Algorithms for Model Checking (2IMF35)

Lecture 8: Small Progress Measures for Solving Parity Games Background material:

M. Jurdziński, Small Progress Measures for Solving Parity Games

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw MF 6.073

Department of Mathematics and Computer Science

Algorithms for Parity games

2/50

- McNaughton's/Zielonka's Recursive algorithm
- ► Today: Jurdziński's Small progress measures

Throughout this lecture: $G = (V, E, p, (V_{\Diamond}, V_{\Box}))$ is an arbitrary parity game

Let $\pi = v_0 v_1 v_2 \dots$ be a play.

Observe: dominating priority on π is even iff every 'odd-dominated stretch' is finite

Definition (Stretch and k-dominated stretch)

- ▶ A stretch of play π is a subsequence $v_i v_{i+1} \dots v_{i+\ell}$
- ▶ A stretch $v_i v_{i+1} \dots v_{i+\ell}$ is k-dominated iff $p(v_{i+j}) \ge k$ for $0 \le j \le \ell$

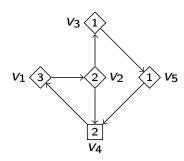
Degree of a k-dominated stretch: the number of vertices with priority k in that stretch

Department of Mathematics and Computer Science

Stretches and Degrees

5/50

Example



- $\pi = (v_2 \ v_4 \ v_1)^{\omega}$
 - 3-dominated stretch in π of degree 1: v_1
- $\pi = (v_2 \ v_3 \ v_5 \ v_4 \ v_1)^{\omega}$
 - 1-dominated stretch in π of degree 2: v_3 v_5 v_4 and v_3 v_5 and v_2 v_3 v_5
 - 1-dominated stretch in π of degree 1: v_2 v_3 and v_3
 - 3-dominated stretch in π of degree 1: v_1

- ▶ Let $d = 1 + \max\{p(v) \mid v \in V\}$
- ▶ $M \subseteq \mathbb{N}^d \cup \{\top\}$ is a set of measures with 0 on even positions (counting from 0)
- \triangleright \leq is lexicographic ordering on M with $m \leq \top$ for all m

Definition (Play values)

A play value is a function $\theta_{\diamond}: Plays \rightarrow M$ defined as:

$$\theta_{\diamondsuit}(\pi) = \begin{cases} (m_0, \dots, m_{d-1}) & \text{where, if } \pi \text{ is winning for } \diamondsuit, \text{ for all odd } i, \\ m_i \text{ is the degree of the maximal } i\text{-dominated prefix of } \pi \end{cases}$$

$$\top \qquad \text{if } \pi \text{ is won by } \square$$

Property

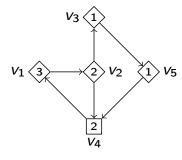
Player \square wins v iff for all $\sigma: V_{\Diamond} \to V$ there is some $\pi \in Play_{\sigma}(v)$, $\theta_{\Diamond}(\pi) = \top$

Department of Mathematics and Computer Science

Play values

7/50

Example



- $\theta_{\diamond}((v_2\ v_4\ v_1)^{\omega})=(0,0,0,0):$
 - degree of 1-dominated and 3-dominated prefixes: 0
- $\theta_{\diamond}((v_1 \ v_2 \ v_4)^{\omega}) = (0, 0, 0, 1)$:
 - degree of 1-dominated prefix: 0; degree of 3-dominated prefix: 1
- - play is 1-dominated (i.e. won by □)
- - prefix v_2 v_3 v_5 v_4 v_1 is 1-dominated of degree 2
 - no 3-dominated stretch starting in v₂

Key idea behind Small Progress Measures:

compute some $\rho: V \to M$ such that for all $v \in V$:

- ▶ there is some strategy σ for \diamondsuit such that for each $\pi \in Play_{\sigma}(v)$: $\theta \diamondsuit (\pi) \leq \varrho(v)$
- ▶ there is some strategy σ for \square such that for each $\pi \in Play_{\sigma}(v)$: $\theta_{\diamondsuit}(\pi) \geq \varrho(v)$

