# Algorithms for Model Checking (2IMF35) 

Lecture 10
Parameterised Boolean Equation Systems (2)

Background material:
Model Checking Processes with Data, J.F. Groote and T.A.C. Willemse (Sc. Comp. Progr. 2005)

Proof Graphs for Parameterised Boolean Equation Systems, S. Cranen, B. Luttik and T.A.C. Willemse (CONCUR 2013)

Tim Willemse
(t.a.c.willemse@tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

Department of Mathematics and Computer Science

Verification via PBESs

Verification Methodology:


Solving $\mathcal{E}$ answers $P \models \phi$

## Problem Description

1. Given a process $X(e)$ described by an LPE $X$ over Act
2. Given a first-order modal $\mu$-calculus formula $\phi$
3. Given environments $\eta, \varepsilon$
4. Check whether $X(e) \models \phi$ holds, where:

$$
X(e) \models \phi \text { iff } e \in \llbracket \phi \rrbracket \eta \varepsilon
$$

- Decidable for finite data types
- Compute LTS $\llbracket X(e) \rrbracket$
- Evaluate $\phi$ on $\llbracket X(e) \rrbracket$ using standard model checking algorithms
- In general undecidable
- Transform problem to Parameterised Boolean Equation Systems (PBESs)


## Parameterised Boolean Equation Systems

Grammar for predicate formulae

$$
\phi, \psi::=b|X(e)| \phi \wedge \psi|\phi \vee \psi| \forall d: D \cdot \phi \mid \exists d: D \cdot \phi
$$

- $b$ is a boolean expression $n+m \geq 5$
- $X \in \mathcal{P}$ is a sorted predicate variable (or relation) $X: 2^{D}$
- $e$ is an expression of sort $D$
- Interpreting $\phi$ requires two environments................. (for data) and $\eta: \mathcal{P} \rightarrow 2^{D}$
$\llbracket b \rrbracket \eta \varepsilon \quad=\left\{\begin{array}{ll}\text { true } & \text { if } \varepsilon(b) \\ \text { false } & \text { else }\end{array} \quad \llbracket X(e) \rrbracket \eta \varepsilon \quad= \begin{cases}\text { true } & \text { if } \varepsilon(e) \in \eta(X) \\ \text { false } & \text { else }\end{cases}\right.$
$\llbracket \phi \wedge \psi \rrbracket \eta \varepsilon \quad=\llbracket \phi \rrbracket \eta \varepsilon$ and $\llbracket \psi \rrbracket \eta \varepsilon \quad \llbracket \phi \vee \psi \rrbracket \eta \varepsilon \quad=\llbracket \phi \rrbracket \eta \varepsilon$ or $\llbracket \psi \rrbracket \eta \varepsilon$
$\llbracket \forall d: D \cdot \phi \rrbracket \eta \varepsilon \quad=$ for all $v \in D:$

$$
\phi \rrbracket \eta(\varepsilon[d:=v])
$$

$\llbracket \exists d: D \cdot \phi \rrbracket \eta \varepsilon \quad=$ for some $v \in D$ :
$\llbracket \phi \rrbracket \eta(\varepsilon[d:=v])$

A parameterised Boolean equation is an equation of the form $\sigma X(d: D)=\phi$

- $\sigma$ is a least fixed point sign $\mu$ or a greatest fixed point sign $\nu$.
- $\phi$ is a predicate formula, $X$ a predicate variable
- a parameterised Boolean equation system is a sequence of such equations
- bound (bnd), free, well-formedness, open, close, rank as in BESs
- As in BESs, the order of equations is important.
- Assume, for simplicity, that all equations range over sort $D$ only


## Parameterised Boolean Equation Systems

The solution of a PBES $\mathcal{E}$ is an environment: $\eta: \mathcal{P} \rightarrow 2^{D}$;

We define $\llbracket \mathcal{E} \rrbracket \eta \varepsilon$ by recursion on $\mathcal{E}$.

