Algorithms for Model Checking (2IMF35)

Lecture 10
Parameterised Boolean Equation Systems (2)

Background material:

Model Checking Processes with Data,
J.F. Groote and T.A.C. Willemse (Sc. Comp. Progr. 2005)

Proof Graphs for Parameterised Boolean Equation Systems,
S. Cranen, B. Luttik and T.A.C. Willemse (CONCUR 2013)

Tim Willemse
(t.a.c.willemse@tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Verification via PBESs

3/25

Verification Methodology:

[,LL—Calculus Formula qb] [Linear Process Equation P]

PB@D manipulations

transformation

BES &

Solving £ answers P = ¢

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Parameterised Boolean Equation Systems

Problem Description

. Given a process X(e) described by an LPE X over Act
. Given a first-order modal p-calculus formula ¢

1

2

3. Given environments 7, €

4. Check whether X(e) = ¢ holds, where:

X(e) = ¢ iff e € [¢]ne

» Decidable for finite data types

e Compute LTS [X(e)]
* Evaluate ¢ on [X(e)] using standard model checking algorithms

» In general undecidable

» Transform problem to Parameterised Boolean Equation Systems (PBESs)

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Parameterised Boolean Equation Systems

5/25
Grammar for predicate formulae
o, =b| X(e)|oANYp | oV |Vd:D.¢p|3d: D.¢
> bis a boolean expression n+m>5
» X € P is a sorted predicate variable (or relation)................... X:2P
» e is an expression of sort D
» Interpreting ¢ requires two environments................. ¢ (for data) and n:P — 2°

true if e(b)
false else

true if e(e) € n(X)
false else

[6]ne = { [X(e)lne = {

[¢ Adlne = [¢lne and [¥]ne [oVlne = lglne or [¥]ne

[Vd:D.¢]ne = for all veD: [3d:D.¢]|ne = for some veD:
[¢ln(eld := v]) [¢ln(eld := v])

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Parameterised Boolean Equation Systems

A parameterised Boolean equation is an equation of the form o X(d : D) = ¢
» o is a least fixed point sign u or a greatest fixed point sign v.
» ¢ is a predicate formula, X a predicate variable

» a parameterised Boolean equation system is a sequence of such equations

v

bound (bnd), free, well-formedness, open, close, rank as in BESs

v

As in BESs, the order of equations is important.

v

Assume, for simplicity, that all equations range over sort D only

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Parameterised Boolean Equation Systems

7/25

The solution of a PBES £ is an environment: n: P — 2b.

We define [E]ne by recursion on .

([elne =1

[(uX(d : D) = ¢) Elne = [EIn[X = u®Fe Je

- N

| [(vX(d: D) =¢) Elne = [EIn[X = vozy e

E.n.e

Note: v®3'¢ _ is the greatest fixpoint to the following monotone functional:

®zne(Z) = {v e D | [$I([EIIX = Z]e)eld == v]}
We write X(v) = true iff v € [E]ne(X)

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Parameterised Boolean Equation Systems

Let:

> n:P — 2P be a predicate environment and ¢ a data environment
» sig(€) ={(X,v) | X € bnd(€), v € D} be the signatures

Definition (Signature Environments)

Assume S C sig(€).
> Strue is the environment defined as Sirue(X) = {v | (X, v) € S} for all X
> Staise is the environment defined as Sqse(X) = {v | (X, v) ¢ S} for all X

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Parameterised Boolean Equation Systems

9/25

Definition (Dependency Graphs)

Let b be a Boolean.

A structure (S, R, L) is a b-dependency graph for closed £ and data environment ¢ if:
> S Csig(€)
» L(X, v) = rank(X)
» R C S x S such that: if for oX(d: D) =¢ in &, (X,v) € S then

* If b = true, we require: [ol((X, v)®)trueeld := v]

* If b = false, we require: [l ((X, v)®)taisec|d := V]
Where
» (X, v)*={(Z,w)eS|(X,v)R(Z w)}

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Parameterised Boolean Equation Systems
10/25

Example
Consider the following equation system £.

uX(b: Bit)=Y(b)Vb=1
vY(b: Bit) =Y(b) Vv (X(1) A Z(b))
pZ(b: Bit) = Z(b)

Below are two true-dependency graphs (S, R, L) with (X,0) € S.
Note that sig(£) = {(U,0),(U,1) | U= X, Y, Z}.

