Algorithms for Model Checking (2IMF35)

Lecture 3
Symbolic Model Checking: Fairness and Counterexamples
Chapter 6.3, 6.4.

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
MF 6.073

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

In summary, symbolic model checking:
» Recursively processes subformulae
» Represent the set of states satisfying a subformula by OBDDs

> Treats temporal operators by fixed point computations

v

Relies on efficient implementation of equivalence test, and A, V, = and 3 connectives
on OBDDs.

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

Fix a Kripke Structure M = (S, R, L).

The temporal operators of CTL are characterised by fixed points:
»EFg=pnZgvEXZ
»EGf=vZfANEXZ

E[ffUgl=pnZgV(fANEX 2Z)

v

v

Least Fixed Points: start iteration at false ()

v

Greatest Fixed Points: start iteration at true (S)

Intuition:
> Eventually ... least fixed points
> Globally ... greatest fixed points

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Symbolic Model Checking

CTL model checking with Fixed Points

Function check(f) takes a formula f and returns the set of states where f holds:
{s | s E f} (given a fixed Kripke Structure M = (S, R, L)).

check(true)
check(p)
check(—f)
check(f V g)
check(E X f)
check(E [f U g])
check(E G f)

S

{sl1peL(s)}

S\ check(f)

check(f)U check(g)

Prer(check(f))

Ifp(Z — check(g) U (check(f) N Prer(Z))))
gfp(Z — check(f) N Prer(Z))

Recall: Prer(Z) ={se€ S |3te Zs Rt}

Department of Mathematics and Computer Science

TU/

5/26

Technische Univ

Eindh
Univel

Example: demanding children

» Atomic Propositions: EP, EQ, EA, LP, LQ, LA

> Intended meaning: Linus or Emma is either
Playing, posing Questions, getting Answers

Requirement: Whenever Linus asks a question, he eventually gets an answer
Formula: A G (LQ — A F LA)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

» Atomic Propositions: EP, EQ, EA, LP, LQ, LA

> Intended meaning: Linus or Emma is either
Playing, posing Questions, getting Answers

» Step 1: express using basic operators

AG (LQ = AF LA)

—-E [true U —\(—\LQ vV-EG —\LA)]

—E [true U (LQ AE G —LA)]

1Y ((LQAE G ~LAYUE X Y)

Department of Mathematics and Computer Science

Technische Universiteit
e Eindhoven
University of Technology

Example: demanding children

» Step 2: compute check(E G —LA), i.e., compute vZ.(-LANE X Z).

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

» Step 2: compute check(E G —LA), i.e., compute vZ.(-LANE X Z).

e Greatest fixpoint, so start with approximating from true (i.e. all states)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

» Step 2: compute check(E G —LA), i.e., compute vZ.(-LANE X Z).

e Greatest fixpoint, so start with approximating from true (i.e. all states)
e Stable at {soo, 510, 520, So1, 511, 521 }

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

» Step 3: compute LQ NE G =LA

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}

» Step 4: compute pY .((LQANE G -LA)UE X Y)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}

» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ AE G =LA

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ A E G =LA and states that go there...

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ A E G —LA and states that go there...and again...

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Example: demanding children

9/26

> Step 3: compute LQ NE G —LA
e LQANE G —LA holds in {So]_, 511,521}

» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ A E G —LA and states that go there...and again...

> Step 5: compute negation of uY .((LQ AE G =LA)UE X Y)
e pnY.((LQANE G =LA)UE X Y) holds everywhere

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ A E G —LA and states that go there...and again...

> Step 5: compute negation of uY .((LQ AE G =LA)UE X Y)

e uY. ((LQAE G -LA)UE X Y) holds everywhere
e uY.((LQAE G =LA)UE X Y) holds nowhere

Department of Mathematics and Computer Science

Technische Universiteit
e Eindhoven
University of Technology

Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ A E G —LA and states that go there...and again...