$$
\begin{cases}\llbracket \epsilon \rrbracket \eta \varepsilon & :=\eta \\ \llbracket(\mu X(d: D)=\phi) \mathcal{E} \rrbracket \eta \varepsilon & :=\llbracket \mathcal{E} \rrbracket \eta\left[X:=\mu \Phi_{\mathcal{E}, \eta, \varepsilon}^{X, d}\right] \varepsilon \\ \llbracket(\nu X(d: D)=\phi) \mathcal{E} \rrbracket \eta \varepsilon & :=\llbracket \mathcal{E} \rrbracket \eta\left[X:=\nu \Phi_{\mathcal{E}, \eta, \varepsilon}^{X, d}\right] \varepsilon\end{cases}
$$

Note: $\nu \Phi_{\mathcal{E}, \theta, \varepsilon}^{X, d}$ is the greatest fixpoint to the following monotone functional:

$$
\Phi_{\mathcal{E}, \eta, \varepsilon}^{X, d}(Z):=\{v \in D \mid \llbracket \phi \rrbracket(\llbracket \mathcal{E} \rrbracket \eta[X:=Z] \varepsilon) \varepsilon[d:=v]\}
$$

We write $X(v)=$ true iff $v \in \llbracket \mathcal{E} \rrbracket \eta \varepsilon(X)$

Let:

- $\eta: \mathcal{P} \rightarrow 2^{D}$ be a predicate environment and $\varepsilon$ a data environment
- $\operatorname{sig}(\mathcal{E})=\{(X, v) \mid X \in \operatorname{bnd}(\mathcal{E}), v \in D\}$ be the signatures


## Definition (Signature Environments)

Assume $S \subseteq \operatorname{sig}(\mathcal{E})$.

- $S_{\text {true }}$ is the environment defined as $S_{\text {true }}(X)=\{v \mid(X, v) \in S\}$ for all $X$
- $S_{\text {false }}$ is the environment defined as $S_{\text {false }}(X)=\{v \mid(X, v) \notin S\}$ for all $X$


## Parameterised Boolean Equation Systems

## Definition (Dependency Graphs)

Let $b$ be a Boolean.
A structure $\langle S, R, L\rangle$ is a b-dependency graph for closed $\mathcal{E}$ and data environment $\varepsilon$ if:

- $S \subseteq \operatorname{sig}(\mathcal{E})$
- $L(X, v)=\operatorname{rank}(X)$
- $R \subseteq S \times S$ such that: if for $\sigma X(d: D)=\phi$ in $\mathcal{E},(X, v) \in S$ then
- If $b=$ true, we require: $\llbracket \phi \rrbracket\left((X, v)^{\bullet}\right)_{\text {true }} \varepsilon[d:=v]$
- If $b=$ false, we require: $\quad \neg \llbracket \phi \rrbracket\left((X, v)^{\bullet}\right)_{\text {false }} \varepsilon[d:=v]$

Where

- $(X, v)^{\bullet}=\{(Z, w) \in S \mid(X, v) R(Z, w)\}$


## Example

Consider the following equation system $\mathcal{E}$.

$$
\begin{aligned}
& \mu X(b: \text { Bit })=Y(b) \vee b=1 \\
& \nu Y(b: \text { Bit })=Y(b) \vee(X(1) \wedge Z(b)) \\
& \mu Z(b: \text { Bit })=Z(b)
\end{aligned}
$$

Below are two true-dependency graphs $\langle S, R, L\rangle$ with $(X, 0) \in S$.
Note that $\operatorname{sig}(\mathcal{E})=\{(U, 0),(U, 1) \mid U=X, Y, Z\}$.


