
Formalising the State Machine
Modelling Tool (SMMT)

Master Thesis

Goirle
December 1, 2023

J.E.P.M. van Laarhoven
TU/e Student ID: 1230803

info@jordivanlaarhoven.nl

j.e.p.m.v.laarhoven@student.tue.nl

jordi.vanlaarhoven@cpp.canon

Supervisors Version
Dr. Ir. T.A.C. Willemse1

1.0.2Dr. Ir. L.C.M. van Gool2

Ir. O. Bunte1

2 Canon Production Printing, Venlo, The Netherlands
1 Eindhoven University of Technology, Eindhoven, The Netherlands

mailto:info@jordivanlaarhoven.nl
mailto:j.e.p.m.v.laarhoven@student.tue.nl
mailto:jordi.vanlaarhoven@cpp.canon

The writer was enabled by Canon Production Printing Netherlands B.V. to
perform research that partly forms the basis for this report.

Canon Production Printing B.V. does not accept responsibility for the
accuracy of the data, opinions and conclusions mentioned in this report,

which are entirely for the account of the writer.

Abstract

Model-Driven (Software) Engineering (MDSE) is gaining popularity in industry. More and
more companies acknowledge the benefits of using MDSE to develop their software com-
ponents. A company that exploits model-driven software engineering is Canon Production
Printing (Venlo, The Netherlands). At Canon Production Printing, the State Machine Mod-
elling Tool (SMMT) was developed to enable the modelling of software components using
state machines. In this graduation report, we present SMMT and formally define a subset of
the SMMT language. A translation from SMMT specifications to mCRL2 specifications is de-
fined to allow for model checking on the SMMT specifications. We show that this translation
can correctly generate mCRL2 specification for the existing SMMT specifications at Canon
Production Printing. Furthermore, we show how the mCRL2 toolset can be used to prove
the correctness of SMMT specifications.

Contents

1 Introduction 1
1.1 Related Work . 1

1.1.1 Open Interaction Language (OIL) . 2
1.1.2 Dezyne . 2
1.1.3 Coco . 2
1.1.4 Event-B . 2
1.1.5 CERN . 3
1.1.6 Cordis SUITE . 3
1.1.7 Executable UML Specifications . 3
1.1.8 Internet of Things . 3

1.2 Problem Statement . 4

2 State Machine Modelling Tool 7
2.1 Introduction to SMMT . 7
2.2 SMMT Constructs . 8

2.2.1 Name and Namespace . 9
2.2.2 Events . 9
2.2.3 Region . 10

2.3 Execution . 15

3 Analysis of SMMT 17
3.1 Observations and Experiences of Engineers . 17

3.1.1 Language of the State Machine Modelling Tool 17
3.1.2 JetBrains MPS . 18
3.1.3 SCM Test Library . 20

3.2 Analysis of Existing Models . 20
3.3 Conclusion . 20

4 Mathematical Preliminaries 23

5 Formal Definition of SMMT 25
5.1 Abstract Syntax of an SMMT Specification . 27
5.2 Semantics of an SMMT Specification . 31
5.3 Parallel States . 36

5.3.1 Abstract Syntax of an SMMT Specification 37
5.3.2 Semantics of an SMMT Specification . 38

6 Translating SMMT to mCRL2 49
6.1 The mCRL2 Model Checker . 49
6.2 Translation . 51

6.2.1 Representation of the mathematical model of an SMMT Specification . 52
6.2.2 Validation Checks on the SMMT Specification 58
6.2.3 Translation of Definitions to Mappings . 59

6.2.4 mCRL2 Process Specification . 60

7 Experiments 63
7.1 Correctness of the SMMT2MCRL2 Translation . 63

7.1.1 Verification Approach . 63
7.1.2 Results Correctness Verification SMMT2MCRL2 71

7.2 Property Verification . 76
7.2.1 Properties . 76
7.2.2 Approach . 78
7.2.3 Results . 78

7.3 Conclusion . 80

8 Conclusion 83

9 Future Research 85

A Proofs for Chapter 5 89

B mCRL2 Specification of Figure 5.3 105

C Complete mCRL2 Specification 115

Chapter 1

Introduction

Model-Driven (Software) Engineering (MDSE) is gaining popularity in industry. More and
more companies acknowledge the benefits of using MDSE to develop their software com-
ponents. One advantage of MDSE is that it raises the level of abstraction. This simplifies the
development of complex components, which increases the productivity of the software en-
gineers. Another major benefit of using MDSE is that it opens the door to model checking.
Using the created models, model checkers can be used to analyse whether certain proper-
ties are satisfied by a model, properties that may not be verifiable using test cases. Both
advantages result in a more cost-effective approach.

A company that exploits model-driven software engineering is Canon Production Print-
ing (Venlo, The Netherlands). One of the modelling languages that has been developed
over the years is the Open Interaction Language (OIL). OIL is a modelling language that is
intended to express the behaviour of control-software components, which is not limited to
printers. The semantics of the Open Interaction Language has been formally defined, which
allows a translation from specifications in OIL to mCRL2 model specifications.

The mCRL2 model checker is developed by the Eindhoven University of Technology and
consist of both a language [1] and a powerful toolset [2]. The mCRL2 language is used to
describe the behaviour of processes based on the algebra of communicating processes [3]
that is extended with data. Among others, the tool enables the generation and reduction
of the state space of an mCRL2 specification. Using the toolset, one can verify whether
properties are satisfied for the given specification.

This graduation project concerns the State Machine Modelling Tool (SMMT). SMMT is
a tool and modelling language developed at Canon Production Printing to model the be-
haviour of software components using state machines. Executable C++ and C# code can be
generated from the SMMT specifications. Unlike OIL, SMMT has not been developed with a
focus on creating a formally defined language to allow for model checking. Instead, SMMT
was developed to closely resemble the state machines of the existing Boost Statechart C++
library [4, 5] but with some of the additional expressive power of OIL.

In the remainder of this chapter, we discuss related research (Section 1.1) and introduce
the research question that serves as a basis for this graduation project (Section 1.2).

1.1 Related Work

In this section, we discuss a selection of domain specific programming languages of which
the semantics have been formalized and that are translated to the mCRL2 language or the
language of other model checkers for automatic property verification. We discuss research
that has been performed on the analysis, translation and verification of languages based
on state machines.

Formalising the State Machine Modelling Tool (SMMT) 1

CHAPTER 1. INTRODUCTION

1.1.1 Open Interaction Language (OIL)
A language that is closely related to SMMT is the Open Interaction Language (OIL) by L. van
Gool. OIL and SMMT are both domain specific modelling languages developed within Canon
Production Printing. Using OIL, the behaviour of control-software components can be speci-
fied, analysed, and visualized. In "Formal verification of OIL component specifications using
mCRL2", O. Bunte et al. [6] defined the formal semantics of OIL specifications. A translation
to mCRL2 specifications with the same behaviour as the OIL specification has been defined,
based on the formal operational semantics. Using the mCRL2 toolset [2], properties can
be expressed using the first-order modal mu-calculus and automatically verified on a given
mCRL2 specification. OIL specifications are originally based on XML. A domain specific lan-
guage has been designed and implemented by J. Denkers et al. [7] which, together with
some additional syntactic sugar to OIL, creates a more user-friendly way to specify compo-
nents using OIL. This DSL has been implemented using the Spoofax language workbench
[8]. Using both the XML and DSL syntax of OIL, C++ code can be automatically generated,
the correctness of which has partially been verified [6]. An experimental code generator has
been implemented by M. Frenken [9] and has been optimized by T. Buskens [10].

1.1.2 Dezyne
Another modelling language that has been formalized is the Dezyne language by the com-
pany Verum [11]. The Dezyne toolset allows engineers to specify and design software sys-
tems. Furthermore, the toolset allows for formal verification. In "Formalising the Dezyne
Modelling Language", R. Beusekom et al. [12] formalised the Dezyne language by encoding
the language in the mCRL2 process algebra [1]. In this paper, Beusekom et al. discuss the
grammar of the Dezyne language using the Extended Backus-Naur Form (EBNF), which is
a notation to denote the grammar of a language, standardized in ISO/IEC 14977 [13]. For
each of the constructs in the Dezyne language a transformation to the mCRL2 language is
introduced and a sketch of the formalisation of the execution semantics is presented. Using
the Dezyne language executable code can be generated.

1.1.3 Coco
Another platform that aims at simplifying the development of software components is the
Coco platform by Cocotec [14]. Using their Coco language, the behaviour of systems can
be modelled. The tool uses the internally developed model checker FDR4 [15] which can
automatically verify whether certain properties are satisfied in the model. The tool offers a
graphical interface for debugging the models. Using UML sequence diagrams, traces can
be visualized to show how a property is violated. From the Coco models, executable C++
code can be generated.

1.1.4 Event-B
In "Formal verification and validation of run-to-completion style state charts using Event-
B", K. Morris et al. [16] present how they formally verified and validated state charts using
Event-B and Rodin. Morris et al. discuss a new notation for state chart modelling, on which
the Event-B toolset is used for theorem proving. The Event-B tooling is supported by the
Rodin platform, that is used for refinement and mathematical proofs. A scenario-based ap-
proach is introduced, based on the ProB model checker. Certain scenarios can be recorded
and replayed to check whether states changed since the original run of the scenario. The
Rodin theorem prover automatically verifies whether invariant properties are satisfied on
the models. They also provide a complementary way to verify the model using the LTL model
checker. This procedure allows to check for expected reactions to environmental triggers.

2 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 1. INTRODUCTION

1.1.5 CERN
Another organization that adopted the MDSE approach is CERN. For their Large Hadron
Collider (LHC), state machines are used to generate executable code. In "Formalising and
analysing the control software of the Compact Muon Solenoid Experiment at the Large
Hadron Collider", Y. Ling Hwong et al. [17] formalised the semantics of the state machines
by converting the state machines to the process algebra language of mCRL2. Using the
translation from state machines to the mCRL2 process algebra language and the formal
semantics, Ling Hwong et al. were able to develop tooling for checking whether certain
properties hold on each state machine in isolation. Using their translation to mCRL2, vari-
ous bugs were found in the models, which have been solved since.

1.1.6 Cordis SUITE
Various papers have been published on formalising models based on UML models. As SMMT
is based on state machines, it is therefore interesting to investigate papers that discuss
translation of UML models to mCRL2. An example of such a language is the Cordis SUITE.
In "Formal Verification of an Industrial UML-like Model using mCRL2", A. Stramaglia and
J. Keiren [18] present how they formalised the semantics of the Cordis SUITE, which is a
low-code developing platform for machine-control applications that is based on UML mod-
els. A translation from the Cordis models to the process algebra language of mCRL2 has
been defined, based on the semantics of the Cordis language. In the paper, Stramaglia and
Keiren show how powerful the usage of model checkers like mCRL2 is, through an experi-
ment (Pneumatic Cylinder) in which bugs were found in the generated mCRL2 model and
its implementation.

1.1.7 Executable UML Specifications
In "Towards model checking executable UML specifications in mCRL2", H. Hansen et al. [19]
present their translation for translating executable UML specifications to mCRL2 specifi-
cations. In the earlier mentioned research projects, properties on the generated mCRL2
models were directly performed using the first order modal mu-calculus using the mCRL2
toolset. In the paper by Hansen et al., tooling is presented that allows the software engi-
neer to inspect error traces using UML sequence diagrams, instead of a labelled transition
system. Using their toolset, the software engineer can express the expected behaviour as
a UML state machine. In this state machine, the engineer can add "error" actions for be-
haviour that is not expected to happen. In this way, checking whether some safety property
is satisfied in a model boils down to a reachability check for such "error" actions in mCRL2.
Unfortunately, their system only allows the verification of safety properties but not liveness
properties. Liveness properties would require the use of temporal logics.

1.1.8 Internet of Things
In "The AbU Language: IoT Distributed Programming Made Easy", M. Pasqua et al. [20] in-
troduce a domain specific language that can be used to control IoT devices. The language is
built on the Attribute-based memory Updates communication model which is an extension
of the ECA rules-based system. ECA systems use Event-Condition-Action rules for controlling
the IoT device. The AbU language enhances the ECA rules with an interaction mechanism
where communication is similar to broadcasting. However, not all communication is sent
via a central processing infrastructure. Instead, decentralized edge servers are used.

The AbU language is a domain specific language in which programs can be developed
consisting of a list of IoT devices, a list of type declarations and a collection of ECA rules.
A device declaration covers the name and description of the device, as well as all details

Formalising the State Machine Modelling Tool (SMMT) 3

CHAPTER 1. INTRODUCTION

about the resources of the device such as in- and output resources, an invariant that must
be maintained and references to a set of ECA rules. Type declarations specify several custom
types that can be used in the device specification. The ECA rules specify the behaviour of
the devices. The language is event driven, when an event occurs for which a rule has been
defined and the condition of that rule is satisfied, the action that is defined by the ECA rule
is performed.

In the paper, M. Pasqua et al. first introduce the syntax of the AbU language. After which
the formal operational semantics of the AbU language is presented. Experiments are dis-
cussed which show the effectiveness of the AbU language. Unfortunately, there is no sup-
port for model checking or other verification tools. Hence, it is not possible to verify whether
certain properties hold in a AbU model/specification. In the future work section, the authors
show interest in implementing a verification approach based on temporal logic like CTL or
mu-calculus to allow for verification.

1.2 Problem Statement
In this section we present the research question that will serve as a basis for this master’s
graduation project at the Eindhoven University of Technology. In this project, we perform
research on the State Machine Modelling Tool (SMMT).

SMMT is a tool that can be used to model the behavior of complex software components
using state machines. As mentioned before, SMMT has been developed with a focus to
closely resemble the existing Boost C++ library. There exists no formal definition of SMMT.
As the available documentation of SMMT does not cover all constructs of the language, it
remains unclear for the engineers at Canon Production Printing how certain behavior can
be modelled using SMMT. As a consequence, engineers may model behavior of software
components in SMMT of which the expected behaviour does not correspond to the actual
behaviour.

A testing library has been developed to determine the correctness of the existing SMMT
specifications. The testing library requires the engineer to specify the behavior that they
want to test on an SMMT specification as a separate SMMT specification. The test SMMT
specification sends events to the SMMT specification and defines the correctness based on
the responses received from the SMMT specification. According to the engineers that are
familiar with the testing library, this approach to determine the correctness of an SMMT
specification is time-consuming and error prone. Furthermore, there are limitations on what
properties can be checked on an SMMT specification using the testing library. A formal def-
inition of SMMT would allow us to define a translation from SMMT specifications to mCRL2
specifications. Using such an mCRL2 specification, the engineer can verify whether cer-
tain properties hold on the specification. Furthermore, there exist various restrictions that
must be satisfied by each SMMT specification that are not checked by the implementation
of SMMT in MPS. The translation from SMMT specifications to mCRL2 specifications enables
us to automatically verify whether these restrictions as defined in the generated mCRL2
specification hold for each SMMT specification.

The aim of this graduation project is to answer the following research question:

"To what extent can we formalise and prove the correctness of
SMMT specifications using the mCRL2 model checker?"

To formalise and prove the correctness of SMMT specifications, we first performed an
analysis of SMMT. In this analysis we discuss how the engineers at Canon Production Print-
ing experience SMMT and discuss the insights we gained from the 26 SMMT specifications
that have been developed at Canon Production Printing at the time of writing. The results of
the analysis show the relevance of formally defining SMMT and defining a translation from
SMMT specifications to mCRL2 specifications to allow for model checking. Furthermore, we

4 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 1. INTRODUCTION

have analysed the relevance and frequency of the constructs of the SMMT language to de-
termine the order in which the constructs of SMMT were formalised.

To formally define SMMT, we defined the syntax, static semantics and operational seman-
tics of SMMT. A mathematical model has been defined that is used to represent an SMMT
specification. The static semantics has been defined as a number of restrictions that must
be satisfied on this mathematical model. Finally, the operational semantics of SMMT has
been defined as a labelled transition system. Unfortunately, we have not able to formally
define the complete set of constructs of the language of SMMT due to time constraints.

We have defined a translation that translates SMMT specifications to mCRL2 specifica-
tions. The mCRL2 specification that is generated from an SMMT specification closely corre-
lates to the formal definition of SMMT. The generated mCRL2 contains a representation of
the mathematical model of the SMMT specification. Using this representation of the math-
ematical model, we have defined mapping and equations that correspond to the validation
checks and the functions that are used to define the operational semantics. The process
specification of the mCRL2 specification correlates to the definition of the operational se-
mantics.

Various experiments have been performed to prove the correctness of the translation
that we defined. We defined a translation to generate an mCRL2 specification from the
generated C++ code that is generated by SMMT. Using the mCRL2 toolset, we have verified
whether the behavior of the two mCRL2 specifications define the same behavior. These ex-
periments have been performed on the 26 SMMT specifications that exist at the time of writ-
ing. We have shown that the translation is correct for 25 out of the 26 SMMT specifications
and that the correctness could not be determined for 1 SMMT specification. Furthermore,
several issues in the implementation of SMMT in MPS were found when performing these
experiments. We have shown how properties can be checked on the generated mCRL2 spec-
ifications and shown several properties that we expect must hold for all SMMT specifications.

Outline This thesis is structured as follows. We first informally introduce SMMT in Chapter
2. Next, we discuss our analysis of SMMT in Chapter 3. In Chapter 4 we introduce several
definitions that are used to formally define SMMT. We formally define a subset of the con-
structs of the SMMT language in Chapter 5. In Chapter 6, we introduce the mCRL2 model
checker and toolset and we discuss the approach for defining the translation from SMMT to
mCRL2 specifications. In Chapter 7 we discuss the experiments that we have performed to
verify the correctness of the translation and to verify the correctness of the existing SMMT
specifications. We discuss the results and answer the research question in Chapter 8. Finally,
we discuss opportunities for future research in Chapter 9.

Formalising the State Machine Modelling Tool (SMMT) 5

CHAPTER 1. INTRODUCTION

6 Formalising the State Machine Modelling Tool (SMMT)

Chapter 2

State Machine Modelling Tool
The State Machine Modelling Tool (SMMT) is a modelling tool and language developed by
Canon Production Printing that allows its user to model behavior of software components
using state machines. Furthermore, SMMT enables the generation of C# and C++ code from
these SMMT models. In this section we informally introduce the State Machine Modelling
Tool. We discuss the history and the goal of SMMT in Section 2.1. In Section 2.2, we introduce
the constructs of the SMMT language. To get some intuition on how the generated code of
an SMMT specification behaves, we discuss how the events are handled during execution in
Section 2.3.

2.1 Introduction to SMMT

At Canon Production Printing the Model-Driven Software development methodology was
adopted a couple of decades ago. Using modelling software, models were designed con-
sisting of state machines that modelled the expected behavior of software components.
The engineers used these models to manually develop executable code that behaves ac-
cording to the model. This workflow occasionally led to problems, as there was no coupling
between the designed models and the code that was developed using these model. As
a consequence, this process occasionally led to inconsistencies between the behavior as
modelled by the state machine and the behavior of the developed executable code.

At first, the Boost C++ State Chart library was used to implement state machines. While
this library enabled the modelling of simple state machines, it remained difficult to model
the behavior of complex components. To simplify this workflow, two languages were devel-
oped. The first language that was developed at Canon Production Printing to simplify the
modelling of software components using state machines is the Open Interaction Language
(OIL). OIL was developed with a focus on creating a language with high expressive power
that is formally well-defined. An advantage of having a formally well-defined language is
that this enables model checking. This enables the engineer to check whether properties
hold on their OIL specifications using a model checker. The engineers at Canon Production
Printing developed the SCM C++ library that, in contrast to OIL, was not designed with a
focus on creating a formally well-defined language. Instead, the aim of the SCM library was
to create a library that closely resembles the existing state machines from the Boost C++
library but with some of the additional expressive power of OIL. To simplify the modelling of
software components using the SCM C++ library, the State Machine Modelling Tool (SMMT)
was developed using JetBrains MPS [21]. Using the State Machine Modelling Tool, state ma-
chines can be modelled both textually and graphically. Furthermore, the tool enables the
generation of executable C++ and C# code from the models. The generated C++ and C#
code makes use of the SCM library to implement the behavior of the state machines in that
language.

Formalising the State Machine Modelling Tool (SMMT) 7

CHAPTER 2. STATE MACHINE MODELLING TOOL

2.2 SMMT Constructs
In this section, we introduce the constructs of the SMMT language. In SMMT, each specifi-
cation represents a single state machine. An SMMT specification consists of five sections, as
shown in figure 2.1, these are: a name, a namespace, a collection of OnEvents, a collection of
DoEvents and a region.

State Machine name
namespace namespace

on events

OnEvents

do events

DoEvents

Region

Figure 2.1: Overview of an SMMT Specification
SMMT has been implemented in JetBrains MPS [21] in which two representations have

been developed that can be used by the engineer to model the behavior of a component
as a state machine: a textual and a graphical representation. In all our examples we show
both representations. In the graphical representation of SMMT, the section of the specifi-
cation consisting of the name, namespace and lists of OnEvents and DoEvents is also shown.
However, in our examples, we omit these details in the graphical representation to avoid
repeating information.

In the remainder of this section, we introduce each section of an SMMT specification.
To explain the constructs of the SMMT language, we gradually build an SMMT specification
modelling the behavior of a simplistic printer. In Figure 2.2, an SMMT specification is given
consisting of a single entry state called idle. The specification does not have any events or
transitions.

1 State Machine pr inter
2 namespace cpp . j o r d i . examples . pr inter
3

4 on events
5 << . . . >>
6

7 do events
8 << . . . >>
9

10 entry SimpleState i d l e
11 Transitions

(a) Textual Representation

idle

(b) Graphical Representation

Figure 2.2: An SMMT specification representing a printer that is always idle
In the representations of an SMMT specification, ≪ ... ≫ denotes an empty field in which

a component can be inserted. For example, this enables us to define OnEvents and DoEvents
in lines 5 and 8 for the SMMT specification in Figure 2.2a respectively.

8 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 2. STATE MACHINE MODELLING TOOL

2.2.1 Name and Namespace
As shown in Figure 2.1, each SMMT specification has a name and a namespace. The names-
pace is the fully qualified name of the SMMT specification,. That is, an SMMT specification
can be identified by its namespace. The name is of type String, the namespace consists of
one or more Strings separated by dots. Here, a String is defined as a value that corre-
sponds to the regular expression [a-z]([a-z0-9_])∗.

In the running example (Figure 2.2) the name and namespace of the SMMT specification
are defined on lines 1 and 2 of the textual representation respectively. That is, the name of
the SMMT specification in the running example is printer and the namespace is
cpp.jordi.examples.printer. Note that, the name and namespace do not depend on
each other. That is, the name of the SMMT specification is not required to be contained in
the namespace of the SMMT specification.

2.2.2 Events
SMMT distinguishes two types of events, namely OnEvents and DoEvents. OnEvents are events
that are produced externally and may cause transitions of the SMMT specification to fire
that are defined for that OnEvent. On the other hand, DoEvents are actions produced by the
SMMT specification that serve as a response to processed OnEvent actions. Both OnEvents
and DoEvents can be parametrized, where each parameter is of boolean type or of a custom
specified type. In both the graphical and textual representation of SMMT, the type of a
parameter is only shown if the parameter is of custom type. Hence, if the type of a parameter
is not shown when the parameter of an OnEvent or a DoEvent is declared, then this parameter
is of boolean type.

As shown in Figure 2.1, each SMMT specification has a section in which the OnEvents are
defined that can be processed by the state machine of that SMMT specification. Similarly,
the SMMT specification contains a section in which the DoEvents are defined that can be
produced by the state machine of the SMMT specification.

1 State Machine pr inter
2 namespace cpp . j o r d i . examples . pr inter
3

4 on events
5 ev_submit_job (i : i n t)
6 ev_ f in i sh_ job (<< . . . >>)
7

8 do events
9 a l e r t _ s t a r t e d (i : i n t)

10

11 entry SimpleState i d l e
12 Transitions
13 on ev_submit_job (i)
14 do a l e r t _ s t a r t e d (i)
15 go pr int ing
16 SimpleState pr int ing
17 Transitions
18 on ev_ f in i sh_ job ()
19 go i d l e

(a) Textual Representation

idle printing
do alert_started(i)

on ev_submit_job(i)

on ev_finish_job()

(b) Graphical Representation

Figure 2.3: An SMMT specification of a printer that is idle or printing
We expand our running example with a state called printing and add OnEvents

ev_submit_job(i : int) and ev_finish_job() that signal that the printer must start
printing job i and that the printer must finish the job respectively. Furthermore, we add
DoEvent alert_started(i : int) that alerts the user that the printer has started printing

Formalising the State Machine Modelling Tool (SMMT) 9

CHAPTER 2. STATE MACHINE MODELLING TOOL

job i. OnEvent ev_submit_job(i : int) and DoEvent alert_started(i : int) have a
parameter of custom type int called i which indicates the page of the job that must be
printed. The extended running example is shown in Figure 2.3.

2.2.3 Region
The region of an SMMT specification is hierarchically structured and consists of one or more
states. Each state of the SMMT specification consists of several outgoing transitions, entry
handlers, exit handlers and can contain a nested region. In the remainder of this section,
we discuss the types of states, the transitions, entry- and exit handlers informally.

2.2.3.1 State Types

The SMMT language supports four different types of states: SimpleStates, CompositeStates,
ParallelStates and JointStates. The execution state of an SMMT specification consists of a sub-
set of the states of the SMMT specification. We say that a state is an active state if, and only
if, the state is an element of the execution state. We introduce the notion of an entry state.
An entry state is a state that becomes active when the parent of that state is initiated. Each
state, except for states of type JointState, can be an entry state. In the graphical representa-
tion of an SMMT specification, an entry state is indicated by the entry symbol ().

To distinguish between the type of states in the SMMT specifications that are graphically
depicted in the remainder of this report, we added a red prefix S, C, P or J in front of the name
of each state. These red prefixes indicate the type of the state: SimpleState, CompositeState,
ParallelState and JointState respectively. In the remainder of this section, we introduce each
of the four different state types.

SimpleState States of type SimpleState represent states that have no children. In the run-
ning example (Figure 2.3), both states idle and printing are of type SimpleState.

CompositeState The CompositeState type allows for children that further specify the be-
havior of the CompositeState. A CompositeState has one or more children of which exactly
one is an entry state. Furthermore, if a CompositeState s is active, then exactly one child of
CompositeState s must be active.

In our running example, a CompositeState can be used to further specify the behavior
of the printing state. For example, we might need to apply color correction on the sub-
mitted job prior to printing the job. In Figure 2.4 we extend our running example of Figure
2.3 with states color_correction and printing_job. Furthermore, we add a transition
from state color_correction to state printing_job for OnEvent ev_print_job() to
ensure that the printer can only start printing the job whenever OnEvent ev_print_job()
has been processed. In this example, state printing is a CompositeState and states idle,
color_correction and printing_job are of type SimpleState.

ParallelState States of type ParallelState have one or more children that further specify the
behavior of the ParallelState. In contrast to CompositeStates, all children of a ParallelState are
active as long as the ParallelState itself is active. Furthermore, all children of a ParallelState
are entry states, except for the children of the ParallelState that are of type JointState.

In the running example of Figure 2.4, a printer is shown that first applies color correction
to a job after which the job gets printed. Using a ParallelState we can model that the printer
applies color correction and scales the job in parallel, after which the job gets printed. In
Figure 2.5, we extend the running example with ParallelState preparing_job that allows
the color correction and scaling of the job to be done simultaneously.