> Step 5: compute negation of uY .((LQ AE G =LA)UE X Y)

e uY. ((LQAE G -LA)UE X Y) holds everywhere
e uY.(LQAE G -LA)UE X Y) holds nowhere <~ ANSWER

Department of Mathematics and Computer Science

Technische Universiteit
e Eindhoven
University of Technology

Example: demanding children

Conclusion:

> So, A G (LQ — A F LA) holds in no state
» The requirement does not hold for the full Kripke Structure

» Why? Because in this case, there is a path in which only Linus is stuck because
Emma claims all attention.

> Next, we look at the Kripke Structure with Fairness Constraints

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fairness for CTL

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Temporal Logics: Fairness

Sometimes properties are violated by “unrealistic” paths only, for instance due to a
scheduler. In this case, one may wish to restrict to fair paths.

A Kripke Structure over AP with fairness constraints is a structure M = (S, R, L, F),
where:

» (5,R, L) is an “ordinary” Kripke Structure as before

» F C 2° is a set of fairness constraints

A path is fair if it "hits” each fairness constraint infinitely often:

fair(w) iff VC € F. {i | w(i) € C} is an infinite set

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Temporal Logics: Fairness

In CTL* with fairness semantics (|=¢), only fair paths will be considered.

Given a fixed Kripke Structure with fairness constraints M = (S, R, L, F), s =f f means:
formula f holds in state s in the fair CTL"* semantics.

The definition of |=F coincides with |= except for the following four clauses:

s =F true iff
sErFp iff
sEFAf iff

there is some fair path starting in s

p € L(s) and there is some fair path starting in s
for all fair paths 7 starting in s, we have 7 |=¢ f
for some fair path 7 starting in s, we have 7w |=¢ f

Write f if we mean f/wish to compute f under fairness constraints

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Temporal Logics: Fairness

> To exclude runs in which one child gets all attention, we want that both —EQ as well
as —LQ hold infinitely often

> fairness constraints ensuring this: F = {{so0, So1, So2, S20. 521 }, { S00. 510, S20. S02, S12} }
> Check whether A G (LQ — A F LA) holds fairly!

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fair Symbolic Model Checking

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fair Symbolic Model Checking

Fix a fair Kripke Structure M = (S, R, L, {F1, ..., Fn})

Recall that a fair path infinitely often hits some state from each fairness constraint F;

> First, note that in fair CTL (with =F),

EGF=FfA/\EXE[fU(FAEG ()] (prove C and D)
k=1

> Next, if
Z="F /\ XE[fU (FcAZ)
Then Z C E G f (construct a path cycling through Fq, ..., F,)
» Hence, we found:

EGFf=vZFfA\EXE[FU (FAZ)

k=1

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Fair Symbolic Model Checking

The equivalence
EGFf=vZFfA\EXE[FU (FA2Z)
k=1

leads to the following algorithm:

checkr(E G f) gfp(Z > check(F N A E X (E [f U (Fe A 2)])))
k=1

So, in the greatest fixed point computation for E G , we perform nested least fixed point
computations to compute E [U].

Next, we can compute fair := gfp(Z — check(A E X (E [true U (Fx A Z)]))).
k=1

The remaining temporal operators can then be encoded as follows:

checkg(p) check(p) N fair
checkr(E X f) check(E X (f A fair))
checke(E [f U g]) check(E [f U (g A fair)])

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Fair Symbolic Model Checking

» To check: E [p U q]

> Fairness constraint: {-r}

Compute fair (= S)

Compute: nZ.(g A fair) V (p A E X Z) (with Ifp)

v

v

p

Jo]

()~
N

Zo =false=10

=qV(pPNEX Z) = {ss}

Z> :q\/(p/\Ele):{Ss,Ss}

Z3 :qV(p/\EXZz)Z{Ss,Sﬁ,S7}

Zs :q\/(p/\EXZ3):{52,55,55,57}

Zs =qV (pANEX Z) ={s1,52, 53,55 5,57}
Zs =qV(pANEX Zs) = {s1,5, 53,55, 5,57}

N

P P

p

&y

©
q

Zs = Zs, so this is the least fixed point.

