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Symbolic Model Checking

In summary, symbolic model checking:
» Recursively processes subformulae
» Represent the set of states satisfying a subformula by OBDDs

> Treats temporal operators by fixed point computations

v

Relies on efficient implementation of equivalence test, and A, V, = and 3 connectives
on OBDDs.
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Symbolic Model Checking

Fix a Kripke Structure M = (S, R, L).

The temporal operators of CTL are characterised by fixed points:
»EFg=pnZgvEXZ
»EGf=vZfANEXZ

E[ffUgl=pnZgV(fANEX 2Z)

v

v

Least Fixed Points: start iteration at false ()

v

Greatest Fixed Points: start iteration at true (S)

Intuition:
> Eventually ... least fixed points
> Globally ... greatest fixed points
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Symbolic Model Checking

CTL model checking with Fixed Points

Function check(f) takes a formula f and returns the set of states where f holds:
{s | s E f} (given a fixed Kripke Structure M = (S, R, L)).

check(true)
check(p)
check(—f)
check(f V g)
check(E X f)
check(E [f U g])
check(E G f)

S

{sl1peL(s)}

S\ check(f)

check(f)U check(g)

Prer(check(f))

Ifp(Z — check(g) U (check(f) N Prer(Z))))
gfp(Z — check(f) N Prer(Z))

Recall: Prer(Z) ={se€ S |3te Zs Rt}

Department of Mathematics and Computer Science

TU/

5/26

Technische Univ

Eindh
Univel




Example: demanding children

» Atomic Propositions: EP, EQ, EA, LP, LQ, LA

> Intended meaning: Linus or Emma is either
Playing, posing Questions, getting Answers

Requirement: Whenever Linus asks a question, he eventually gets an answer
Formula: A G (LQ — A F LA)
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Example: demanding children

» Atomic Propositions: EP, EQ, EA, LP, LQ, LA

> Intended meaning: Linus or Emma is either
Playing, posing Questions, getting Answers

» Step 1: express using basic operators

AG (LQ = AF LA)

—-E [true U —\(—\LQ vV-EG —\LA)]

—E [true U (LQ AE G —LA)]

1Y ((LQAE G ~LAYUE X Y)
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Example: demanding children

» Step 2: compute check(E G —LA), i.e., compute vZ.(-LANE X Z).
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Example: demanding children

» Step 2: compute check(E G —LA), i.e., compute vZ.(-LANE X Z).

e Greatest fixpoint, so start with approximating from true (i.e. all states)
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Example: demanding children

» Step 2: compute check(E G —LA), i.e., compute vZ.(-LANE X Z).

e Greatest fixpoint, so start with approximating from true (i.e. all states)
e Stable at {soo, 510, 520, So1, 511, 521 }
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Example: demanding children

» Step 3: compute LQ NE G =LA
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Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
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Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}

» Step 4: compute pY .((LQANE G -LA)UE X Y)
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Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}

» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
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Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ AE G =LA
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Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ A E G =LA and states that go there...
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Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ A E G —LA and states that go there...and again...
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Example: demanding children

9/26

> Step 3: compute LQ NE G —LA
e LQANE G —LA holds in {So]_, 511,521}

» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ A E G —LA and states that go there...and again...

> Step 5: compute negation of uY .((LQ AE G =LA)UE X Y)
e pnY.((LQANE G =LA)UE X Y) holds everywhere
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Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ A E G —LA and states that go there...and again...

> Step 5: compute negation of uY .((LQ AE G =LA)UE X Y)

e uY. ((LQAE G -LA)UE X Y) holds everywhere
e uY.((LQAE G =LA)UE X Y) holds nowhere
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Example: demanding children

» Step 3: compute LQ NE G =LA
* LQANE G =LA holds in {501, S11, 521}
» Step 4: compute pY .((LQANE G -LA)UE X Y)

 Least fixpoint, so start with approximating from false (i.e. no states)
* Add states that satisfy LQ A E G —LA and states that go there...and again...

