ and all n, e:

v & [E]ne(X) iff there is a refutation graph (S, R, L) such that (X,v) € S
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Parameterised Boolean Equation Systems

Example

Consider the following equation system £.
uX(b:Bit)=Y(b)Vb=1
vY (b : Bit) = Y(b) vV (X(1) A Z(b))
uZ(b: Bit) = Z(b)

Below are two true-dependency graphs (S, R, L) with (X,0) € S. The left one is a
true-proof graph; the right one is not.

1 (X,0) (X,1) 1 1 (X,0) (X,1) 1

| /

C(v,0) 2 (Y,0) 2

C(z0) 3
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First-order Modal p-Calculus model checking problem

» Given is a First-order Modal p-Calculus formula oZ. ¢
» Given a system described by an LPE X(e)

Compute whether X(e) = oZ. ¢

v

Transform the model checking problem to solving a PBES &

The transformation is similar to the transformation to BES.

v

Idea: for each fixed point subformula o' X. v of 0Z.¢, add an equation

v

o’X(d:D,---) = RHS(v)

v

The order of the equations respects the subterm ordering in 0 Z.¢
Transformation is such that X(e) = 0Z. ¢ iff e € [E]ne(2)

v
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Verification via PBESs

» ldentify a list of data variables bound outside the scope of a fixed point formula

> Given a formula 1) and some formal variable Z
Identify Bound Data Variables
Par(Z, b, 1) = Par(Z, X, 1) =
Par(Z, 6 AN, 1) = Par(Z, ¢V b, 1) = Par(Z, ¢, )+Par(Z, 4, 1)
Par(Z,¥d:D.¢,1) = Par(Z,3d:D.¢,1) = Par(Z, ¢, [d:D]++1)
Par(Z,[a]9, 1) = Par(Z,{)¢,1) = Par(Z,¢,1)

/ ifZ=X
Par(Z,cX.¢,1) = { Par(Z,$,1) otherwise
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Example
The one-place buffer system described by process B:

B(b: Bool,n: Nat) = > b —> r(m)- B(false, m)
m:Nat

+ —b—> s(n) - B(true, n)

» Property 1. if the input stream is constant, so is the output stream:

Vk : Nat. (vX.(VI: Nat. [r(D)](1 = k = X) A [s(D](I = k A X)))
» Transform 1) to a formula W that starts with a dummy fixed point:

vA. Yk : Nat. (vX.(VI: Nat. [r(D](I = k = X) A [s(D](I = k A X)))
» We have: Par(A,V,[]) =[] and Par(X,V,[]) = [k : Nat]
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> Lety :=0Z. ¢

» Given LPE X(d:D) = > >

ign e,-:D,-

ci(d, &) — ai(fi(d, &) - X(gi(d, e))

Create Equation System Outline

E(b) = ¢ E(2) = ¢
E(AY)  =E(¢) E(®) Eovy)  =E(¢) E(¥)
E(Vd':D'.9) = E(¢) E(3d:D'.¢) =E(9)
E(lale)  =E(9) E(()¢)  =E(9)

E(0Z.6) = (c2(d:D, Par(Z, 1)) = RHS(4)) E(®)
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Example
Applying operator E on formula W given the buffer process B:
E(V)
= E(vA. V1)
= (VA(b : Bool, n: Nat) = RHS(V1)) E(V1)
= (vA(b: Bool, n: Nat) = RHS(V1)) E(Vk : Nat. W>)
= (vA(b: Bool, n: Nat) = RHS(V1)) E(Vk : Nat. W>)
= (vA(b: Bool, n: Nat) = RHS(V1)) E(vX.V3)
= (VA(b: Bool, n: Nat) = RHS(W¥;))
(vX(b: Bool, n: Nat, k : Nat) = RHS(W3)) E(V3)
(vA(b : Bool, n : Nat) = RHS(V;))
(vX(b: Bool, n: Nat, k : Nat) = RHS(W3))