10 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 2. STATE MACHINE MODELLING TOOL

1 State Machine pr inter
2 namespace cpp . j o r d i . examples . pr inter
3
4 on events
5 ev_submit_job (i : i n t)
6 ev_ f in i sh_ job (<< . . . >>)
7 ev_pr int_ job (<< . . . >>)
8
9 do events

10 a l e r t _ s t a r t e d (i : i n t)
11
12 entry SimpleState i d l e
13 Transitions
14 on ev_submit_job (i)
15 do a l e r t _ s t a r t e d (i)
16 go pr int ing
17 CompositeState pr int ing
18 Transitions
19 entry SimpleState color_correct ion
20 Transitions
21 on ev_pr int_ job ()
22 go pr int ing_ job
23 SimpleState pr int ing_ job
24 Transitions
25 on ev_ f in i sh_ job ()
26 go i d l e

(a) Textual Representation

S idle

C printing
S color_correction

S printing_job

on ev_submit_job(i)
do alert_started(i)

on ev_print_job()

on ev_finish_job()

(b) Graphical Representation

Figure 2.4: An SMMT specification consisting of a printer that applies color correction before
printing a job
1 State Machine pr inter
2 namespace cpp . j o r d i . examples . pr inter
3
4 on events
5 ev_submit_job (i : i n t)
6 ev_ f in i sh_ job (<< . . . >>)
7 e v _ f i n i s h _ c o l o r (<< . . . >>)
8 e v _ f i n i s h _ s c a l i n g (<< . . . >>)
9 ev_pr int_ job (<< . . . >>)

10
11 do events
12 a l e r t _ s t a r t e d (i : i n t)
13
14 entry SimpleState i d l e
15 Transitions
16 on ev_submit_job (i)
17 do a l e r t _ s t a r t e d (i)
18 go pr int ing
19 CompositeState pr int ing
20 Transitions
21 entry P a r a l l e l S t a t e preparing_job
22 Transitions
23 entry CompositeState color_correct ion

24 Transitions
25 entry SimpleState pre_cc
26 Transitions
27 on e v _ f i n i s h _ c o l o r ()
28 go post_cc
29 SimpleState post_cc
30 Transitions
31 on ev_pr int_ job ()
32 go pr int ing_ job
33 entry CompositeState scal ing
34 Transitions
35 entry SimpleState pre_scal ing
36 Transitions
37 on e v _ f i n i s h _ s c a l i n g ()
38 go post_scal ing
39 SimpleState post_scal ing
40 Transitions
41 on ev_pr int_ job ()
42 go pr int ing_ job
43 SimpleState pr int ing_ job
44 Transitions
45 on ev_ f in i sh_ job ()
46 go i d l e

(a) Textual Representation

C printing

S idle

S printing_job

P preparing_job
C color_correction C scaling

S post_cc

S pre_cc

S post_scaling

S pre_scaling
on ev_submit_job(i) on ev_finish_color() on ev_finish_scaling()
do alert_started(i)

on ev_print_job() on ev_print_job()
on ev_finish_job()

(b) Graphical Representation

Figure 2.5: An SMMT specification consisting of a printer that applies color correction and/or
scales the job before printing the print job

Formalising the State Machine Modelling Tool (SMMT) 11

CHAPTER 2. STATE MACHINE MODELLING TOOL

JointState States of type JointState are used to join the behavior of one or more nested
states of a ParallelState. A JointState refers to several states but does not have any children
itself and can only occur inside a ParallelState. Furthermore, a JointState may only refer to
nested states or JointStates of the ParallelState in which the JointState occurs that can be active
at the same point in time. A JointState is active when all states that the JointState refers to
are active.

Consider the example in Figure 2.5. When the printer reaches the preparing_job state,
the printer starts to scale the document and apply color correction. However, in this exam-
ple, as soon as either the color correction or scaling is completed, we are allowed to start
printing the job when OnEvent ev_print_job() is processed. Suppose we want that both
preparation steps are completed before the printer starts printing the job. To achieve this,
a JointState can be used that refers to both states post_cc and post_scaling with an out-
going transition defined for OnEvent ev_print_job(). This only allows the printer to start
printing if both the color correction process and scaling has been completed. In Figure 2.6,
we extend the running example of Figure 2.5 with JointState joint_scaling_cc that en-
sures that the printer only starts printing after both preparation steps are completed.

1 State Machine pr inter
2 namespace cpp . j o r d i . examples . pr inter
3
4 on events
5 ev_submit_job (i : i n t)
6 ev_ f in i sh_ job (<< . . . >>)
7 e v _ f i n i s h _ c o l o r (<< . . . >>)
8 e v _ f i n i s h _ s c a l i n g (<< . . . >>)
9 ev_pr int_ job (<< . . . >>)

10
11 do events
12 a l e r t _ s t a r t e d (i : i n t)
13
14 entry SimpleState i d l e
15 Transitions
16 on ev_submit_job (i)
17 do a l e r t _ s t a r t e d (i)
18 go pr int ing
19 CompositeState pr int ing
20 Transitions
21 entry P a r a l l e l S t a t e preparing_job
22 Transitions
23 entry CompositeState color_correct ion
24 Transitions

25 entry SimpleState pre_cc
26 Transitions
27 on e v _ f i n i s h _ c o l o r ()
28 go post_cc
29 SimpleState post_cc
30 Transitions
31 entry CompositeState scal ing
32 Transitions
33 entry SimpleState pre_scal ing
34 Transitions
35 on e v _ f i n i s h _ s c a l i n g ()
36 go post_scal ing
37 SimpleState post_scal ing
38 Transitions
39 J o i n t S t a t e j o i n t _ s c a l i n g _ c c
40 Transitions
41 on ev_pr int_ job ()
42 go pr int ing_ job
43 Joins post_cc
44 post_scal ing
45 SimpleState pr int ing_ job
46 Transitions
47 on ev_ f in i sh_ job ()
48 go i d l e

(a) Textual Representation

C printing

S idle

J joint_scaling_cc

S printing_job

P preparing_job

C color_correction C scaling

S post_cc

S pre_cc

S post_scaling

S pre_scaling
on ev_submit_job(i) on ev_finish_color() on ev_finish_scaling()
do alert_started(i)

on ev_finish_job() on ev_print_job()

(b) Graphical Representation

Figure 2.6: An SMMT specification consisting of a printer that applies color correction and
scales the job before printing the job

12 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 2. STATE MACHINE MODELLING TOOL

2.2.3.2 Transitions

Zero or more outgoing transitions can be defined for each state of an SMMT specification.
Each outgoing transition consists of an OnEvent for which the transition is defined and an
optional target state. In case no target state is specified, the model interprets the transition
as an internal transition, as indicated by the internal keyword. Furthermore, a guard and
a list of BehavioralActions may be defined for each outgoing transition. A BehavioralAction is
either a DoEvent that is produced as a response to the processed OnEvent, a SelfPost action
to repost the OnEvent that was processed or a Forward action to allow the OnEvent to be
handled by the ancestors of the state for which the Forward action is defined.

The difference between the representations of internal and external transitions are shown
in Figure 2.7. In this example, the transition defined on lines 13 and 14 of the textual repre-
sentation is an internal transition. The transition defined on lines 15 and 16 is an external
transition. In the graphical representation of the SMMT specification, internal transitions
are denoted using the self-loop icon ⟳ and are shown within the state for which the transi-
tion is defined. External transitions are shown with an arrow that exits and enters the state.
When an external transition fires, the exit- and entry-handlers of the state are triggered if
the transition is fired. Internal transitions do not trigger the exit- and entry-handlers of the
state when the internal transition fires.

1 State Machine pr inter
2 namespace cpp . j o r d i . examples . pr inter
3
4 on events
5 ev_a (<< . . . >>)
6 ev_b(<< . . . >>)
7
8 do events
9 << . . . >>

10
11 entry SimpleState state
12 Transitions
13 on ev_a ()
14 go (in terna l)
15 on ev_b ()
16 go state

(a) Textual Representation

S state

on ev_b()

⟳ on ev_a()

(b) Graphical Representation

Figure 2.7: Representations of Internal and External Transitions

An outgoing transition of a state s that is defined for an OnEvent e fires if, and only if,
state s is active when OnEvent e is processed and the guard of this transition evaluates to
true. Furthermore, a transition from state s cannot fire if there exists a nested state of state
s that has a transition that can fire that is defined for OnEvent e. When a transition fires, all
BehavioralActions that are defined for this transition are produced. In Chapter 5 we formally
define which transitions fire when an OnEvent is processed.

The guard of a transition is a boolean expression that may consist of the standard logical
connectives (and, or and not), boolean literals (true and false) and references to the param-
eters of the OnEvent for which the transition is defined. SMMT allows references to custom
typed parameters of the OnEvent for which the transition is defined in the guard. However,
the generated C++ and C# code that is generated from the SMMT specification requires that
the reference is of boolean type. No operators have been implemented in SMMT to compare
the values of custom typed parameters. Hence, we cannot compare custom typed param-
eters and therefore references to custom type variables may cause errors in the generated
C++ and C# code.

Formalising the State Machine Modelling Tool (SMMT) 13

CHAPTER 2. STATE MACHINE MODELLING TOOL

2.2.3.3 Entry- and Exit-Handlers

For each state of an SMMT specification, zero or more entry- and exit-handlers can be de-
fined. Entry- and exit-handlers model behavior that is performed when states are entered
and exited respectively. In the following paragraphs we introduce the entry and the exit
handlers and give an example of both.

Entry Handlers An entry handler specifies the actions that need to be performed when
the state for which the entry handler is defined is entered. SMMT consists of two types of
entry handlers: conditional entry handlers and otherwise entry handlers. Conditional entry
handlers are entry handlers that are defined for an OnEvent e and state s that are triggered
if, and only if, state s is entered by a transition defined for OnEvent e. An otherwise entry
handlers that is defined for a state s fires if, and only if, state s is entered and no conditional
entry handlers are triggered when state s is entered.

Both type of entry handlers consist of zero or more DoEvent and Forward BehavioralAc-
tions that are produced when the entry handler is triggered. Each entry handler can have a
target state to which a transition is instantiated when the handler is triggered. Additionally,
conditional entry handlers can consist of a Forward BehavioralAction. Finally, a guard can be
defined for a conditional entry handler that restricts when the entry handler is triggered.

In Figure 2.8 an SMMT specification is shown that contains entry handlers. State state_b
contains both a conditional and otherwise entry handler. When state state_a is active and
OnEvent ev_a() is processed, DoEvent re_a() is produced on entry of state state_b. Fur-
thermore, if state state_a is active and OnEvent ev_b() is processed then DoEvent re_b()
is produced on entry of state state_b, as there are no conditional entry handlers that are
triggered by OnEvent ev_b().

1 State Machine pr inter
2 namespace cpp . j o r d i . examples . pr inter
3
4 on events
5 ev_a (<< . . . >>)
6 ev_b(<< . . . >>)
7
8 do events
9 re_a (<< . . . >>)

10 re_b (<< . . . >>)
11 re_c (<< . . . >>)
12
13 entry SimpleState state_a
14 Exit Handlers
15 e x i t do re_c ()
16 Transitions
17 on ev_a ()
18 go state_b
19 on ev_b ()
20 go state_b
21 SimpleState state_b
22 Entry Handlers
23 when ev_a ()
24 do re_a ()
25 otherwise
26 do re_b ()
27 Transitions

(a) Textual Representation

S state_a

S state_b

on ev_b()on ev_a()

exit do re_c()

when ev_a() do re_a()
otherwise do re_b()

(b) Graphical Representation

Figure 2.8: An SMMT Specification consisting of Entry and Exit Handlers

14 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 2. STATE MACHINE MODELLING TOOL

Exit Handlers An exit handler specifies the actions that are performed when the state
for which the exit handler is defined is exited. Each exit handler consists of zero or more
DoEvents and SelfPost BehavioralActions that are produced when the exit handler is triggered.
In contrast to entry handlers, exit handlers cannot be defined for a specific OnEvent, nor can
they have guards, Forward BehavioralActions or a target state.

State state_a of the SMMT specification shown in Figure 2.8 contains an exit handler.
When state state_a is active and either OnEvent ev_a() or ev_b() is processed, DoEvent
re_c() is produced when the state is exited.

2.3 Execution
From the models that are designed using the State Machine Modelling Tool, executable C++
and C# code can be generated. The generated code makes use of the SCM library. In SMMT,
the transitions of an SMMT specification are triggered when OnEvents are processed. On-
Events are handled asynchronously using an event queue. A First-In-First-Out (FIFO) policy
is used to dispatch the OnEvents in order of arrival. When an OnEvent occurs, the OnEvent is
added to the end of the event queue. As soon as the first OnEvent is added to the queue,
the OnEvent is processed by the SMMT specification.

When an OnEvent is processed, the replies are temporarily queued. Replies are the Behav-
ioralActions that are produced in response to the received OnEvents. If the OnEvent cannot
be handled by the SMMT specification, an internal software exception is thrown. Whenever
an internal software exception is thrown, the execution of the SMMT specification is termi-
nated. For all transitions that are fired due to the processed OnEvent, the respective exit
handlers are triggered. Next, all queued replies are handled and the transition to the tar-
get states take place. For all states that were entered, the entry handlers are triggered and
the entered states are initiated. This procedure repeats as long as there are OnEvents in the
queue.

The execution state after an OnEvent has been processed is obtained by removing all
states that cannot be active simultaneously with the target state of the transitions that fire.
Next, all target states and ancestors of each target state of the transitions that fire are added
to the execution state. Finally, the obtained execution state is initiated.

Formalising the State Machine Modelling Tool (SMMT) 15

CHAPTER 2. STATE MACHINE MODELLING TOOL

16 Formalising the State Machine Modelling Tool (SMMT)

Chapter 3

Analysis of SMMT

In this section we discuss our analysis on the State Machine Modelling Tool. We spoke with
several engineers at Canon Production Printing that have used SMMT to model software
components, as well as the engineer that developed the State Chart Modelling (SCM) library.
In Section 3.1 we discuss the observations and experiences of the engineers at Canon Pro-
duction Printing regarding the State Machine Modelling Tool. At Canon Production Printing,
at the time of writing, the behavior of 26 software components have been modelled using
SMMT. We discuss our analysis of the existing SMMT specifications in Section 3.2.

3.1 Observations and Experiences of Engineers
As mentioned before, we spoke with several engineers at Canon Production Printing that
have used the State Machine Modelling Tool to model the behavior of software components.
In this section we discuss the observations and experiences of the engineers at Canon Pro-
duction Printing with SMMT that were shared by these engineers through interviews. We
first discuss the insights that we gained through these meetings that are related to the
language of the State Machine Modelling Tool. Next, we discuss the observations and expe-
riences of the engineers regarding the implementation of SMMT in JetBrains MPS and the
usage thereof. Finally, we briefly discuss the testing library of the SCM library that can be
used to test the generated SCM code.

3.1.1 Language of the State Machine Modelling Tool
The engineers that used the State Machine Modelling Tool unanimously agree that the tool
greatly helps with the development of software components. Prior to the introduction of
SMMT, the engineers were required to model the behavior of the software components
directly using the State Chart Modelling (SCM) library or using the Boost C++ library [4, 5].
The State Chart Modelling library is a very powerful library that could directly be used by the
engineers to model the behavior of software components. The absence of restrictions on
the coding patterns and techniques that should be used by these engineers leads to a lack of
uniformity between the developed executable code of different projects. The State Machine
Modelling Tool ensures that the coding style and patterns of the code that are generated for
each project are uniform. The State Machine Modelling Tool restricts the patterns that can
be used to model the behavior of a software component. As a consequence, the executable
code that is generated by the code generator of SMMT is uniform.

Most of the constructs of the SMMT language are deemed intuitive by the engineers
that used the State Machine Modelling Tool. However, most of the engineers that were
interviewed were unfamiliar with constructs like the SelfPost and Forward BehavioralActions.

Formalising the State Machine Modelling Tool (SMMT) 17

CHAPTER 3. ANALYSIS OF SMMT

The documentation only contains an explanation for the most frequently used constructs of
the SMMT language. Constructs like the SelfPost and Forward BehavioralActions that are not
understood by most engineers are either not explained in the documentation or are briefly
discussed without any details.

In SMMT specifications with parallel behavior, there are usually multiple JointStates that
perform the same behavior when executed but refer to different states. The number of
JointStates grows quickly with the number of nested states of each ParallelState. As these
ParallelStates tend to clutter the graphical representation of the SMMT specification, the
engineers would prefer if JointStates that perform the same actions when executed could be
merged using a join clause. This join clause would consist of the disjunction of the joined
states of each JointState.

3.1.2 JetBrains MPS
The State Machine Modelling Tool has been implemented in the JetBrains MPS language
workbench. JetBrains MPS is a language workbench that uses projectional editing. MPS
projects the abstract syntax tree of an SMMT specification into a textual or graphical repre-
sentation of the SMMT specification that can be edited by the engineer. The modifications
that are made in the projections of the SMMT specification are direct modifications in the
abstract syntax tree of that specification. In this section, we discuss the experiences and
observations of the engineers regarding the usage of SMMT in JetBrains MPS.

Learning Curve In contrast to a textual editor, the engineer is not able to freely type code
in the projections of the SMMT specification. Instead, engineers need to insert the con-
structs of SMMT through one of the projections. As most software engineers are familiar
with textual editors, most engineers require some time to get familiar with projectional edit-
ing.

Without prior knowledge on how the engineer is supposed to work with MPS, editing
an SMMT specification could be problematic, as inserting or editing constructs of an SMMT
specification may require several key-binds to be used. For example, to add a transition
from a state s to state t that fires for OnEvent e and produces DoEvent d we would need to
perform the following steps:

1. Hover over the state s, select the transition icon and draw a transition to state t;
2. Select the transition and hit key-bind ctrl+space to select OnEvent e;
3. Select the transition and hit key-bind alt+enter to open the intentions menu;
4. Select "add action" and hit key-bind ctrl+space to select DoEvent d.

As shown by these four steps to add a single transition, the engineer must know various
key-binds to edit an SMMT specification. This is one of the reasons why engineers that are
inexperienced with MPS experience a steep learning curve when editing or creating SMMT
specifications in MPS. As the interfaces of MPS are intuitive and the number of different key-
binds that are used is limited, the engineers tend to familiarise themselves with MPS within
several hours.

Project Setup and Integration To set up a new SMMT project, the engineers are required
to go through a series of steps that are explained in the documentation of SMMT. There is no
option inside MPS to directly set up a new SMMT MPS project. The process to set up a new
project requires the copying and editing of various properties and build files. Due to the lack
of an easy and quick way to set up a new SMMT project in MPS, engineers tend to avoid the
use of the State Machine Modelling Tool when modelling simple software components, as
the overhead of setting up a project would exceed the additional time it takes to manually
implement the code using the SCM library.

18 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 3. ANALYSIS OF SMMT

The integration of the generated executable C++ and C# code is not documented in the
documentation of the State Machine Modelling Tool. Neither does the documentation con-
tain details on how the engineer is supposed to include the SCM library in the file, about how
the state machine of the SMMT specification should be initiated or how the custom types
and reply class should be defined.

Projections of the SMMT Specification The engineers unanimously agree that the graph-
ical representation of SMMT is a great addition to the tool, especially when modelling the
behavior of simple software component. However, the graphical representation is not pow-
erful enough to get a clear overview of more complicated SMMT specifications.

The engineers that are familiar with the State Machine Modelling Tool observe that the
behavior that is modelled by an SMMT specification is not always understood correctly by
engineers that are less familiar with SMMT, especially for SMMT specifications that include
parallel behavior. The engineers would like a projection in SMMT that would allow the engi-
neers to model the parallel behavior in a less cluttered and more comprehensible manner.
Such a projection would be beneficial for the engineers to understand SMMT specifications
that include parallel behavior. Developing such a representation is outside the scope of this
graduation project. Alternatively, a simulation tool to simulate the behavior of the SMMT
specification would help the engineers to understand the behavior of an SMMT specifica-
tion.

The engineers observe that modifications to the projections of SMMT specifications are
processed slowly. For example, when moving a state of an SMMT specification it may take a
couple of seconds before the modification is saved and rendered. Furthermore, some mod-
ifications may break the SMMT specifications. The engineers observed that SMMT specifi-
cations broke when dragging states and transitions in the graphical representation of the
SMMT specification. Furthermore, undoing and redoing actions may cause the SMMT spec-
ification to break.

Due to the problems that arise when editing an SMMT specification in JetBrains MPS,
engineers generally avoid SMMT when they model a simple software component that can
easily be modelled directly using the SCM library. Furthermore, rather than directly using
the State Machine Modelling Tool to model the behavior of software components, the state
machine is in practice first modelled on paper or on a whiteboard after which it is digitalised
using software like Draw.io, PlantUML or Enterprise Architect. When all feedback on the
digitalised version of the state machine has been processed, the state machine is modelled
using the State Machine Modelling Tool. A graphical overview of the modelling process that
is used in practice is shown in Figure 3.1.

Model State Machine on
Paper / Whiteboard

Digitalise State Machine
using Draw.io / PlantUML /

Enterprise Architect
Model State Machine

in MPS (SMMT)

Feedback Loop

Feedback Loop Feedback Loop

Figure 3.1: Graphical Overview of the Modelling Process

Optimally, the behavior of the software component would directly be modelled in an
SMMT MPS project as this would be less time-consuming and less error-prone. In the cur-
rent workflow, the state machine is modelled two times, both using external drawing soft-
ware and in an SMMT MPS project. The external drawing software is considered to be more
flexible than the graphical representation of MPS. Hence, the state machine is only modelled
in an SMMT MPS project after the engineers have finalised the design of the state machine.

Formalising the State Machine Modelling Tool (SMMT) 19

CHAPTER 3. ANALYSIS OF SMMT

3.1.3 SCM Test Library
The SCM library that is used by SMMT to generate executable C++ and C# code has a testing
library that can be used to perform tests on the generated code. Using the SCM Test library,
the engineers model the behavior of the state machine of the SMMT specification that they
want to test as a separate state machine. To test if the behavior of the state machine that
is tested is correct, the output channel of the test state machine and the input channel of
the main state machine are coupled and vice versa. The test state machine sends OnEvents
to the main state machine and listens to the DoEvents that are produced by the main state
machine. In this way, the test state machine can verify whether the correct responses are
received based on the produced OnEvents.

The engineers that were interviewed and were familiar with the SCM Testing library men-
tioned that the library is powerful to test whether the modelled behavior in the SMMT spec-
ification corresponds to what they expect. However, the engineers mention that there are
limitations on the tests that can be run with the testing library.

Unfortunately, the SMMT tooling does not allow the engineers to generate tests auto-
matically using the SCM test library. Therefore, the engineers must create these tests man-
ually, which is a time-consuming process in which errors are easily made.

3.2 Analysis of Existing Models
At Canon Production Printing the State Machine Modelling Tool has been used to model the
behavior of 26 software components. Table 3.2 shows an analysis on the structure of the
SMMT specifications. The table shows for each construct how frequently it occurs in each
SMMT specification. The names of the models have been replaced by the letters A to Z.

From the analysis of the structure of the existing SMMT specifications, we see that only
8 out of the 26 existing SMMT specifications include parallelism. That is, only specifications
J, K, L, N, T, U, V and Z contain states of type ParallelState. As JointStates can only occur as a
nested state of a ParallelState, there are also only 8 out of the 26 existing SMMT specifications
that contain states of type JointState.

An important insight is that the Forward and SelfPost BehavioralActions do not occur in
any of the 26 existing SMMT specifications. As mentioned before, the users of the SMMT
tool that were interviewed were unfamiliar with the Forward and SelfPost BehavioralActions,
which might explain why they are not used in the existing SMMT specifications.

The entry- and exit handlers only occur in the SMMT specifications that contain Parallel-
States, except for SMMT specification Y. Out of the 26 existing SMMT specifications, there
are only 3 specifications that contain conditional entry handlers. Furthermore, there exist
only two SMMT specifications that contain exit handlers. The unfamiliarity of the software
engineers with the entry- and exit handlers may explain why they are rarely used in practice.

3.3 Conclusion
The lack of documentation on the setup, the integration and the constructs of the State
Machine Modelling Tool combined with the steep learning curve of JetBrains MPS has been
found problematic for engineers that are unfamiliar with SMMT and MPS. However, engi-
neers tend to get familiar with MPS rather quickly, therefore we leave this out of the scope
for this graduation project. The lack of documentation on the language of SMMT is a more
severe problem. The engineers that are responsible for maintaining SMMT should improve
and extend the documentation that is currently available. The formal definition that is de-
fined in Chapter 5 could be used as a basis to improve and extend the documentation of
each of the constructs of SMMT.

20 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 3. ANALYSIS OF SMMT
SM

M
T

Sp
ec

ifi
ca

tio
n

Si
m

pl
eS

ta
te

s

Co
m

po
si

te
St

at
es

Pa
ra

lle
lS

ta
te

s

Jo
in

tS
ta

te
s

To
ta

lS
ta

te
s

O
nE

ve
nt

s

D
oE

ve
nt

s

Bo
ol

ea
nP

ar
am

et
er

s

Cu
st

om
Ty

pe
Pa

ra
m

et
er

s

Tr
an

si
tio

ns

D
oE

ve
nt

Ac
tio

ns

Fo
rw

ar
dA

ct
io

ns

Se
lfP

os
tA

ct
io

ns

G
ua

rd
s

Co
nd

iti
on

al
En

tr
y

H
an

dl
er

s

O
th

er
w

is
e

En
tr

y
H

an
dl

er
s

Ex
it

H
an

dl
er

s

A 48 8 0 0 56 51 80 2 35 129 149 0 0 8 0 0 0
B 16 2 0 0 18 22 17 2 0 28 24 0 0 2 0 0 0
C 17 3 0 0 20 21 18 1 0 56 45 0 0 0 0 0 0
D 20 4 0 0 24 21 21 1 0 67 50 0 0 0 0 0 0
E 14 2 0 0 16 19 18 1 6 30 33 0 0 2 0 0 0
F 13 2 0 0 15 18 18 1 6 27 28 0 0 2 0 0 0
G 9 1 0 0 10 12 9 1 0 18 13 0 0 0 0 0 0
H 9 1 0 0 10 11 8 1 0 18 11 0 0 0 0 0 0
I 6 0 0 0 6 6 4 1 0 7 6 0 0 0 0 0 0
J 32 7 1 5 45 38 38 8 2 67 63 0 0 18 0 8 0
K 26 6 1 14 47 35 35 3 2 59 63 0 0 8 0 14 0
L 49 10 1 23 83 55 41 8 8 133 100 0 0 16 0 9 0
M 12 3 0 0 15 16 13 4 0 31 30 0 0 8 0 0 0
N 14 3 1 13 31 8 12 0 0 15 19 0 0 0 3 18 0
O 14 1 0 0 15 20 15 2 0 25 22 0 0 2 0 0 0
P 12 0 0 0 12 10 11 0 0 14 14 0 0 0 0 0 0
Q 4 0 0 0 4 5 4 4 0 20 6 0 0 6 0 0 0
R 2 0 0 0 2 4 1 1 0 8 4 0 0 0 0 0 0
S 9 1 0 0 10 8 5 3 0 32 19 0 0 10 0 0 0
T 17 9 2 3 31 15 8 3 0 34 12 0 0 2 0 6 1
U 27 13 1 9 50 22 14 7 0 80 24 0 0 20 0 18 0
V 22 6 1 9 38 13 15 2 16 40 16 0 0 6 2 19 2
W 30 1 0 0 31 24 39 0 0 72 68 0 0 0 0 0 0
X 5 0 0 0 5 4 4 1 0 18 5 0 0 2 0 0 0
Y 5 1 0 0 6 7 7 1 17 13 12 0 0 0 1 0 0
Z 14 3 1 13 31 8 8 0 0 15 12 0 0 0 0 18 0∑

446 87 9 89 631 473 463 58 92 1056 848 0 0 112 6 110 3

Figure 3.2: Structural Analysis on the existing SMMT Specifications

Formalising the State Machine Modelling Tool (SMMT) 21

CHAPTER 3. ANALYSIS OF SMMT

Based on the analysis of the existing SMMT specifications, we define the following order
in which the constructs of SMMT are formalised: SimpleStates, CompositeStates, Transitions
(without guards and BehavioralActions), ParallelStates, JointStates, Transitions (with guards
and DoEvents), Otherwise Entry Handlers, Conditional Entry Handlers and Exit Handlers.
Due to a lack of time, the SelfPost BehavioralActions and Forward BehavioralActions are not
supported by the translation that we have defined.

The projections of the SMMT Specifications that exist in the State Machine Modelling
Tool are sufficient for visualizing simple SMMT specifications but are not powerful enough
to visualize the parallel behavior of SMMT specifications. A visualization that could visualize
the parallel behavior of an SMMT specification would help the engineers to understand the
SMMT specification. Alternatively, a simulation tool could help as well in understanding an
SMMT specification. Using the mCRL2 language and toolset, LTSs can be generated that
visualise the behavior of an SMMT specification. Furthermore, the toolset contains a tool
that can be used to simulate the behavior of the mCRL2 specification. Unfortunately, this
does not allow the engineer to simulate the SMMT specification in MPS directly. Having a
simulation tool within MPS that would simulate the SMMT specification using for example
the graphical representation of the SMMT specification would be more beneficial for the
engineers. Nevertheless, the views that can be generated using the mCRL2 toolset and the
simulation tool of the mCRL2 toolset can be useful for the engineers to debug and analyse
the behavior of the SMMT specification that they modelled.