Observe:

- ▶ M is infinite we need to have upper bounds on $\varrho(v)$
- ▶ If the degree of a k-dominated stretch exceeds $|V_k|$ stretch revisits a vertex

TU/e Technische Universiteit Eindhoven University of Technolog

Department of Mathematics and Computer Science

Play values

9/50

Bird's-eye view of small progress measures

- Solitaire games and reachable cycles
 - Cycles can be used to decide the winner.
- Assign a certain measure to each vertex that approximates play values
 - solitaire games: parity progress measures
 - two-player games: game parity progress measures
- Efficiently compute measure
 - fixed point approximation

Definition (Solitaire game)

G is an \square -solitaire game if only \square makes (nontrivial) choices;

i.e. for all vertices $v \in V_{\Diamond}$ we have $|\{w \in V \mid (v, w) \in E\}| \leq 1$

Strategy σ for player \diamond in G induces an \square -solitaire game G_{σ} :

$$G_{\sigma} = (V, E_{\sigma}, p, (V_{\Diamond}, V_{\Box})), \text{ where }$$

$$E_{\sigma} = \{(v, w) \in E \mid v \in V_{\Diamond} \Rightarrow w = \sigma(v)\}\}$$

Property

If σ is closed on some $W \subseteq V$, then $G_{\sigma} \cap W$ is also an \square -solitaire game

Note: $G_{\sigma} \cap W := G_{\sigma} \setminus (V \setminus W)$

Department of Mathematics and Computer Science

Cycles and Solitaire Games

11/50

- ▶ An even cycle is a cycle in which the lowest priority is even
- ▶ Let σ be an \diamondsuit -strategy closed on W

Property

 σ is winning for player \diamondsuit from all $v \in W$ iff all cycles in $G_{\sigma} \cap W$ are even

We will annotate vertices with information ('measures') about plays such that:

- when, along a play we encounter priority i, we will ignore information about less significant priorities (i.e., > i)
- the information we record about priorities k outweighs information about $\ell > k$
 - vertex with 'bad' priority: measure of such vertex is larger than its neighbours
 - vertex with 'good' priority: measure of such vertex may be smaller than its neighbours

Represent information as follows:

- Tuples to record information about priorities
- Order tuples lexicographically (same as measures in play values)

Department of Mathematics and Computer Science

Parity progress measures and Solitaire games

14/50

Let $\alpha \in \mathbb{N}^d$ be a d-tuple of natural numbers

- We number its components from 0 to d-1, i.e. $\alpha=(\alpha_0,\alpha_1,\ldots,\alpha_{d-1})$
- $(n_0, n_1, ..., n_k) \equiv_i (m_0, m_1, ..., m_\ell) \text{ iff } (n_0, n_1, ..., n_i) \equiv (m_0, m_1, ..., m_i), \text{ for }$ $\equiv \in \{<, \leq, =, \neq, \geq, >\}$
- ▶ When i > k or $i > \ell$, the tuples will be suffixed with 0s

Example (*d*-tuples)

- $(0,1,0,1) = (0,2,0,1) \equiv (0) = (0) \equiv \text{true}$
- lacksquare $(0,1,0,1)<_1(0,2,0,1)\equiv (0,1)<(0,2)\equiv \mathsf{true}$
- $(0,1,0,1) \ge_3 (0,2,0,1) \equiv (0,1,0,1) \ge (0,2,0,1) \equiv false$

Department of Mathematics and Computer Science

Parity progress measures and Solitaire games

16/50

Let $d = 1 + \max\{p(v) \mid v \in V\}$.

