Algorithms for Model Checking (2IMF35)

Lecture 7: Recursively Solving Parity Games Background material:

O. Friedmann, Recursive Solving of Parity Games Requires Exponential Time

M. Gazda and T.A.C. Willemse, *Zielonka's Recursive Algorithm:* dull, weak and solitaire games and tighter bounds

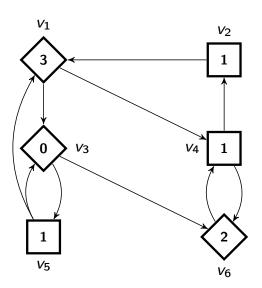
Tim Willemse

(timw@win.tue.nl) http://www.win.tue.nl/ \sim timw MF 6.073

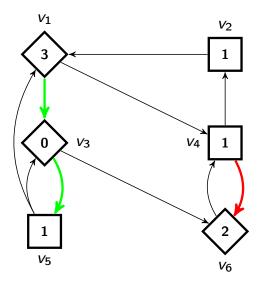
Department of Mathematics and Computer Science

Parity games—recap

2/22



- ▶ two players: \Diamond (Even) and \Box (Odd)
- lacktriangle every node has an owner $(V=V_\Diamond \cup V_\Box)$
- moving token indefinitely; node owner chooses the next vertex
- play = infinite path through the game
- vertices labelled with natural numbers (priorities)
- winner of a play: determined by the parity of the minimal priority occurring infinitely often (◊ wins even parity, □ wins odd parity)



- strategy
 - winning strategy
 - memoryless strategy
- winning partition

Department of Mathematics and Computer Science

Objective

4/22

Parity game $G = (V, E, p, (V_{\diamond}, V_{\square})).$

Determinacy implies there is a unique partition $(W_{\diamond}, W_{\square})$ of V such that:

- ightharpoonup \diamond has winning strategy $arrho_{\diamond}$ from W_{\diamond} , and
- ▶ \square has winning strategy ϱ_{\square} from W_{\square} .

Objective of parity game algorithms

Compute partition (W_{\Diamond}, W_{\Box}) with strategies ϱ_{\Diamond} and ϱ_{\Box} of V such that:

- ϱ_{\diamondsuit} is winning for player \diamondsuit from W_{\diamondsuit}
- ϱ_{\square} is winning for player \square from W_{\square} .

Deterministic algorithms for solving parity games

Recursive (this lecture)	McNaughton '93, Zielonka '98
▶ Local algorithm	Stevens & Stirling '98
► Small progress measures (next lecture)	Jurdziński, '00
► Strategy improvement	Vöge & Jurdziński '00
▶ (Deterministic) Subexponential	Jurdziński, Paterson & Zwick '06
▶ Bigstep	Schewe '07
Priority promotion algorithms	. Benerecetti, Dell'Erba & Mogavero '16
Quasi-polynomial algorithm Calu	de, Jain, Khoussainov, Li & Stephan '16

Department of Mathematics and Computer Science

Concepts

6/22

Parity game $G = (V, E, p, (V_{\diamond}, V_{\square})).$

Definition (Arena restriction)

The game $G \setminus U = (V', E', p', (V'_{\diamond}, V'_{\square}))$, for $U \subseteq V$, is the game confined to $V \setminus U$:

- $\blacktriangleright V' = V \setminus U \text{ and } E' = E \cap (V' \times V'),$
- $lacksymbol{arphi} V_{\Diamond}' = V_{\Diamond} \setminus \emph{U}$, and $V_{\square}' = V_{\square} \setminus \emph{U}$

Parity game $G = (V, E, p, (V_{\diamond}, V_{\square})).$

Definition (Closed strategies)

Strategy $\varrho_{\diamond}:V_{\diamond}\to V$ is closed on $W\subseteq V$ if for all $v\in W$, we have:

- $v \in V_{\Diamond}$ implies $\varrho_{\Diamond}(v) \in W$, and
- ▶ $v \in V_{\square}$ implies that $w \in W$ for all $(v, w) \in E$

For ϱ_{\diamond} closed on W, plays consistent with ϱ_{\diamond} and starting in W stay within W

Definition (Closed sets)

Set $W \subseteq V$ is \diamond -closed if \diamond has a strategy closed on W. Likewise for \square -closed.

Department of Mathematics and Computer Science

Concepts

8/2

Parity game $G = (V, E, p, (V_{\diamond}, V_{\square})).$

Definition (⋄-Dominion)

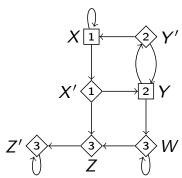
 $D\subseteq W_\diamondsuit$ is a dominion of \diamondsuit , if she has a memoryless strategy arrho that is:

- ▶ winning for \diamondsuit from all $v \in D$
- closed on D

Likewise for an □-dominion.

Example (Dominions)

Consider parity game G:



- ▶ $\{X\}$, $\{Z', Z, W\}$ are \square -dominions
- Note that {Z, W} and {Y, Y'} are no dominions (why?)