The SCM library that is used by the generated executable code consists of a testing library
that can be used to perform tests on the generated code. However, the test cases that can
be defined using this testing library are limited. This shows why expanding the State Ma-
chine Modelling Tool with a translation to mCRL2 specifications is beneficial, as the mCRL2
toolset allows us to verify properties on the mCRL2 specification that cannot be verified us-
ing the testing library of the SCM library. Furthermore, as the tests that are defined using
the SCM testing library cannot be generated from SMMT and thus must be defined manu-
ally, testing is a time-consuming and error-prone task. Using an automated translation to
mCRL2 specification, these properties can automatically be tested on the mCRL2 specifica-
tion. A disadvantage of performing tests via mCRL2 specifications is that this requires the
engineers to know how properties can be expressed as a modal mu-calculus formula.

22 Formalising the State Machine Modelling Tool (SMMT)

Chapter 4

Mathematical Preliminaries

In Chapter 5 we formally define the SMMT language. To define the syntax and semantics
of SMMT specifications, we need to introduce some definitions. We first define the notation
used for lists and define the unique existential quantifier. We define a child relation and define
the notion of a subregion. Finally, we define labelled transition systems (LTSs) that are used to
define the semantics of an SMMT specification.

First we define some notation that is used in the remainder of this report to reason about
lists. The length of a list L is denoted by |L|. We write L[i] to denote the value in list L at index
i, where 0 ≤ i < |L|. The first element in a list has index 0. We write x ∈ L if there exists an
index i, 0 ≤ i < |L|, such that L[i] = x.

We define the unique existential quantifier to express whether there exists exactly one
element in the domain that satisfies a predicate.

Definition 1 (Unique Existential Quantifier). Let X be a set of variables and let P (x) be a
predicate over a variable x ∈ X. The unique existential quantifier, denoted by ∃!, is defined
as follows:

(∃!x ∈ X : P (x)) ⇔ (∃x ∈ X : (P (x) ∧ (¬∃x′ ∈ X : P (x′) ∧ x ̸= x′)))

We define a child relation that defines how the states in a hierarchically structured setting
are related. This relation allows us to reason about the children, parent, descendants and
ancestors of a state in a set of states.

Definition 2 (Child Relation). We define a child relation ⊏ ⊆ S × S as a relation over some
set of states S. For any s, s′ ∈ S, we say that s is a child of s′ and s′ is a parent of s if, and only
if, s ⊏ s′. Furthermore, we define the descendant relation ⊏+ as the transitive closure of child
relation ⊏. We say that s is a descendant of s′ and s′ is an ancestor of s if, and only if, s ⊏+ s′.
We define ⊏∗ as the reflexive transitive closure of child relation ⊏. Constraints 1 and 2 must
hold on child relation ⊏:

Constraint 1: A state has at most 1 parent, formally expressed as:

∀s, s′, s′′ ∈ S : (s ⊏ s′ ∧ s ⊏ s′′) ⇒ (s′ = s′′)

Constraint 2: For any state s ∈ S it holds that s cannot be an ancestor of itself, that is:

∀s ∈ S : s ̸⊏+ s

Formalising the State Machine Modelling Tool (SMMT) 23

CHAPTER 4. MATHEMATICAL PRELIMINARIES

r

a

b c

d e f

g

Figure 4.1: Child Relation ⊏

Example 1 (Child Relation). Let S = {a,b,c,d,e,f,g,r} be a set of states and let

⊏ = {(a,r), (b,a), (c,a), (d,b), (e,b), (f,c), (g,d)}

be the child relation defined over S. Child relation ⊏ has been visualized in Figure 4.1. We
have that state b has children d and e and descendants d, e and g. Furthermore, state b has
parent a and ancestors a and r.

Using the definition of a child relation over some set of states S, we can define the notion
of a subregion of a state in s ∈ S. We define a subregion of a state s ∈ S as a set consisting
of state s and all descendants of s.

Definition 3 (Subregion). Let ⊏ be a child relation over some set of states S. The subregion
of a state s′ ∈ S is defined as the set consisting of state s′ and all descendants of s′. We
define the subregion of a state s′ ∈ S using function SR(S, s′), which is defined as follows:

SR(S, s′) = {s ∈ S | s ⊏∗ s′}

Example 2 (Subregion). Let S be the set of states and ⊏ be the child relation as defined in
Example 1. We have that:

SR(S,r) = S SR(S,d) = {d,g}
SR(S,a) = {a,b,c,d,e,f,g} SR(S,e) = {e}
SR(S,b) = {b,d,e,g} SR(S,f) = {f}
SR(S,c) = {c,f} SR(S,g) = {g}

To formally define the behavior of an SMMT specification, we define labelled transition
systems (LTSs).

Definition 4 (Labelled Transition System (LTS)). A Labelled Transition System (LTS) is a tuple
(ST,L,→, s0), where ST is the set of states, L is the set of actions, →⊆ ST × L × ST is the
set of transitions and s0 ∈ ST is the initial state.

In this paper we use the commonly used notation s
a−→ s′ for (s, a, s′) ∈ →.

24 Formalising the State Machine Modelling Tool (SMMT)

Chapter 5

Formal Definition of SMMT

In this chapter we formally define a subset of the language of the State Machine Mod-
elling Tool. This subset consists of SimpleStates, CompositeStates, ParallelStates and transi-
tions without guards or BehavioralActions. Due to time constraints we have not been able to
formally define the syntax and semantics of the complete set of constructs of SMMT.

The formal definition of SMMT that is presented in this chapter is derived from the dis-
cussions with the engineers at Canon Production Printing and the analysis of the code gen-
erator, the generated code and the SCM library. Furthermore, the developer of the SCM
library mentioned several restrictions that are not implemented in SMMT, which should be
satisfied by all SMMT specifications. These restrictions have been included in the formal
definition of SMMT.

We create a mathematical model of the syntax of an SMMT specification in Section 5.1
considering only states of type SimpleState and CompositeState and transitions without guards
and BehavioralActions. Using the mathematical model of the syntax of SMMT, we specify the
behavior of an SMMT specification by defining the operational semantics. The operational
semantics is defined in Section 5.2. In Section 5.3, we extend the syntax and semantics of
SMMT specifications with states of type ParallelState.

In the remainder of this report we denote variables using lowercase letters (e.g., a, b, c),
functions using calligraphic, capital letters (e.g., A,B, C), sets using capital letters (e.g., A,B,C)
and lists using blackboard, capital letters (e.g., A,B,C). We write L(X) to denote sets of lists
of type X. Furthermore, we write ∅ and [] to denote the empty set and list respectively.

To explain the definitions presented in this chapter, we use a running example as shown
in Figure 5.1. The SMMT specification shown in Figure 5.1 corresponds to the SMMT specifi-
cation as shown in Figure 2.4 without BehavioralActions and parameters.

Formalising the State Machine Modelling Tool (SMMT) 25

CHAPTER 5. FORMAL DEFINITION OF SMMT

1 State Machine pr inter
2 namespace cpp . j o r d i . examples . pr inter
3

4 on events
5 ev_pr int_ job (<< . . . >>)
6 ev_ f in ish_ job (<< . . . >>)
7 e v _ f i n i s h _ c o l o r (<< . . . >>)
8 ev_submit_job (<< . . . >>)
9

10 do events
11 << . . . >>
12

13 entry SimpleState i d l e
14 Transitions
15 on ev_submit_job ()
16 go pr int ing
17 CompositeState pr int ing
18 Transitions
19 entry CompositeState color_correct ion
20 Transitions
21 on ev_pr int_ job ()
22 go pr int ing_ job
23 entry SimpleState pre_cc
24 Transitions
25 on e v _ f i n i s h _ c o l o r ()
26 go post_cc
27 SimpleState post_cc
28 Transitions
29 on ev_pr int_ job ()
30 go pr int ing_ job
31 SimpleState pr int ing_ job
32 Transitions
33 on ev_ f in i sh_ job ()
34 go i d l e

(a) Textual Representation

S idle

C printing

C color_correction

S post_cc

S pre_cc

S printing_job

on ev_submit_job()

on ev_print_job()on ev_print_job()

on ev_finish_color()

on ev_finish_job()

(b) Graphical Representation

Figure 5.1: An SMMT specification consisting of a printer that applies color correction before
printing a job

26 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

5.1 Abstract Syntax of an SMMT Specification
In this section we present the mathematical model of the abstract syntax of an SMMT spec-
ification. This mathematical model consists only of states of type SimpleState, states of
type CompositeState and transitions without guards or BehavioralActions. The mathematical
model of an SMMT specification as given in Definition 5 adheres closely to the implementa-
tion of SMMT in Jetbrains MPS.

Definition 5 (SMMT Specification). The abstract syntax of an SMMT specification can math-
ematically be defined using a tuple M = ⟨E,SS , SC , ES,⊏, T ⟩ where:

• E is the set of OnEvents of the SMMT specification.

• SS and SC are the set of SimpleStates and the set of CompositeStates of the SMMT spec-
ification respectively. Sets SS and SC are disjoint, that is: SS ∩ SC = ∅.

• ES ⊆ SS ∪ SC is the set of entry states of the SMMT specification.

• ⊏ ⊆ S × S is a child relation (Definition 2), where S = SS ∪ SC .

• T : S → L(E × S) associates each state s ∈ S with the list of outgoing transitions of
state s, where S = SS ∪ SC . Each outgoing transition ⟨e, s′⟩ ∈ T (s) of a state s ∈ S
consist of target state s′ ∈ S and an OnEvent e ∈ E.

The implementation of SMMT uses the sequence type of MPS [22] to define the col-
lection of states, OnEvents and outgoing transitions for each state. SMMT requires that all
states and all OnEvents of an SMMT specification are unique. Furthermore, the ordering of
the states and OnEvents does not affect the operational semantics of an SMMT specification.
Hence, we represent the collection of states and OnEvents using sets in the mathematical
model of an SMMT specification (Definition 5). As SMMT does allow each state to have mul-
tiple outgoing transitions that are defined for the same OnEvent and target state, we cannot
represent the collection of outgoing transitions of each state using a set. Hence, we rep-
resent the outgoing transitions of each state using a list in the mathematical model of an
SMMT specification (Definition 5).

Example 3 (SMMT Specification). Using the mathematical model of Definition 5, the SMMT
specification of the running example in Figure 5.1 can be expressed as a tuple
M = ⟨E,SS , SC , ES,⊏, T ⟩, where:

• E = {ev_print_job(), ev_finish_job(), ev_finish_color(), ev_submit_job()}

• SS = {idle,pre_cc,post_cc,printing_job}

• SC = {printing,color_correction}

• ES = {idle, pre_cc, color_correction}

• ⊏ = {(color_correction,printing), (printing_job,printing),
(pre_cc,color_correction), (post_cc,color_correction)}

• T (idle) = [⟨ev_submit_job(),printing⟩]

• T (printing) = []

• T (color_correction) = [⟨ev_print_job(),printing_job⟩]

• T (pre_cc) = [⟨ev_finish_color(),post_cc⟩]

• T (post_cc) = [⟨ev_print_job(),printing_job⟩]

Formalising the State Machine Modelling Tool (SMMT) 27

CHAPTER 5. FORMAL DEFINITION OF SMMT

• T (printing_job) = [⟨ev_finish_job(),idle⟩]

Descendant relation ⊏+ is the transitive closure of child relation ⊏. Hence, for SMMT speci-
fication M, the descendant relation is defined as follows:

• ⊏+ = {(color_correction,printing), (pre_cc,printing),
(post_cc,printing), (printing_job,printing),
(pre_cc,color_correction), (post_cc,color_correction)}

To reason about the set of states of an SMMT specification M = ⟨E,SS , SC , ES,⊏, T ⟩, we
introduce function S(M) that returns the set consisting of all states of SMMT specification M.

Definition 6 (Set of States). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification. The set
of all states of an SMMT specification M, denoted by S(M), is defined as follows:

S(M) = SS ∪ SC

In the remainder of this section, we discuss the restrictions on the set of states S(M),
the set of entry states ES, child relation ⊏ and on the transition relation T . Furthermore, we
define the entry child and the entry descendant relation that are used to define the operational
semantics of an SMMT specification in Section 5.2.

Restriction on the set of states S(M)

An SMMT specification that has no states cannot have any transitions either. As mentioned in
Chapter 2, the execution of an SMMT specification is terminated if an OnEvent is processed
for which no transition is defined from some state. Therefore, the execution of an SMMT
specification without states will terminate when any OnEvent is processed. Hence, it is not
relevant to define the semantics of an SMMT specification without any states. We require
the set of states of an SMMT specification to be non-empty, as defined by Restriction 1.

Restriction 1 (Non-Empty Set of States). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT speci-
fication. We require that the set of states of SMMT specification M is non-empty, that is we
require that the following restriction holds:

S(M) ̸= ∅

Restrictions on the set of entry states ES

As mentioned in Chapter 2, the region of an SMMT specification puts restrictions on the
entry set of an SMMT specification. Namely, the set of entry states must contain exactly one
state that has no parent and it must contain exactly one child for each CompositeState in the
set of entry states.

To define the restrictions on the set of entry states ES of an SMMT specification, we
introduce the notion of a root state as a state that has no parent. In Definition 7, we define
the set of root states R(M) ⊆ S(M) of an SMMT specification M.

Definition 7 (Root State). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification. The set of
root states R(M) ⊆ S(M) of SMMT specification M is defined as follows:

R(M) = {s ∈ S(M) | ¬∃s′ ∈ S(M) : s ⊏ s′}

Example 4 (Root State). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be the SMMT specification of the run-
ning example (Figure 5.1). For SMMT specification M we have that:

R(M) = {idle,printing}

28 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

Using the definition of a root state, we can formally define the restrictions on the set of
entry states ES of an SMMT specification as defined in Restrictions 2 and 3.

Restriction 2 (Exactly One Entry Root State). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT spec-
ification. We require that there exists exactly one state in the set of entry states ES of SMMT
specification M that is a root state. Hence, the following condition must hold:

∃!s ∈ ES : s ∈ R(M)

Restriction 3 (A CompositeState has exactly one entry child). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be
an SMMT specification. For each CompositeState s′ ∈ SC of SMMT specification M, exactly one
child s ∈ S(M) of CompositeState s′ must be contained in the set of entry states ES. Hence,
the following condition must hold:

∀s′ ∈ SC
: (∃!s ∈ ES : s ⊏ s′)

Restrictions on the child relation ⊏

As mentioned in Chapter 2, the different types of states put restrictions on the child rela-
tion ⊏. That is, a SimpleState has no children and a CompositeState has at least one child.
By Restriction 3 it follows that each CompositeState has at least one child. We require that
Restriction 4 must hold on each SMMT specification.

Restriction 4 (A SimpleState has no children). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT spec-
ification. For all SimpleStates s′ ∈ SS , there exists no state s ∈ S(M) such that state s is a child
of state s′, formally expressed as:

∀s′ ∈ SS
: (¬∃s ∈ S(M) : s ⊏ s′)

Restriction on the transition relation T

We only consider SMMT specifications for which all states have at most 1 transition defined
for each OnEvent e ∈ E as defined by Restriction 5. That is, this restriction ensures that the
behavior of the SMMT specification is deterministic.

Restriction 5 (Deterministic Transitions). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specifi-
cation. For each state s ∈ S(M) there may only be at most one transition t ∈ T (s) for each
OnEvent e ∈ E, formally expressed as:

∀s ∈ S(M) :
(
∀e ∈ E :

∣∣∣{0 ≤ i < |T (s)|
∣∣ ∃s′ ∈ S(M) : ⟨e, s′⟩ = T (s)[i]

}∣∣∣ ≤ 1
)

Hence, by Restriction 5 all outgoing transitions that are defined for each state s ∈ S(M)
are unique. The order of the transitions per state does not affect the operational semantics
of an SMMT specification. Therefore, we can interpret the list of transitions per state as a
set.

Entry Child Relation ⊏ES and Entry Descendant Relation ⊏+
ES

We introduce the notion of an entry child. Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specifi-
cation. A state s ∈ S(M) is an entry child of state s′ ∈ S(M) if, and only if, state s is a child of
state s′ and state s is an entry state. We define the entry child function EC(M, s′) that returns
the set of entry children of a state s′ ∈ S(M).

By Restriction 3 we have that there always exists exactly one entry child for each Compos-
iteState s′ ∈ S(M). Hence, function EC(M, s′) returns a set consisting of exactly one state for
each CompositeState s′ ∈ SC . Furthermore, for each SimpleState s′ ∈ SS , the function returns
the empty set as a SimpleState has no children by Restriction 4.

Formalising the State Machine Modelling Tool (SMMT) 29

CHAPTER 5. FORMAL DEFINITION OF SMMT

Definition 8 (Entry Child Function). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification.
For any state s′ ∈ S(M), the set of entry children EC(M, s′) is defined as follows:

EC(M, s′) = {s ∈ ES | s ⊏ s′}

Example 5 (Entry Child Function). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be the SMMT specification
as shown in Figure 5.1. For all CompositeStates s′ ∈ SC , the set of entry children EC(M, s′) is
defined as follows:

EC(M,printing) = {color_correction}
EC(M,color_correction) = {pre_cc}

To simplify future definitions, we define an entry child relation ⊏ES in Definition 9 based
on the entry child function EC(M, s′).
Definition 9 (Entry Child Relation ⊏ES). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specifica-
tion. We define entry child relation ⊏ES such that s ⊏ES s′ if, and only if, state s ∈ S(M) is the
entry child of state s′ ∈ S(M), that is:

∀s,s′ ∈ S(M) : s ⊏ES s′ ⇔ s ∈ EC(M, s′)

Note that, the entry child relation ⊏ES can be defined as the intersection of the child rela-
tion ⊏ and the Cartesian product of the set of entry states ES and the set of CompositeStates
SC .
Lemma 1 (Entry Child Relation ⊏ES). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification.
The entry child relation ⊏ES as defined in Definition 9 is equivalent to ⊏ ∩ (ES × SC), that
is:

⊏ES ≡ ⊏ ∩ (ES × SC)

The proof of Lemma 1 can be found in Appendix A.
Example 6 (Entry Child Relation). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be the SMMT specification of
the running example (Figure 5.1). In Example 5 we defined the entry child function for the
running example. Hence, the entry child relation ⊏ES is defined as follows:

⊏ES = {(color_correction,printing), (pre_cc,color_correction)}

Note that this is indeed equivalent to ⊏ ∩ (ES × SC), since we have that:

⊏ = {(color_correction,printing), (printing_job,printing),
(pre_cc,color_correction), (post_cc,color_correction)}

(ES × SC) = {(idle,printing), (idle,color_correction),
(color_correction,printing), (color_correction,color_correction),
(pre_cc,printing), (pre_cc,color_correction)}

Using the entry child relation, we define the entry descendant relation. A state s ∈ S(M) is
an entry descendant of state s′ ∈ S(M) if, and only if, state s is a descendant of state s′, state s
is an entry state and all states that are both an ancestor of state s and a descendant of state
s′ are entry states. We define the entry descendant relation in Definition 10.
Definition 10 (Entry Descendant Relation ⊏+

ES). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT
specification. We define the entry descendant relation ⊏+

ES as the transitive closure of the
entry child relation ⊏ES .
Example 7 (Entry Descendant Relation). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be the SMMT specifi-
cation of the running example (Figure 5.1). For the running example, the entry child relation
⊏ES has been defined in Example 6. Hence, the entry descendant relation ⊏+

ES of the run-
ning example is defined as follows:

⊏+
ES = {(color_correction,printing), (pre_cc,printing), (pre_cc,color_correction)}

30 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

5.2 Semantics of an SMMT Specification
In this section we define the operational semantics of an SMMT specification consisting of
SimpleStates, CompositeStates and transitions without guards or BehavioralActions. We first
introduce the notion of an execution state. An execution state describes a set of states in
which the SMMT specification can be when the specification is executed. We say that a state
is active if, and only if, the state occurs in the execution state of an SMMT specification.

Set of Execution States EXS(M)

When executing an SMMT specification M = ⟨E,SS , SC , ES,⊏, T ⟩, we have that exactly one of
the root states of SMMT specification M must be in the execution state at any point in time.
Furthermore, for each CompositeState s′ ∈ SC in execution state EX ⊆ S(M), there must be
exactly one child s ∈ S(M) of s′ in EX. Finally, if a state t ∈ S(M) is contained in execution
state EX, then all ancestors t′ ∈ S(M) of state t must be contained in execution state EX.
We define the set of all execution states EXS(M) of SMMT specification M in Definition 11.

Definition 11 (Set of Execution States). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specifica-
tion. The set of execution states of SMMT specification M, EXS(M), is defined as follows:

EXS(M) = {EX ⊆ S(M) | (∃!r ∈ EX : r ∈ R(M))

∧ (∀s′ ∈ (SC ∩ EX) : (∃!s ∈ S(M) : s ⊏ s′ ∧ s ∈ EX))

∧ (∀t ∈ EX : (∀t′ ∈ S(M) : t ⊏
+ t′ ⇒ t′ ∈ EX))}

Example 8 (Set of Execution States). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be the SMMT specifica-
tion of the running example (Figure 5.1). The set of execution states EXS(M) of the running
example is defined as follows:

EXS(M) = {{idle}, {printing,color_correction,pre_cc},
{printing,color_correction,post_cc}, {printing,printing_job}}

By Definition 11 it follows that the set of execution state EXS(M) contains exactly one
execution state for each SimpleState s ∈ SS . Furthermore, each execution stateEX ∈ EXS(M)
consists of exactly one SimpleState s ∈ SS and all ancestors of s.

Lemma 2 (Execution State). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification. The
set of execution states EXS(M) consists of exactly one execution state for each SimpleState
s ∈ SS that contains state s and all ancestors of state s. Hence, the set of execution states
can be derived as follows:

EXS(M) ≡
⋃

s ∈ SS

{
{s′ ∈ S(M) | s ⊏∗ s′}

}
The proof of Lemma 2 can be found in Appendix A.

Initial Execution State I(M)

The initial execution state of an SMMT specification M = ⟨E,SS , SC , ES,⊏, T ⟩ consists of all
entry states s ∈ ES of which all ancestors are contained in the set of entry states ES. We
define the initial execution state I(M) of SMMT specification M in Definition 12.

Definition 12 (Initial Execution State). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specifica-
tion. The initial execution state I(M) of SMMT specification M is defined as:

I(M) = {s ∈ ES | ∀s′ ∈ S(M) : s ⊏
+ s′ ⇒ s′ ∈ ES}

Formalising the State Machine Modelling Tool (SMMT) 31

CHAPTER 5. FORMAL DEFINITION OF SMMT

Example 9 (Initial Execution States). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be the SMMT specification
of the running example (Figure 5.1). The initial execution state I(M) ∈ EXS(M) of SMMT
specification M is defined as follows:

I(M) = {idle}

Lemma 3 (Initial Execution State is an Execution State). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an
SMMT specification. The initial execution state I(M) is an execution state, that is:

I(M) ∈ EXS(M)

The proof of Lemma 3 can be found in Appendix A.

Set of Prioritised Transitions PT (M, EX)

When an OnEvent e ∈ E is processed in execution state EX ∈ EXS(M), there could exist
multiple states s ∈ EX that have a transition defined for OnEvent e. A transition can only fire
from the deepest nested state s ∈ EX that has a transition defined for OnEvent e ∈ E. By
Lemma 2, it follows that all states in execution state EX are related by descendant relation
⊏+. Hence, there exists at most one deepest nested state s ∈ EX that has a transition
defined for OnEvent e. We refer to the transition that is defined for this state s and OnEvent
e as the prioritised transition for OnEvent e in execution state EX.

For an execution state EX ∈ EXS(M) we define the set of prioritised transitions over
execution state EX as the union of all prioritised transitions of each state s ∈ EX. We
define the set of prioritised transitions over an execution state in Definition 13.

Definition 13 (Prioritised Transitions). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specifica-
tion. For each execution state EX ∈ EXS(M), the set of prioritised transitions PT (M, EX) is
defined as follows:

PT (M, EX) =
⋃

s ∈ EX

{⟨e, s′⟩ ∈ T (s) | ¬∃x ∈ EX : (x ⊏+ s ∧ (∃x′ ∈ S(M) : ⟨e, x′⟩ ∈ T (x)))}

Furthermore, we define PT e(M, EX) as the set consisting of the target states of priori-
tised transitions in PT (M, EX) that are defined for OnEvent e ∈ E. For an SMMT specification
M in execution state EX ∈ EXS(M), PT e(M, EX) is defined as follows:

PT e(M, EX) = {s′ ∈ S(M) | ⟨e, s′⟩ ∈ PT (M, EX)}

By Restriction 5 it follows that setPT e(M, EX) contains at most one state for each OnEvent
e ∈ E and execution state EX ∈ EXS(M).

Example 10 (Prioritised Transitions). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be the SMMT specification
of the running example (Figure 5.1). The set of prioritised transitions of execution state
EX = {printing,color_correction} is defined as follows:

PT (M, EX) = {⟨ev_finish_color(),post_cc⟩, ⟨ev_start_printing(),printing_job⟩}

Furthermore, we have that:

PT ev_finish_color()(M, EX) = {post_cc}
PT ev_start_printing()(M, EX) = {printing_job}

32 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

Enabled OnEvents

Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification. When an OnEvent e ∈ E is processed
in execution state EX ∈ EXS(M), the transitions in PT (M, EX) that are defined for OnEvent e
fire. We say that an OnEvent is enabled if, and only if, a transition is defined for OnEvent e in
the set of prioritised transitions PT (M, EX). That is, OnEvent e ∈ E is enabled in execution
state EX ∈ EXS(M) if the set of prioritised transitions that are defined for OnEvent e is non-
empty.

Definition 14 (Enabled OnEvent). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification
and EX ∈ EXS(M) be the execution state of SMMT specification M. Function E(M, EX, e)
determines whether OnEvent e ∈ E of SMMT specification M is enabled in execution state
EX ∈ EXS(M), which is defined as follows:

E(M, EX, e) = (PT e(M, EX) ̸= ∅)

Example 11 (Enabled OnEvent). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be the SMMT specification of
the running example (Figure 5.1) in execution state EX = {printing,color_correction,
pre_cc}. In execution stateEX, only OnEvents ev_finish_color() and ev_print_job()
are enabled.

Let M = ⟨E,SS , SC , ES,⊏, T ⟩be an SMMT specification andEX ∈ EXS(M)be the execution
state of SMMT specification M. By Restriction 5 we have that each state in execution state
EX has at most one transition defined for each OnEvent e ∈ E. Furthermore, by Lemma 2
and the definition of an enabled OnEvent (Definition 14) it follows that there exists only one
deepest nested state s ∈ EX that has a transition defined for enabled OnEvent e. Hence, the
set of prioritised transitions of SMMT specification M in execution state EX contains exactly
one prioritised transition for each enabled OnEvent e ∈ E.

Lemma 4 (Exactly One Prioritised Transition for an enabled OnEvent). Let M = ⟨E,SS , SC , ES,⊏
, T ⟩ be an SMMT specification. The set of prioritised transitions PT e(M, EX) contains exactly
one target state if OnEvent e ∈ E is enabled in execution state EX ∈ EXS(M), that is:

∀EX ∈ EXS(M) : (∀e ∈ E : (E(M, EX, e) ⇒ (|PT e(M, EX)| = 1)))

The proof of Lemma 4 can be found in Appendix A.

Execution State Update ESU(M)

When an enabled OnEvent is processed by an SMMT specification, the execution state is
updated to the set consisting of the target states of the transition that fires and all ancestors
and entry descendants of this target state. We define the execution state update function
ESU(M, EX, e) that defines the execution state after an enabled OnEvent e ∈ E is processed
in execution state EX ∈ EXS(M).

Definition 15 (Execution State Update). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specifica-
tion. The execution state update function ESU(M, EX, e) defines the execution state after an
enabled OnEvent e ∈ E is processed in execution state EX ∈ EXS(M), which is defines as
follows:

ESU(M, EX, e) = {s ∈ S(M) | ∃s′ ∈ PT e(M,EX) : s
′ ⊏+ s ∨ s ⊏∗

ES s′}

where ⊏∗
ES is the reflexive transitive closure of entry child relation ⊏ES .