> Step 5: compute negation of uY .((LQ AE G =LA)UE X Y)

e uY. ((LQAE G -LA)UE X Y) holds everywhere
e uY.(LQAE G -LA)UE X Y) holds nowhere <~ ANSWER
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Example: demanding children

Conclusion:

> So, A G (LQ — A F LA) holds in no state
» The requirement does not hold for the full Kripke Structure

» Why? Because in this case, there is a path in which only Linus is stuck because
Emma claims all attention.

> Next, we look at the Kripke Structure with Fairness Constraints
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Fairness for CTL
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Temporal Logics: Fairness

Sometimes properties are violated by “unrealistic” paths only, for instance due to a
scheduler. In this case, one may wish to restrict to fair paths.

A Kripke Structure over AP with fairness constraints is a structure M = (S, R, L, F),
where:

» (5,R, L) is an “ordinary” Kripke Structure as before

» F C 2° is a set of fairness constraints

A path is fair if it "hits” each fairness constraint infinitely often:

fair(w) iff VC € F. {i | w(i) € C} is an infinite set
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Temporal Logics: Fairness

In CTL* with fairness semantics (|=¢), only fair paths will be considered.

Given a fixed Kripke Structure with fairness constraints M = (S, R, L, F), s =f f means:
formula f holds in state s in the fair CTL"* semantics.

The definition of |=F coincides with |= except for the following four clauses:

s =F true  iff
sErFp iff
sEFAf iff

there is some fair path starting in s

p € L(s) and there is some fair path starting in s
for all fair paths 7 starting in s, we have 7 |=¢ f
for some fair path 7 starting in s, we have 7w |=¢ f

Write f if we mean f/wish to compute f under fairness constraints
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Temporal Logics: Fairness

> To exclude runs in which one child gets all attention, we want that both —EQ as well
as —LQ hold infinitely often

> fairness constraints ensuring this: F = {{so0, So1, So2, S20. 521 }, { S00. 510, S20. S02, S12} }
> Check whether A G (LQ — A F LA) holds fairly!
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Fair Symbolic Model Checking
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Fair Symbolic Model Checking

Fix a fair Kripke Structure M = (S, R, L, {F1, ..., Fn})

Recall that a fair path infinitely often hits some state from each fairness constraint F;

> First, note that in fair CTL (with =F),

EGF=FfA/\EXE[fU(FAEG ()] (prove C and D)
k=1

> Next, if
Z="F /\ XE[fU (FcAZ)
Then Z C E G f (construct a path cycling through Fq, ..., F,)
» Hence, we found:

EGFf=vZFfA\EXE[FU (FAZ)

k=1
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Fair Symbolic Model Checking

The equivalence
EGFf=vZFfA\EXE[FU (FA2Z)
k=1

leads to the following algorithm:

checkr(E G f)  gfp(Z > check(F N A E X (E [f U (Fe A 2)])))
k=1

So, in the greatest fixed point computation for E G , we perform nested least fixed point
computations to compute E [ U ].

Next, we can compute fair := gfp(Z — check( A E X (E [true U (Fx A Z)]))).
k=1

The remaining temporal operators can then be encoded as follows:

checkg(p) check(p) N fair
checkr(E X f) check(E X (f A fair))
checke(E [f U g])  check(E [f U (g A fair)])

Technische Universiteit
e Eindhoven
Department of Mathematics and Computer Science University of Technology



Fair Symbolic Model Checking

» To check: E [p U q]

> Fairness constraint: {-r}

Compute fair (= S)

Compute: nZ.(g A fair) V (p A E X Z) (with Ifp)

v

v

p

Jo]

()~
N

Zo =false=10

=qV(pPNEX Z) = {ss}

Z> :q\/(p/\Ele):{Ss,Ss}

Z3 :qV(p/\EXZz)Z{Ss,Sﬁ,S7}

Zs :q\/(p/\EXZ3):{52,55,55,57}

Zs =qV (pANEX Z) ={s1,52, 53,55 5,57}
Zs =qV(pANEX Zs) = {s1,5, 53,55, 5,57}

N

P P

p

&y

©
q

Zs = Zs, so this is the least fixed point.
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Counterexamples and Witnesses
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Counterexamples and Witnesses