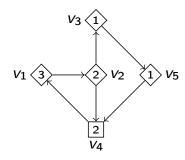
- ▶ Define $V_i = \{v \in V \mid p(v) = i\}$,
- ▶ Denote $n_i = |V_i|$, the number of vertices with priority i,

Define $\mathbb{M} \subseteq \mathbb{N}^d$ with:

- 0 on even positions
- Natural numbers $\leq n_i$ on odd positions i

Example

Determine maximum value of M for the following parity game:



- ► Maximum value of M is (0, 2, 0, 1)

Department of Mathematics and Computer Science

Parity progress measures and Solitaire games

18/50

Definition (Parity progress measure)

Let G be an \square -solitaire game. Mapping $\varrho:V\to\mathbb{M}$ is a parity progress measure for G if for all $(v,w)\in E$:

- $\varrho(v) \ge_{\rho(v)} \varrho(w)$ if $\rho(v)$ is even
- $\varrho(v) >_{p(v)} \varrho(w)$ if p(v) is odd

For all strategies σ for player \Diamond , closed on W:

- ▶ Recall: σ is winning for player \diamondsuit from W iff all cycles in $G_{\sigma} \cap W$ are even
- ▶ All cycles in $G_{\sigma} \cap W$ are even iff there exists a parity progress measure ϱ for $G_{\sigma} \cap W$

Problem: parity progress measures only exist for even-dominated cycles.

$$\begin{array}{c}
0 \\
U
\end{array}$$

Second clause requires $\varrho(v) >_1 \varrho(v)$

Department of Mathematics and Computer Science

Parity progress measures and Solitaire games

Solitaire games with odd-dominated cycles.

- ▶ Define $\mathbb{M}^{\top} = \mathbb{M} \cup \{\top\}$
- Extend ordering:
 - for all $m \in \mathbb{M}$, define $m < \top$, $m <_i \top$, $m \neq \top$ and $m \neq_i \top$
 - $\top \leq_i \top$ for all i
- The set of mappings ($[V \to \mathbb{M}^\top]$, \sqsubseteq) is a complete lattice
 - φ , $\varrho:V\to \mathbb{M}^\top$.
 - Define $\varphi \sqsubseteq \varrho$ if $\varphi(v) \leq \varrho(v)$ for all $v \in V$ write $\varphi \sqsubseteq \varrho$ if $\varphi \sqsubseteq \varrho$ and $\varphi \neq \varrho$.
- ▶ Replace co-domain of parity progress measures with \mathbb{M}^{\top} .

Example

$$0 \longrightarrow 1 \\ U \qquad V$$

- Observe: $\varrho(u) = \varrho(v) = \top$
- ▶ Measure can identify both even and odd reachable cycles in a solitaire game.

Department of Mathematics and Computer Science

Game Parity Progress Measures and Solitaire games

22/50

Definition (Prog)

If $\varrho: V \to \mathbb{M}^{\top}$ and $(v, w) \in E$, then $Prog(\varrho, v, w)$ is the least $m \in \mathbb{M}^{\top}$, such that

- if p(v) is even, then $m \ge_{p(v)} \varrho(w)$
- if p(v) is odd, then either $m>_{p(v)}\varrho(w)$, or both $m=\varrho(w)=\top$

Define $Inc_v(\varrho)$ for $v \in V$ as $\varrho[v := \varrho(v) \max \max\{Prog(\varrho, v, w) \mid (v, w) \in E\}]$

- ▶ For every $v \in V$, Inc_v is \sqsubseteq -monotone
- ▶ The least ϱ satisfying $Inc_v(\varrho) \sqsubseteq \varrho$ for all v is a parity progress measure
- can be computed using fixpoint approximation

For an \square -solitaire game and least parity progress measure ϱ :

- $\qquad \qquad V_{\square} = V \setminus W_{\diamondsuit}.$

Example

Let $\mathbb{M} = \{0\} \times \{0, 1, 2\} \times \{0\} \times \{0, 1\}$

- Suppose p(v) = 0, $\varrho(w) = (0, 2, 0, 0)$. Then $Prog(\varrho, v, w) = (0, 0, 0, 0)$
- Suppose p(v) = 1, $\varrho(w) = (0, 2, 0, 0)$. Then $Prog(\varrho, v, w) = \top$
- Suppose p(v) = 3, $\varrho(w) = (0, 2, 0, 0)$. Then $Prog(\varrho, v, w) = (0, 2, 0, 1)$