1 (X,O) (X,l) 1 1 (X,O) (X,l) 1
C_ (v,0) 2 (Y,0) 2

C(2.0) 3

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Parameterised Boolean Equation Systems
11/25

Example (Continued)

To see that the graph on the left satisfies the true-dependency graph property:

for (X,0): [Y(b)V b=1]{(Y,0)}trued[b := 0] = true
for (X,1): [Y(b) V b = 1]|0trued[b := 1] = true
for (Y,0): [Y(b) V X(1)J{(Y,0), (X, 1)}true]d[b := 0] = true

» Any infinite path goes through states with label 2, hence, it satisfies the true-proof
graph property.

» Note that in this true-dependency graph, (Y,0) — (X, 1) can be left out, because
the right hand side of the equation for Y is disjunctive and the left disjunct is true.

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Parameterised Boolean Equation Systems

Definition (Proof Graphs)

A true-dependency graph (S, R, L) is a proof graph iff for all s € S and all infinite paths
7 € path(s):

min{r | label r occurs infinitely often on 7} is even

Theorem
For all closed PBESs £ and all n, e:

v € [E]ne(X) iff there is a proof graph (S, R, L) such that (X,v) € S

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Parameterised Boolean Equation Systems

13/25

Dually:

Definition (Refutation Graphs)

A false-dependency graph (S, R, L) is a refutation graph iff for all s € S and all infinite
paths 7 € path(s):

min{r | label r occurs infinitely often on 7} is odd

Theorem
For all closed PBESs £ and all n, e:

v & [E]ne(X) iff there is a refutation graph (S, R, L) such that (X,v) € S

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Parameterised Boolean Equation Systems

Example

Consider the following equation system £.
uX(b:Bit)=Y(b)Vb=1
vY (b : Bit) = Y(b) vV (X(1) A Z(b))
uZ(b: Bit) = Z(b)

Below are two true-dependency graphs (S, R, L) with (X,0) € S. The left one is a
true-proof graph; the right one is not.

1 (X,0) (X,1) 1 1 (X,0) (X,1) 1

| /

C(v,0) 2 (Y,0) 2

C(z0) 3

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Verification via PBESs

16/25

First-order Modal p-Calculus model checking problem

» Given is a First-order Modal p-Calculus formula oZ. ¢
» Given a system described by an LPE X(e)

Compute whether X(e) = oZ. ¢

v

Transform the model checking problem to solving a PBES &

The transformation is similar to the transformation to BES.

v

Idea: for each fixed point subformula o' X. v of 0Z.¢, add an equation

v

o’X(d:D,---) = RHS(v)

v

The order of the equations respects the subterm ordering in 0 Z.¢
Transformation is such that X(e) = 0Z. ¢ iff e € [E]ne(2)

v

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Verification via PBESs

» ldentify a list of data variables bound outside the scope of a fixed point formula

> Given a formula 1) and some formal variable Z
Identify Bound Data Variables
Par(Z, b, 1) = Par(Z, X, 1) =
Par(Z, 6 AN, 1) = Par(Z, ¢V b, 1) = Par(Z, ¢,)+Par(Z, 4, 1)
Par(Z,¥d:D.¢,1) = Par(Z,3d:D.¢,1) = Par(Z, ¢, [d:D]++1)
Par(Z,[a]9, 1) = Par(Z,{)¢,1) = Par(Z,¢,1)

/ ifZ=X
Par(Z,cX.¢,1) = { Par(Z,$,1) otherwise

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Verification via PBESs

18/25

Example
The one-place buffer system described by process B:

B(b: Bool,n: Nat) = > b —> r(m)- B(false, m)
m:Nat

+ —b—> s(n) - B(true, n)

» Property 1. if the input stream is constant, so is the output stream:

Vk : Nat. (vX.(VI: Nat. [r(D)](1 = k = X) A [s(D](I = k A X)))
» Transform 1) to a formula W that starts with a dummy fixed point:

vA. Yk : Nat. (vX.(VI: Nat. [r(D](I = k = X) A [s(D](I = k A X)))
» We have: Par(A,V,[]) =[] and Par(X,V,[]) = [k : Nat]

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Verification via PBESs
19/25

> Lety :=0Z. ¢

» Given LPE X(d:D) = > >

ign e,-:D,-

ci(d, &) — ai(fi(d, &) - X(gi(d, e))

Create Equation System Outline

E(b) = ¢ E(2) = ¢
E(AY) =E(¢) E(®) Eovy) =E(¢) E(¥)
E(Vd':D'.9) = E(¢) E(3d:D'.¢) =E(9)
E(lale) =E(9) E(()¢) =E(9)