Formalising the State Machine Modelling Tool (SMMT) 33

CHAPTER 5. FORMAL DEFINITION OF SMMT

Example 12 (Execution State Update). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be the SMMT specifi-
cation of the running example (Figure 5.1). When enabled OnEvent ev_print_job() is
processed in execution state EX = {printing,color_correction,post_cc} then the
execution state updated as defined by the execution state update function ESU(M, EX, e):

ESU(M, EX,ev_start_printing()) = {printing,printing_job}

The set of active states after OnEvent e ∈ E is processed in execution state EX ∈ EXS(M),
ESU(M, EX, e), is an execution state if OnEvent e is an enabled OnEvent.

Lemma 5 (Execution State Update returns an Execution State). Let M = ⟨E,SS , SC , ES,⊏, T ⟩
be an SMMT specification. For each execution state EX ∈ EXS(M) and each enabled OnEvent
e ∈ E, ESU(M, EX, e) is an execution state, that is:

∀EX ∈ EXS(M) : (∀e ∈ E : (E(M, EX, e) ⇒ (ESU(M, EX, e) ∈ EXS(M))))

The proof of Lemma 5 can be found in Appendix A.

Operational Semantics

When an OnEvent e ∈ E is processed in execution state EX ∈ EXS(M) that is not enabled,
an internal software exception is thrown and the execution of the SMMT specification is
terminated. To denote that the execution of the SMMT specification has terminated, we
introduce a failure state F that is reached if the execution is terminated. Failure state F has
a self-loop with action FAIL to indicate that a failure occurred during execution.

The operational semantics of an SMMT specification M = ⟨E,SS , SC , ES,⊏, T ⟩ is defined in
Definition 16.

Definition 16 (Operational Semantics). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specifica-
tion. The operational semantics of SMMT specification M is given by LTS L = ⟨ST,L,→, s0⟩,
where:

• ST = EXS(M) ∪ {F}

• L = E ∪ {FAIL}

• → ⊆ ST × L× ST such that for all EX,EX ′ ∈ EXS(M) and e ∈ E we have that:

– EX
e−→ EX ′ if, and only if, E(M, EX, e) ∧ EX ′ = ESU(M, EX, e)

– EX
e−→ F if, and only if, ¬E(M, EX, e)

– F FAIL−−−→ F

• s0 = I(M)

34 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

Example 13 (Operational Semantics). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be the SMMT specifica-
tion of the running example of Figure 5.1 as given in Example 3. The operational semantics
of SMMT specification M is denoted using the LTS that is shown in Figure 5.2.

{idle}
{printing,

color_correction,
pre_cc}

{printing,
color_correction,

post_cc}

{printing,
printing_job}

F

FAIL

ev_submit_job() ev_finish_color()

ev_finish_job() ev_print_job()

ev_print_job()

ev_submit_job() ev_finish_job()

ev_finish_job()
ev_finish_color()

ev_print_job()

ev_finish_job()
ev_finish_color()

ev_submit_job()

ev_finish_color()
ev_submit_job()
ev_print_job()

Figure 5.2: Operational Semantics denoted using an LTS for the Running Example (Figure
5.1)

Formalising the State Machine Modelling Tool (SMMT) 35

CHAPTER 5. FORMAL DEFINITION OF SMMT

5.3 Parallel States
In this section we extend our formal definition of SMMT as presented in Sections 5.1 and 5.2
with states of type ParallelState. We expand the example in Figure 2.5 with an error state in
Figure 5.3. The example in Figure 5.3 is used as a running example to explain the definitions
that are presented in this section.

1 State Machine pr inter
2 namespace cpp . j o r d i . examples . pr inter
3

4 on events
5 ev_pr int_ job (<< . . . >>)
6 ev_ f in i sh_ job (<< . . . >>)
7 e v _ f i n i s h _ c o l o r (<< . . . >>)
8 e v _ f i n i s h _ s c a l i n g (<< . . . >>)
9 ev_resolve_error (<< . . . >>)

10 ev_reset_error (<< . . . >>)
11 ev_color_error (<< . . . >>)
12 ev_submit_job (<< . . . >>)
13

14 do events
15 << . . . >>
16

17 entry SimpleState i d l e
18 Transitions
19 on ev_submit_job ()
20 go pr int ing
21 CompositeState error
22 Transitions
23 entry SimpleState unresolved
24 Transitions
25 on ev_resolve_error ()
26 go resolved
27 SimpleState resolved
28 Transitions
29 on ev_reset_error ()
30 go i d l e
31 CompositeState pr int ing

32 Transitions
33 entry P a r a l l e l S t a t e preparing_job
34 Transitions
35 entry CompositeState color_correct ion
36 Transitions
37 on ev_color_error ()
38 go error
39 entry SimpleState pre_cc
40 Transitions
41 on e v _ f i n i s h _ c o l o r ()
42 go post_cc
43 on e v _ f i n i s h _ s c a l i n g ()
44 go error
45 SimpleState post_cc
46 Transitions
47 on ev_pr int_ job ()
48 go pr int ing_ job
49 entry CompositeState scal ing
50 Transitions
51 entry SimpleState pre_scal ing
52 Transitions
53 on e v _ f i n i s h _ s c a l i n g ()
54 go post_scal ing
55 SimpleState post_scal ing
56 Transitions
57 on ev_pr int_ job ()
58 go pr int ing_ job
59 SimpleState pr int ing_ job
60 Transitions
61 on ev_ f in i sh_ job ()
62 go i d l e

(a) Textual Representation

C printing

S idle

C error

S resolved

S unresolved

S printing_job

P preparing_job
C color_correction C scaling

S post_cc

S pre_cc

S post_scaling

S pre_scaling

on ev_submit_job()

on ev_reset_error()

on ev_resolve_error()

on ev_finish_color() on ev_finish_scaling()

on ev_print_job() on ev_print_job()
on ev_finish_job()

on ev_color_error()

on ev_finish_scaling()

(b) Graphical Representation

Figure 5.3: An SMMT specification consisting of a printer that applies color correction and/or
scales the job before printing the print job during which errors may occur

In Section 5.3.1 we discuss the syntax of SMMT specifications that include states of type
SimpleStates, CompositeStates and ParallelStates and transitions without guards or Behav-
ioralActions. We define the semantics of SMMT specifications with ParallelStates in Section
5.3.2.

36 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

5.3.1 Abstract Syntax of an SMMT Specification
In this section we extend the mathematical model that we defined in Definition 5 with states
of type ParallelStates. We redefine the definition of our mathematical model of an SMMT
specification.

Definition 17 (SMMT Specification with ParallelStates). The abstract syntax of an SMMT spec-
ification can be mathematically defined using a tuple M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ where:

• E is the set of OnEvents of the SMMT specification.

• SS , SC and SP are the sets of SimpleStates, the set of CompositeStates and the set of
ParallelStates of the SMMT specification respectively. Sets SS , SC and SP are pairwise
disjoint, that is: SS ∩ SC = SS ∩ SP = SC ∩ SP = ∅.

• ES ⊆ SS ∪ SC ∪ SP is the set of entry states of the SMMT specification.

• ⊏ ⊆ S × S is a child relation (Definition 2), where S = SS ∪ SC ∪ SP .

• T : S → L(E × S) associates each state s ∈ S with the list of outgoing transitions of
state s, where S = SS ∪ SC ∪ SP . Each outgoing transition ⟨e, s′⟩ ∈ T (s) of a state s ∈ S
consist of target state s′ ∈ S and an OnEvent e ∈ E.

To reason about the set of all states of an SMMT specification M′ = ⟨E,SS , SC , SP , ES,
⊏, T ⟩, we introduce function S(M′) that returns the set consisting of all states of SMMT spec-
ification M′.

Definition 18 (Set of States (SMMT Specifications with ParallelStates)). Let M′ = ⟨E,SS , SC , SP ,
ES,⊏, T ⟩ be an SMMT specification. The set of all states of SMMT specification M′, denoted
by S(M′), is defined as follows:

S(M′) = SS ∪ SC ∪ SP

We define the restrictions that are put on SMMT specifications by states of type Parallel-
State in addition to all restrictions that were discussed in Chapter 5.1. Next, we extend the
entry child and entry descendant relation to allow for states of type ParallelState.

Restrictions on SMMT Specifications

In Section 5.1, we discussed the restrictions on an SMMT specification without ParallelStates.
These restrictions (Restrictions 1 to 5) must hold for SMMT specifications with ParallelStates
as well. States of types ParallelStates put further restrictions on the set of entry states ES
and the child relation ⊏. We require that Restrictions 6 and 7 hold for all SMMT specifications
with ParallelStates.

As discussed in Chapter 2, all children of a ParallelState are entry states. To adhere closely
to the implementation of SMMT in MPS, we therefore require that for each SMMT specifica-
tion M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ it holds that all children of a ParallelState are in the set of
entry states as defined by Restriction 6.

Restriction 6 (All children of a ParallelState are entry states). Let M′ = ⟨E,SS , SC , SP , ES,
⊏, T ⟩ be an SMMT specification. We require that all children of a ParallelState are contained
in the set of entry states ES. That is, we require that:

∀s′ ∈ SP
: (∀s ∈ S(M′) : s ⊏ s′ ⇒ s ∈ ES)

ParallelStates were introduced to model behavior that is meant to be performed in paral-
lel. If a ParallelState s ∈ SP is active, then all children of state s are active. Hence, this allows
that the subregion (Definition 3) of each child of state s can handle an OnEvent in parallel. A

Formalising the State Machine Modelling Tool (SMMT) 37

CHAPTER 5. FORMAL DEFINITION OF SMMT

ParallelState with only one child and no ParallelState descendants cannot model parallel be-
havior, as such a ParallelState has no descendant with two active children if the ParallelState is
active. To ensure that the ParallelStates are only used to model parallel behavior, we restrict
that each ParallelState has at least two children. This restriction is defined by Restriction 7.

Restriction 7 (A ParallelState has at least two children). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be
an SMMT specification. We require that all ParallelStates have at least two children. That is,
we require that:

∀s′′ ∈ SP
: (∃s,s′ ∈ S(M′) : s ̸= s′ ∧ s ⊏ s′′ ∧ s′ ⊏ s′′)

Entry Child Relation ⊏ES and Entry Descendant Relation ⊏+
ES

A state s ∈ S(M′) is an entry child of state s′ ∈ S(M′) if, and only if, state s is a child of state
s′ and state s is an entry state. Hence, the definition of the set of entry children of a state
s′ ∈ S(M′), denoted by EC(M′, s′), corresponds to Definition 8 where all occurrences of M are
replaced by M′. By Restriction 6 we have that all children s ∈ S(M′) of a ParallelState s′ ∈ SP

are entry states. Hence, all children s ∈ S(M′) of ParallelState s′ ∈ SP are entry children
of ParallelState s′. Therefore, the entry child and entry descendant relations correspond to
Definitions 9 and 10 where each occurrence of M is replaced by M′.

Note that, the entry child relation ⊏ES can be defined as the intersection of the child
relation ⊏ and the Cartesian product of the set of entry states ES and the union of the set
of CompositeStates SC and the set of ParallelStates SP .

Lemma 6 (Entry Child Relation⊏ES (SMMT Specifications with ParallelStates)). Let M′ = ⟨E,SS ,
SC , SP , ES,⊏, T ⟩ be an SMMT specification. The entry child relation ⊏ES as defined in Defi-
nition 9, where all occurrences of M are replaced by M′, is equivalent to ⊏ ∩ (ES× (SC ∪SP)),
that is:

⊏ES ≡ ⊏ ∩ (ES × (SC ∪ SP))

The proof of Lemma 6 can be found in Appendix A.

5.3.2 Semantics of an SMMT Specification
In Section 5.2 we discussed the semantics of an SMMT specification without ParallelStates.
In this section we extend the semantics for SMMT specifications that include ParallelStates
as presented in Section 5.3.1. For each definition in Section 5.2, we discuss the modifica-
tions that are required for each definition to be compatible with SMMT specifications with
ParallelStates.

Set of Execution States EXS(M′)

In Definition 11 we defined the set of execution states for an SMMT specification without
ParallelStates. By Definition 11, we have that each execution state EX ∈ EXS(M) of an SMMT
specification M = ⟨E,SS , SC , ES,⊏, T ⟩:

• Contains exactly one root state, that is: ∃!r ∈ EX : r ∈ R(M)

• Contains exactly one child s ∈ S(M) for each CompositeState s ∈ SC in execution state
EX, that is:

∀s′ ∈ (SC ∩ EX) : (∃!s ∈ S(M) : s ⊏ s′ ∧ s ∈ EX)

• Contains all ancestors u′ ∈ S(M) of each state u ∈ EX, that is:

∀u ∈ EX : (∀u′ ∈ S(M) : u ⊏+ u′ ⇒ u′ ∈ EX)

38 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

The three restrictions that are defined for an execution state of an SMMT specification
without ParallelState must also be satisfied by an execution state of an SMMT specification
with ParallelStates. As mentioned in Chapter 2, all children s ∈ S(M′) of a ParallelState s′ ∈ SP

must be in the execution state if, and only if, s′ is in the execution state. We extend the
definition of the set of execution states to include this restriction.
Definition 19 (Set of Execution States (SMMT Specifications with ParallelStates)). Let M′ =
⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification. The set of execution states EXS(M′) of
SMMT specification M′ is defined as follows:

EXS(M′) = {EX ⊆ S(M′) | (∃!r ∈ EX : r ∈ R(M′))

∧ (∀s′ ∈ (SC ∩ EX) : (∃!s ∈ S(M′) : s ⊏ s′ ∧ s ∈ EX))

∧ (∀t′ ∈ (SP ∩ EX) : (∀t ∈ S(M′) : t ⊏ t′ ⇒ t ∈ EX))

∧ (∀u ∈ EX : (∀u′ ∈ S(M′) : u ⊏+ u′ ⇒ u′ ∈ EX))}

Example 14 (Set of Execution States (SMMT Specifications with ParallelStates)). Let M′ =
⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specification of the running example (Figure 5.3). The
set of execution states EXS(M′) of the running example is defined as follows:

EXS(M′) = {{idle}, {error,unresolved}, {error,resolved},
{printing,preparing_job,color_correction,pre_cc,scaling,pre_scaling},
{printing,preparing_job,color_correction,pre_cc,scaling,post_scaling},
{printing,preparing_job,color_correction,post_cc,scaling,pre_scaling},
{printing,preparing_job,color_correction,post_cc,scaling,post_scaling},
{printing,printing_job}}

Initial Execution State I(M′)

When defining the semantics of an SMMT specification without ParallelStates, we defined the
initial execution state of an SMMT specification M = ⟨E,SS , SC , ES,⊏, T ⟩ as the set consisting
of all entry states s ∈ ES of which all ancestors are contained in the set of entry states.

Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification and EX ∈ EXS(M′) be the
execution state of SMMT specification M′. By Restriction 6, all children s ∈ S(M′) of an active
ParallelState s′ ∈ (SP ∩EX) must be contained in execution state EX. By restriction 6, it fol-
lows that all children of a ParallelState are entry states. Therefore, the initial execution state
of an SMMT specification with ParallelStates can be defined as the set consisting of all entry
states s ∈ ES of which all ancestors are contained in the set of entry states. Hence, the defi-
nition of the initial execution state I(M′) corresponds to Definition 12, where all occurrences
of M are replaced by M′.
Example 15 (Initial Execution States (SMMT Specifications with ParallelStates)). Let M′ =
⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specification of the running example (Figure 5.3). The
initial execution state I(M′) ∈ EXS(M′) of SMMT specification M′ is defined as follows:

I(M′) = {idle}

Lemma 7 (Initial Execution State is an Execution State (SMMT Specifications with Parallel-
States)). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification. The initial execution
state I(M′) is an execution state, that is:

I(M′) ∈ EXS(M′)

The proof of Lemma 7 can be found in Appendix A. All children s ∈ S(M′) of a ParallelState
s′ ∈ SP are active when ParallelState s′ is active. Therefore, an execution state can contain
more than one SimpleState. Hence, Lemma 2 does not hold for SMMT specification with
ParallelStates.

Formalising the State Machine Modelling Tool (SMMT) 39

CHAPTER 5. FORMAL DEFINITION OF SMMT

Set of Prioritised Transitions PT (M′, EX)

Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification without ParallelStates as defined in
Definition 5. When defining the set of prioritised transitions of SMMT specification M, we
defined that a transition from state s ∈ S(M) cannot fire if there exists a descendant s′ ∈ S(M)
of state s for which a transition is defined for the same OnEvent.

Likewise, a transition from a state s ∈ S(M′) of an SMMT specification M′ = ⟨E,SS , SC , SP ,
ES,⊏, T ⟩ does not fire if there exists a descendant s′ ∈ S(M′) of s that has a transition defined
for the same OnEvent e ∈ E. The set of prioritised transitions corresponds to Definition 13,
where each occurrence of M is replaced by M′. Similarly, the set of target states PT e(M

′, EX)
corresponds to the definition of PT e(M

′, EX) (Definition 13) where each occurrence of M is
replaced by M′.

In contrast to SMMT specifications without ParallelStates, an SMMT specification M′ =
⟨E,SS , SC , SP , ES,⊏, T ⟩ can fire more than one transition when an OnEvent e ∈ E is pro-
cessed. With ParallelStates, the set of prioritised transitions PT (M′, EX) can have multiple
transitions that are defined for OnEvent e ∈ E if one or more ParallelStates s ∈ SP are con-
tained in execution state EX. If a ParallelState s ∈ SP is contained in execution state EX,
then all children of s must be contained in execution state EX. The set of prioritised tran-
sitions can contain an outgoing transition for the subregion of each child of a ParallelState
s ∈ SP if s occurs in execution state EX. Let s′, s′′ ∈ S(M′) be two distinct children of state s.
As each state can have at most one parent, it follows that a state in the subregion of s′ is not
related to any state in the subregion of s′′ by descendant relation ⊏+. Hence, an outgoing
transition for the same OnEvent e ∈ E could be contained in the set of prioritised transitions
for a state in the subregion of s′ and for a state in the subregion of s′′. Thus, the set of
prioritised transitions PT (M′, EX) can contain multiple transitions for each OnEvent e ∈ E.
Example 16 (Prioritised Transitions (SMMT Specifications with ParallelStates). Let M′ = ⟨E,SS ,
SC , SP , ES,⊏, T ⟩ be the SMMT specification of the running example (Figure 5.3). The set of
prioritised transitions of execution state EX = {printing,preparing_job,
color_correction,pre_cc,scaling,pre_scaling} is defined as follows:

PT (M′, EX) = {⟨ev_finish_color(),post_cc⟩,
⟨ev_finish_scaling(),post_scaling⟩,
⟨ev_finish_scaling(),error⟩,
⟨ev_color_error(),error⟩}

Furthermore, we have that:

PT ev_finish_color()(M
′, EX) = {post_cc}

PT ev_finish_scaling()(M
′, EX) = {post_scaling,error}

PT ev_color_error()(M
′, EX) = {error}

Conflicting States

To define when an OnEvent is enabled for SMMT specifications with ParallelStates, we first
introduce the notion of conflicting states.

Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification. In case multiple transitions
fire when an OnEvent e ∈ E is processed, it must be the case that all target states of the
transitions that fire are allowed to be active at the same time. If this property is violated, the
set consisting of all active states after handling the transitions is not an execution state.

For example, if OnEvent ev_finish_scaling() is processed in execution state EX =
{printing,preparing_job,color_correction,pre_cc,scaling,pre_scaling}of the
running example (Figure 5.3), states post_scaling and error would become active. How-
ever, as states post_scaling and error are in the subregion of distinct root states, there

40 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

does not exist an execution state in which both states post_scaling and error are con-
tained.

We define the notion of conflicting states. Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT
specification. We say that two states s, s′ ∈ S(M′) are conflicting if, and only if, there exists no
execution state EX ∈ EXS(M′) such that states s and s′ are contained in EX.
Definition 20 (Conflicting States). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specifica-
tion. Function CS(M′, s, s′) determines whether states s, s′ ∈ S(M′) are conflicting, which is
defined as follows:

CS(M′, s, s′) = ¬∃EX ∈ EXS(M′) : {s, s′} ⊆ EX

Example 17 (Conflicting States). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specification
of the running example (Figure 5.3). As each execution state can only have one root state
and all ancestors of each state in the execution state must be contained in the execution
state, it follows that two states that are a descendant of distinct root states are conflicting.
For example, states error and post_scaling are conflicting as they are in the subregion
of distinct root states.

By the definition of an execution state (Definition 28), each execution state contains ex-
actly one child of each CompositeState that is contained in the execution state. Hence, all
states that are contained in subregions of distinct children of a CompositeState are conflict-
ing. For example, states pre_cc and post_cc are conflicting as they are contained in the
subregion of distinct children of CompositeState color_correction.

Examples of states that are not conflicting are states pre_cc and post_scaling, and
states error and unresolved.

For each execution state EX ∈ EXS(M′) it should hold that the target states of all pri-
oritised transitions that fire for an OnEvent e ∈ E are not conflicting with each other. We
define function CT (M′, EX, e) that determines whether the targets of the transitions that fire
if OnEvent e ∈ E is processed in execution state EX ∈ EXS(M′) are conflicting.
Definition 21 (Conflicting Target States). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT spec-
ification. Function CT (M′, EX, e) determines whether there exist states s, s′ ∈ PT e(M

′, EX)
that are conflicting. Function CT (M′, EX, e) is defined as follows:

CT (M′, EX, e) = ∃s,s′ ∈ PT e(M′,EX) : CS(M′, s, s′)
Example 18 (Conflicting Target States). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT spec-
ification of the running example (Figure 5.3). The set of target states of the transitions that
fire when OnEvent ev_finish_scaling() is processed in execution stateEX = {printing,
preparing_job,color_correction,pre_cc,scaling,pre_scaling} is defined by
PT e(M

′, EX).
PT ev_finish_scaling()(M

′, EX) = {post_scaling,error}
As states post_scaling and error are conflicting, we therefore have that:

CT (M′, EX,ev_finish_scaling()) = true
By Definition 21 we have that the target states of the transitions that fire when an OnEvent

is processed are conflicting if, and only if, there exist two target states that are conflicting.
Hence, it follows that these target states are conflicting if, and only if, there exist no execu-
tion state that contains all target states.
Lemma 8 (Conflicting States). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification,
EX ∈ EXS(M′)be an execution state and e ∈ E be an OnEvent. The target states inPT e(M

′, EX)
conflict if, and only if, there does not exist an execution state EX ′ ∈ EXS(M′) such that
PT e(M

′, EX) ⊆ EX ′. Hence, it follows that:

CT (M′, EX, e) ≡ ¬∃EX′ ∈ EXS(M′) : PT e(M
′, EX) ⊆ EX ′

The proof of Lemma 8 can be found in Appendix A.

Formalising the State Machine Modelling Tool (SMMT) 41

CHAPTER 5. FORMAL DEFINITION OF SMMT

Enabled OnEvents

In Section 5.2 we defined an enabled OnEvent e ∈ E of an SMMT specification M = ⟨E,SS , SC ,
ES,⊏, T ⟩ in execution state EX ∈ EXS(M) as an OnEvent for which a prioritised transition is
defined. That is, for which the set of target states of the prioritised transitions is non-empty.
States of type ParallelState put two additional constraints on when an OnEvent is enabled.

To simplify the definition of an enabled OnEvent we first define the transition existence
function T E(M′, X, e) that determines whether a transition is defined for OnEvent e ∈ E for
some state s ∈ X where X ⊆ S(M′) of SMMT specification M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩.

Definition 22 (Transition Existence). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specifi-
cation. Function T E(M′, X, e) defines whether a transition is defined for OnEvent e ∈ E for
some state s ∈ X where X ⊆ S(M′), which is defined as follows:

T E(M′, X, e) = ∃s ∈ X : (∃s′ ∈ S(M′) : ⟨e, s′⟩ ∈ T (s))

Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification in execution state EX ∈
EXS(M′). An OnEvent e ∈ E is enabled in execution state EX if, and only if:

• The set of prioritised transitions in execution state EX contains a prioritised transition
that is defined for OnEvent e. Hence, the set of target states of the prioritised transitions
that are defined for OnEvent e in execution state EX, PT e(M

′, EX), is non-empty, that
is:

PT e(M
′, EX) ̸= ∅

• The target states of the prioritised transitions that are defined for OnEvent e in execu-
tion state EX are not conflicting, that is:

¬CT (M′, EX, e)

• For all active ParallelStates s′ ∈ SP in execution state EX it holds that there exists a
child s ∈ S(M′) of ParallelState s′ for which a transition is defined for OnEvent e in the
subregion of a child s′. Furthermore, for all children s′′ ∈ S(M′) of ParallelState s′ it must
hold that a transition can fire for OnEvent e or that no transition is defined for OnEvent
e, that is, either one of the following should hold:

– There exists an active state in the subregion of child s′′ for which a transition is
defined for OnEvent e, that is:

T E(M′,SR(S(M′), s′′) ∩ EX, e)

– There exist no state in the subregion of child s′′ for which a transition is defined
for OnEvent e, that is:

¬T E(M′,SR(S(M′), s′′), e)

That is, the following should hold:

∀s′ ∈ (SP ∩ EX) : ((∃s ∈ EX : s ⊏ s′ ∧ T E(M′,SR(S(M′), s), e)) ∧

(∀s′′ ∈ EX : (s′′ ⊏ s′ ⇒ (T E(M′,SR(S(M′), s′′) ∩ EX, e) ∨ ¬T E(M′,SR(S(M′), s′′), e)))))

We define function E(M′, EX, e) that determines whether an OnEvent e ∈ E is enabled in
execution state EX ∈ EXS(M′).

42 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

Definition 23 (Enabled OnEvent). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification
and EX ∈ EXS(M′) be the execution state of SMMT specification M′. Function E(M′, EX, e)
determines whether OnEvent e ∈ E of SMMT specification M′ is enabled in execution state
EX, which is defined as follows:

E(M′, EX, e)

= (PT e(M
′, EX) ̸= ∅) ∧ ¬CT (M′, EX, e)

∧ (∀s′ ∈ (SP ∩ EX) : (∃s ∈ EX : s ⊏ s′ ∧ T E(M′,SR(S(M′), s), e))
∧ (∀s′′ ∈ EX : (s′′ ⊏ s′ ⇒ (T E(M′,SR(S(M′), s′′) ∩ EX, e) ∨ ¬T E(M′,SR(S(M′), s′′), e)))))

Example 19 (Enabled OnEvent). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specification
of the running example (Figure 5.3). Let EX = {printing,preparing_job,
color_correction,pre_cc,scaling,pre_scaling}be an execution state of SMMT spec-
ification M′. In execution stateEX, OnEventsev_finished_color() andev_color_error()
are enabled OnEvents. OnEvent ev_finish_scaling() is not enabled as the target states
of the transitions that would fire are conflicting. All other OnEvents are not enabled as there
are no transitions defined for the OnEvent from some state in execution state EX.

Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification in execution state EX ∈
EXS(M′). An internal software exception is thrown and the execution is terminated if an
OnEvent e ∈ E of SMMT specification M′ is processed in execution state EX ∈ EXS(M′) that is
not enabled, that is, ¬E(M′, EX, e).

Execution State Update ESU(M′, EX, e)

In Definition 15 we defined how the execution state is updated when a transition fires in
an SMMT specification without ParallelStates. In this section we define the execution state
update function ESU(M′, EX, e) for SMMT specifications with ParallelStates.

Each execution state of an SMMT specification M = ⟨E,SS , SC , ES,⊏, T ⟩ can be expressed
as a single SimpleState and all ancestors of this state, which follows from Lemma 2. There-
fore, the execution state update function has been defined as the set consisting of the target
state s′ ∈ S(M) of the transition that fires due to the occurrence of OnEvent e, as well as the
ancestors and entry descendants of s′ (Definition 15).

Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification with ParallelStates. We cannot
define the execution state update ESU(M′, EX, e) as the set consisting of all target states s′ ∈
PT e(M

′, EX) and the ancestors and entry descendants of each target state s′. This approach
would result in a set of active states X that may contain CompositeStates for which multiple
children are contained in X and ParallelStates for which not all children are contained in X.

For example, consider the example in Figure 5.4. Assume that both transitions that are
shown fire when OnEvent a() is processed. According to Definition 15, the execution state
would consist of states c1, s1 and s2 after OnEvent a() is processed. However as state c1 is
a CompositeState, we have that states s1 and s2 are conflicting. Hence, this shows that we
cannot define the execution state update as defined in Definition 15.