Department of Mathematics and Computer Science

Game Parity Progress Measures and Two-player games

25/50

Definition (Game parity progress measure)

Mapping $\varrho: V \to \mathbb{M}^{\top}$ is a game parity progress measure if for all $v \in V$:

- if $v \in V_{\Diamond}$, then $\exists_{(v,w) \in E} \ \varrho(v) \geq_{\varrho(v)} Prog(\varrho, v, w)$
- if $v \in V_{\square}$, then $\forall_{(v,w) \in E} \ \varrho(v) \geq_{\varrho(v)} Prog(\varrho, v, w)$

If ϱ is the least game parity progress measure for G, then:

$$\varrho(v) \neq \top \Leftrightarrow$$

player ♦ can prevent reaching □-dominated cycles

For the least game parity progress measure ϱ we have:

- ▶ there is some \diamondsuit strategy σ such that for each $\pi \in Play_{\sigma}(v)$: $\theta_{\diamondsuit}(\pi) \leq \varrho(v)$
- ▶ there is some \Box strategy σ such that for each $\pi \in Play_{\sigma}(v)$: $\theta_{\diamondsuit}(\pi) \geq \varrho(v)$

Recall: the set of mappings $([V \to \mathbb{M}^\top], \sqsubseteq)$ is a complete lattice

Define $Lift_{\nu}(\varrho)$ for $\nu \in V$ as follows:

$$\begin{cases} \varrho[v := \varrho(v) \ \max \ \min\{Prog(\varrho, v, w) \mid (v, w) \in E\}] & \text{if } v \in V_{\diamond} \\ \varrho[v := \varrho(v) \ \max \ \max\{Prog(\varrho, v, w) \mid (v, w) \in E\}] & \text{if } v \in V_{\square} \end{cases}$$

Observe:

- ▶ For every $v \in V$, $Lift_v$ is \sqsubseteq -monotone.
- ▶ A mapping $\varrho: V \to \mathbb{M}^{\top}$ is a game parity progress measure if and only if $Lift_{\nu}(\varrho) \sqsubseteq \varrho$ for all $\nu \in V$.
- ► Least game parity progress measure computable by fixpoint approximation (algorithm Lfp of Lecture 2)

Department of Mathematics and Computer Science

Game Parity Progress Measures and Two-player games

27/50

Algorithm SPM(G)

$$\varrho \colon V \to \mathbb{M}^{\top} \leftarrow \lambda v \in V.(0, ..., 0)$$

while $\varrho \sqsubseteq Lift_{v}(\varrho)$ for some $v \in V$ do $\varrho \leftarrow Lift_{v}(\varrho)$
end while

Post condition:

- \triangleright ϱ is least game parity progress measure
- $\{v \in V \mid \varrho(v) \neq \top\}$ is winning set for player \diamond
- $\{v \in V \mid \varrho(v) = \top\}$ is winning set for player \square

Consider parity game G:

$$X \stackrel{\bigcirc{1}}{\longrightarrow} 2 Y'$$

$$X' \stackrel{\bigcirc{1}}{\longrightarrow} 2 Y$$

$$Z' \stackrel{\cancel{3}}{\longrightarrow} \stackrel{\cancel{3}}{\longrightarrow} W$$

Maximum value of \mathbb{M} is (0, 2, 0, 3)

Department of Mathematics and Computer Science

Small progress measures (example) (1)

29/50

Initially: $\varrho \leftarrow \lambda v \in V.(0,0,0,0)$, so

_ v	$\varrho(v)$
\overline{X}	(0, 0, 0, 0)
X'	(0, 0, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	(0, 0, 0, 0)
Z'	(0, 0, 0, 0)
W	(0, 0, 0, 0)