Department of Mathematics and Computer Science

Concepts

10/22

Parity game $G = (V, E, p, (V_{\Diamond}, V_{\Box})).$

Definition (⋄-Attractor sets)

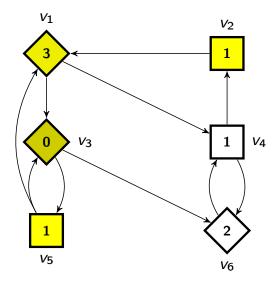
The \diamondsuit -attractor set to $U \subseteq V$ for \diamondsuit (denoted \diamondsuit -Attr(G, U)) is the least set of vertices:

- containing U
- ▶ such that \diamondsuit can force any play to reach U.

Inductively: \lozenge - $Attr(G, U) = \bigcup_{k \in \mathbb{N}} \lozenge$ - $Attr^k(G, U)$ where

Likewise for an \square -attractor.

Example (Attractor sets)



 \lozenge -Attr(G, U): vertices from which \diamondsuit can force the play to reach set U

Consider \diamondsuit -Attr $(G, \{v_3\})$

$$\diamondsuit-Attr^{0}(G, \{v_{3}\}) = \{v_{3}\}
\diamondsuit-Attr^{1}(G, \{v_{3}\}) = \{v_{1}, v_{3}\}
\diamondsuit-Attr^{2}(G, \{v_{3}\}) = \{v_{1}, v_{2}, v_{3}, v_{5}\}$$

Time to compute attractor: $\mathcal{O}(|V|+|E|)$; can be made to run in $\mathcal{O}(|E|)$

Department of Mathematics and Computer Science

Concepts

12/22

Parity game $G = (V, E, p, (V_{\diamond}, V_{\square})).$

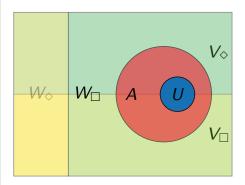
If U is an \diamondsuit -dominion (dually for \square -dominion) in G then (by definition)

- there is a strategy ϱ such that \diamondsuit wins U
- ightharpoonup \diamond can always choose to stay in U
- ightharpoonup cannot leave U (it is a trap)

...but also:

- ▶ $A = \diamondsuit$ -Attr(G, U) is an \diamondsuit -dominion;
- ightharpoonup \diamond cannot leave $V \setminus A$
- ▶ If $(W_{\diamondsuit}, W_{\square})$ is solution of $G \setminus A$, then $(W_{\diamondsuit} \cup A, W_{\square})$ is solution of G.

Visually:



- ► U is a <-dominion
 </p>
- $A = \diamondsuit Attr(G, U)$
- A is an ⋄-dominion
- ▶ (W_{\Diamond}, W_{\Box}) winning sets $G \setminus A$
- ▶ $(W_{\Diamond} \cup A, W_{\Box})$ winning sets $G \setminus A$
- ► □ cannot leave A
- ▶ ♦ can stay in *A*
- ightharpoonup \diamond cannot leave $V \setminus A$
- ightharpoonup can avoid A from $V \setminus A$

TU/e Technische Universiteit Eindhoven University of Technolog

Department of Mathematics and Computer Science

Recursively solving parity games

14/22

Divide and conquer

- Base: trivial games with at most one priority
- Step:
 - Compute dominion
 - Solve remaining subgame
 - Assemble winning sets/strategies from winning sets/strategies of subgames
 - Attractor strategy for one of players reaching set of nodes with minimal priority in the game


```
Parity game G = (V, E, p, (V_{\diamond}, V_{\square})).
```

Recursive(G): recursively solve parity game G

Return: partitioning $(W_{\diamond}, W_{\square})$ where \diamond wins from W_{\diamond} , and \square wins from W_{\square}

```
1: m \leftarrow \min\{p(v) \mid v \in V\}

2: h \leftarrow \max\{p(v) \mid v \in V\}

3: if h = m or V = \emptyset then

4: if m is even or V = \emptyset then

5: return (V, \emptyset)

6: else

7: return (\emptyset, V)

8: end if

9: end if
```

```
10: \bigcirc \leftarrow \diamondsuit if m is even and \square otherwise

11: U \leftarrow \{v \in V \mid p(v) = m\}

12: A \leftarrow \bigcirc -Attr(G, U)

13: (W'_{\diamondsuit}, W'_{\square}) \leftarrow Recursive(G \setminus A)

14: if W'_{\bigcirc} = \emptyset then

15: W_{\bigcirc} \leftarrow A \cup W'_{\bigcirc}

16: W_{\bigcirc} \leftarrow \emptyset

17: else

18: B \leftarrow \bigcirc -Attr(G, W'_{\bigcirc})

19: (W_{\diamondsuit}, W_{\square}) \leftarrow Recursive(G \setminus B)

20: W_{\bigcirc} \leftarrow W_{\bigcirc} \cup B

21: end if

22: return (W_{\diamondsuit}, W_{\square})
```

Department of Mathematics and Computer Science

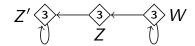
Observations

16/22

- Lines 1-9: base case, straightforward.
- Lines 10-13: try to establish a dominion. Two cases:
 - Lines 12-15: (\bigcirc wins all): \bigcirc wins in $G \setminus A$, then \bigcirc wins all of G, since if $\overline{\bigcirc}$ visits A, then \bigcirc plays towards U using attractor, visiting A infinitely often, hence m infinitely often. If A not visited, game stays in $G \setminus A$.
 - Lines 16-20: $(\overline{\bigcirc}$ -dominion found): $W'_{\overline{\bigcirc}}$ is a $\overline{\bigcirc}$ -dominion in $G \setminus A$. Since \bigcirc cannot leave $G \setminus A$ also $W'_{\overline{\bigcirc}}$ is $\overline{\bigcirc}$ -dominion in G. Then solve remaining game recursively and fix solution, compose strategies.