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Counterexamples and Witnesses

Technische Universiteit
Eindhoven
University of Technology

Department of Mathematics and Computer Science

Counterexamples and Witnesses

Motivation:

e In practice, a model checker is often used as an extended debugger
* If a bug is found, the model checker should provide a particular trace, which shows it

» A formula with a universal path quantifier has a counterexample consisting of one
trace

> A formula with an existential path quantifier has a witness consisting of one trace
> Due to the dualities in CTL, we only have to consider:

* a finite trace witnessing E [f U g]
* an infinite trace witnessing E G f; for finite systems, the latter is a so-called lasso,
consisting of a prefix and a loop

» For fair counter examples we require that the loop contains a state from each fairness
constraint

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Counterexamples and Witnesses — Witnesses for E [U |

v

E[fUg|l=upZ gV (FAEXZ)

> Unfolding the recursion, we get:

Zo = false

Z1 = g

Z, = gV(fFAEXg)

Z3 = gV(FAEX(gV(fAEXg)))

» So, the fixed point computation corresponds to a backward reachability analysis

» Z; contains those states that can reach g in at most i — 1 steps (and f holds in
between).

> Assume sp = E [f U g]. To find a minimal witness from state s, we start in the
smallest N such that sp € Zy.

» Foriel,..,N—1, we define s; to be a state in Zy_; satisfying si—1 R s;.

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Counterexamples and Witnesses — Witnesses for fair E G

> We want an initial path to a cycle on which each fairness constraint {Fy, ..., Fo}
occurs (i.e. the cycle must contain at least one state from all F;).

»EGFf=vZfAANEX E[fU (FcA2Z)]
k=1
» Unfolding the recursion, we get:

Zo = true

Z

FANEX E[fU(FeAZiq)]
k=1

> Let Z:= 2, = Zi_1 = E G f be the fixed point

» To compute Z, we compute for each k (1 < k < n), E [f U (Fx A Z)] using backward
reachability. So, we have for each k the approximations: Q§ C Qf C Q¥ C ... C Ji

» From the E [U] case, recall that Q¥ contains those states that can reach Fx A Z in
at most / steps

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Counterexamples and Witnesses — Witnesses for fair E G

Assume sp € E G f, hence, sp € Z
» We will now inductively construct a path so —* s1 =" ... =" s, such that:

e f holds fairly along the whole path
e sk EZNFi (for1 < k<n)

» Observe: by induction sx_1 = Z, so, by definition of Z: sx,_1 € EX E [f U (Z A Fi)]
» For 1 < k < ndo:

1. Determine the minimal M such that s,_; has a successor té € Q;{,,.
2. Construct (as the witness for E [U]):

sk,1—>t§—>--~—>t,‘\‘,,eZ/\Fk
3. Define s, := tk,,.

» heuristic improvement: Visit the Fi in a different order: continue with the closest Fy
that has not yet been visited.

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

Counterexamples and Witnesses — Witnesses for fair E G

> Finally, we must close the loop, but this is not always possible: Check if
sn EEX E[f U {s1}].

> If so: the E [U]-witness closes the loop

> If not: the cycle cannot be closed. Hence:

* The sequence so far sp — - -+ — s is in the prefix of the lasso, not yet on the loop.
* Restart the whole procedure of the previous slide, now starting in s, € Z.

> Eventually, this process must terminate:

* We only restart if s, cannot reach s
* so we moved to the next Strongly Connected Component
¢ The SCC graph cannot contain cycles

> Optimisation: By precomputing E [f U {s1}], one can detect earlier that closing the
cycle will not be possible.

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology

Exercise

Technische Universiteit
Eindhoven
Department of Mathematics and Computer Science University of Technology

Example

> Check that s1 =F E G (pV q)
» Fairness constraint: —r and g

» Construct a witness for s; =r E G (pV q)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science

	Symbolic Model Checking
	Fairness for CTL
	Fair Symbolic Model Checking
	Counterexamples and Witnesses
	Witnesses for E [U]
	Witnesses for fair E G

	Exercise