Department of Mathematics and Computer Science

## Parameterised Boolean Equation Systems

## Example (Continued)

To see that the graph on the left satisfies the true-dependency graph property:

$$
\begin{aligned}
& \text { for }(X, 0): \llbracket Y(b) \vee b=1 \rrbracket\{(Y, 0)\}_{\text {true }} \delta[b:=0]=\text { true } \\
& \text { for }(X, 1): \llbracket Y(b) \vee b=1 \rrbracket \emptyset_{\text {true }} \delta[b:=1]=\text { true } \\
& \text { for } \left.(Y, 0): \llbracket Y(b) \vee X(1) \rrbracket\{(Y, 0),(X, 1)\}_{\text {true }}\right] \delta[b:=0]=\text { true }
\end{aligned}
$$

- Any infinite path goes through states with label 2, hence, it satisfies the true-proof graph property.
- Note that in this true-dependency graph, $(Y, 0) \rightarrow(X, 1)$ can be left out, because the right hand side of the equation for $Y$ is disjunctive and the left disjunct is true.


## Definition (Proof Graphs)

A true-dependency graph $\langle S, R, L\rangle$ is a proof graph iff for all $s \in S$ and all infinite paths $\pi \in \operatorname{path}(s):$
$\min \{r \mid$ label $r$ occurs infinitely often on $\pi\}$ is even

## Theorem

For all closed PBESs $\mathcal{E}$ and all $\eta, \varepsilon$ :
$v \in \llbracket \mathcal{E} \rrbracket \eta \varepsilon(X)$ iff there is a proof graph $\langle S, R, L\rangle$ such that $(X, v) \in S$

Department of Mathematics and Computer Science

Parameterised Boolean Equation Systems

Dually:

## Definition (Refutation Graphs)

A false-dependency graph $\langle S, R, L\rangle$ is a refutation graph iff for all $s \in S$ and all infinite paths $\pi \in \operatorname{path}(s)$ :
$\min \{r \mid$ label $r$ occurs infinitely often on $\pi\}$ is odd

## Theorem

For all closed PBESs $\mathcal{E}$ and all $\eta, \varepsilon$ :
$v \notin \llbracket \mathcal{E} \rrbracket \eta \varepsilon(X)$ iff there is a refutation graph $\langle S, R, L\rangle$ such that $(X, v) \in S$

## Example

Consider the following equation system $\mathcal{E}$.

$$
\begin{aligned}
& \mu X(b: \text { Bit })=Y(b) \vee b=1 \\
& \nu Y(b: \text { Bit })=Y(b) \vee(X(1) \wedge Z(b)) \\
& \mu Z(b: \text { Bit })=Z(b)
\end{aligned}
$$

Below are two true-dependency graphs $\langle S, R, L\rangle$ with $(X, 0) \in S$. The left one is a true-proof graph; the right one is not.

$(Z, 0) 3$

## Verification via PBESs

## First-order Modal $\mu$-Calculus model checking problem

- Given is a First-order Modal $\mu$-Calculus formula $\sigma Z . \phi$
- Given a system described by an LPE X(e)

Compute whether $X(e) \models \sigma Z$. $\phi$

- Transform the model checking problem to solving a PBES $\mathcal{E}$
- The transformation is similar to the transformation to BES.
- Idea: for each fixed point subformula $\sigma^{\prime} X . \psi$ of $\sigma Z . \phi$, add an equation

$$
\sigma^{\prime} \tilde{X}(d: D, \cdots)=R H S(\psi)
$$

- The order of the equations respects the subterm ordering in $\sigma Z . \phi$
- Transformation is such that $X(e) \models \sigma Z . \phi$ iff $e \in \llbracket \mathcal{E} \rrbracket \eta \varepsilon(\tilde{Z})$
- Identify a list of data variables bound outside the scope of a fixed point formula
- Given a formula $\psi$ and some formal variable $Z$