C c1
S s1 S s2

on a()
on a()

Figure 5.4: Example SMMT Specification

The execution state of an SMMT specification with ParallelStates after an enabled OnEvent
e ∈ E is processed in an execution state EX ∈ EXS(M′) is determined in three steps:

1. First, all states of the execution state that conflict with the target state of any transition
that fires are removed from the execution state.

Formalising the State Machine Modelling Tool (SMMT) 43

CHAPTER 5. FORMAL DEFINITION OF SMMT

2. Next, the target states of the transitions that fire and the ancestors of these target
states are added to the execution state.

3. Finally, the obtained execution is initiated to ensure that:

• The execution state contains exactly one child of each CompositeState that is con-
tained in the execution state.

• The execution state contains all children of each ParallelState that is contained in
the execution state.

In the remainder of this section we discuss these three steps in more detail and define
the execution state update function that determines the execution state after an OnEvent
e ∈ E is processed in an execution state EX ∈ EXS(M′).

When an enabled OnEvent e ∈ E is processed in execution state EX ∈ EXS(M′), the target
states of all transitions that fire and the ancestors of these target states are added to the set
of active states. We define the set of entered targets ET (M′, EX, e) to represent these states.
That is, ET (M′, EX, e) consists of all states in PT e(M

′, EX) and all ancestors thereof.

Definition 24 (Entered Targets). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification
in execution state EX ∈ EXS(M′). The set of entered targets ET (M′, EX, e) consists of all
target states and ancestors of the target states of the transitions that fire when OnEvent e
is processed in execution state EX. The set of entered targets ET (M′, EX, e) is defined as
follows:

ET (M′, EX, e) = {s ∈ S(M′) | ∃s′ ∈ PT e(M′,EX) : s
′ ∈ SR(S(M′), s)}

Example 20 (Entered Targets). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specification
of the running example (Figure 5.3). Let EX = {printing,preparing_job,
color_correction,pre_cc,scaling,pre_scaling}be an execution state of SMMT spec-
ification M′. The set of entered targets when OnEvent ev_color_error() is processed in
execution state EX is defined as follows:

ET (M′, EX,ev_color_error()) = {error}

Before the entered targets are added to the execution state, all states s ∈ EX that conflict
with an entered target are removed from execution state EX. We define the set of exited
states XS(M′, EX, e) as the set of all states s ∈ EX that conflict with an entered target.

Definition 25 (Exited States). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification in
execution state EX ∈ EXS(M′). The set of exited states XS(M′, EX, e) consists of all states in
execution stateEX that conflict with an entered target. The set of exited states EX (M′, EX, e)
is defined as follows:

EX (M′, EX, e) = {s ∈ EX | ∃s′ ∈ ET (M′,EX,e) : CS(M′, s, s′)}

Example 21 (Exited States). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specification of
the running example (Figure 5.3). Let EX = {printing,preparing_job,
color_correction,pre_cc,scaling,pre_scaling}be an execution state of SMMT spec-
ification M′. The set of exited states when OnEvent ev_color_error() is processed is defined
as follows:

XS(M′, EX,ev_color_error()) = EX

The set of entered targets ET (M′, EX, e) consists only of the target states and the an-
cestors of each target state of the prioritised transitions that fire when OnEvent e ∈ E is
processed in execution state EX ∈ EXS(M′). Let X be the set of active states that is ob-
tained after the exited states have been removed from EX and the entered targets have
been added to EX. The obtained set of active states X may contain CompositeStates for

44 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

which no child is contained in X. For example, consider the example shown in Figure 5.5.
CompositeState state_b is the target state of the prioritised transitions that fires when On-
Event ev_a is processed in execution state {state_a}. We have that:

X = (EX \ XS(M′, EX, e)) ∪ ET (M′, EX, e)

= ({state_a} \ {state_a}) ∪ {state_b}
= {state_b}

Hence, no child of CompositeState state_b is contained in set X.

S state_a
C state_b

S state_c S state_d
on a()

Figure 5.5: Example Missing Children

Furthermore, X may contain ParallelStates for which not all children are contained in X.
For example, not all children s ∈ S(M′) of a ParallelState s′ ∈ (SP ∩ X) are contained in X if
ParallelState s′ is contained in the set of entered targets and is not contained in execution
state EX. We introduce the notion of a missing child.

Definition 26 (Missing Child). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification.
Let X ⊆ S(M′) be a subset of the set of states S(M′). A state s ∈ S(M′) is a missing child of X if
one of the following holds:

• There exists a CompositeState s′ ∈ X such that s is the entry child of s′ and X does not
contain any child of s′, that is:

∃s′ ∈ (SC ∩ X) : s ⊏ES s′ ∧ ¬(∃s′′ ∈ X : s′′ ⊏ s′)

• There exists a ParallelState s′′ ∈ X such that s is an entry child of s′′ and s is not con-
tained in X.

∃s′′ ∈ (SP ∩ X) : s ⊏ES s′′ ∧ s ̸∈ X

We define function MC(M′, X) that returns the set of missing children of a set of states X ⊆
S(M′), which is defined as follows:

MC(M′, X) = {s ∈ S(M′) | (∃s′ ∈ (SC ∩ X) : s ⊏ES s′ ∧ ¬(∃s′′ ∈ X : s′′ ⊏ s′))

∨ (∃s′′ ∈ (SP ∩ X) : s ⊏ES s′′ ∧ s ̸∈ X)}

Furthermore, we define the set of missing descendants, denoted by MD(M′, X) that re-
turns the set of missing children of a set of states X ⊆ S(M′) and all states that are an entry
descendant of one of these missing children. That is:

MD(M′X) = {s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏
∗
ES s′}

We are required to initiate the set of active states X to ensure that all missing descen-
dants are added to X. We define initiation function INIT (M′, X) that initiates the set of
active states X by adding all missing descendants of each state in X.

Definition 27 (Initiation Function). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specifi-
cation and let X be a subset of the set of states S(M′). The initiation function INIT (M′, X)
returns the set consisting of all states in X and all missing descendants s ∈ MD(M′, X). The
initiation function is defined as follows:

INIT (M′, X) = X ∪MD(M′, X)

Formalising the State Machine Modelling Tool (SMMT) 45

CHAPTER 5. FORMAL DEFINITION OF SMMT

Example 22 (Initiation Function). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specifica-
tion of the running example (Figure 5.3) and letX = {error}. Initiation function INIT (M′, X)
adds all missing descendants s ∈ MD(M′, X) to X, we have that:

INIT (M′, {error}) = {error,unresolved}

We define the execution state update function using the set of entered targets ET (M, EX, e)
(Definition 24), the set of exited states XS(M, EX, e) (Definition 25) and the initiation function
INIT (M, X) (Definition 27). The execution state after an enabled OnEvent e ∈ E is processed
is obtained by first removing the exited states from the execution state after which the en-
tered targets are added to the execution state. Finally, we initiate the obtained set of active
states to obtain the execution state EX ′ after OnEvent e has been processed.

Definition 28 (Execution State Update (SMMT Specifications with ParallelStates). Let M′ =
⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification in execution state EX ∈ EXS(M′). The
execution state update function ESU(M′, EX, e) defines the execution state after enabled
OnEvent e ∈ E is processed in execution state EX ∈ EXS(M′), which is defines as follows:

ESU(M′, EX, e) = INIT
(
M′, (EX \ XS(M′, EX, e)) ∪ ET (M′, EX, e)

)
Example 23 (Execution State Update (SMMT Specifications with ParallelStates). Let M′ =
⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specification of the running example (Example 5.3).
LetEX = {printing,preparing_job,color_correction,pre_cc,scaling,pre_scaling}
be the execution state of SMMT specification M′. Function ESU(M′, EX,ev_color_error())
defines the execution state after OnEvent ev_color_error() is processed in execution
state EX, which is defined as follows:

ESU(M′, EX,ev_color_error())

= INIT
(
M′, (EX \ XS(M′, EX,ev_color_error())) ∪ ET (M′, EX,ev_color_error())

)
= INIT

(
M′, (EX \ EX) ∪ {error}

)
= INIT (M′, {error})
= {error,unresolved}

The execution state update function ESU(M′, EX, e) returns a set of states that must be
active after OnEvent e ∈ E is processed. The set of states that is returned by execution state
update function ESU(M′, EX, e) is an execution state if OnEvent e ∈ E is enabled in execution
state EX ∈ EXS(M′).

Lemma 9 (Execution State Update returns an Execution State (SMMT Specifications with
ParallelStates)). For all SMMT specifications M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩, for each execution
state EX ∈ EXS(M′) and for each enabled OnEvent e ∈ E, ESU(M′, EX, e) is an execution
state, that is:

E(M′, EX, e) ⇒ ESU(M′, EX, e) ∈ EXS(M′)

The proof of Lemma 9 can be found in Appendix A.

Operational Semantics

Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification. When an OnEvent e ∈ E is pro-
cessed in execution state EX ∈ EXS(M′) that is not enabled, an internal software exception
is thrown and the execution of the SMMT specification is terminated. To denote that the
execution of the SMMT specification has terminated, we introduce a failure state F that is
reached if the execution is terminated. Failure state F contains a self-loop with action FAIL
to indicate that a failure occurred during execution.

46 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 5. FORMAL DEFINITION OF SMMT

The execution state after an enabled OnEvent e ∈ E is processed is defined by execution
state update function ESU(M′, EX, e) (Definition 28). We define the operational semantics of
an SMMT specification M′ in Definition 29.

Definition 29 (Operational Semantics with ParallelStates). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩
be an SMMT specification. The operational semantics of SMMT specification M′ is given by LTS
L = ⟨ST,L,→, s0⟩, where:

• ST = EXS(M′) ∪ {F}

• L = E ∪ {FAIL}

• → ⊆ ST × L× ST such that for all EX,EX ′ ∈ EXS(M′) and e ∈ E we have that:

– EX
e−→ EX ′ if, and only if, E(M′, EX, e) ∧ EX ′ = ESU(M′, EX, e)

– EX
e−→ F if, and only if, ¬E(M′, EX, e)

– F FAIL−−−→ F

• s0 = I(M′)

Example 24 (Operational Semantics). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specifi-
cation of the running example (Figure 5.3). The operational semantics of SMMT specification
M′ is denoted using the LTS that is shown in Figure 5.6. In Figure 5.6, only the enabled On-
Events are shown that can be processed in each execution state. Therefore, for any execution
state shown in Figure 5.6, there should be a transition to failure state F for each OnEvent for
which no transition is shown in Figure 5.6.

{idle}

{printing,
preparing_job,

color_correction,
pre_cc, scaling,
pre_scaling}

{printing,
preparing_job,

color_correction,
post_cc, scaling,
pre_scaling}

{error,
unresolved}

{error, resolved} F

FAIL

ev_submit_job() ev_finish_color()

ev_color_error()ev_color_error()

ev_resolve_error()

ev_reset_error()

Figure 5.6: Operational Semantics denoted using an LTS for the Running Example (Figure
5.3)

Formalising the State Machine Modelling Tool (SMMT) 47

CHAPTER 5. FORMAL DEFINITION OF SMMT

48 Formalising the State Machine Modelling Tool (SMMT)

Chapter 6

Translating SMMT to mCRL2

In this chapter we discuss how we used the mCRL2 model checker to enhance the State
Machine Modelling Tool with model checking functionality. First, we introduce the mCRL2
model checker in Section 6.1. The mCRL2 model checker is used to, among others, automat-
ically verify properties on mCRL2 specifications. We discuss how each SMMT specification is
translated to an mCRL2 specification in Section 6.2.

6.1 The mCRL2 Model Checker
In this graduation project, we used the mCRL2 model checker to enhance the State Ma-
chine Modelling Tool with model checking functionality. The mCRL2 language [1] is a formal
specification language that extends the algebra of communicating processes (ACP [3]) with
data. The mCRL2 language has an associated toolset [2] that is developed at the Eindhoven
University of Technology.

An mCRL2 specification consists of a data specification and a process specification. In
the data specification the types (sorts), constructors (defining the elements of each sort),
mappings (the operations defined on sorts) and corresponding equations (the rules defin-
ing each mapping) are defined that can be used in the process specification. The process
specification consist of the actions that are used in the model to denote the behavior of the
modelled component. Furthermore, the process specification consist of several processes
that model the behavior of the component. Using the mCRL2 toolset, all process equations
can automatically be rewritten to Linear Process Equations (LPEs). The structure of a Linear
Process Equation, as defined in [2], is given by Definition 30.

Definition 30 (Linear Process Equation). A Linear Process Equation (LPE) is of the following
shape:

P (d̄ : D) =
∑
i∈I

sum ēi : Ei . ci(d̄, ēi) → ai(f̄i(d̄, ēi)) · P (ḡi(d̄, ēi))

where P is the name of the process, I is some index set, d̄ and ēi are vectors of variables, D
and Ei are data types, ci is a boolean expression, ai is an action, f̄i is a vector of expressions
that gives values for arguments of ai, ḡi is a vector of expressions that represents the next
state. Expressions ci, f̄i and ḡi may depend on the variables in d̄ and ēi. We use the notation∑

i∈I pi as the shorthand notation for p1 + p2 + . . . + pn, assuming that I = {1, 2, . . . , n}. If
I is an empty set, then

∑
i∈I pi = δ, where δ denotes a deadlock. Furthermore, we use the

notation sum ēi : Ei . ϕ to declare variables that may be used in the remainder of the process
equation: ϕ.

Formalising the State Machine Modelling Tool (SMMT) 49

CHAPTER 6. TRANSLATING SMMT TO MCRL2

Using the mCRL2 toolset, we can automatically convert an LPS to an LTS using thelps2lts
tool. Furthermore, the tools lps2pbes and lts2pbes allow us to verify whether a property
is satisfied for a model given the LTS and LPS respectively. These properties are defined as
a mu-calculus formula. An overview of the tools for generating LTSs and to verify whether
certain properties hold on a model is shown in Figure 6.1.

mCRL2 LPS

Property

LTS

PBES B

mcrl22lps

lps2ltslts2lps

lps2pbes

lts2pbes

pbessolve

Figure 6.1: Generating LPSs and LTSs from mCRL2 specifications and checking properties
defines as mu-calculus formulae using the mCRL2 toolset. The nodes show the represen-
tations used by the mCRL2 toolset, the edges are labelled with the tool that performs the
transformation.

The modal mu-calculus as defined in [1] is an algebra for defining properties over an LTS
that is used by the mCRL2 toolset. In this graduation project, we only consider a subset of
the mu-calculus.

Definition 31 (Modal Mu-Calculus Formulae). Let L = ⟨ST,L,→, s0⟩ be a Labelled Transi-
tion System (LTS). The syntax of a modal mu-calculus formula ϕ is given by the following
grammar:

ϕ := false | true | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⇒ ϕ | ⟨a⟩ϕ | [a]ϕ | ∀d̄:D.ϕ | ∃d̄:D.ϕ | µX.ϕ | νX.ϕ | X

where a ∈ L is an action, d̄ is a vector of data variables and D is the data type and X is a
fixpoint variable. Let L′ ⊆ L be a set of actions and L′∗ be a sequence of the actions of set
L′. We use the following short-hand notations as defined in [1]:

⟨L′⟩ϕ =
∨

a ∈ L′

⟨a⟩ϕ [L′]ϕ =
∧

a ∈ L′

[a]ϕ

⟨L′∗⟩ϕ = µZ.(⟨L′⟩Z ∨ ϕ) [L′∗]ϕ = νZ.([L′]Z ∧ ϕ)

We write true instead of L′ to denote the complete set of actions L according to the syntax
of the µ-calculus in mCRL2.

To define the subset of states of an LTS in which a property is satisfied, we define how a
modal mu-calculus formula is evaluated.

50 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 6. TRANSLATING SMMT TO MCRL2

Definition 32 (Evaluation of a Modal Mu-Calculus Formula). Let ⟨ST,L,→, s0⟩ be a Labelled
Transition System (LTS) and v : X → 2ST be a valuation where X is the set of fixpoint vari-
ables. The semantics JϕKv of an modal mu-calculus formula ϕ is defined as follows:

JfalseKv = ∅
JtrueKv = ST

J¬ϕKv = ST \ JϕK
Jϕ1 ∧ ϕ2Kv = Jϕ1Kv ∩ Jϕ2Kv

Jϕ1 ∨ ϕ2Kv = Jϕ1Kv ∪ Jϕ2Kv

Jϕ1 ⇒ ϕ2Kv = (ST \ Jϕ1Kv) ∪ Jϕ2Kv

J⟨a⟩ϕKv = {s ∈ ST | ∃s′ ∈ ST : s
a−→ s′ ∧ s′ ∈ JϕKv}

J[a]ϕKv = {s ∈ ST | ∀s′ ∈ ST : s
a−→ s′ ⇒ s′ ∈ JϕKv}

J∀d̄:D.ϕKv =
⋂

e ∈ D
JϕKv[d̄:=e]

J∃d̄:D.ϕKv =
⋃

e ∈ D
JϕKv[d̄:=e]

JµX.ϕKv =
⋂

T ⊆ ST

{T | T = JϕKv[X:=T]}

JνX.ϕKv =
⋃

T ⊆ ST

{T | T = JϕKv[X:=T]}

JXKv = v(X)

where D denotes the set containing all values that correspond to data type D.
A state s ∈ ST of a Labelled Transition System (ST,L,→, s0) satisfies a modal mu-calculus

formula ϕ if, and only if, s ∈ JϕKv.

6.2 Translation
Using the formal definition of the SMMT language, a translation from SMMT specifications to
mCRL2 specifications has been defined. As discussed before, each mCRL2 specification con-
sists of a data and process specification that can be transformed into a Linear Process Spec-
ification (LPS). In this section we define translation SMMT2MCRL2 that translates an SMMT
specification into an mCRL2 specification. The mCRL2 specification that is generated by the
SMMT2MCRL2 translation consists of four sections:

• A representation of the mathematical model of an SMMT specification in mCRL2.

• Validation checks on the representation of the mathematical model of an SMMT spec-
ification that correspond to the restrictions discussed in Chapter 5 and the constraints
of the child relation (Definition 2).

• Mappings and equations that correspond to the definitions that are used in Chapter 5
to define the operational semantics of an SMMT specification.

• The mCRL2 process specification defining the operational semantics as defined in Def-
inition 29.

In the remainder of this section we discuss each of the sections of the mCRL2 specifica-
tion in more detail. Throughout these sections, various mappings called α are defined to
map the elements of an SMMT specification into their respective counterparts in the mCRL2
specification. Note that these α mappings are not mappings that are included in the mCRL2
specification.

Formalising the State Machine Modelling Tool (SMMT) 51

CHAPTER 6. TRANSLATING SMMT TO MCRL2

6.2.1 Representation of the mathematical model of an SMMT Specifi-
cation

The first section of the mCRL2 specification consist of a representation of the mathematical
model (Definition 17) of an SMMT specification. An SMMT specification M′ = ⟨E,SS , SC , SP ,
ES,⊏, T ⟩ is translated to an instance of structured sort Spec. Structured sort Spec consist of
a single constructor sm that represents an SMMT specification in mCRL2. Figure 6.2 presents
structured sort Spec in the mCRL2 language.

1 sort Spec = struct sm(
2 OnEvents : L i s t (OnEvent) ,
3 States : LState ,
4 EntryStates : L i s t (State) ,
5 Children : State → L i s t (State) ,
6 Descendants : State → L i s t (State) ,
7 EntryDescendants : State → L i s t (State) ,
8 Transi t ions : State → L i s t (Transi t ion)
9) ;

Figure 6.2: Structured Sort Spec
The efficiency of an mCRL2 specification depends, among others, on the number of com-

putations that are performed when the tools of the mCRL2 toolset are applied on the mCRL2
specification. Hence, we want to avoid recomputing the same computation multiple times
to increase the efficiency of the mCRL2 specification. Therefore, we add a mapping rep-
resenting the descendant relation and a mapping representing the entry descendant rela-
tion. While it is possible to determine these relations from the child relation and set of entry
states, pre-computing these mappings results in less computations when using the tools of
the mCRL2 toolset on the mCRL2 specification. Therefore, adding the descendant and entry
descendant relations as a pre-computed mapping to the mCRL2 specification results in a
more efficient mCRL2 specification.

Note that an instance of type Spec uses lists to store the data instead of sets. While
mCRL2 does support sets, an efficiency gain can be achieved when using lists. Furthermore,
lists are more convenient when defining the equations as we can iterate over list instances.
Since the ordering of the sets in the SMMT specification are irrelevant, it follows that the
sets can be converted into lists without loss of information. However, we must ensure that
the elements of each list remain unique.

In the remainder of this subsection, we introduce how an SMMT specification M′ = ⟨E,SS ,
SC , SP , ES,⊏, T ⟩ is translated into an instance of type Spec. First, we discuss how the states
and OnEvents of an SMMT specification are translated in the mCRL2 specification. Next, we
discuss the mappings that are defined to represent the children, descendant, entry descen-
dant and transition relation. Finally, we discuss how an SMMT specification M′ is translated
to an instance of type Spec.

6.2.1.1 OnEvents E and States S(M′)

To represent the OnEvents and states of an SMMT specification M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩
in the mCRL2 specification, we define structured sorts OnEvent and State that represent
the OnEvents and states of the SMMT specification respectively.

We define mapping αE(e) that for each OnEvent e ∈ E returns the corresponding ele-
ment in structured sort OnEvent. Furthermore, we define mapping αE(E) that maps a set
of OnEvents E′ ⊆ E into a list of elements of structured sort OnEvent. That is, set E′ is trans-
lated into an instance of type List(OnEvent) that contains exactly one element αE(e) of
type OnEvent for each OnEvent e ∈ E′. Similarly, we define mapping functions αS(s) and
αS(S) to map the states from the SMMT specification into the respective counterparts in the
mCRL2 specification, where S ⊆ S(M′).

52 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 6. TRANSLATING SMMT TO MCRL2

Let E′ = {e1, e2, . . . , en} ⊆ E and S = {s1, s2, . . . , sn} ⊆ S(M′). Structured sorts OnEvent
and State are defined as follows in the mCRL2 specification:

OnEvent = struct αE(e1) | αE(e2) | . . . | αE(en);

State = struct αS(s1) | αS(s2) | . . . | αS(sn);

Example 25 (Structured Sorts OnEvent and State). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be
the SMMT specification as shown in Figure 5.3. Structured sorts OnEvent and State in the
mCRL2 specification that is generated for SMMT specification M′ are defined as shown in
Figure 6.3.

1 sort OnEvent = struct ev_pr int_ job | ev_ f in ish_ job | e v _ f i n i s h _ c o l o r | e v _ f i n i s h _ s c a l i n g
2 | ev_resolve_error | ev_reset_error | ev_color_error | ev_submit_job ;
3 State = struct s t _ i d l e | st_error | st_unresolved | st_resolved | st_pr in t ing | st_preparing_job
4 | st_co lor_correct ion | st_pre_cc | st_post_cc | s t _ s c a l i n g | st_pre_sca l ing
5 | st_post_sca l ing | st_pr in t ing_ job ;

Figure 6.3: Structured Sorts OnEvent and State

We define a structured sort LState to maintain the partition of the set of states of SMMT
specification M′. An instance of sort LState consists of a list of elements of type State for
the set of SimpleStates, the set of CompositeStates and the set of ParallelStates. In the mCRL2
specification, structured sort LState is defined as presented in Figure 6.4.

1 sort LState = struct states (ss : L i s t (State) , cs : L i s t (State) , ps : L i s t (State)) ;

Figure 6.4: Structured Sort LState

We define mapping function αLS(M
′) that translates the set of states SS , SC and SP of

an SMMT specification M′ into an instance of type LState. Mapping αLS(M
′) is defined as

follows:
αLS(M

′) = states(αS(SS), αS(SC), αS(SP))

Example 26 (Set of States). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specification as
shown in Figure 5.3. The states of SMMT specification M′ can be denoted using the instance
of type LState that is shown in Figure 6.5.

1 states ([s t _ i d l e , st_unresolved , st_resolved , st_pre_cc , st_post_cc , st_pre_scal ing , st_post_scal ing ,
s t _pr in t ing_ job] , [st_error , s t_pr int ing , st_co lor_correct ion , s t _ s c a l i n g] , [st_preparing_job])

Figure 6.5: Instance of type LState representing the states of SMMT specification M′

Letlsbe an instance of typeLState. We define projection functionsss_s(ls), ss_c(ls)
and ss_p(ls) that return the list of SimpleStates, list of CompositeStates and list of Parallel-
State of LState instance ls respectively. The projection functions of type LState are shown
in Figure 6.6.

6.2.1.2 Child Relation ⊏, Descendant Relation ⊏+ and Entry Descendant Relation ⊏+
ES

We represent the child relation of an SMMT specification M′ in mCRL2 using mapping
child_relation. Mapping child_relation maps an instance s of type State to a list of
State instances consisting of all children of s. For each state s′ ∈ S(M′) of SMMT specification
M′, we add the following equation to the mCRL2 specification:

child_relation(αS(s
′)) = αS({s ∈ S(M′) | s ⊏ s′})

Formalising the State Machine Modelling Tool (SMMT) 53

CHAPTER 6. TRANSLATING SMMT TO MCRL2

1 map ss_s : LState → L i s t (State) ;
2 ss_c : LState → L i s t (State) ;
3 ss_p : LState → L i s t (State) ;
4 var ss , cs , ps : L i s t (State) ;
5 eqn ss_s (states (ss , cs , ps)) = ss ;
6 ss_c (states (ss , cs , ps)) = cs ;
7 ss_p (states (ss , cs , ps)) = ps ;

Figure 6.6: Projection functions for instances of type LState

Example 27 (Child Relation child_relation). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the
SMMT specification as shown in Figure 5.3. Figure 6.7 shows the child relation mapping
child_relation and corresponding equations for SMMT specification M′.

1 map c h i l d _ r e l a t i o n : State → L i s t (State) ;
2 eqn c h i l d _ r e l a t i o n (s t _ i d l e) = [] ;
3 c h i l d _ r e l a t i o n (s t_error) = [st_unresolved , st_resolved] ;
4 c h i l d _ r e l a t i o n (st_unresolved) = [] ;
5 c h i l d _ r e l a t i o n (st_resolved) = [] ;
6 c h i l d _ r e l a t i o n (s t _pr in t ing) = [st_preparing_job , s t_pr int ing_ job] ;
7 c h i l d _ r e l a t i o n (st_preparing_job) = [st_co lor_correct ion , s t _ s c a l i n g] ;
8 c h i l d _ r e l a t i o n (s t_co lor_correct ion) = [st_pre_cc , st_post_cc] ;
9 c h i l d _ r e l a t i o n (st_pre_cc) = [] ;

10 c h i l d _ r e l a t i o n (st_post_cc) = [] ;
11 c h i l d _ r e l a t i o n (s t _ s c a l i n g) = [st_pre_scal ing , s t_post_sca l ing] ;
12 c h i l d _ r e l a t i o n (st_pre_sca l ing) = [] ;
13 c h i l d _ r e l a t i o n (s t_post_sca l ing) = [] ;
14 c h i l d _ r e l a t i o n (s t_pr in t ing_ job) = [] ;

Figure 6.7: Child Relation Mapping child_relation

Similarly, we add a mapping to define the descendant relation and entry descendant re-
lation of SMMT specification M′, desc_relation and entry_desc_relation respectively.
Both mappings map each instance s of type State to an instance of type List(State) rep-
resenting the descendants and entry descendants respectively. For each state s′ ∈ S(M′) of
SMMT specification M′, we add the following equation to the mCRL2 specification:

desc_relation(αS(s
′)) = αS({s ∈ S(M′) | s ⊏+ s′})

entry_desc_relation(αS(s
′)) = αS({s ∈ S(M′) | s ⊏+

ES s′})

Example 28 (Descendant Relation desc_relation and Entry Descendant Relation
entry_desc_relation). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specification as
shown in Figure 5.3. The descendant relation mapping desc_relation, entry descendant
relation mapping entry_desc_relation and their corresponding equations that are de-
fined for SMMT specification M′ are shown in Figures 6.8 and 6.9 respectively.

6.2.1.3 Transition Relation T

We represent the transition relation of an SMMT specification M′ in mCRL2 using mapping
transition_relation. Mappingtransition_relationmaps an instance sof typeState
to a list of Transition instances consisting of all outgoing transitions of state s.