Step 2: $\varrho \leftarrow Lift_X(\varrho) = \varrho[X := \max\{Prog(\varrho, X, X'), Prog(\varrho, X, X)\}] = \varrho[X := \max\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[X := (0, 1, 0, 0)]$

v	$\varrho(v)$
\overline{X}	(0, 1, 0, 0)
X'	(0, 0, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	(0, 0, 0, 0)
Z'	(0, 0, 0, 0)
W	(0, 0, 0, 0)

Department of Mathematics and Computer Science

Small progress measures (example) (3)

31/50

Step 3: $\varrho \leftarrow Lift_X(\varrho) = \varrho[X := \max\{Prog(\varrho, X, X'), Prog(\varrho, X, X)\}] = \varrho[X := \max\{(0, 1, 0, 0), (0, 2, 0, 0)\}] = \varrho[X := (0, 2, 0, 0)]$

v	$\varrho(v)$
X	(0, 2, 0, 0)
X'	(0, 0, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	(0, 0, 0, 0)
Z'	(0, 0, 0, 0)
W	(0, 0, 0, 0)

 $\mathsf{Step 4:} \ \ \varrho \leftarrow \mathit{Lift}_X(\varrho) = \varrho[X := \mathsf{max}\{\mathit{Prog}(\varrho, X, X'), \mathit{Prog}(\varrho, X, X)\}] = \varrho[X := \mathsf{max}\{(0, 1, 0, 0), \top\}] = \varrho[X := \top]$

v	$\varrho(v)$
X	Т
X'	(0, 0, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	(0, 0, 0, 0)
Z'	(0, 0, 0, 0)
W	(0, 0, 0, 0)

Department of Mathematics and Computer Science

Small progress measures (example) (5)

33/50

 $\begin{aligned} &\text{Step 5:} \textit{Lift}_{Y'}(\varrho) = \varrho[Y' := \min\{\textit{Prog}(\varrho, Y', X), \textit{Prog}(\varrho, Y', Y)\}] = \varrho[Y' := \min\{\top, (0, 0, 0, 0)\}] = \varrho[Y' := (0, 0, 0, 0)] \\ &\textit{Lift}_{Y}(\varrho) = \varrho[Y := \max\{\textit{Prog}(\varrho, Y, W), \textit{Prog}(\varrho, Y, Y')\}] = \varrho[Y := \max\{(0, 0, 0, 0), (0, 0, 0, 0)\}] = \varrho[Y := (0, 0, 0, 0)] \\ &\varrho \leftarrow \textit{Lift}_{X'}(\varrho) = \varrho[X' := \min\{\textit{Prog}(\varrho, X', Y), \textit{Prog}(\varrho, X', Z)\}] = \varrho[X' := \min\{(0, 1, 0, 0), (0, 1, 0, 0)\}] = \varrho[X' := (0, 1, 0, 0)] \end{aligned}$

<i>v</i>	$\varrho(v)$
X	Т
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	(0, 0, 0, 0)
Z'	(0, 0, 0, 0)
W	(0, 0, 0, 0)

 $\mathsf{Step 6:} \ \ \varrho \leftarrow \textit{Lift}_{Z'}(\varrho) = \varrho[Z' := \min\{\textit{Prog}(\varrho, Z', Z')\}] = \varrho[Z' := \min\{(0, 0, 0, 1)\}] = \varrho[Z' := (0, 0, 0, 1)]$

v	$\varrho(v)$
X	Т
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	(0, 0, 0, 0)
Z'	(0, 0, 0, 1)
W	(0, 0, 0, 0)

Department of Mathematics and Computer Science

Small progress measures (example) (7)

