Algorithms for Model Checking (2IMF35)

Lecture 12 Retrospect + Outlook

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

Retrospect

Part I: basics

- Lecture 1: Syntax + Semantics of CTL*
$\rightarrow P V R$
- Lecture 2: Symbolic algorithm for CTL and fair CTL
- Lecture 3: Counterexamples and witnesses for fragments of CTL
- Lecture 4: Emerson-Lei algorithm improving over the naive algorithm $\rightarrow \mathrm{AR}$

part II: complexity

- Lecture 5: Boolean equation systems
- Lecture 6: Parity Games
- Lecture 7: Recursive algorithm
- Lecture 8: Small Progress Measures

part III: data

- Lecture 9-11: Parameterised Boolean equation systems........................ \rightarrow SV
- Symbolic encoding the model checking problem as a PBES
- Redundant parameter detection and elimination
- Instantiating to a BES and solving the BES
- Symbolic approximation + Gauß Elimination

Outlook: Selection of Research and Open Ends

Model Checking:

- Problem is in NPคco-NP; what is its true complexity?
- Bigstep algorithm (=Recursive+SPM) for Parity Games had best worst-case performance when $d \ll n$, viz. roughly $\mathcal{O}\left(n^{d / 3}\right)$
Breakthrough in 2016: quasipolynomial
Parity Games and generalisations:
- Investigate runtime complexity of special games;
- Lower bounds for algorithms from literature?
- Solve Mean and Total Payoff games via Integer Equation Systems;
- Probabilistic and quantitative verification using Rational Equation Systems

PBES technology:

- Symmetry and confluence detection and reduction for reducing the complexity
- Abstract Interpretation and predicate abstraction

Control software for the Large Hadron Collider

- Hierarchical system of >25000 communicating FSMs
- Nearly fully semi-formally described
- BDD-based analysis of a subtree consisting of:
- 7 FSMs: 510^{6} states, 2410^{6} transitions; $+/-1$ minute
- 9 FSMs: 80010^{6} states; $+/-10$ minutes
- 11 FSMs: 12010^{9} states; $+/$ - half a day
- Dedicated verification: SAT solving techniques
- Results:
- Approx. 5% of all FSMs suffer from livelocks (20% of the FSMs that can be affected)
- Approx. 4% of all FSMs suffer from reachability issues

Outlook: Applications

Verification for Dezyne

- Dezyne: DSL and toolsuite for modelling and generating software
- Verification of Dezyne models using FDR and, more recently, mCRL2
- Dezyne used at:
- ASML
- Fei
- NSpyre
- ...

The DIRAC grid solution used at the Large Hadron Collider beauty experiment

- cooperating distributed services
- light-weight agents delivering the workload to the Grid resources
- agents run concurrently
- State spaces of 16010^{6} states are no exception
- Results:
- Livelocks
- Race conditions
- Dead jobs reviving (zombies)
- ...

Internship/final projects (possibly at CERN?)/research for fun? Contact me!