Motivation:

e In practice, a model checker is often used as an extended debugger
* If a bug is found, the model checker should provide a particular trace, which shows it

» A formula with a universal path quantifier has a counterexample consisting of one
trace

> A formula with an existential path quantifier has a witness consisting of one trace
> Due to the dualities in CTL, we only have to consider:

* a finite trace witnessing E [f U g]
* an infinite trace witnessing E G f; for finite systems, the latter is a so-called lasso,
consisting of a prefix and a loop

» For fair counter examples we require that the loop contains a state from each fairness
constraint
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Counterexamples and Witnesses — Witnesses for E [ U |

v

E[fUg|l=upZ gV (FAEXZ)

> Unfolding the recursion, we get:

Zo = false

Z1 = g

Z, = gV(fFAEXg)

Z3 = gV(FAEX(gV(fAEXg)))

» So, the fixed point computation corresponds to a backward reachability analysis

» Z; contains those states that can reach g in at most i — 1 steps (and f holds in
between).

> Assume sp = E [f U g]. To find a minimal witness from state s, we start in the
smallest N such that sp € Zy.

» Foriel,..,N—1, we define s; to be a state in Zy_; satisfying si—1 R s;.
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Counterexamples and Witnesses — Witnesses for fair E G

> We want an initial path to a cycle on which each fairness constraint {Fy, ..., Fo}
occurs (i.e. the cycle must contain at least one state from all F;).

»EGFf=vZfAANEX E[fU (FcA2Z)]
k=1
» Unfolding the recursion, we get:

Zo = true

Z

FANEX E[fU(FeAZiq)]
k=1

> Let Z:= 2, = Zi_1 = E G f be the fixed point

» To compute Z, we compute for each k (1 < k < n), E [f U (Fx A Z)] using backward
reachability. So, we have for each k the approximations: Q§ C Qf C Q¥ C ... C Ji

» From the E [ U ] case, recall that Q¥ contains those states that can reach Fx A Z in
at most / steps
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Counterexamples and Witnesses — Witnesses for fair E G

Assume sp € E G f, hence, sp € Z
» We will now inductively construct a path so —* s1 =" ... =" s, such that:

e f holds fairly along the whole path
e sk EZNFi (for1 < k<n)

» Observe: by induction sx_1 = Z, so, by definition of Z: sx,_1 € EX E [f U (Z A Fi)]
» For 1 < k < ndo:

1. Determine the minimal M such that s,_; has a successor té € Q;{,,.
2. Construct (as the witness for E [ U ]):

sk,1—>t§—>--~—>t,‘\‘,,eZ/\Fk
3. Define s, := tk,,.

» heuristic improvement: Visit the Fi in a different order: continue with the closest Fy
that has not yet been visited.
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Counterexamples and Witnesses — Witnesses for fair E G

> Finally, we must close the loop, but this is not always possible: Check if
sn EEX E[f U {s1}].

> If so: the E [ U ]-witness closes the loop

> If not: the cycle cannot be closed. Hence:

* The sequence so far sp — - -+ — s is in the prefix of the lasso, not yet on the loop.
* Restart the whole procedure of the previous slide, now starting in s, € Z.

> Eventually, this process must terminate:

* We only restart if s, cannot reach s
* so we moved to the next Strongly Connected Component
¢ The SCC graph cannot contain cycles

> Optimisation: By precomputing E [f U {s1}], one can detect earlier that closing the
cycle will not be possible.
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Exercise
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Example

> Check that s1 =F E G (pV q)
» Fairness constraint: —r and g

» Construct a witness for s; =r E G (pV q)

Technische Universiteit
e Eindhoven
University of Technology

Department of Mathematics and Computer Science




	Symbolic Model Checking
	Fairness for CTL
	Fair Symbolic Model Checking
	Counterexamples and Witnesses
	Witnesses for E [ U]
	Witnesses for fair E G

	Exercise