35/50

 $\mathsf{Step 7:} \ \ \varrho \leftarrow \textit{Lift}_{Z'}(\varrho) = \varrho[Z' := \min\{\textit{Prog}(\varrho, Z', Z')\}] = \varrho[Z' := \min\{(0, 0, 0, 2)\}] = \varrho[Z' := (0, 0, 0, 2)]$

$$\begin{array}{c|cccc} v & \varrho(v) \\ \hline X & \top \\ X' & (0,1,0,0) \\ Y & (0,0,0,0) \\ Y' & (0,0,0,0) \\ Z & (0,0,0,0) \\ Z' & (0,0,0,2) \\ W & (0,0,0,0) \\ \end{array}$$

 $\mathsf{Step 8:} \ \varrho \leftarrow \mathit{Lift}_{Z'}(\varrho) = \varrho[Z' := \min\{\mathit{Prog}(\varrho, Z', Z')\}] = \varrho[Z' := \min\{(0, 0, 0, 3)\}] = \varrho[Z' := (0, 0, 0, 3)]$

v	$\varrho(v)$
X	Т
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	(0, 0, 0, 0)
Z'	(0, 0, 0, 3)
W	(0, 0, 0, 0)

Department of Mathematics and Computer Science

Small progress measures (example) (9)

37/50

 $\mathsf{Step 9:} \ \ \varrho \leftarrow \mathit{Lift}(\varrho, Z') = \varrho[Z' := \min\{\mathit{Prog}(\varrho, Z', Z')\}] = \varrho[Z' := \min\{(0, 1, 0, 0)\}] = \varrho[Z' := (0, 1, 0, 0)]$

$$\begin{array}{c|cccc} V & \varrho(V) \\ \hline X & \top \\ X' & (0,1,0,0) \\ Y & (0,0,0,0) \\ Y' & (0,0,0,0) \\ Z & (0,0,0,0) \\ Z' & (0,1,0,0) \\ W & (0,0,0,0) \\ \end{array}$$

 $\mathsf{Step \ 10:} \ \varrho \leftarrow \mathit{Lift}_{Z'}(\varrho) = \varrho[Z' := \min\{\mathit{Prog}(\varrho, Z', Z')\}] = \varrho[Z' := \min\{(0, 1, 0, 1)\}] = \varrho[Z' := (0, 1, 0, 1)]$

<i>v</i>	$\varrho(v)$
X	Т
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	(0, 0, 0, 0)
Z'	(0, 1, 0, 1)
W	(0, 0, 0, 0)

Department of Mathematics and Computer Science

Small progress measures (example) (11)

39/50

Step 11*: Repeat lifting Z' even more often $\varrho \leftarrow \mathit{Lift}_{Z'}(\varrho) = \varrho[Z' := \min\{\mathit{Prog}(\varrho, Z', Z')\}] = \varrho[Z' := \min\{\top\}] = \varrho[Z' := \top]$

$$\begin{array}{c|cccc} v & \varrho(v) \\ \hline X & \top \\ X' & (0,1,0,0) \\ Y & (0,0,0,0) \\ Y' & (0,0,0,0) \\ Z & (0,0,0,0) \\ Z' & \top \\ W & (0,0,0,0) \end{array}$$

Step 12: $\varrho \leftarrow Lift_Z(\varrho) = \varrho[Z := \min\{Prog(\varrho, Z, Z')\}] = \varrho[Z := \min\{\top\}] = \varrho[Z := \top]$

V	$\varrho(v)$
X	Т
X'	(0, 1, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	Т
Z'	Т
W	(0, 0, 0, 0)

Department of Mathematics and Computer Science

Small progress measures (example) (13)

41/50

Step 13: $\varrho \leftarrow Lift_W(\varrho) = \varrho[W := \min\{Prog(\varrho, W, Z), Prog(\varrho, W, W')\}] = \varrho[W := \min\{\top, (0, 0, 0, 1)\}] = \varrho[W := (0, 0, 0, 1)]$

$$\begin{array}{c|cccc} v & \varrho(v) \\ \hline X & \top \\ X' & (0,1,0,0) \\ Y & (0,0,0,0) \\ Y' & (0,0,0,0) \\ Z & \top \\ Z' & \top \\ W & (0,0,0,1) \\ \end{array}$$