E(0Z.6) = (c2(d:D, Par(Z, 1)) = RHS(4)) E(®)

Department of Mathematics and Computer Science

Verification via PBESs
20/25

Techn hU
TU/e @i
sity of Technology

Department of Mathematics and Computer Science

Example
Applying operator E on formula W given the buffer process B:
E(V)
= E(vA. V1)
= (VA(b : Bool, n: Nat) = RHS(V1)) E(V1)
= (vA(b: Bool, n: Nat) = RHS(V1)) E(Vk : Nat. W>)
= (vA(b: Bool, n: Nat) = RHS(V1)) E(Vk : Nat. W>)
= (vA(b: Bool, n: Nat) = RHS(V1)) E(vX.V3)
= (VA(b: Bool, n: Nat) = RHS(W¥;))
(vX(b: Bool, n: Nat, k : Nat) = RHS(W3)) E(V3)
(vA(b : Bool, n : Nat) = RHS(V;))
(vX(b: Bool, n: Nat, k : Nat) = RHS(W3))

So, E(V) yields two equations.

Techn hU
TU/e s
sity of Technology

Verification via PBESs

21/25

» Letyp :=0Y. ¢
» Given LPE X(d:D) = > > «ci(d, &) — ai(fi(d,e)) - X(gi(d, ei))

RHS:
RHS(b) =b RHS(2) = Z(d, Par(Z,,1]))
RHS(¢ A) = RHS(¢) A RHS(v) RHS(¢ V ¢) = RHS(¢) vV RHS(v)
RHS(Vd':D'.¢) =Vd:D'. RHS(¢) RHS(3d:D".¢) = 3d":D’'. RHS(¢)
RHS (0 Z.¢) = Z(d, Par(Z,9,1]))

RHS((a)p) = \</ Jdei:D;. (c,-(d, ei) A ai(fi(d, e)) in a A ((RHS(9))[d := gi(d, e,-)])>

RHS([a]¢) = A Vei:D;. ((c,-(d, ei) A ai(fi(d, &)) in a) = ((RHS(¢))[d := gi(d, e,-)]))

i<n

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Verification via PBESs
22/25

Example (Verification of the Buffer process B, continued)

» Consider subformula (V/ : Nat. [r()](I =k = X) A[s(D)](I = k A X)) of W

RHS(V/ : Nat. [r()](I = k = X) A [s(D](I = k A X))
= VI: Nat. RHS([r()](I = k = X) A [s(D](I = k A X))
= VI Nat. (RHS([r())](/ = k = X)) ARHS([s(N](! = k A X)))

» Computing RHS([r(/)](/ = k = X)) requires process B.

RHS(([r(N](I = k = X)))

(Vm : Nat. (b A r(m)in r(l)) = RHS(I = k = X)[b := false, n := m])
((=bAs(n)inr(l)) = RHS(/ = k = X)[b := true, n := n])

(Ym : Nat. (b A r(m)in r(l)) = (I = k = X(false, m, k)))

((=b A s(n)in r()) = (I = k = X(true, n, k)))

>

>

Department of Mathematics and Computer Science

Verification via PBESs

Matching parameterised actions with action formulae:

a(e) in true = true

a(e) in a'(e) (a=a Ne=¢)

a(e) in ~« = —(a(e) in a)
a(e)in(anp) =1(a(e)ina) A(a(e)in)
a(e)in(aVvp) =/(a(e)ina) V(a(e)in B)

Observations:

» in yields a predicate formula

» in does not introduce predicate variables

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Verification via PBESs

24/25

Example

e The expression r(m) in r(/) yields r = r A m = I, which simplifies to m =/

e The expression s(n) in r(/) yields s = r A n = I, which simplifies to false

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Verification via PBESs

Example (Verification of the Buffer process, continued)

Buffer system and constant stream revisited
B(b: Bool,n: Nat) = > b —> r(m)- B(false, m)
m:Nat

+ —b— s(n) - B(true, n)

Property W: vA. Yk : Nat. (vX.(VI: Nat. [r(D)](/ = k = X) A [s(D](I = k A X)))

Result after translation to PBES £ (note: cleanup using ordinary first-order logic):

(vA(b : Bool, n : Nat) = Yk : Nat. X(b, n, k))

(u)?(b : Bool, n: Nat, k : Nat) =
VI : Nat. (Vm: Nat. (bAm=1)= (I = k = X(false, m, k)))
AN(=bAn=1=(I=kA)~<(true, n, k)))))