Each instance of type Transition has two arguments: onEvent of type OnEvent speci-
fying the OnEvent for which the transition is defined and target of type State that specifies
the target state of the transition. Figure 6.10 presents structured sort Transition in the
mCRL2 language.

We define mapping function αT (T) that translates a list of transitions T into a list of
Transition instances in mCRL2. That is, let T (s) = [⟨e1, s′1⟩, . . . , ⟨en, s′n⟩] be the list of tran-

54 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 6. TRANSLATING SMMT TO MCRL2

1 map desc_relat ion : State → L i s t (State) ;
2 eqn desc_relat ion (s t _ i d l e) = [] ;
3 desc_relat ion (s t_error) = [st_unresolved , st_resolved] ;
4 desc_relat ion (st_unresolved) = [] ;
5 desc_relat ion (st_resolved) = [] ;
6 desc_relat ion (s t _pr in t ing) = [st_preparing_job , st_co lor_correct ion , st_pre_cc , st_post_cc ,
7 st_sca l ing , st_pre_scal ing , st_post_scal ing , s t _pr in t ing_ job] ;
8 desc_relat ion (st_preparing_job) = [st_co lor_correct ion , st_pre_cc , st_post_cc , s t_sca l ing ,
9 st_pre_scal ing , s t_post_sca l ing] ;

10 desc_relat ion (s t_co lor_correct ion) = [st_pre_cc , st_post_cc] ;
11 desc_relat ion (st_pre_cc) = [] ;
12 desc_relat ion (st_post_cc) = [] ;
13 desc_relat ion (s t _ s c a l i n g) = [st_pre_scal ing , s t_post_sca l ing] ;
14 desc_relat ion (st_pre_sca l ing) = [] ;
15 desc_relat ion (st_post_sca l ing) = [] ;
16 desc_relat ion (s t_pr int ing_ job) = [] ;

Figure 6.8: Mapping desc_relation

1 map entry_desc_relat ion : State → L i s t (State) ;
2 eqn entry_desc_relat ion (s t _ i d l e) = [] ;
3 entry_desc_relat ion (s t_error) = [st_unresolved] ;
4 entry_desc_relat ion (st_unresolved) = [] ;
5 entry_desc_relat ion (st_resolved) = [] ;
6 entry_desc_relat ion (s t _pr in t ing) = [st_preparing_job , st_co lor_correct ion , st_pre_cc , s t_sca l ing ,
7 st_pre_sca l ing] ;
8 entry_desc_relat ion (st_preparing_job) = [st_co lor_correct ion , st_pre_cc , s t_sca l ing ,
9 st_pre_sca l ing] ;

10 entry_desc_relat ion (s t_co lor_correct ion) = [st_pre_cc] ;
11 entry_desc_relat ion (st_pre_cc) = [] ;
12 entry_desc_relat ion (st_post_cc) = [] ;
13 entry_desc_relat ion (s t _ s c a l i n g) = [st_pre_sca l ing] ;
14 entry_desc_relat ion (st_pre_sca l ing) = [] ;
15 entry_desc_relat ion (s t_post_sca l ing) = [] ;
16 entry_desc_relat ion (s t _pr in t ing_ job) = [] ;

Figure 6.9: Mapping entry_desc_relation
1 sort Transi t ion = struct tra (onEvent : OnEvent , target : State) ;

Figure 6.10: Structured Sort Transition

sitions of an SMMT specification M′ that are defined for state s ∈ S(M′). In the mCRL2 speci-
fication, list T (s) is translated into the following instance of type List(Transition):

αT (T (s)) = [tra(αE(e1), αS(s
′
1)), . . . ,tra(αE(en), αS(s

′
n))]

For each state s ∈ S(M′) of SMMT specification M′, we add the following equation to the
mCRL2 specification to define the outgoing transitions of s:

transition_relation(αS(s)) = αT (T (s))

Example 29 (Transition Relation transition_relation). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩
be the SMMT specification as shown in Figure 5.3. Figure 6.11 shows mapping
transition_relation and corresponding equations that are defined for SMMT specifica-
tion M′.

Let t be an instance of type Transition. We define projection functions tra_o(t) and
tra_s(t) that return the OnEvent and target state of Transition instance t respectively.
The projection functions of type Transition are shown in Figure 6.12.

Formalising the State Machine Modelling Tool (SMMT) 55

CHAPTER 6. TRANSLATING SMMT TO MCRL2

1 map t r a n s i t i o n _ r e l a t i o n : State → L i s t (Transi t ion) ;
2 eqn t r a n s i t i o n _ r e l a t i o n (s t _ i d l e) = [tra (ev_submit_job , [] , s t _pr in t ing)] ;
3 t r a n s i t i o n _ r e l a t i o n (s t_error) = [] ;
4 t r a n s i t i o n _ r e l a t i o n (st_unresolved) = [tra (ev_resolve_error , [] , st_resolved)] ;
5 t r a n s i t i o n _ r e l a t i o n (st_resolved) = [tra (ev_reset_error , [] , s t _ i d l e)] ;
6 t r a n s i t i o n _ r e l a t i o n (s t _pr in t ing) = [] ;
7 t r a n s i t i o n _ r e l a t i o n (st_preparing_job) = [] ;
8 t r a n s i t i o n _ r e l a t i o n (s t_co lor_correct ion) = [tra (ev_color_error , [] , s t_error)] ;
9 t r a n s i t i o n _ r e l a t i o n (st_pre_cc) = [tra (ev_ f in ish_co lor , [] , s t_post_cc) ,

10 tra (ev_ f in ish_sca l ing , [] , s t_error)] ;
11 t r a n s i t i o n _ r e l a t i o n (st_post_cc) = [tra (ev_print_ job , [] , s t _pr int ing_ job)] ;
12 t r a n s i t i o n _ r e l a t i o n (s t _ s c a l i n g) = [] ;
13 t r a n s i t i o n _ r e l a t i o n (st_pre_sca l ing) = [tra (ev_ f in ish_sca l ing , [] , s t_post_sca l ing)] ;
14 t r a n s i t i o n _ r e l a t i o n (s t_post_sca l ing) = [tra (ev_print_ job , [] , s t _pr int ing_ job)] ;
15 t r a n s i t i o n _ r e l a t i o n (s t_pr int ing_ job) = [tra (ev_f in ish_ job , [] , s t _ i d l e)] ;

Figure 6.11: Mapping transition_relation

1 map tra_o : Transi t ion → OnEvent ;
2 tra_d : Transi t ion → L i s t (DoEvent) ;
3 var e : OnEvent ;
4 s : State ;
5 eqn tra_o (tra (e , s)) = e ;
6 t ra_s (tra (e , s)) = s ;

Figure 6.12: Projection functions for instances of type Transition

6.2.1.4 Representing an SMMT Specification in mCRL2

Let M′ = ⟨E,SS , SC , SP , ES,
⊏, T ⟩ be an SMMT specification. As mentioned before, an SMMT specification M′ is repre-
sented in the mCRL2 specification as an instance of type Spec. We define mapping αM (M′)
that returns an instance of type Spec representing SMMT specification M′, which is defined
as follows:

αM (M′) = sm
(
αE(E), αLS(M

′), αS(ES),child_relation,desc_relation,

entry_desc_relation,transition_relation
)
,

where mapping functions child_relation, desc_relation, entry_desc_relation
and transition_relation are constructed as discussed in their respective paragraphs in
Section 6.2.1. In the mCRL2 specification we add mapping smmt_spec that returns the Spec
instance representing the SMMT specification.

Example 30 (Representation of an SMMT specification in mCRL2). Let M′ = ⟨E,SS , SC , SP , ES,⊏
, T ⟩ be the SMMT specification as shown in Figure 5.3. In Figure 6.13 mapping smmt_spec
and corresponding equation is defined that returns the instance of type Spec representing
SMMT specification M′.

Let sp be an instance of type Spec. We define projection functions sm_o(sp), sm_s(sp),
sm_ss(sp), sm_es(sp), sm_cr(sp), sm_dr(sp), sm_edr(sp) and sm_tr(sp). The pro-
jection functions of type Spec are shown in Figure 6.14. These projection functions return
the list of OnEvents, list of all states, instance of type LState, the list of entry states, the child
relation, the descendant relation, the entry descendant relation and the transition relation
of instance sp respectively.

56 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 6. TRANSLATING SMMT TO MCRL2

1 map smmt_spec : Spec ;
2 eqn smmt_spec = sm(
3 [ev_print_ job , ev_f in ish_ job , ev_ f in ish_co lor , ev_ f in ish_sca l ing , ev_resolve_error ,
4 ev_reset_error , ev_color_error , ev_submit_job] ,
5 states (
6 [s t _ i d l e , st_unresolved , st_resolved , st_pre_cc , st_post_cc , st_pre_scal ing ,
7 st_post_scal ing , s t _pr in t ing_ job] ,
8 [st_error , s t_pr int ing , st_co lor_correct ion , s t _ s c a l i n g] ,
9 [st_preparing_job]

10) ,
11 [s t _ i d l e , st_unresolved , st_preparing_job , st_co lor_correct ion , st_pre_cc , s t_sca l ing ,
12 st_pre_sca l ing] ,
13 c h i ld _r e la t i on , % Figure 6.7
14 desc_relat ion , % Figure 6.8
15 entry_desc_relat ion , % Figure 6.9
16 t r a n s i t i o n _ r e l a t i o n % Figure 6.11
17) ;

Figure 6.13: mCRL2 Representation of SMMT Specification M as given in Figure 5.3

1 map sm_o : Spec → L i s t (OnEvent) ; % L i s t of OnEvents
2 sm_s : Spec → L i s t (State) ; % L i s t of a l l s tates
3 sm_ss : Spec → LState ; % SimpleStates, CompositeStates and ParallelStates
4 sm_es : Spec → L i s t (State) ; % Entry state re la t ion
5 sm_cr : Spec → State → L i s t (State) ; % Child re la t ion
6 sm_dr : Spec → State → L i s t (State) ; % Descendant state re la t ion
7 sm_edr : Spec → State → L i s t (State) ; % Entry descendant re la t ion
8 sm_tr : Spec → State → L i s t (Transi t ion) ; % Transi t ion re la t ion
9 var lo : L i s t (OnEvent) ;

10 s : LState ;
11 l s : L i s t (State) ;
12 cr , dr , edr : State → L i s t (State) ;
13 t r : State → L i s t (Transi t ion) ;
14 eqn sm_o (sm(lo , s , ls , cr , dr , edr , t r)) = lo ;
15 sm_d (sm(lo , s , ls , cr , dr , edr , t r)) = ld ;
16 sm_s (sm(lo , s , ls , cr , dr , edr , t r)) = ss_s (s) ++ ss_c (s) ++ ss_p (s) ;
17 sm_ss (sm(lo , s , ls , cr , dr , edr , t r)) = s ;
18 sm_es (sm(lo , s , ls , cr , dr , edr , t r)) = l s ;
19 sm_cr (sm(lo , s , ls , cr , dr , edr , t r)) = cr ;
20 sm_dr (sm(lo , s , ls , cr , dr , edr , t r)) = dr ;
21 sm_edr (sm(lo , s , ls , cr , dr , edr , t r)) = edr ;
22 sm_tr (sm(lo , s , ls , cr , dr , edr , t r)) = t r ;

Figure 6.14: Projection functions for instances of type Spec

Formalising the State Machine Modelling Tool (SMMT) 57

CHAPTER 6. TRANSLATING SMMT TO MCRL2

6.2.2 Validation Checks on the SMMT Specification
In Chapter 5 we discussed the restrictions that must hold for the SMMT specifications. To
ensure that these restrictions are not violated, we include validation checks in the mCRL2
specification. Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification and sp = αM (M′)
be the instance of type Spec representing SMMT specification M′. Table 6.1 shows how the
restrictions from Section 5 are translated into validation checks in mCRL2.

Restriction ID Validation Check (mCRL2)

1 1 val_non_empty_states(sp)

2 2 val_one_entry_root_state(sp)

3 3 val_cs_one_entry_child(sp)

4 4 val_ss_no_children(sp)

5 5 val_transition(sp)

6 6 val_ps_entry_children(sp)

7 7 val_ps_atleast_two_children(sp)

Table 6.1: Translation of Restrictions to Mappings in mCRL2

Furthermore, we check whether the two constraints on the child relation ⊏ of the SMMT
specification hold. Table 6.2 shows how the constraints from Definition 2 are translated into
validation checks in mCRL2.

Constraint (Definition 2) ID Validation Check (mCRL2)

1 8 val_child_relation_1_parent(sp)

2 9 val_child_relation_acyclic(sp)

Table 6.2: Translation of Child Relation Constraints to Mappings in mCRL2

Each validation check mapping returns a list that is empty if the restriction/constraint is
not violated. In case the restriction/constraint is violated, then the validation check returns
a list consisting of the ID of the violated restriction/constraint as provided in Tables 6.1 and
6.2. The implementation of all validation checks can be found in Appendix B.

Example 31 (Validation Check val_ps_entry_children(sp)). We determine whether Re-
striction 6 is violated using validation check val_ps_entry_children(sp) as shown in
Figure 6.15. By Restriction 6 it must hold that all children of a ParallelStates are entry states.
Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification. Hence, it must hold that:

∀s′ ∈ SP︸ ︷︷ ︸
5

: (∀s ∈ S(M′)︸ ︷︷ ︸
6

: s ⊏ s′︸ ︷︷ ︸
7

⇒ s ∈ ES)︸ ︷︷ ︸
8

where the numbers below the braces correspond with the line numbers of mapping
val_ps_entry_children(sp) in Figure 6.15.

To check whether the restrictions and constraints hold, we define a mapping
is_well_defined that given an instance of type Spec returns the restrictions and con-
straints that are violated. The is_well_defined mapping joins the results of each valida-
tion check. Therefore, we obtain a list with the IDs of all restrictions and constraints that
were violated. Mapping is_well_defined is defined as shown in Figure 6.16.

58 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 6. TRANSLATING SMMT TO MCRL2

1 map val_ps_entry_chi ldren : Spec → L i s t (Nat) ;
2 var sp : Spec ;
3 eqn val_ps_entry_chi ldren (sp) = i f (
4 f o r a l l s , s ’ : State . (
5 s ’ in ss_p (sm_ss (sp)) % s′ ∈ SP

6 && s in sm_s (sp) % s ∈ S(M′)
7 && s in sm_cr (sp) (s ’) % s ⊏ s′

8) ⇒ s in sm_es (sp) , % s ∈ ES
9 [] , [6]) ;

Figure 6.15: Validation Check val_ps_entry_children(sp)

1 map i s_wel l _def ined : Spec → L i s t (Nat) ;
2 var sp : Spec ;
3 eqn i s_wel l _def ined (sp) = val_non_empty_states (sp) ++ val_one_entry_root_state (sp)
4 ++ val_cs_one_entry_chi ld (sp) ++ val_ps_entry_chi ldren (sp) ++ val_ss_no_chi ldren (sp)
5 ++ val_ps_at least_two_chi ldren (sp) ++ v a l _ t r a n s i t i o n (sp) ++ va l _ch i ld_re l _1_parent (sp)
6 ++ v a l _ c h i l d _ r e l _ a c y c l i c (sp) ;

Figure 6.16: Mapping is_well_defined

6.2.3 Translation of Definitions to Mappings
Given the instance of type Spec that represents the mathematical model of an SMMT spec-
ification in mCRL2, we define mappings and equations in mCRL2 that correspond to the
definitions that are defined in Chapter 5. These mappings and equations are used to define
the operational semantics of an SMMT specification. Table 6.3 shows for each function as
defined in Chapter 5 the mapping that corresponds to that function.

Def. Function Function mCRL2 Specification

12 I(M′) init_state(αM (M′))

13
PT (M′, EX) get_prio_tr_event(αM (M′), αs(EX), αE(e))
PT e(M

′, EX) get_targets(PT (M′, EX))

20 CS(M′, s, s′) css(αM (M′), αs(s), αs(s
′))

21 CT S(M′, EX, e) cts(αM (M′), αs(PT e(M
′, EX)))

23 E(M′, EX, e) enabled(αM (M′), αs(EX), αE(e))

24 ET (M′, EX, e) get_et(αM (M′), αT (T))

25 XS(M′, EX, e) get_xs(αM (M′), αs(EX), αT (T))

27 INIT (M′, EX, e) initiate(αM (M′), αs(X))

28 ESU(M′, EX, e) esu(αM (M′), αs(EX), αT (T))

Table 6.3: Translation of Functions to Mappings in mCRL2

As mentioned before, the mCRL2 specification uses lists instead of sets, therefore the
mappings iterate over lists instead of using set comprehension as defined in their respective
definitions in Chapter 5. Most equations that have been defined in the mCRL2 specification
consist of one or more helper functions that either increase the efficiency of the equations
or improve readability of the mCRL2 specification.

For example, consider mapping get_ax that has been defined to determine the set of
exited states as defined in Definition 25. The implementation of mapping get_xs is given
in Figure 6.17. According to Definition 25, set XS(M′, EX, e) consist of all states that conflict

Formalising the State Machine Modelling Tool (SMMT) 59

CHAPTER 6. TRANSLATING SMMT TO MCRL2

1 map get_xs : Spec # L i s t (State) # L i s t (Transi t ion) → L i s t (State) ;
2 var sp : Spec ;
3 s : State ;
4 l s : L i s t (State) ;
5 l t : L i s t (Transi t ion) ;
6 eqn get_xs (sp , [] , l t) = [] ;
7 xs_h (sp , s , l t) → get_xs (sp , s |> ls , l t) = [s] ++ get_xs (sp , ls , l t) ;
8 ! xs_h (sp , s , l t) → get_xs (sp , s |> ls , l t) = get_xs (sp , ls , l t) ;
9

10 map xs_h : Spec # State # L i s t (Transi t ion) → Bool ;
11 var sp : Spec ;
12 s : State ;
13 t : Transi t ion ;
14 l t : L i s t (Transi t ion) ;
15 eqn xs_h (sp , s , []) = f a l s e ;
16 css (sp , s , t ra_s (t)) → xs_h (sp , s , t |> l t) = true ;
17 ! css (sp , s , t ra_s (t)) → xs_h (sp , s , t |> l t) = xs_h (sp , s , l t) ;

Figure 6.17: Mapping get_ax

with a state from the set of entered targets when OnEvent e ∈ E is processed in execution
state EX ∈ EXS(M′). Mapping get_xs takes as input the specification sp, the set of states
ls of the specification sp and the list of transitions that will fire lt. For each state in set
ls, the mapping checks using helper mapping xs_h whether the state conflicts with the
target state of any of the transitions in list lt. The resulting list of states that is returned by
mapping get_xs consists of all states that are conflicting with a state of the set of entered
targets.

As shown in Table 6.3, functions XS(M, EX, e), ET (M, EX, e) and ESU(M, EX, e) are repre-
sented by mappingsget_xs, get_et andesu in the mCRL2 specifications respectively. Note
that, the arguments of these functions and their corresponding mappings in the mCRL2 ac-
cording to Table 6.3 do not correspond. When evaluating ESU(M, EX, e), the set of prioritised
transitions PT e(EX) is calculated two times: when evaluating XS(M, EX, e) and when evalu-
ating ET (M, EX, e). To save computations, the esu mapping in the mCRL2 specification does
not take an OnEvent as third argument, but instead has the set of transitions that fire as the
third argument. This allows us to forward the list of transitions as the last argument of both
mappings get_xs and get_et, rather than passing the OnEvent. In case of the get_etmap-
ping, we are no longer required to pass through the execution state as the set of prioritised
transitions is already provided as an argument of the mapping.

6.2.4 mCRL2 Process Specification
To define the operational semantics of an SMMT specification M′ in mCRL2, we define a pro-
cess that corresponds to the LTS defined in Definition 29. As we defined the translations of
an SMMT specification M′ to an instance of type Spec and defined the translation of each
definition that is used by Definition 29, we can define the process specification as follows:

SM(sp : Spec, ex : List(State)) =∑
e∈E(enabled(sp, ex, αE(e))

→ αE(e).SM(sp, esu(sp, ex, get_prio_tr_ev(sp, ex, αE(e))))
<> αE(e).F());

Where process F is defined as follows: F = FAIL.F(). Process SM has two parameters:
an instance sp of type Spec representing the SMMT specification and a list of states ex
to maintain the execution state. The process allows the actions that are defined for each
OnEvent to be performed. If the OnEvent of which the action was performed is enabled,
then the execution state is updated according to the execution state update function. If the
OnEvent is not enabled, we reach the failure state.

60 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 6. TRANSLATING SMMT TO MCRL2

We extend process SM such that the behavior as defined by the operational semantics of
the SMMT specification is only performed in case the SMMT does not violate any validation
checks. We define an action for each validation check. In case a validation check is not
satisfied, we only allow the process to perform the actions that correspond to the violated
validation checks. After all violated restrictions and constraints have been handled we reach
a deadlock. Process SM is extended as follows:

SM(sp : Spec, ex : List(State), valid : List(Nat)) =

(valid = []) → (∑
e∈E(

(enabled(sp, ex, αE(e))

→ αE(e).SM(sp, esu(sp, ex, get_prio_tr_ev(sp, ex, αE(e))))
<> αE(e).F())

) <> (

(head(valid) = 1) → val_non_empty_states.SM(sp, ex,tail(valid) ++ [0])

+ (head(valid) = 2) → val_one_entry_root_state.SM(sp, ex,tail(valid) ++ [0])

+ (head(valid) = 3) → val_cs_one_entry_child.SM(sp, ex,tail(valid) ++ [0])

+ (head(valid) = 4) → val_ss_no_children.SM(sp, ex,tail(valid) ++ [0])

+ (head(valid) = 5) → val_transition.SM(sp, ex,tail(valid) ++ [0])

+ (head(valid) = 6) → val_ps_entry_children.SM(sp, ex,tail(valid) ++ [0])

+ (head(valid) = 7) → val_ps_atleast_two_children.SM(sp, ex,tail(valid) ++ [0])

+ (head(valid) = 8) → val_child_relation_1_parent.SM(sp, ex,tail(valid) ++ [0])

+ (head(valid) = 9) → val_child_relation_acyclic.SM(sp, ex,tail(valid) ++ [0])

)

In this process, we add 0 to the list of violated validation checks that were not satisfied
whenever an action is performed that corresponds to a validation check. As no action can
fire when the head of list valid is equal to 0, this ensure that a deadlock is reached after all
actions that correspond to the violated validation checks have been performed.

Process SM is initialised using mappings smmt_spec, init_state(sp) and
is_well_defined(sp) as defined in Sections 6.2.1.4, 6.2.2 and 6.2.3 respectively. The ini-
tial state of process SM is defined as follows:

init SM(smmt_spec, init_state(smmt_spec), is_well_defined(smmt_spec));

We define an action for each OnEvent e ∈ E of SMMT specification M′. That is, we define αE(e)
as action for each OnEvent e ∈ E.

Example 32 (Process Specification). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be the SMMT specifi-
cation as shown in Figure 5.3. In Figure 6.18 process specification SM is defined that corre-
sponds to the operational semantics of SMMT specification M′. The mCRL2 specification that
is generated from the SMMT specification of Figure 5.3 by translation SMMT2MCRL2 can be
found in Appendix B.

Formalising the State Machine Modelling Tool (SMMT) 61

CHAPTER 6. TRANSLATING SMMT TO MCRL2

1 act FAIL , ev_print_ job , ev_f in ish_ job , ev_ f in ish_co lor , ev_ f in ish_sca l ing , ev_resolve_error ,
ev_reset_error , ev_color_error , ev_submit_job , val_non_empty_states , val_one_entry_root_state ,
val_cs_one_entry_chi ld , val_ss_no_chi ldren , v a l _ t r a n s i t i o n , val_ps_entry_chi ldren ,
val_ps_at least_two_chi ldren , va l_ch i ld_re l_1_parent , v a l _ c h i l d _ r e l _ a c y c l i c ;

2
3 proc SM(sp : Spec , ex : L i s t (State) , v a l i d : L i s t (Nat)) =
4 (v a l i d == []) → (
5 (enabled (sp , ex , ev_pr int_ job)
6 → ev_pr int_ job .SM(sp , esu (sp , ex , get_pr io_tr_ev (sp , ex , ev_pr int_ job)) , v a l i d)
7 <> ev_pr int_ job . F ())
8 + (enabled (sp , ex , ev_ f in i sh_ job)
9 → ev_ f in i sh_ job .SM(sp , esu (sp , ex , get_pr io_tr_ev (sp , ex , ev_ f in i sh_ job)) , v a l i d)

10 <> ev_ f in i sh_ job . F ())
11 + (enabled (sp , ex , e v _ f i n i s h _ c o l o r)
12 → e v _ f i n i s h _ c o l o r .SM(sp , esu (sp , ex , get_pr io_tr_ev (sp , ex , e v _ f i n i s h _ c o l o r)) , v a l i d)
13 <> e v _ f i n i s h _ c o l o r . F ())
14 + (enabled (sp , ex , e v _ f i n i s h _ s c a l i n g)
15 → e v _ f i n i s h _ s c a l i n g .SM(sp , esu (sp , ex , get_pr io_tr_ev (sp , ex , e v _ f i n i s h _ s c a l i n g)) , v a l i d)
16 <> e v _ f i n i s h _ s c a l i n g . F ())
17 + (enabled (sp , ex , ev_resolve_error)
18 → ev_resolve_error .SM(sp , esu (sp , ex , get_pr io_tr_ev (sp , ex , ev_resolve_error)) , v a l i d)
19 <> ev_resolve_error . F ())
20 + (enabled (sp , ex , ev_reset_error)
21 → ev_reset_error .SM(sp , esu (sp , ex , get_pr io_tr_ev (sp , ex , ev_reset_error)) , v a l i d)
22 <> ev_reset_error . F ())
23 + (enabled (sp , ex , ev_color_error)
24 → ev_color_error .SM(sp , esu (sp , ex , get_pr io_tr_ev (sp , ex , ev_color_error)) , v a l i d)
25 <> ev_color_error . F ())
26 + (enabled (sp , ex , ev_submit_job)
27 → ev_submit_job .SM(sp , esu (sp , ex , get_pr io_tr_ev (sp , ex , ev_submit_job)) , v a l i d)
28 <> ev_submit_job . F ())
29) <> (
30 (head (v a l i d) == 1) → val_non_empty_states .SM(sp , ex , t a i l (v a l i d) ++ [0])
31 + (head (v a l i d) == 2) → val_one_entry_root_state .SM(sp , ex , t a i l (v a l i d) ++ [0])
32 + (head (v a l i d) == 3) → val_cs_one_entry_chi ld .SM(sp , ex , t a i l (v a l i d) ++ [0])
33 + (head (v a l i d) == 4) → val_ss_no_chi ldren .SM(sp , ex , t a i l (v a l i d) ++ [0])
34 + (head (v a l i d) == 5) → v a l _ t r a n s i t i o n .SM(sp , ex , t a i l (v a l i d) ++ [0])
35 + (head (v a l i d) == 6) → val_ps_entry_chi ldren .SM(sp , ex , t a i l (v a l i d) ++ [0])
36 + (head (v a l i d) == 7) → val_ps_at least_two_chi ldren .SM(sp , ex , t a i l (v a l i d) ++ [0])
37 + (head (v a l i d) == 8) → va l _ch i ld_re l _1_parent .SM(sp , ex , t a i l (v a l i d) ++ [0])
38 + (head (v a l i d) == 9) → v a l _ c h i l d _ r e l _ a c y c l i c .SM(sp , ex , t a i l (v a l i d) ++ [0])
39) ;
40
41 proc F () = FAIL . F () ;
42
43 i n i t SM(smmt_spec , i n i t _ s t a t e (smmt_spec) , i s_wel l _def ined (smmt_spec)) ;

Figure 6.18: mCRL2 Process Specification SM

62 Formalising the State Machine Modelling Tool (SMMT)

Chapter 7

Experiments

In this chapter we discuss the experiments that have been performed to verify the correct-
ness of the SMMT2MCRL2 translation and verify the correctness of the existing SMMT speci-
fications. In addition to the translation defined in Chapter 6, we have formally defined the
syntax and semantics of the complete set of constructs of SMMT in mCRL2. This formalisa-
tion excludes SelfPost and Forward BehavioralActions. The extended SMMT2MCRL2 translation
allows us to run experiments on the 26 SMMT models that exist at the time of writing. When
referring to the SMMT2MCRL2 translation in the remainder of this report, we refer to this ex-
tended SMMT2MCRL2 translation. The mCRL2 specification that has been generated by the
SMMT2MCRL2 translation for the SMMT specification in Figure 5.3 can be found in Appendix
C.