## Identify Bound Data Variables

$$
\begin{array}{lll}
\operatorname{Par}(Z, b, l) & =\operatorname{Par}(Z, X, l) & =[] \\
\operatorname{Par}(Z, \phi \wedge \psi, I) & =\operatorname{Par}(Z, \phi \vee \psi, I)=\operatorname{Par}(Z, \phi, I)+\operatorname{Par}(Z, \psi, I) \\
\operatorname{Par}(Z, \forall d: D \cdot \phi, I)=\operatorname{Par}(Z, \exists d: D \cdot \phi, I)=\operatorname{Par}(Z, \phi,[d: D]+I) \\
\operatorname{Par}(Z,[\alpha] \phi, l)=\operatorname{Par}(Z,\langle\alpha\rangle \phi, l)=\operatorname{Par}(Z, \phi, I) \\
\operatorname{Par}(Z, \sigma X \cdot \phi, I)= \begin{cases}l & \text { if } Z=X \\
\operatorname{Par}(Z, \phi, l) & \text { otherwise }\end{cases}
\end{array}
$$

## Verification via PBESs

## Example

The one-place buffer system described by process $B$ :

$$
\begin{aligned}
B(b: B o o l, n: N a t) & =\sum_{m: N a t} b \longrightarrow r(m) \cdot B(\text { false }, m) \\
& +\neg b \longrightarrow s(n) \cdot B(\text { true }, n)
\end{aligned}
$$

- Property $\psi$ : if the input stream is constant, so is the output stream:

$$
\forall k: N a t .(\nu X .(\forall I: N a t .[r(I)](I=k \Rightarrow X) \wedge[s(I)](I=k \wedge X)))
$$

- Transform $\psi$ to a formula $\Psi$ that starts with a dummy fixed point:

$$
\nu A . \forall k: N a t .(\nu X .(\forall I: N a t .[r(I)](I=k \Rightarrow X) \wedge[s(I)](I=k \wedge X)))
$$

- We have: $\operatorname{Par}(A, \Psi,[])=[]$ and $\operatorname{Par}(X, \Psi,[])=[k: N a t]$
- Let $\psi:=\sigma Z . \phi$
- Given LPE $X(d: D)=\sum_{i \leq n} \sum_{e_{i}: D_{i}} c_{i}\left(d, e_{i}\right) \longrightarrow a_{i}\left(f_{i}\left(d, e_{i}\right)\right) \cdot X\left(g_{i}\left(d, e_{i}\right)\right)$


## Create Equation System Outline

$$
\begin{array}{llll}
\mathbf{E}(b) & =\epsilon & \mathbf{E}(Z) & =\epsilon \\
\mathbf{E}(\phi \wedge \psi) & =\mathbf{E}(\phi) \mathbf{E}(\psi) & \mathbf{E}(\phi \vee \psi)=\mathbf{E}(\phi) \mathbf{E}(\psi) \\
\mathbf{E}\left(\forall d^{\prime}: D^{\prime} . \phi\right)=\mathbf{E}(\phi) & \mathbf{E}\left(\exists d^{\prime}: D^{\prime} . \phi\right)=\mathbf{E}(\phi) \\
\mathbf{E}([\alpha] \phi) & =\mathbf{E}(\phi) & \mathbf{E}(\langle\alpha\rangle \phi)=\mathbf{E}(\phi) \\
\mathbf{E}(\sigma Z . \phi) & =(\sigma \tilde{Z}(d: D, \operatorname{Par}(Z, \psi,[]))=\mathbf{R H S}(\phi)) \mathbf{E}(\phi)
\end{array}
$$

## Verification via PBESs

## Example

Applying operator $\mathbf{E}$ on formula $\Psi$ given the buffer process $B$ :