So, E(V) yields two equations.
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» Letyp :=0Y. ¢
» Given LPE X(d:D) = > >  «ci(d, &) — ai(fi(d,e)) - X(gi(d, ei))

RHS:
RHS(b) =b RHS(2) = Z(d, Par(Z,,1]))
RHS(¢ A ) = RHS(¢) A RHS(v) RHS(¢ V ¢) = RHS(¢) vV RHS(v)
RHS(Vd':D'.¢) =Vd:D'. RHS(¢) RHS(3d:D".¢) = 3d":D’'. RHS(¢)
RHS (0 Z.¢) = Z(d, Par(Z,9,1]))

RHS((a)p) = \</ Jdei:D;. (c,-(d, ei) A ai(fi(d, e)) in a A ((RHS(9))[d := gi(d, e,-)])>

RHS([a]¢) = A Vei:D;. ((c,-(d, ei) A ai(fi(d, &)) in a) = ((RHS(¢))[d := gi(d, e,-)]))

i<n
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Example (Verification of the Buffer process B, continued)

» Consider subformula (V/ : Nat. [r()](I =k = X) A[s(D)](I = k A X)) of W

RHS(V/ : Nat. [r()](I = k = X) A [s(D](I = k A X))
= VI: Nat. RHS([r()](I = k = X) A [s(D](I = k A X))
= VI Nat. (RHS([r())](/ = k = X)) ARHS([s(N](! = k A X)))

» Computing RHS([r(/)](/ = k = X)) requires process B.

RHS(([r(N](I = k = X)))

(Vm : Nat. (b A r(m)in r(l)) = RHS(I = k = X)[b := false, n := m])
((=bAs(n)inr(l)) = RHS(/ = k = X)[b := true, n := n])

(Ym : Nat. (b A r(m)in r(l)) = (I = k = X(false, m, k)))

((=b A s(n)in r()) = (I = k = X(true, n, k)))

>

>

Department of Mathematics and Computer Science




Verification via PBESs

Matching parameterised actions with action formulae:

a(e) in true = true

a(e) in a'(e) (a=a Ne=¢)

a(e) in ~« = —(a(e) in a)
a(e)in(anp) =1(a(e)ina) A(a(e)in )
a(e)in(aVvp) =/(a(e)ina) V(a(e)in B)

Observations:

» in yields a predicate formula

» in does not introduce predicate variables

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Verification via PBESs

24/25

Example

e The expression r(m) in r(/) yields r = r A m = I, which simplifies to m =/

e The expression s(n) in r(/) yields s = r A n = I, which simplifies to false
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Verification via PBESs

Example (Verification of the Buffer process, continued)

Buffer system and constant stream revisited
B(b: Bool,n: Nat) = > b —> r(m)- B(false, m)
m:Nat

+ —b— s(n) - B(true, n)

Property W: vA. Yk : Nat. (vX.(VI: Nat. [r(D)](/ = k = X) A [s(D](I = k A X)))

Result after translation to PBES £ (note: cleanup using ordinary first-order logic):

(vA(b : Bool, n : Nat) = Yk : Nat. X(b, n, k))

(u)?(b : Bool, n: Nat, k : Nat) =
VI : Nat. (Vm: Nat. (bAm=1)= (I = k = X(false, m, k)))
AN(=bAn=1=(I=kA )~<(true, n, k)))))

For all b: Bool and n : Nat, we have: B(b,n) =W iff (b, n) € ([E]0e)(A) = true
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How to solve PBESs

e Xiin€ = (0:Xu(dy: D) = 1) (02 Xn(dn : D) = )

Known techniques for solving/simplifying &:

v

Gaull Elimination on PBES + symbolic approximation of equations

v

Instantiation to BES and subsequently solve the BES

v

Using patterns

v

Using under/over approximation

v

Invariants
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Solving PBESs

Definition (Logical Equivalence)
Let ¢, be two predicates. Then 1 is logically equivalent to ¢, denoted ¢ <> 1 iff