We discuss the test procedure that has been used to verify the correctness of the trans-
lation based on the existing SMMT specifications at Canon Production Printing in Section
7.1. We have verified several properties on the mCRL2 specifications that were generated
using the SMMT2MCLR2 translation. We discuss the properties that have been verified on the
mCRL2 specifications in Section 7.2.

7.1 Correctness of the SMMT2MCRL2 Translation

We discuss the approach that was used to verify the correctness of the SMMT2MCRL2 trans-
lation in Section 7.1.1. In Section 7.1.2 we discuss the results of the experiments that were
performed to verify the correctness of the SMMT2MCRL2 translation.

7.1.1 Verification Approach

To verify the correctness of the SMMT2MCRL2 translation, we verify whether the behavior
of the mCRL2 specifications as generated by the SMMT2MCRL2 translation corresponds to
the behavior of the generated SCM C++ code. The SMMT2MCRL2 translation is said to be
correct if the behavior of the SCM C++ code is strongly bisimilar to the behavior of the re-
spective mCRL2 specification that is generated by translation SMMT2MCRL2 for all possible
SMMT specifications. Strong bisimulation is defined below:

Definition 33 (Strong Bisimulation [1]). Let (ST,L,→, s0) be a labelled transition system.
A binary relation R ⊆ ST × ST is called a strong bisimulation relation if, and only if, for all
s, t ∈ ST such that s R t holds, it also holds for all actions a ∈ L that:

• if s a−→ s′, then there is a t′ ∈ ST such that t a−→ t′ with s′ R t′

• if t a−→ t′, then there is an s′ ∈ ST such that s a−→ s′ with s′ R t′

Formalising the State Machine Modelling Tool (SMMT) 63

CHAPTER 7. EXPERIMENTS

We say that two labelled transition systems are strongly bisimilar if, and only if, there
exists a strong bisimulation relation that relates the initial states of the two systems. If the
two labelled transition systems are strongly bisimilar, then this means that every action that
is performed in one of the labelled transition systems can be matched by the same action
in the other labelled transition system and vice versa.

To analyse the behavior of the executable SCMC++ code, we define a translationSCM2MCRL2
that generates an mCRL2 specification from the executable SCMC++ code. Using theSCM2MCRL2
translation, we check the correctness of the SMMT2MCRL2 translation by verifying whether
the mCRL2 specifications that are obtained by both translations have the same behavior.
That is, we convert the mCRL2 specifications that are obtained by the two translations for
each SMMT specification to labelled transition systems and evaluate whether the two LTSs
that are obtained for each SMMT specification are strongly bisimilar using the ltscompare
tool [23] of the mCRL2 toolset. An overview of the testing procedure is shown in Figure 7.1.

SMMT Specification

SCM C++ Code

mCRL2 Spec. mCRL2 Spec.

LPS

LTS

LPS

LTS

B

SMMT C++ Code Generator

SMMT2MCRL2

SCM2MCRL2

mcrl22lps

lps2lts

mcrl22lps

lps2lts
ltscompare

Figure 7.1: Overview of Testing Procedure

In the remainder of this section we go into more detail on the SCM2MCRL2 translation
(Section 7.1.1.1) and the tools of the mCRL2 toolset that are used to determine whether the
behavior of the mCRL2 specifications that are generated by the two translations are strongly
bisimilar (Section 7.1.1.2). We discuss how the testing procedure has been automated using
Python scripts in Section 7.1.1.3.

7.1.1.1 SCM2MCRL2

To generate an mCRL2 specification that models the behavior of the executable SCM C++
code, we first analyse the generated SCM C++ code. We generate a C++ generator to ex-
plore the state space of the generated SCM C++ code. That is, we determine for each reach-
able execution state what DoEvents are produced and which execution state is reached after
each OnEvent is processed. Finally, we convert the explored state space into an mCRL2 spec-
ification. This procedure has been automated using Python. We discuss the SCM2MCRL2
translation in the remainder of this section.

Using Python scripts, the generated SCM C++ files are analysed to obtain the states, On-
Events, DoEvents, transitions, entry handlers, exit handlers and custom types that are defined
for the SMMT specification. The Python script performing the SCM2MCRL2 translation gen-
erates two files:

64 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 7. EXPERIMENTS

• x_state_machine_custom_types.h, defining the custom types that are used in SMMT
specification, where x denotes the name of the SMMT specification;

• x_state_machine_generator.cpp, a script to explore the state space of the SMMT
specification and generate an mCRL2 specification for this SMMT specification, where
x denotes the name of the SMMT specification.

In the remainder of this section we discuss how the above-mentioned C++ files are gen-
erated and how the C++ files are compiled and run to generate the mCRL2 specification that
models the behavior of the executable SCM C++ code.

Custom Types The SCM2MCRL2 translation generates a C++ header file to define the cus-
tom types of the SMMT specification that is translated: x_state_machine_custom_types.h,
where x denotes the name of the SMMT specification. This header file contains the defini-
tions of custom types that are not basic types that are implemented in C++. All custom types
that occur in the SMMT specification correspond to the following format:
namespaceName::className, as shown in Figure 7.2.

1 #pragma once
2 #include <str ing >
3

4 namespace namespaceName {
5 class className {
6 public :
7 std : : s t r ing val ;
8 } ;
9 }

Figure 7.2: Definition of Custom Type namespaceName::className

As mentioned before, SMMT contains no comparison operators that can be used to com-
pare the values of custom typed arguments in guards. As the custom typed arguments of
an OnEvent e cannot be used in the guards of a transition, it follows that the custom typed ar-
guments can only be used in the DoEvents that are produced as a response to OnEvent e. We
define each custom type as a class consisting of a single variable val of type std::string
for which only a default value "a" is used during the exploration of the state space.

State Space Exploration The generated executable SCM C++ code allows us to interact
with the state machine by, among others, sending OnEvents and checking the state of the
state machine. In Figure 7.3 a C++ class is shown that can be used to interact with the
generated SCM C++ code of an SMMT specification called test_model.

Two methods that can be used to interact with a state machine instance are the
process<OnEvent>() and isInState<State>() methods that respectively send an On-
Event to the state machine instance and check whether a state is active in the current exe-
cution state of the state machine instance. Using these two methods, we can explore the
state space of the SMMT specification from the generated SCM C++ code.

To generate the state space of the generated SCM C++ code, a depth-first search based
algorithm is used. The algorithm uses a queue to store all execution states that have been
reached but require to be explored further. Each pair (EX, sq) in the queue consist of an
execution state EX that has been reached by performing the OnEvents in the sequence of
OnEvents sq. The SCM library does not provide functionality to set the execution state of a
state machine instance. Hence, to reach an execution state, we must perform the sequence
of OnEvents that was performed to reach this execution state, starting from the initial state.
Initially, the queue only contains a pair (I, ϵ) where I denotes the initial execution state of
the state machine and ϵ denotes empty sequence of OnEvents.

Formalising the State Machine Modelling Tool (SMMT) 65

CHAPTER 7. EXPERIMENTS

1 #include " test_model_state_machine_impl . h"
2 using namespace cpp : : test_model ;
3 using namespace std ;
4

5 class ReplyClass f i n a l : public ITestModelStateMachineReplies {
6 / / Class to handle r e p l i e s of DoEvents (Example)
7 void doEventA () override {
8 cout << "DoEvent A has been produced" << endl ;
9 }

10 } ;
11

12 int main ()
13 {
14 auto r e p l i e s = make_shared<ReplyClass > () ;
15 TestModelStateMachinePtr chartPtr = ITestModelStateMachine : : create (r e p l i e s) ;
16 auto& chart = static_cast <TestModelStateMachin >(* chartPtr) ;
17

18 chart . i n i t i a t e () ;
19

20 / / Interact ions with State Machine (Examples)
21 chart . process <EventA > () ;
22 cout << " StateA i s " + (chart . i s InState <StateA > () ? " " : " not ") + " act ive " << endl ;
23

24 chart . terminate () ;
25 return 0;
26 }

Figure 7.3: C++ Class to interact with the generated SCM C++ code of SMMT specification
test_model

The generator stores each execution state EX as a set of std::string instances. A map
stateSpace of type map<set<string>, map<string, set<string»> stores for each
reachable execution state EX and for each OnEvent e the execution state that is reached
after OnEvent e is processed from execution state EX. Similarly, a map doEvents of type
map<set<string>, map<string, vector<string»> is used to store the DoEvents that
are produced when OnEvent e is processed from execution state EX.

For each pair (EX, sq) in the queue, the algorithm evaluates the DoEvents that are pro-
duced and the execution state that is reached when each OnEvent e is processed in execution
state EX. To do so, the algorithm first initializes a state machine instance and processes all
OnEvents in sequence sq after which OnEvent e is processed in execution state EX. After
OnEvent e is processed, the algorithm stores the execution state in the stateSpace map.
Furthermore, the algorithm stores the DoEvents that are produced after OnEvent e is pro-
cessed in state EX in the doEvents map. Whenever an OnEvent is processed that is not
enabled, a failure is recorded in the stateSpace map for execution state EX and OnEvent
e. When an execution state is reached that is not yet explored, a pair consisting of that ex-
ecution state and the sequence of OnEvents that led to the execution state is added to the
queue of execution states that are required to be explored.

Generating an mCRL2 Specification from the State Space We generate an mCRL2 spec-
ification using the state space that has been explored by the C++ generator. In this subsec-
tion we discuss how the stateSpace and doEvents maps are translated into an mCRL2
specification that corresponds to the behavior of the SCM C++ code.

To represent the reachable execution states of the executable SCM C++ code, we define a
structured sort State that consists of an element for each reachable execution state. Each
execution state EX in map stateSpace is represented as a set of strings consisting of the
names of the states in execution state EX. We define function ORD(X) that converts set X
into a list that contains the elements of X in an user-defined order. This ordering function is
used to ensure that each set is always mapped to the same list of states. We define mapping

66 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 7. EXPERIMENTS

αSN (X) that translates each non-empty set of strings X, representing an execution state,
into an instance of type State as follows:

αSN (X) = "st"+ "_"+ X[0] + "_"+ X[1] + "_"+ . . .+ "_"+ X[|X| − 1]

where s+ s′ represents the concatenation of strings s and s′, X = ORD(X) and X[i] denotes
the element of list X at index i for 0 ≤ i < |X|. Let Y = {EX1,EX2, . . . ,EXn} be the reachable
execution states of the SMMT specification as generated by the C++ generator. Structured
sort State is defined as follows in the generated mCRL2 specification:

sort State = struct αSN (EX1) | αSN (EX2) | . . . | αSN (EXn);

All OnEvents and DoEvents of the SMMT specification are added as actions to the mCRL2
specification. We define mapping αEV (e,D) to map OnEvent e and a list of DoEvents D to a
sequence of actions in the mCRL2 specification. Let D = [d1, d2, . . . , dn]. Mapping αEV (e,D)
is defined as follows:

αEV (e,D) = αE(e) · αE(d1) · αE(d2) · . . . · αE(dn)

We define a process p(s : State) that models the behavior of the SCM C++ code. Process
p consists of a single argument s of type State that represents the execution state of the
SMMT specification. Process p is defined as follows:

p(s : State) =
∑
s′ ∈ Y

∑
e ∈ E

(s ≈ αSN (s′)) → αEV (e,doEvents[s][e])·p(αSN (stateSpace[s][e]))

For each reachable execution state EX ∈ EXS(M) and each OnEvent e ∈ E, process p
contains an equation that specifies the DoEvents that are performed and the state that is
reached after OnEvent e is processed in execution state EX. This state is either an execution
state of the SMMT specification or the failure state.

7.1.1.2 mCRL2 Toolset

In this section we discuss the tools of the mCRL2 toolset [2] that are used to convert the
mCRL2 specifications into labelled transitions systems and compare whether two labelled
transition systems are strongly bisimilar. As shown in Figure 7.1, each mCRL2 specification
is first translated to a linear process specification (LPS) using the mcrl22lps tool [24]. The
following command is executed to translate an mCRL2 specification x.mCRL2 to a linear
process specification x.lps:

mcrl22lps -o x.mcrl2 x.lps

The no rewriting option (-o) has been used to reduce the runtime of the conversion from
mCRL2 specifications to LPSs. The runtime of converting the LPS into an LTS does increase
when using the no rewriting option. However, the overall runtime of converting the mCRL2
specification into an LTS decreases when the no rewriting option is used.

Next, the LPS is translated to an LTS using the lps2lts tool [25]. The following command
is executed to translate an LPS x.lps to an LTS x.lts:

lps2lts --cached x.lps x.lts

The caching option (--cached) is used to speed up the state space generation. The lps2lts
tool allows for multi-threading. We performed an experiment to determine the number
of cores that should be used to generate the LTSs for each SMMT specification. We ran
the lps2lts command to generate the LTSs of SMMT specifications B, U and W (Table 3.2)

Formalising the State Machine Modelling Tool (SMMT) 67

CHAPTER 7. EXPERIMENTS

using 1 to 128 cores. The generation of the LTSs for SMMT specifications B, U and W has
been performed 10 times for each number of cores. The average runtime, as measured by
the time command of Linux, for SMMT specifications B, U and W is shown in Figure 7.4.
The experiments show that using 1 core results in the fastest runtime. Hence, this shows
that the mCRL2 specifications that are generated using the SMMT2MCRL2 translation are not
effectively run in parallel. The overhead of running the task in parallel exceeds the time that
is saved by dividing the computations over multiple cores.

The mCRL2 toolset consist of a compiling rewriter JITty that can be used by bothmcrl22lps
and lps2lts to speed up the rewriting. Unfortunately, the mCRL2 specifications that are
generated by translationSMMT2MCRL2 cannot be converted using the JITty compiling rewriter
as these specifications exceed the template depth of the compiler rewriter.

We use the ltscompare tool [23] of the mCRL2 toolset to determine whether two LTSs
are strongly bisimilar (Definition 33). The following command is executed to evaluate whether
two LTSs x.lts and y.lts are strongly bisimilar:

ltscompare -v x.lts y.lts --equivalence=bisim --counter-example
--counter-example-file=counter-example.mcf

The ltscompare tool outputs whether the transition systems are strongly bisimilar. If the
transition systems are not strongly bisimilar, a counter-example is generated. This counter
example consist of a modal mu-calculus formulae that is satisfied by LTS x but is not satisfied
by LTS y.

7.1.1.3 Automating the Generation of the mCRL2 Specifications

In this section we discuss the Python scripts that were developed to automate the procedure
as shown in Figure 7.1. For each SMMT specification, the following files are used to generate
the mCRL2 specifications for the SMMT specification:

• x.mps: The XML representation of SMMT specification x that is used by MPS as in-
ternal structure to store the SMMT specification. This file is used by the SMMT2MCRL2
translation to generate an mCRL2 specification.

• x_state_machine.cpp, x_state_machine.h and x_state_machine_impl.h: The
generated SCM C++ source and header files of SMMT specification x that are generated
by SMMT. Translation SCM2MCRL2makes use of the generated SCM C++ file to generate
an mCRL2 specification.

We discuss how the mCRL2 specifications are generated using the SMMT2MCRL2 and
SCM2MCRL2 translations. Furthermore, we discuss the shell script that is generated to con-
vert the generated mCRL2 specifications of each SMMT specification to LTSs and compare
whether the LTSs that are generated for each SMMT specification are strongly bisimilar.

SMMT2MCRL2 To generate an mCRL2 specification using the SMMT2MCRL2 translation, we
first parse the XML representation in the .mps file. The SMMT specification is stored as an
object of the StateMachine Python class. The states of the SMMT specification are hierar-
chically stored in an instance of the StateMachine class. Each state is stored as an instance
of class State. The StateMachine and State Python classes are shown in Figure 7.5.

The SMMT2MCRL2 translation converts the instance of the StateMachine class to an
mCRL2 specification. As described in Chapter 6, all mCRL2 specifications that are generated
consist of four sections. The Python script that performs this translation first generates the
mCRL2 representation of the SMMT specification using the instance of the StateMachine
class. Next, the script appends the validation checks and mappings that are used in the pro-
cess equations of the mCRL2 specifications. Note that these are independent of the SMMT
specification. Finally, the instance of the StateMachine class is used to generate the pro-
cess equations of the mCRL2 specification.

68 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 7. EXPERIMENTS

(a) SMMT Specification B

(b) SMMT Specification U

(c) SMMT Specification W

Figure 7.4: Runtime of LPS2LTS for SMMT specifications B, U and W

Formalising the State Machine Modelling Tool (SMMT) 69

CHAPTER 7. EXPERIMENTS

1 class StateMachine :
2 def _ _ i n i t _ _ (s e l f) :
3 s e l f .name; # Name of the SMMT s p e c i f i c a t i o n
4 s e l f . namespace ; # Namespace of the SMMT s p e c i f i c a t i o n
5 s e l f .OE = [] ; # L i s t of OnEvents of the SMMT s p e c i f i c a t i o n
6 s e l f . DE = [] ; # L i s t of DoEvents of the SMMT s p e c i f i c a t i o n
7 s e l f . region = [] ; # Region of the SMMT s p e c i f i c a t i o n
8

9 class State :
10 def _ _ i n i t _ _ (se l f , type) :
11 s e l f . type = type ; # Type of the state (SimpleState , CompositeState , . . .)
12 s e l f .name = " " ; # Name of the state
13 s e l f . entry = False ; # Whether the state i s an entry state
14 s e l f . chi ldren = [] ; # Children of the state (instances of type State)
15 s e l f . t r a n s i t i o n s = [] ; # Outgoing t r a n s i t i o n s of the states
16 s e l f . j o in s = [] ; # Names of the states to which the state refers
17 s e l f . ceh = [] ; # Condit ional Entry Handlers of the state
18 s e l f . oeh = [] ; # Otherwise Entry Handlers of the state
19 s e l f . exh = [] ; # E x i t Handlers of the state

Figure 7.5: Python Classes StateMachine and State

SCM2MCRL2 The SCM2MCRL2 translation generates an mCRL2 specification by exploring
the state space of the generated SCM C++ code. First, the Python script that performs the
SCM2MCRL2 translation analyses the x_state_machine_impl.h C++ header file to obtain
the name, namespace, states, OnEvents and DoEvents of the SMMT specification. Using the
OnEvents and DoEvents, the Python script generates the C++ header file
x_state_machine_custom_types.h to define the custom types that are used by the pa-
rameters of the OnEvents and DoEvents. Next, the Python script generates the C++ generator
for the mCRL2 specification: x_state_machine_generator.cpp. As discussed in Section
7.1.1.1, this C++ generator explores the state space of the SMMT specification and converts
the state space into an mCRL2 specification. When the C++ generator has been generated
by the Python script, the Python script compiles and executes the C++ generator, resulting
in the mCRL2 specification of the SMMT specification that was translated.

Shell Script The Python scripts generate a Shell script that can be used to automatically
convert the mCRL2 specifications that are generated for each SMMT specification into LTSs.
Furthermore, the Shell script evaluates for each SMMT specification whether the two LTSs
that were obtained are strongly bisimilar. The Shell script that is generated for an SMMT
specification x is shown in Figure 7.6.

1 # ! / bin / bash
2

3 # Convert the mCRL2 S p e c i f i c a t i o n obtained by trans la t ion SMMT2MCRL2 into an LPS
4 mcrl22lps =o x . mcrl2 x . lps
5

6 # Convert the mCRL2 S p e c i f i c a t i o n obtained by trans la t ion SCM2MCRL2 into an LPS
7 mcrl22lps =o x=SCM. mcrl2 x=SCM. lps
8

9 # Converting the LPSs obtained from both trans lat ions into LTS
10 l p s 2 l t s ==threads=1 ==cached x . lps x . l t s
11 l p s 2 l t s ==threads=1 ==cached x=SCM. lps x=SCM. l t s
12

13 # Determining whether the LTSs are strongly b i s i m i l a r
14 ltscompare x . l t s x=SCM. l t s ==equivalence=bisim
15 ==counter=example ==counter=example=f i l e =x . mcf

Figure 7.6: Shell Script generated for SMMT specification x

70 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 7. EXPERIMENTS

7.1.2 Results Correctness Verification SMMT2MCRL2
In this section we present the results of the experiments that we ran to verify the correct-
ness of the SMMT2MCRL2 translation. We generated the mCRL2 specifications of all existing
SMMT specification using both the SMMT2MCRL2 and the SCM2MCRL2 translation on a laptop
with Windows 10 Pro, an Intel Core i7-6500U 2.50 GHz processor and 16 GB of RAM. The
Shell script that has been generated for each existing SMMT specifications has been run on
the High-Performance Cluster at Canon Production Printing. The High-Performance Cluster
operates over Rocky Linux 8.6 and consist of 5 computing nodes that each are equipped
with two EPYC 7763 processors and 256 GB of RAM. Version 202307.0 of the mCRL2 toolset
was used to run various tools of the toolset on the High-Performance Cluster. The results
of our experiments to verify the correctness of the SMMT2MCRL2 translation are shown in
Tables 7.1 (SMMT Specifications A to I) and 7.2 (SMMT Specifications J to Z). Tables 7.1 to 7.5
use format days : hours : minutes : seconds to denote the execution times. The
number of states and transitions that are given in these tables correspond to the number
of states and transitions in the generated LTSs.

Translation States Transition Generation mcrl22lps lps2lts
Total Strongly

Time Bisimilar

A
SMMT2MCRL2 205 2701 00:00:00:02 00:00:00:02 00:02:31:10 00:02:31:14

True
SCM2MCRL2 205 2701 00:00:00:25 00:00:00:02 00:00:00:03 00:00:00:30

True

B
SMMT2MCRL2 37 389 00:00:00:01 00:00:00:01 00:00:01:01 00:00:01:03

True
SCM2MCRL2 37 389 00:00:00:16 00:00:00:01 00:00:00:01 00:00:00:18

True

C
SMMT2MCRL2 39 379 00:00:00:01 00:00:00:01 00:00:01:05 00:00:01:07

True
SCM2MCRL2 39 379 00:00:00:16 00:00:00:01 00:00:00:01 00:00:00:18

True

D
SMMT2MCRL2 46 446 00:00:00:01 00:00:00:01 00:00:01:51 00:00:01:53

True
SCM2MCRL2 46 446 00:00:00:16 00:00:00:01 00:00:00:01 00:00:00:18

True

E
SMMT2MCRL2 39 305 00:00:00:01 00:00:00:01 00:00:00:42 00:00:00:44

True
SCM2MCRL2 39 305 00:00:00:16 00:00:00:01 00:00:00:01 00:00:00:18

True

F
SMMT2MCRL2 34 268 00:00:00:01 00:00:00:01 00:00:00:32 00:00:00:34

True
SCM2MCRL2 34 268 00:00:00:17 00:00:00:01 00:00:00:01 00:00:00:19

True

G
SMMT2MCRL2 21 120 00:00:00:01 00:00:00:01 00:00:00:10 00:00:00:12

True
SCM2MCRL2 21 120 00:00:00:15 00:00:00:02 00:00:00:01 00:00:00:18

True

H
SMMT2MCRL2 19 109 00:00:00:01 00:00:00:01 00:00:00:20 00:00:00:22

True
SCM2MCRL2 19 109 00:00:00:20 00:00:00:01 00:00:00:01 00:00:00:22

True

I
SMMT2MCRL2 11 36 00:00:00:01 00:00:00:01 00:00:00:02 00:00:00:04

True
SCM2MCRL2 11 36 00:00:00:16 00:00:00:01 00:00:00:01 00:00:00:18

True

Table 7.1: Experiment Verifying Correctness of the SMMT2MCRL2 Translation (SMMT Specifi-
cations A-I)

Formalising the State Machine Modelling Tool (SMMT) 71

CHAPTER 7. EXPERIMENTS

Translation States Transition Generation mcrl22lps lps2lts
Total Strongly

Time Bisimilar

J
SMMT2MCRL2 24706 185221 00:00:00:01 00:00:00:01 07:14:51:40 07:14:51:42

True
SCM2MCRL2 24706 185221 00:00:14:56 01:03:47:43 -1 -1

True

K
SMMT2MCRL2 6636 53330 00:00:00:01 00:00:00:01 01:19:57:40 01:19:57:42

True
SCM2MCRL2 6636 53330 00:00:03:51 00:00:51:54 00:12:52:05 00:13:47:50

True

L
SMMT2MCRL2 30 258 00:00:00:01 00:00:00:02 00:00:00:23 00:00:00:26

True
SCM2MCRL2 30 258 00:00:00:17 00:00:00:01 00:00:00:01 00:00:00:19

True

M
SMMT2MCRL2 -1 -1 00:00:00:01 00:00:00:01 -1 -1

Error
SCM2MCRL2 - - - - - -

Error

N
SMMT2MCRL2 53 270 00:00:00:01 00:00:00:01 00:00:01:38 00:00:01:40

True
SCM2MCRL2 53 270 00:00:00:17 00:00:00:01 00:00:00:01 00:00:00:19

True

O
SMMT2MCRL2 33 313 00:00:00:01 00:00:00:02 00:00:00:35 00:00:00:38

True
SCM2MCRL2 33 313 00:00:00:17 00:00:00:01 00:00:00:01 00:00:00:19

True

P
SMMT2MCRL2 24 132 00:00:00:01 00:00:00:02 00:00:00:08 00:00:00:11

True
SCM2MCRL2 24 132 00:00:00:17 00:00:00:01 00:00:00:01 00:00:00:19

True

Q
SMMT2MCRL2 9 41 00:00:00:01 00:00:00:02 00:00:00:02 00:00:00:05

True
SCM2MCRL2 9 41 00:00:00:15 00:00:00:02 00:00:00:01 00:00:00:18

True

R
SMMT2MCRL2 4 10 00:00:00:01 00:00:00:02 00:00:00:02 00:00:00:05

True
SCM2MCRL2 4 10 00:00:00:15 00:00:00:01 00:00:00:01 00:00:00:17

True

S
SMMT2MCRL2 18 99 00:00:00:01 00:00:00:01 00:00:00:10 00:00:00:12

True
SCM2MCRL2 18 99 00:00:00:15 00:00:00:01 00:00:00:01 00:00:00:17

True

T
SMMT2MCRL2 1038 6342 00:00:00:01 00:00:00:02 00:05:13:52 00:05:13:55

Error
SCM2MCRL2 - - - - - -

Error

U
SMMT2MCRL2 2 1 00:00:00:01 00:00:00:02 00:00:00:45 00:00:00:48

Error
SCM2MCRL2 - - - - - -

Error

V
SMMT2MCRL2 2 1 00:00:00:01 00:00:00:02 00:00:01:21 00:00:01:24

False
SCM2MCRL2 219 1254 00:00:00:19 00:00:00:03 00:00:00:07 00:00:00:29

False

W
SMMT2MCRL2 132 822 00:00:00:01 00:00:00:02 00:00:10:52 00:00:10:55

True
SCM2MCRL2 132 822 00:00:00:19 00:00:00:01 00:00:00:02 00:00:00:22

True

X
SMMT2MCRL2 10 30 00:00:00:01 00:00:00:01 00:00:00:02 00:00:00:04

True
SCM2MCRL2 10 30 00:00:00:16 00:00:00:01 00:00:00:01 00:00:00:18

True

Y
SMMT2MCRL2 19 49 00:00:00:01 00:00:00:02 00:00:00:09 00:00:00:12

True
SCM2MCRL2 19 49 00:00:00:16 00:00:00:01 00:00:00:02 00:00:00:19

True

Z
SMMT2MCRL2 48 265 00:00:00:01 00:00:00:01 00:00:02:02 00:00:02:04

True
SCM2MCRL2 48 265 00:00:00:19 00:00:00:01 00:00:00:02 00:00:00:22

True

Table 7.2: Experiment Verifying Correctness of the SMMT2MCRL2 Translation (SMMT Specifi-
cations J-Z)

1 The files containing these values were overwritten by accident when performing the experiments.

72 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 7. EXPERIMENTS

In the remainder of this section, we discuss the results as shown in Tables 7.1 and 7.2.
First, we discuss the problems that occurred during the generation of the mCRL2 specifica-
tion for each SMMT specification using translations SMMT2MCRL2 and SCM2MCRL2. Next, we
discuss whether the behavior of the mCRL2 specification that is generated by theSMMT2MCRL2
translation is strongly bisimilar to the behavior of the mCRL2 specification that is obtained
by the SCM2MCRL2 translation.