Apply the recursive algorithm to the following parity game G

```
 \begin{array}{l} m \leftarrow 3 \\ h \leftarrow 3 \\ \text{return} \ \left(\emptyset, \left\{W, Z, Z'\right\}\right) \end{array}
```



Department of Mathematics and Computer Science

Exercise

18/22

Apply the recursive algorithm to the following parity game G

$$Z' \stackrel{3}{\stackrel{3}{\stackrel{}{\longrightarrow}}} W$$

```
1: m \leftarrow 2
2: h \leftarrow 3
3: ...

10: \bigcirc \leftarrow \diamondsuit
11: U \leftarrow \{v \in V \mid p(v) = 2\} = \{Y, Y'\}
12: A \leftarrow -Attr^{\diamondsuit}(G, U) = \{Y, Y'\}
13: (W'_{\diamondsuit}, W'_{\square}) \leftarrow Recursive(G \setminus \{Y, Y'\}) = (\emptyset, \{Z, Z', W\})
14: if W'_{\square} = \emptyset then
15: ...
17: else
18: B \leftarrow -Attr^{\square}(G, W'_{\square}) = \{Y, Y', Z, Z', W\}
19: (W_{\diamondsuit}, W_{\square}) \leftarrow Recursive(G \setminus B) = (\emptyset, \emptyset)
20: W_{\square} \leftarrow W_{\square} \cup B = B = \{Y, Y', Z, Z', W\}
21: end if
22: return (W_{\diamondsuit}, W_{\square}) = (\emptyset, \{Y, Y', Z, Z', W\})
```


Consider parity game G:

```
X \stackrel{\bigcirc{1}}{\longrightarrow} 2 Y'
X' \stackrel{\bigcirc{1}}{\longrightarrow} 2 Y
Z' \stackrel{\bigcirc{3}}{\longrightarrow} 3 \stackrel{\bigcirc{3}}{\longrightarrow} W
```

```
1: m \leftarrow 1
2: h \leftarrow 3
3: ...

10: \bigcirc \leftarrow \Box
11: U \leftarrow \{v \in V \mid p(v) = 1\} = \{X, X'\}
12: A \leftarrow -Attr^{\Box}(G, U) = \{X, X'\}
13: (W'_{\Diamond}, W'_{\Box}) \leftarrow Recursive(G \setminus \{X, X'\}) = (\emptyset, \{Y, Y', Z, Z', W\})
14: if W'_{\Diamond} = \emptyset then
15: W_{\Box} \leftarrow A \cup W'_{\Box} = \{X, X', Y, Y', Z, Z', W\}
16: W_{\Diamond} \leftarrow \emptyset
17: else
18: ...
21: end if
22: return (W_{\Diamond}, W_{\Box}) = (\emptyset, \{X, X', Y, Y', Z, Z', W\})
```

So, player □ wins from all vertices!

Department of Mathematics and Computer Science

Complexity 20/22

Parity game $G = (V, E, p, (V_{\diamond}, V_{\square})).$

$$n = |V|, m = |E|, d = |\{p(v) \mid v \in V\}|.$$

- ▶ Worst-case running time complexity..... $\mathcal{O}(m \cdot n^d)$
- ▶ Lowerbound on worst-case (Gazda&Willemse '13) $\Omega(2^{n/3})$

Special cases (Gazda&Willemse '13):

- Basic algorithm:
 - weak games (Gazda&Willemse '13) $\mathcal{O}(d \cdot (n+m))$
 - (nested) solitaire games $\Omega(2^{n/3})$ • dull games $\Omega(2^{n/3})$
- Optimised with SCC decomposition

 - dull games $\mathcal{O}(n \cdot (n+m))$

TU/e Technische Universiteit Eindhoven University of Technology

- Recursive algorithm:
 - Divide and conquer
 - Dominions
 - Attractor sets
 - $\mathcal{O}(m \cdot n^d)$
 - Exponential examples available
- Other algorithms:
 - Iterative (e.g. small progress measures)
 - · Variations of recursive: start with other dominions

Department of Mathematics and Computer Science

Exercise

22/22

Consider the following parity game:

- ▶ Compute the winning sets W_{\Diamond} , W_{\Box} for players \Diamond and \Box in this parity game using the recursive algorithm.
- ▶ Translate this parity game to BES and solve the BES using Gauss elimination.