$$
\begin{aligned}
& \mathbf{E}(\Psi) \\
= & \mathbf{E}\left(\nu \tilde{A} . \Psi_{1}\right) \\
= & \left(\nu \tilde{A}(b: \text { Bool }, n: N a t)=\operatorname{RHS}\left(\Psi_{1}\right)\right) \mathbf{E}\left(\Psi_{1}\right) \\
= & \left(\nu \tilde{A}(b: \text { Bool, } n: N a t)=\operatorname{RHS}\left(\Psi_{1}\right)\right) \mathbf{E}\left(\forall k: N a t . \Psi_{2}\right) \\
= & \left(\nu \tilde{A}(b: B o o l, n: N a t)=\operatorname{RHS}\left(\Psi_{1}\right)\right) \mathbf{E}\left(\forall k: N a t . \Psi_{2}\right) \\
= & \left(\nu \tilde{A}(b: \text { Bool, } n: N a t)=\operatorname{RHS}\left(\Psi_{1}\right)\right) \mathbf{E}\left(\nu X \cdot \Psi_{3}\right) \\
= & \left(\nu \tilde{A}(b: \text { Bool, } n: N a t)=\operatorname{RHS}\left(\Psi_{1}\right)\right) \\
= & \left(\nu \tilde{X}(b: \text { Bool, } n: N a t, k: N a t)=\operatorname{RHS}\left(\Psi_{3}\right)\right) \mathbf{E}\left(\Psi_{3}\right) \\
& \cdots \\
& \left(\nu \tilde{A}(b: \text { Bool, } n: \text { Nat })=\operatorname{RHS}\left(\Psi_{1}\right)\right) \\
& \left(\nu \tilde{X}(b: \text { Bool, } n: \text { Nat }, k: N a t)=\operatorname{RHS}\left(\Psi_{3}\right)\right)
\end{aligned}
$$

So, $\mathbf{E}(\Psi)$ yields two equations.

Technische Universiteit Eindhoven University of Technology

- Let $\psi:=\sigma Y . \phi$
- Given LPE $X(d: D)=\sum_{i \leq n} \sum_{e_{i}: D_{i}} c_{i}\left(d, e_{i}\right) \longrightarrow a_{i}\left(f_{i}\left(d, e_{i}\right)\right) \cdot X\left(g_{i}\left(d, e_{i}\right)\right)$


## RHS:

| RHS ( $b$ ) | $=b$ | RHS( $~(~) ~$ | $=\tilde{Z}(d, \operatorname{Par}(Z, \psi,[]))$ |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{\operatorname { R H S }}(\phi \wedge \psi)$ | $=\operatorname{RHS}(\phi) \wedge \operatorname{RHS}(\psi)$ | $\boldsymbol{R H S}(\phi \vee \psi)$ | $=\mathbf{R H S}(\phi) \vee \operatorname{RHS}(\psi)$ |
| RHS ( $\left.\forall d^{\prime}: D^{\prime} . \phi\right)$ | $=\forall d^{\prime}: D^{\prime} . \operatorname{RHS}(\phi)$ | $\operatorname{RHS}\left(\exists d^{\prime}: D^{\prime} . \phi\right)$ | $=\exists d^{\prime}: D^{\prime} . \operatorname{RHS}(\phi)$ |
| RHS ( $\sigma Z . \phi$ ) | $=\tilde{Z}(d, \operatorname{Par}(Z, \psi,[]))$ |  |  |
| $\operatorname{RHS}(\langle\alpha\rangle \phi)=\bigvee_{i \leq n} \exists e_{i}: D_{i} .\left(c_{i}\left(d, e_{i}\right) \wedge a_{i}\left(f_{i}\left(d, e_{i}\right)\right) \text { in } \alpha \wedge\left((\operatorname{RHS}(\phi))\left[d:=g_{i}\left(d, e_{i}\right)\right]\right)\right)$ |  |  |  |
| $\operatorname{RHS}([\alpha] \phi)=$ Department of Mathe | $=\bigwedge_{i \leq n} \forall e_{i}: D_{i} \cdot\left(\left(c_{i}\left(d, e_{i}\right) \wedge a_{i}\left(f_{i}\left(d, e_{i}\right)\right) \text { in } \alpha\right) \Rightarrow\left((\mathbf{R H S}(\phi))\left[d:=g_{i}\left(d, e_{i}\right)\right]\right)\right)$ |  |  |

## Verification via PBESs

Example (Verification of the Buffer process $B$, continued)