Ve, n: [¢lne = [¥Ine

> If ¢ <> 1), then equation vX(d : D) = ¢ has the same solution as vX(d : D) =
(likewise for 1)
» Useful simplifications:

o false A ¢ < false

* trueV ¢ <> true

- if d ¢ FV(¢), then (3d : D. ¢) <> (Vd : D. ¢) > ¢
* One-point rule: (3d: D.d = e A ¢(d)) <> ¢(e)

* One-point rule: (Vd : D.d = e = ¢(d)) <> ¢(e)

» Apply logical simplifications before applying PBES manipulations/solving techniques.
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Gaul elimination on PBESs + Symbolic Approximation:

e E X,' in 5 = (O'1X1(d1 . Dl) = ¢1) ce (O‘an(dn : Dn) = (bn)
» Local solution: eliminate X in its defining equation:
Eo (o X(d:D) = ¢) &1 becomes & (o X(d:D) = X*) &

* X% can be found by symbolic approximation:

e X0 = false if 0 = p, else X° = true

o XMl = g[X = X"]

e X“ may require transfinite approximation; else X% = X" for X" « X1

» Substitute definition backwards:

50 (O'1X1(d1:D1) = qbl) 51 (O’zXz(dz:Dz) = qbz) 52
becomes: 80 (O'1X1(d12D1) = ¢1[X2 = gbz]) 51 (02X2(d2:D2) = (bz) 52

» Substitute solved equations (i.e. not containing predicate variables) forward:

50 (O'1X1(d12D1) = qbl) 81 (0’2X2(d22D2) = ¢2) 52
becomes: 50 (O'1X1(d12D1) = ¢1) 81 (0‘2X2(d2:D2) = ¢2[X1 = ¢1]) 52
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Solving PBESs

Example
PBES: (vX(n: Nat) =n<2AY(n)) (uY(n: Nat) = odd(n) vV X(n+ 1))
1. Eliminate Y from (Y (n: Nat) =odd(n)V X(n+1)) ..., done

2. Substitute definition of Y backwards:

(vX(n: Nat)=n<2AY(n))
becomes (vX(n: Nat) =n < 2A (odd(n) VvV X(n+1)))

3. Eliminate X from (vX(n: Nat) = n < 2 A (odd(n) vV X(n + 1))):

X° =true

X' =n<2A(odd(n) Vtrue) <> n<2

X? =n<2A(odd(n)vn+1<2) ++n<2A(odd(n)vn<1) <+n<1
X =n<2A(odd(n)Vn+1<1) <+ n<2A(odd(n)vn=0) <+n<1

So, solution to X is n <1 (i.e., X semantically consists of the set {0,1})
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Gaull Elimination terminates; symbolic approximation may not terminate

» Due to infinite data types, a transfinite approximation may be needed
> Evaluating predicates may be impossible: 3k, /, m: Nat.x* + y' = z"

» Theorem proving technology may be added in symbolic approximation
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Exercise

Consider the lossy channel system described by the following LPE:

C(b:Bool,m: M) = > b— r(k)- C(false, k)
k:M
+ —b—> s(m) - C(true, m)
+ —b—>1-C(true, m)

Action r stands for reading, s stands for sending and / stands for losing a message.
Lo vX.([true] X A (Y. [NY AVm:M.[r(m)]Y A (true)true))
2. vXpYvZ (Nm:M.[s(m)]X) A (Vm:M. [s(m)]false) V ([]Y AVm:M.[r(m)]Y)) A
[NZ AVm:M.[r(m)]Z
Questions:
» Explain the first formula in natural language
» Translate both formulae to PBESs given process C
» Use Gaull Elimination to solve the PBES
» For which initial states of C do the properties hold?

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science




	Parameterised Boolean Equation Systems
	Verification via PBESs
	Solving PBESs