Step 14*: Repeat lifting of W often $\varrho \leftarrow Lift_W(\varrho) = \varrho[W := \min\{Prog(\varrho, W, Z), Prog(\varrho, W, W')\}] = \varrho[W := \min\{\top, \top\}] = \varrho[W := \top]$

V	$\varrho(v)$
X X' Y Y' Z Z' W	(0, 1, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) T

Department of Mathematics and Computer Science

Small progress measures (example) (15)

43/50

 $\mathsf{Step 15:} \ \varrho \leftarrow \mathit{Lift}_{Y}(\varrho, Y) = \varrho[Y := \mathsf{max}\{\mathit{Prog}(\varrho, Y, W), \mathit{Prog}(\varrho, Y, Y')\}] = \varrho[Y := \mathsf{max}\{\top, (0, 0, 0, 0)\}] = \varrho[Y := \top]$

$$\begin{array}{c|cccc} v & \varrho(v) \\ \hline X & \top \\ X' & (0,1,0,0) \\ Y & \top \\ Y' & (0,0,0,0) \\ Z & \top \\ Z' & \top \\ W & \top \\ \end{array}$$

 $\mathsf{Step 16} \colon \varrho \leftarrow \mathit{Lift}_{X'}(\varrho) = \varrho[X' := \min\{\mathit{Prog}(\varrho, X', Z), \mathit{Prog}(\varrho, X', Y)\}] = \varrho[X' := \min\{\top, \top\}] = \varrho[X' := \top]$

v	$\varrho(v)$
X	Т
X'	T
Υ.	Τ
Y'	(0, 0, 0, 0)
Ζ,	T
Z'	<u> </u>
W	Т

Department of Mathematics and Computer Science

Small progress measures (example) (17)

45/50

 $\mathsf{Step 17:} \ \varrho \leftarrow \mathit{Lift}_{Y'}(\varrho) = \varrho[Y' := \mathsf{min}\{\mathit{Prog}(\varrho, Y', X), \mathit{Prog}(\varrho, Y', Y)\}] = \varrho[Y' := \mathsf{min}\{\top, \top\}] = \varrho[Y' := \top]$

$$\begin{array}{c|cccc} v & \varrho(v) \\ \hline X & \top \\ X' & \top \\ Y & \top \\ Y' & \top \\ Z & \top \\ Z' & \top \\ W & \top \\ \end{array}$$

 ϱ is least game parity progress measure, and $\{v \in V \mid \varrho(v) \neq \top\} = \emptyset$ is winning set for player \Diamond . Hence player \Box wins from all vertices

Let $\varrho: V \to \mathbb{M}^{\top}$ be the least game parity progress measure.

- ▶ Define strategy $\sigma: V_{\Diamond} \to V$ for player \Diamond , by setting $\sigma(v)$ to be a successor w of $v \in V_{\Diamond}$ that minimises $\rho(w)$
- σ is a winning strategy for player \Diamond from $\{v \in V \mid \varrho(v) \neq \top\}$
- ▶ Strategy for □ cannot be inferred directly

Department of Mathematics and Computer Science

Complexity and Strategies

48/50

Set n = |V|, m = |E|, $d = \max\{p(v) \mid v \in V\}$.

Worst-case running time complexity:

$$\mathcal{O}(d \cdot m \cdot (\frac{n}{\lfloor d/2 \rfloor})^{\lfloor d/2 \rfloor})$$

Lowerbound on worst-case:

$$\Omega((\lceil n/d \rceil)^{\lceil d/2 \rceil})$$

Model checking $L_{\mu} =$ solving Boolean equation systems
$ullet$ Gauß Elimination for solving BES $\ldots \mathcal{O}(2^{ \mathcal{E} })$
Solving BES = solving Parity games
• Recursive
• Small progress measures
• bigstep (combination of the two above)
• new quasi-polynomial algorithm (2016) $\approx \mathcal{O}(n^{6+\log d})$

Department of Mathematics and Computer Science