- Consider subformula $(\forall I: N a t .[r(I)](I=k \Rightarrow X) \wedge[s(I)](I=k \wedge X))$ of $\Psi$

$$
\begin{aligned}
& \operatorname{RHS}(\forall I: \operatorname{Nat} .[r(I)](I=k \Rightarrow X) \wedge[s(I)](I=k \wedge X)) \\
= & \forall I: \operatorname{Nat} \cdot \operatorname{RHS}([r(I)](I=k \Rightarrow X) \wedge[s(I)](I=k \wedge X)) \\
= & \forall I: \operatorname{Nat.}(\operatorname{RHS}([r(I)](I=k \Rightarrow X)) \wedge \operatorname{RHS}([s(I)](I=k \wedge X)))
\end{aligned}
$$

- Computing $\operatorname{RHS}([r(I)](I=k \Rightarrow X))$ requires process $B$.

$$
\begin{aligned}
& \operatorname{RHS}(([r(I)](I=k \Rightarrow X))) \\
= & (\forall m: \operatorname{Nat.}(b \wedge r(m) \text { in } r(I)) \Rightarrow \operatorname{RHS}(I=k \Rightarrow X)[b:=\text { false, } n:=m]) \\
\wedge & ((\neg b \wedge s(n) \operatorname{in} r(I)) \Rightarrow \operatorname{RHS}(I=k \Rightarrow X)[b:=\text { true, } n:=n]) \\
= & (\forall m: N a t .(b \wedge r(m) \text { in } r(I)) \Rightarrow(I=k \Rightarrow \tilde{X}(\text { false, } m, k))) \\
\wedge & ((\neg b \wedge s(n) \text { in } r(I)) \Rightarrow(I=k \Rightarrow \tilde{X}(\text { true, } n, k)))
\end{aligned}
$$

Matching parameterised actions with action formulae:

$$
\begin{array}{ll}
a(e) \text { in true } & =\text { true } \\
a(e) \text { in } a^{\prime}\left(e^{\prime}\right) & =\left(a=a^{\prime} \wedge e=e^{\prime}\right) \\
a(e) \text { in } \neg \alpha & =\neg(a(e) \text { in } \alpha) \\
a(e) \text { in }(\alpha \wedge \beta) & =(a(e) \text { in } \alpha) \wedge(a(e) \text { in } \beta) \\
a(e) \text { in }(\alpha \vee \beta) & =(a(e) \text { in } \alpha) \vee(a(e) \text { in } \beta)
\end{array}
$$

## Observations:

- in yields a predicate formula
- in does not introduce predicate variables

Verification via PBESs

## Example

- The expression $r(m)$ in $r(I)$ yields $r=r \wedge m=l$, which simplifies to $m=I$
- The expression $s(n)$ in $r(I)$ yields $s=r \wedge n=l$, which simplifies to false

Example (Verification of the Buffer process, continued)
Buffer system and constant stream revisited

Property $\Psi: \nu A$. $\forall k$ : Nat. $(\nu X .(\forall I: N a t .[r(I)](I=k \Rightarrow X) \wedge[s(I)](I=k \wedge X)))$
Result after translation to $\operatorname{PBES} \mathcal{E}$ (note: cleanup using ordinary first-order logic):

$$
\begin{aligned}
& (\nu \tilde{A}(b: \text { Bool, } n: N a t)=\forall k: N a t . \tilde{X}(b, n, k)) \\
& (\nu \tilde{X}(b: \text { Bool, } n: \text { Nat, } k: N a t)= \\
& \quad \forall I: N a t .((\forall m: N a t .(b \wedge m=I) \Rightarrow(I=k \Rightarrow \tilde{X}(\text { false }, m, k))) \\
& \wedge((\neg b \wedge n=I) \Rightarrow(I=k \wedge \tilde{X}(\text { true }, n, k)))))
\end{aligned}
$$

For all $b$ : Bool and $n$ : Nat, we have: $B(b, n) \models \Psi \quad$ iff $\quad(b, n) \in(\llbracket \mathcal{E} \rrbracket \theta \varepsilon)(\tilde{A})=$ true