For all b: Bool and n : Nat, we have: B(b,n) =W iff (b, n) € ([E]0e)(A) = true

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Solving PBESs

27/25

How to solve PBESs

e Xiin€ = (0:Xu(dy: D) = 1) (02 Xn(dn : D) =)

Known techniques for solving/simplifying &:

v

Gaull Elimination on PBES + symbolic approximation of equations

v

Instantiation to BES and subsequently solve the BES

v

Using patterns

v

Using under/over approximation

v

Invariants

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Solving PBESs

Definition (Logical Equivalence)
Let ¢, be two predicates. Then 1 is logically equivalent to ¢, denoted ¢ <> 1 iff

Ve, n: [¢lne = [¥Ine

> If ¢ <> 1), then equation vX(d : D) = ¢ has the same solution as vX(d : D) =
(likewise for 1)
» Useful simplifications:

o false A ¢ < false

* trueV ¢ <> true

- if d ¢ FV(¢), then (3d : D. ¢) <> (Vd : D. ¢) > ¢
* One-point rule: (3d: D.d = e A ¢(d)) <> ¢(e)

* One-point rule: (Vd : D.d = e = ¢(d)) <> ¢(e)

» Apply logical simplifications before applying PBES manipulations/solving techniques.

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Solving PBESs

29/25

Gaul elimination on PBESs + Symbolic Approximation:

e E X,' in 5 = (O'1X1(d1 . Dl) = ¢1) ce (O‘an(dn : Dn) = (bn)
» Local solution: eliminate X in its defining equation:
Eo (o X(d:D) = ¢) &1 becomes & (o X(d:D) = X*) &

* X% can be found by symbolic approximation:

e X0 = false if 0 = p, else X° = true

o XMl = g[X = X"]

e X“ may require transfinite approximation; else X% = X" for X" « X1

» Substitute definition backwards:

50 (O'1X1(d1:D1) = qbl) 51 (O’zXz(dz:Dz) = qbz) 52
becomes: 80 (O'1X1(d12D1) = ¢1[X2 = gbz]) 51 (02X2(d2:D2) = (bz) 52

» Substitute solved equations (i.e. not containing predicate variables) forward:

50 (O'1X1(d12D1) = qbl) 81 (0’2X2(d22D2) = ¢2) 52
becomes: 50 (O'1X1(d12D1) = ¢1) 81 (0‘2X2(d2:D2) = ¢2[X1 = ¢1]) 52

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Solving PBESs

Example
PBES: (vX(n: Nat) =n<2AY(n)) (uY(n: Nat) = odd(n) vV X(n+ 1))
1. Eliminate Y from (Y (n: Nat) =odd(n)V X(n+1)) ..., done

2. Substitute definition of Y backwards:

(vX(n: Nat)=n<2AY(n))
becomes (vX(n: Nat) =n < 2A (odd(n) VvV X(n+1)))

3. Eliminate X from (vX(n: Nat) = n < 2 A (odd(n) vV X(n + 1))):

X° =true

X' =n<2A(odd(n) Vtrue) <> n<2

X? =n<2A(odd(n)vn+1<2) ++n<2A(odd(n)vn<1) <+n<1
X =n<2A(odd(n)Vn+1<1) <+ n<2A(odd(n)vn=0) <+n<1

So, solution to X is n <1 (i.e., X semantically consists of the set {0,1})

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Solving PBESs

31/25

Gaull Elimination terminates; symbolic approximation may not terminate

» Due to infinite data types, a transfinite approximation may be needed
> Evaluating predicates may be impossible: 3k, /, m: Nat.x* + y' = z"

» Theorem proving technology may be added in symbolic approximation

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Exercise

Consider the lossy channel system described by the following LPE:

C(b:Bool,m: M) = > b— r(k)- C(false, k)
k:M
+ —b—> s(m) - C(true, m)
+ —b—>1-C(true, m)

Action r stands for reading, s stands for sending and / stands for losing a message.
Lo vX.([true] X A (Y. [NY AVm:M.[r(m)]Y A (true)true))
2. vXpYvZ (Nm:M.[s(m)]X) A (Vm:M. [s(m)]false) V ([]Y AVm:M.[r(m)]Y)) A
[NZ AVm:M.[r(m)]Z
Questions:
» Explain the first formula in natural language
» Translate both formulae to PBESs given process C
» Use Gaull Elimination to solve the PBES
» For which initial states of C do the properties hold?

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

	Parameterised Boolean Equation Systems
	Verification via PBESs
	Solving PBESs