## Solving PBESs

## How to solve PBESs

$$
e \stackrel{?}{\in} X_{i} \text { in } \mathcal{E}:=\left(\sigma_{1} X_{1}\left(d_{1}: D_{1}\right)=\phi_{1}\right) \cdots\left(\sigma_{n} X_{n}\left(d_{n}: D_{n}\right)=\phi_{n}\right)
$$

Known techniques for solving/simplifying $\mathcal{E}$ :

- Gauß Elimination on PBES + symbolic approximation of equations
- Instantiation to BES and subsequently solve the BES
- Using patterns
- Using under/over approximation
- Invariants


## Definition (Logical Equivalence)

Let $\phi, \psi$ be two predicates. Then $\psi$ is logically equivalent to $\phi$, denoted $\phi \leftrightarrow \psi$ iff

$$
\forall \varepsilon, \eta: \llbracket \phi \rrbracket \eta \varepsilon=\llbracket \psi \rrbracket \eta \varepsilon
$$

- If $\phi \leftrightarrow \psi$, then equation $\nu X(d: D)=\phi$ has the same solution as $\nu X(d: D)=\psi$ (likewise for $\mu$ )
- Useful simplifications:
- false $\wedge \phi \leftrightarrow$ false
- true $\vee \phi \leftrightarrow$ true
- if $d \notin \mathrm{FV}(\phi)$, then $(\exists d: D . \phi) \leftrightarrow(\forall d: D . \phi) \leftrightarrow \phi$
- One-point rule: $(\exists d: D . d=e \wedge \phi(d)) \leftrightarrow \phi(e)$
- One-point rule: $(\forall d: D . d=e \Rightarrow \phi(d)) \leftrightarrow \phi(e)$
- Apply logical simplifications before applying PBES manipulations/solving techniques.


## Solving PBESs

## Gauß elimination on PBESs + Symbolic Approximation:

$$
e \stackrel{?}{\in} X_{i} \text { in } \mathcal{E}:=\left(\sigma_{1} X_{1}\left(d_{1}: D_{1}\right)=\phi_{1}\right) \cdots\left(\sigma_{n} X_{n}\left(d_{n}: D_{n}\right)=\phi_{n}\right)
$$

- Local solution: eliminate $X$ in its defining equation:

$$
\mathcal{E}_{0}(\sigma X(d: D)=\phi) \mathcal{E}_{1} \text { becomes } \mathcal{E}_{0}\left(\sigma X(d: D)=X^{\omega}\right) \mathcal{E}_{1}
$$

- $X^{\omega}$ can be found by symbolic approximation:
- $X^{0}=$ false if $\sigma=\mu$, else $X^{0}=$ true
- $X^{n+1}=\phi\left[X:=X^{n}\right]$
- $X^{\omega}$ may require transfinite approximation; else $X^{\omega}=X^{n}$ for $X^{n} \leftrightarrow X^{n+1}$
- Substitute definition backwards:

$$
\begin{array}{ll} 
& \mathcal{E}_{0}\left(\sigma_{1} X_{1}\left(d_{1}: D_{1}\right)=\phi_{1}\right) \mathcal{E}_{1}\left(\sigma_{2} X_{2}\left(d_{2}: D_{2}\right)=\phi_{2}\right) \mathcal{E}_{2} \\
\text { becomes: } & \mathcal{E}_{0}\left(\sigma_{1} X_{1}\left(d_{1}: D_{1}\right)=\phi_{1}\left[X_{2}:=\phi_{2}\right]\right) \mathcal{E}_{1}\left(\sigma_{2} X_{2}\left(d_{2}: D_{2}\right)=\phi_{2}\right) \mathcal{E}_{2}
\end{array}
$$

- Substitute solved equations (i.e. not containing predicate variables) forward:

$$
\begin{array}{ll} 
& \mathcal{E}_{0}\left(\sigma_{1} X_{1}\left(d_{1}: D_{1}\right)=\phi_{1}\right) \mathcal{E}_{1}\left(\sigma_{2} X_{2}\left(d_{2}: D_{2}\right)=\phi_{2}\right) \mathcal{E}_{2} \\
\text { becomes: } & \mathcal{E}_{0}\left(\sigma_{1} X_{1}\left(d_{1}: D_{1}\right)=\phi_{1}\right) \mathcal{E}_{1}\left(\sigma_{2} X_{2}\left(d_{2}: D_{2}\right)=\phi_{2}\left[X_{1}:=\phi_{1}\right]\right) \mathcal{E}_{2}
\end{array}
$$

## Example

PBES: $(\nu X(n: N a t)=n \leq 2 \wedge Y(n))(\mu Y(n: N a t)=\operatorname{odd}(n) \vee X(n+1))$

1. Eliminate $Y$ from $(\mu Y(n: N a t)=\operatorname{odd}(n) \vee X(n+1)) \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
2. Substitute definition of $Y$ backwards:

$$
\begin{array}{ll} 
& (\nu X(n: N a t)=n \leq 2 \wedge Y(n)) \\
\text { becomes } \quad(\nu X(n: N a t)=n \leq 2 \wedge(\operatorname{odd}(n) \vee X(n+1)))
\end{array}
$$

3. Eliminate $X$ from $(\nu X(n: N a t)=n \leq 2 \wedge(\operatorname{odd}(n) \vee X(n+1)))$ :

$$
\begin{aligned}
& X^{0} \equiv \text { true } \\
& X^{1} \equiv n \leq 2 \wedge(\operatorname{odd}(n) \vee \text { true }) \leftrightarrow n \leq 2 \\
& X^{2} \equiv n \leq 2 \wedge(\operatorname{odd}(n) \vee n+1 \leq 2) \leftrightarrow n \leq 2 \wedge(\operatorname{odd}(n) \vee n \leq 1) \leftrightarrow n \leq 1 \\
& X^{3} \equiv n \leq 2 \wedge(\operatorname{odd}(n) \vee n+1 \leq 1) \leftrightarrow n \leq 2 \wedge(\operatorname{odd}(n) \vee n=0) \leftrightarrow n \leq 1
\end{aligned}
$$

So, solution to $X$ is $n \leq 1$ (i.e., $X$ semantically consists of the set $\{0,1\}$ )

Gauß Elimination terminates; symbolic approximation may not terminate

- Due to infinite data types, a transfinite approximation may be needed
- Evaluating predicates may be impossible: $\exists k, I, m: N a t \cdot x^{k}+y^{\prime}=z^{m}$
- Theorem proving technology may be added in symbolic approximation

Consider the lossy channel system described by the following LPE:

$$
\begin{aligned}
C(b: \text { Bool }, m: M) & =\sum_{k: M} b \longrightarrow r(k) \cdot C(\text { false }, k) \\
& +\neg b \longrightarrow s(m) \cdot C(\text { true }, m) \\
& +\neg b \longrightarrow I \cdot C(\text { true }, m)
\end{aligned}
$$

Action $r$ stands for reading, $s$ stands for sending and $/$ stands for losing a message.

1. $\nu X$. $([$ true $] X \wedge(\mu Y .[/] Y \wedge \forall m: M .[r(m)] Y \wedge\langle$ true $\rangle$ true $))$
2. $\nu X . \mu Y . \nu Z .(\forall m: M \cdot[s(m)] X) \wedge((\forall m: M .[s(m)] f a l s e) \vee([/] Y \wedge \forall m: M \cdot[r(m)] Y)) \wedge$ $[/] Z \wedge \forall m: M \cdot[r(m)] Z$

## Questions:

- Explain the first formula in natural language
- Translate both formulae to PBESs given process $C$
- Use Gauß Elimination to solve the PBES
- For which initial states of $C$ do the properties hold?