7.1.2.1 Generation of the mCRL2 Specifications

An mCRL2 specification has been generated for each of the 26 existing SMMT specifica-
tions using the SMMT2MCRL2 translation. Using the SCM2MCRL2 translation, we were only
able to generate an mCRL2 specification for 23 out of the 26 existing SMMT specifications.
The SCM2MCRL2 translation could not generate an mCRL2 specification for SMMT specifi-
cations M, T and U. We were not able to generate an mCRL2 specification using transla-
tion SCM2MCRL2 for SMMT specification M as the generation of the mCRL2 specification ex-
ceeded the available RAM. Hence, we have not been able to verify the correctness of the
SMMT2MCRL2 translation for SMMT specification M.

The SCM C++ code that was generated for SMMT specifications T and U threw an excep-
tion during the compilation of the SCM C++ classes that were generated by SMMT. The SCM
C++ classes that are generated by SMMT throw a read access violation exception when a
JointState is initiated that refers to a state that is not yet initiated at that point in time. In
the C++ classes that are generated by SMMT, it must hold that all states that are referred to
by a JointState must be initiated before the JointState itself is initiated. This restriction is only
required for the C++ code that is generated for an SMMT specification by MPS, not for the
generated C# code. The engineers that designed SMMT specifications T and U mentioned
that these two specifications were designed to generate C# code. Therefore, no problems
occurred when the generated C# classes were compiled and executed. This is an issue in
the C++ code generator of SMMT which has been reported to the developer of the SCM C++
library.

To verify that the exception is indeed thrown when a JointState is initiated that refers to
another state that is not yet initiated, we created a copy of both SMMT specifications T and
U: specifications T′ and U′ respectively. In SMMT specifications T′ and U′, we replaced the
order in which the states are initiated to ensure that no JointState is initiated that refers to a
state that is not yet initiated. We ran the experiment for SMMT specifications T′ and U′. The
results of the experiments for SMMT specifications T′ and U′ are shown in Table 7.3.

Translation States Transition Generation mcrl22lps lps2lts
Total Strongly

Time Bisimilar

T′ SMMT2MCRL2 1038 6342 00:00:00:01 00:00:00:01 00:04:22:34 00:04:22:36
True

SCM2MCRL2 1038 6342 00:00:00:37 00:00:00:08 00:00:03:30 00:00:04:15
True

U′ SMMT2MCRL2 2 1 00:00:00:01 00:00:00:01 00:00:00:44 00:00:00:46
False

SCM2MCRL2 8125 54691 00:00:06:18 00:01:30:39 01:22:48:10 02:00:25:07
False

Table 7.3: Experiment Verifying Correctness of the SMMT2MCRL2 Translation (SMMT Specifi-
cations T′ and U′)

The SCM2MCRL2 translation was able to generate an mCRL2 specification for both SMMT
specifications T′ and U′. Hence, this shows that the exception during the compilation of the
SCM C++ code is indeed caused by a JointState referring to a state that is not yet initiated.

Formalising the State Machine Modelling Tool (SMMT) 73

CHAPTER 7. EXPERIMENTS

7.1.2.2 Correctness Translations SMMT Specification

Out of the 25 SMMT specifications for which we were able to generate an mCRL2 specifica-
tion using both translations (A to L, N to S, T′, U′ and V to Z), there are 23 SMMT specifications
of which the LTSs that were obtained by the two translations (SMMT2MCRL2 and SCM2MCRL2)
are strongly bisimilar. Only the LTSs that were generated for SMMT specifications U′ and V
are not strongly bisimilar. We discuss why the LTSs that are generated using the two trans-
lations for both SMMT specification U′ and V are not strongly bisimilar.

SMMT Specification U′ Using the ltsgraph tool of the mCRL2 toolset, we analysed the
LTS that was generated for SMMT specification U′ by translation SMMT2MCRL2 (Figure 7.7).

val_transition

Figure 7.7: LTS generated for SMMT specification U′ using translation SMMT2MCRL2 and the
mcrl22lps, lps2lts and ltsgraph tools of the mCRL2 toolset

The LTS shown in Figure 7.7 shows a transition with label val_transition. According
to Table 6.1 this action corresponds to a violation of Restriction 5 by SMMT specification U′.
Hence, there must exist one or more state in SMMT specification U′ that each contain two
or more transitions that are defined for the same OnEvent. SMMT specification U′ contains
two states that, like state_a in Figure 7.8, have an internal and external transition defined
for the same OnEvent.

state_a state_bon ev_a()
⟳ on ev_a()

Figure 7.8: Example SMMT specification violation Restriction 5

The engineers that worked on SMMT specification U mentioned that the internal transi-
tions were temporarily added to be able to test the model during development. When the
engineers extended the SMMT specification, the engineers added the external transition
but forgot to remove the temporarily added internal transition. We create a copy of SMMT
specification U′: U′′. In SMMT specification U′′, we removed the internal transitions of the
two states that had both an internal and external transition defined for the same OnEvent.
We performed the experiment for SMMT specification U′′, the result of the experiment is
shown in Table 7.4.

Translation States Transition Generation mcrl22lps lps2lts
Total Strongly

Time Bisimilar

U′′ SMMT2MCRL2 8125 54691 00:00:00:01 00:00:00:01 03:10:02:18 03:10:02:20
True

SCM2MCRL2 8125 54691 00:00:06:18 00:01:30:39 01:22:48:10 02:00:25:07
True

Table 7.4: Experiment Verifying Correctness of the Extended SMMT2MCRL2 Translation
(SMMT Specification U′′)

As shown in Table 7.4, the LTSs that are generated for SMMT specification U′′ by trans-
lations SMMT2MCRL2 and SCM2MCRL2 are strongly bisimilar. Hence, this shows that the be-
havior of the SMMT specification was not affected by removing the previously mentioned
internal transitions.

74 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 7. EXPERIMENTS

SMMT Specification V The engineers that developed SMMT mentioned that for each state
of an SMMT specification it must holds that the guards of all transitions that are defined for
the same OnEvent are mutually exclusive. That is, for any valuation of the arguments of
the OnEvents, there exists at most one transition that is defined for the OnEvent without a
guard or of which the guard is satisfied. SMMT does not contain a checking rule to check
whether this restriction is violated or not. Hence, engineers are not alerted of states for
which multiple transitions are defined for the same OnEvent that are not mutually exclusive.
SMMT should be extended with a checking rule that determines whether this restriction is
violated during the creation of the SMMT specification in MPS.

The LTS that is generated from the mCRL2 specification obtained by translationSMMT2MCRL2
shows that there exist one or more states in SMMT specification V of which the transitions for
an OnEvent are not mutually exclusive. SMMT specification V has two states that each have
an internal and two external transitions defined for the same OnEvent. Figure 7.9 shows one
of these two states, state_a, and shows the outgoing transitions that are defined for the
same OnEvent for which the guards are not mutually exclusive.

state_a state_b

state_c

on ev_a(x, y) if not x and not y

on ev_a(x, y) if x⟳ on ev_a(x, y) if not x and y

Figure 7.9: Violation: Guards not mutually exclusive

By the order of precedence of the logical connectives [26], it follows that the not connec-
tive binds stronger than the and and or connectives. Hence, when OnEvent ev_a(x, y) is
processed, we have that:

• The internal transition of state_a fires if, and only if, x is false and y is true.

• The transition from state_a to state_b fires if, and only if, x and y are both false.

• The transition from state_a to state_c fires if, and only if, x is true.

Therefore, the guards of the transitions in Figure 7.9 are mutually exclusive. This contradicts
with the results that were obtained using translation SMMT2MCRL2.

Using the reflective editing mode of JetBrains MPS, we are able to directly view the guard
of each transition using the underlying abstract syntax tree. For example, the guard of the
internal transition of state_a shows the following abstract syntax tree:

if not {
and {

left: x
right: y

}
}

According to the abstract syntax tree the guard of the internal transition of state_a is
defined as not (x and y). Hence, the guards are not visualized conform to the order of prece-
dence as not (x and y) is trivially not equivalent to (not x) and y. Therefore, the transitions
that are defined in the example of Figure 7.9 are indeed not mutually exclusive. Hence, this
shows that the representation of guards is not correctly implemented when using the reg-
ular editing mode of MPS. The representation of guards in SMMT needs to be adopted such
that:

Formalising the State Machine Modelling Tool (SMMT) 75

CHAPTER 7. EXPERIMENTS

• Parentheses are added to the guard to ensure that the guard is correctly visualized in
regular editing mode of MPS.

• A checking rule must be implemented that ensures that the engineers may only add
guards of which the representation as shown using both the regular and reflective
editing mode are equivalent. That is, if we format the guard as shown in the regular
editing mode as a tree conform the order of precedence, this tree should be equivalent
to the guard in the abstract syntax tree as shown in the reflective editing mode.

The code generator of SMMT does not insert parentheses when a guard is converted
to either C++ or C# code. Therefore, the guard in the generated executable code always
corresponds to the guard as shown in the SMMT specification in the regular editing mode.
Hence, the guards in the generated C++ and C# code are mutually exclusive.

We create a copy of SMMT specification V: V′. We changed all guards in SMMT specifi-
cation V′ such that the representation of each guard is equivalent in both the regular and
reflective editor. We performed the experiment for SMMT specification V′, the result of the
experiment for SMMT specification V′ is shown in Table 7.5.

Translation States Transition Generation mcrl22lps lps2lts
Total Strongly

Time Bisimilar

V′ SMMT2MCRL2 219 1254 00:00:00:01 00:00:00:01 00:00:30:42 00:00:30:44
True

SCM2MCRL2 219 1254 00:00:00:20 00:00:00:03 00:00:00:07 00:00:00:30
True

Table 7.5: Experiment Verifying Correctness of the SMMT2MCRL2 Translation (SMMT Specifi-
cation V′)

As we adapted the guards such that the guards as shown by the regular and reflective
editor are equivalent, it follows that the guards in the MPS XML file and the generated C++
or C# must be equivalent. Therefore, the modifications that are made to the guard ensure
that the mutually exclusive guards are used in the mCRL2 specification for both translations.

7.2 Property Verification
In this section we discuss the properties that we have verified on the existing SMMT specifi-
cations. Note that we have verified these properties on the corrected versions of the SMMT
specification. We first discuss the properties that have been verified for each SMMT specifi-
cation. Next, we discuss how the properties have been checked on each SMMT specification.
Finally, we present the results of verifying these properties on the SMMT specifications.

7.2.1 Properties
We have verified 5 properties on each of the 26 SMMT specifications that exist at the time
of writing. In this section we introduce the properties that were verified and discuss how
the properties are expressed as mu-calculus formulae. These properties determine whether
the SMMT specifications can be reduced without affecting the behavior of the SMMT speci-
fication. That is, they check whether there exist states that never become active, transitions
that can never fire, OnEvents that are never enabled and DoEvents that are never produced.
Furthermore, we determine whether there exist execution states for which no OnEvent is
enabled and hence always leads to the failure state. Unfortunately, due to a lack of time,
we were not able to define SMMT specification specific properties for the existing SMMT
specifications.

76 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 7. EXPERIMENTS

1. Enabled States The enabled states property determines whether for all states of the
mCRL2 specification, except for the failure state, we can always perform an action that does
not lead to the failure state. That is, from any state except for the failure state there should
be an action that can be performed that cannot be followed by the FAIL action. By con-
struction of the process equations of the mCRL2 specification, a FAIL action can only occur
after an OnEvent is processed that is not enabled. Property 1 can be expressed using the
following mu-calculus formula:

[true*](<FAIL>true || <true>[FAIL]false)

This formula states that after any trace of actions, we either reached the failure state and
thus we can perform the FAIL action or we can perform an action after which we do not
reach the failure state and therefore the FAIL action cannot occur.

2. Activeness of States The activeness of states property determines whether all states of
the SMMT specification can become active during execution. For each state s of the SMMT
specification, there should exist a sequence of OnEvents starting from the initial state that
lead to an execution state in which state s is active. In the mCRL2 specification that is gen-
erated for each SMMT specification, there are no actions that can be used to determine
the execution state of the mCRL2 specification. Hence, to determine whether this property
holds for an SMMT specification, we are required to add actions to indicate when a state is
active.

We have generated a reachability mCRL2 specification for each SMMT specification that
is an extension of the mCRL2 specification that is obtained using translation SMMT2MCLR2. In
the reachability mCRL2 specification that is generated for an SMMT specification, we define
an action for each state of the SMMT specification. In the process equation of the reachabil-
ity mCRL2 specification we allow the action that has been defined for a state to be performed
if, and only if, the state to which the action corresponds is active. After the action is per-
formed, the arguments of the process are not altered. Therefore, the actions that indicate
the activeness of states are defined as self-loops.

To determine whether a state can become active during execution, it therefore suffices
to determine whether there exists a trace in which the action that was defined for that state
occurs. The activeness of states property can be expressed for a state state_a, for which
reachability action st_state_a has been defined, using the following mu-calculus formula:

<true*.st_state_a>true

This property must be verified for all states of the SMMT specification.

3. AllOnEvents Enabled This property determines whether there exists a state for each On-
Event of the mCRL2 specification such that the OnEvent does not lead to the failure state. That
is, this property checks for each OnEvent of the mCRL2 specification whether there exists a
trace in which the OnEvent action occurs after which a FAIL action cannot be performed.
Hence, for each OnEvent ev_a of an mCRL2 specification, this property can be expressed
using the following mu-calculus formula:

<true*.ev_a>[FAIL]false

This formula states that there exists a trace in which OnEvent ev_a occurs after which we do
not reach the failure state.

4. AllDoEventsProduced Similar to property 3, we define a property to determine whether
each DoEvent can be produced during execution of the mCRL2 specification. This property
checks for each DoEvent of the mCRL2 specification whether there exists a trace in which

Formalising the State Machine Modelling Tool (SMMT) 77

CHAPTER 7. EXPERIMENTS

the DoEvent action occurs. Hence, for each DoEvent re_a of an mCRL2 specification, this
property can be expressed using the following mu-calculus formula:

<true*.re_a>true

5. All Transitions Fire Finally, we define a property to determine whether all transitions
that are defined in the SMMT specification can fire at least once during the execution. There
are no actions present in the mCRL2 specification to indicate that a specific transition has
fired. We assign a unique integer i to each transition and add a DoEvent tr_reach(i) to
the list of DoEvents that are produced when the transition is fired in the reachability mCRL2
specification. Hence, to determine whether a transition to which unique integer i has as-
signed fires in the reachability mCRL2 specification, it suffices to check whether there exists
a trace in which action tr_reach(i) occurs. For a transition to which unique integer i has
been assigned, the property can be expressed using the following mu-calculus formula:

<true*.tr_reach(i)>true
This property must be verified for all transitions of the SMMT specification.

7.2.2 Approach
The mu-calculus formulae to check the properties for each SMMT specification are gen-
erated during the generation of the mCRL2 model by translation SMMT2MCRL2. To deter-
mine whether a property is satisfied by an mCRL2 specification, the lts2pbes [27] and
pbessolve [28] tools of the mCRL2 toolset are used. Figure 7.10 shows the commands
that are executed to convert the previously generated LTS and mu-calculus formula into a
Parameterized Boolean Equation System (PBES) and to solve the generated PBES.

1 % Replace x . l t s with x=r e a c h a b i l i t y . l t s i f property p corresponds to property 2 or 5
2 l ts2pbes =c ={ }=formula=p . mcf x . l t s x_p . pbes
3 pbessolve ={ }= f i l e =x . l t s ={ }=evidence= f i l e =x_evidence_p . l t s x_p . pbes

Figure 7.10: Commands to verify a property p on SMMT specification x

The -c option is used in the lts2pbes command to add counter example equations to
the generated PBES. Using the --evidence-file option, an evidence file is generated that
either shows the evidence that the property holds or a counterexample showing how the
property is violated. This evidence file is an LTS.

7.2.3 Results
In this section we discuss whether the properties as discussed in Section 7.2.1 are satisfied
by the 26 existing SMMT specifications. Table 7.6 shows for each property and each SMMT
specification whether the property is satisfied by the mCRL2 specification that is generated
by translation SMMT2MCRL2. All properties have been evaluated on a laptop with Windows 10
Pro, an Intel Core i7-6500U 2.50 GHz processor and 16 GB of RAM on which version 202307.0
of the mCRL2 toolset is installed. As shown in Table 7.6, there are only four SMMT specifi-
cations that do not satisfy all five properties. First, we discuss why SMMT specifications N,
P and Z do not satisfy property 1. Next, we discuss the reason that SMMT specification I
violates properties 2, 3 and 5.

78 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 7. EXPERIMENTS

SMMT Spec. 1. Enabled Sta
te

s

2. Acti
veness

of Sta
te

s

3. All O
nE
ve
nts

Enabled

4. All D
oE
ve
nts

Pro
duce

d

5. All Tra
nsit

ions Fir
e

A True True True True True

B True True True True True

C True True True True True

D True True True True True

E True True True True True

F True True True True True

G True True True True True

H True True True True True

I True False False True False

J True True True True True

K True True True True True

L True True True True True

M True True True True True

N False True True True True

O True True True True True

P False True True True True

Q True True True True True

R True True True True True

S True True True True True

T′ True True True True True

U′′ True True True True True

V′ True True True True True

W True True True True True

X True True True True True

Y True True True True True

Z False True True True True

Table 7.6: Verification of the properties (Section 7.2.1) on the SMMT specifications

Formalising the State Machine Modelling Tool (SMMT) 79

CHAPTER 7. EXPERIMENTS

SMMT Specifications N, P and Z As shown in Table 7.6, there are three SMMT specifica-
tions that do not satisfy property 1: N, P and Z. Hence, each of these three SMMT specifica-
tions has an execution state EX in which all OnEvents that are processed lead to the failure
state. SMMT specifications N, P and Z each contain a state to denote that the machine has
finished or has shut down. It is expected that no more OnEvents are handled whenever these
states are reached. Let E′ ⊆ E be the set of all OnEvents for which a transition is defined after
which execution state EX is reached directly. We define an additional property for SMMT
specifications N, P and Z that denotes that there always exists an action that does not lead
to the failure state, unless an OnEvent that is contained in E′ is processed. This property can
be expressed using the following mu-calculus formula:

[(!E′)*](<FAIL>true || <true>[FAIL]false)
This formula states that as long as no action e ∈ E′ occurs, we either reached the failure
state and thus we can perform the FAIL action or we can perform an action after which
we do not reach the failure state. This property is satisfied by SMMT specifications N, P and
Z. Hence, this shows that for each execution state of SMMT specifications N, P and Z there
always exists an OnEvent that is enabled in that execution state unless an action e ∈ E′ is
performed.

SMMT Specification I As shown in Table 7.6, properties 2, 3 and 5 are not satisfied by
SMMT specification I. Hence, there exists a state of the SMMT specification that can never
be active during execution, there exist an OnEvent that is never enabled and there exists a
transition that cannot fire. SMMT specification I is shown in Figure 7.11.

S state_a S state_b

S state_c

S state_d

S state_eS state_f

on ev_a do re_a
on ev_b

on ev_c do re_b
on ev_c do re_c

on ev_d do re_d
on ev_e do re_e

on ev_f do re_a

Figure 7.11: SMMT Specification I

As state_e is the initial state of SMMT specification I and there is no transition that
leads to state_a, we have that state_a can never be active during execution. Hence, the
transition from state_a to state_b cannot fire either. The engineers that developed SMMT
specification I mentioned that state_a and the outgoing transition of state_a should have
been removed from the SMMT specification.

7.3 Conclusion
In this chapter we discussed the experiments that were performed to verify the correctness
of the SMMT2MCRL2 translation and to prove the correctness of the existing SMMT specifi-
cations. The experiments that were performed show that the behavior of the mCRL2 spec-
ification that is generated for each of the 26 existing SMMT specifications by translation
SMMT2MCRL2 is strongly bisimilar to the behavior of the mCRL2 specification that is gener-
ated by the SCM2MCRL2 translation, with the exception of SMMT specifications M, T, U and V.
For SMMT specification M, we were not able to generate an mCRL2 specification using trans-
lation SCM2MCRL2 as this exceeded the available RAM. Hence, we were not able to verify the
correctness of translation SMMT2MCRL2 for SMMT specification M.

Through the experiments that have been performed, we found two SMMT specification
for which the C++ code generator of SMMT generated C++ classes that could not be com-
piled. The generated C++ classes that were generated for SMMT specifications T and U each

80 Formalising the State Machine Modelling Tool (SMMT)

CHAPTER 7. EXPERIMENTS

contain a JointState that is initiated before all states that are referred to by this JointState
are initiated. This issue has been reported to the developer of the SCM C++ library. We
have shown how SMMT specifications T and U were affected by this issue and discussed a
temporary solution to compile and run the generated SCM C++ code.

Using the validation checks that are contained in the mCRL2 specifications as generated
by the SMMT2MCRL2 translation, we have found two specifications that did not satisfy all
requirements: SMMT specifications U and V. We found several states in SMMT specification
U for which more than one transition were defined for the same OnEvent. We have shown
which transitions of the SMMT specification should have been removed and shown that
removing these transitions did not affect the behavior of the SMMT specification.

Furthermore, we found an issue with the representation of guards in SMMT. The repre-
sentation of guards in the regular editing mode of MPS has been shown to be incorrect. We
have shown that the guard as shown in the reflective editing mode, showing the abstract
syntax tree, does not correspond to the guard as shown in the regular editing mode. The
engineers that implemented the guards of SMMT specification V did not use the reflective
editing mode when defining the guard. Therefore, the guards that were defined in SMMT
specification V were assumed to be defined as desired by the engineer. The code that has
been generated for SMMT specification V contains the guards as shown in the regular edit-
ing mode of MPS. Hence, the code contains the guard as desired by the engineers of SMMT
specification V. We have replaced the guards in SMMT specification V such that each guard
is equivalent in both editing modes of MPS. Using the SMMT2MCRL2 and SCM2MCRL2 trans-
lation we have shown that we correctly modified the guards.

Using the SMMT2MCRL2 translation, mCRL2 specifications have been generated for the
corrected versions of SMMT specifications T, U and V. The behavior of these mCRL2 specifi-
cations has been shown to be strongly bisimilar to the behavior of the SCM C++ code that
was generated for the corresponding SMMT specification. Hence, we can conclude that the
mCRL2 specifications that are generated by translation SMMT2MCRL2 for SMMT specifica-
tions A to L and N to Z correctly model the behavior of the respective SMMT specification.

As we have only shown that the SMMT2MCRL2 translation can generate an mCRL2 speci-
fication that correctly models the behavior of the corresponding SMMT specification for 25
SMMT specifications (A to L and N to Z), we did not prove the complete correctness of the
SMMT2MCRL2 translation. As shown in Chapter 3, the 25 SMMT specifications are diverse
and each construct of SMMT is contained in several SMMT specifications. The SMMT2MCRL2
translation has been defined using the information that was obtained through several meet-
ings with the engineers that are experienced with SMMT and obtained through analysing
the code generator and the SCM library. Hence, we conclude with high confidence that the
SMMT2MCRL2 translation is able to correctly generate an mCRL2 specification for any SMMT
specification.

As shown in Tables 7.1 to 7.5, the generation of the LTSs for the existing SMMT specifi-
cations may take up to several days. Unfortunately, the runtime of generating the LTSs for
each SMMT specification did not decrease when the LTSs were generated using more than
one thread. As discussed before, the JITty compiler rewriter could not be used to speed up
the generation of the LTSs either, as this resulted in an exception. Various improvements
can be made to the mCRL2 specification to improve the efficiency of the mCRL2 specifica-
tion and therefore decrease the runtime of generating an LTS from the mCRL2 specification.
Due to time constraints the efficiency of the generated mCRL2 specifications has not been
optimized.

We have defined and verified five properties to check the correctness of each SMMT spec-
ification. Using these properties, we have found four SMMT specifications that did not satisfy
all properties. SMMT specification I has been shown to contain a state that never becomes
active, a transition that never fires and an OnEvent that is not enabled in any execution state
of the SMMT specification. According to the engineers that developed SMMT specification I,
this state should have been removed from the SMMT specification. Furthermore, we found
that property 1 was not satisfied by SMMT specifications N, P and Z. We have shown that

Formalising the State Machine Modelling Tool (SMMT) 81

CHAPTER 7. EXPERIMENTS

these three SMMT specifications contain an execution state in which all produced OnEvents
lead to the failure state. However, these SMMT specifications were intentionally designed to
have a state in which the execution of the SMMT specification should be terminated, that is,
in which no more OnEvents should be processed.

82 Formalising the State Machine Modelling Tool (SMMT)

Chapter 8

Conclusion

In this graduation report we presented the State Machine Modelling Tool (SMMT) that is
used to model the behavior of software components using state machines. In this chapter
we answer the research question that has been presented in Chapter 1:

"To what extent can we formalise and prove the correctness of
SMMT specifications using the mCRL2 model checker?"

We formally defined the syntax, static semantics and operational semantics of SMMT
specifications that consist of SimpleStates, CompositeStates, ParallelStates and transitions with-
out guards or BehavioralActions. The formal definition of SMMT that is presented in this
graduation report is derived from the discussions with the engineers at Canon Production
Printing and the analysis of the code generator, the generated SCM code and the SCM li-
brary. First, we formalised SMMT specifications consisting of only SimpleStates, CompositeS-
tates and transitions without guards and BehavioralActions. We defined the abstract syntax
of an SMMT specification, the static semantics as a number of restrictions and defined the
operational semantics of SMMT as a labelled transition system. Next, we extended our for-
mal definition to include ParallelStates. We have shown how the formal definition of SMMT
should be extended to include ParallelStates by redefining the abstract syntax, adding sev-
eral additional restrictions and redefining the operational semantics.

We have defined a translation SMMT2MCRL2 to translate SMMT specifications into mCRL2
specifications. This translation is defined using the formal definition of SMMT. The mCRL2
specifications that are generated by the SMMT2MCRL2 closely correlate to the formal defi-
nition as presented in this report. That is, each generated mCRL2 specification consists of
a representation of the mathematical model of the SMMT specification, validation checks
to determine whether the SMMT specification satisfies all restrictions, mappings and equa-
tions that represent the definitions that are used to define the operational semantics of
SMMT and the process equations representing the operational semantics of the SMMT spec-
ification.

Due to a lack of time, we were unfortunately not able to formally define SMMT for the
complete set of constructs in Chapter 5. However, we have defined the syntax and semantics
of the complete set of constructs in mCRL2, excluding Forward and SelfPost BehavioralActions.
The formal definition consisting of all constructs of SMMT, excluding SelfPost and Forward
BehavioralActions, can be derived from this mCRL2 specification.

We have defined the SCM2MCRL2 translation that explores the state space of the exe-
cutable SCM C++ code that is generated by SMMT and translates the explored state space
into an mCRL2 specification. We have shown that the SMMT2MCRL2 translation correctly gen-
erates an mCRL2 specification for 25 out of the 26 SMMT specifications that exist at the
time of writing. That is, we have shown that the behavior of the generated SCM C++ code
is strongly bisimilar to the behavior of the generated mCRL2 specification by translation
SMMT2MCRL2 for 25 out of the 26 existing SMMT specifications. For the one remaining SMMT

Formalising the State Machine Modelling Tool (SMMT) 83

CHAPTER 8. CONCLUSION

specification, we were not able to generate an mCRL2 specification using the SCM2MCRL2
translation as the state space exploration exceeded the available RAM. Hence, we cannot
determine the correctness of the SMMT2MCRL2 translation for this SMMT specification.

Through the experiments that we performed, we found an issue with the C++ code gener-
ator concerning the order in which states are initiated. Due to this issue, the C++ classes that
are generated for two SMMT specifications cannot be compiled. Using the validation checks
that are implemented in the mCRL2 specifications that are generated by the SMMT2MCRL2
translation, we detected two SMMT specifications that violated a validation check. Further-
more, we found an issue with the representation of the guards of transitions. We have
shown that the representation of the guards as shown in the reflective and regular editing
mode of MPS are not always equivalent. We have discussed these issues with the engineers
at Canon Production Printing and proposed solutions to resolve these issues.

Finally, we have shown how the mCRL2 specifications that are generated by the
SMMT2MCRL2 translation can be used to verify whether the SMMT specifications satisfy cer-
tain properties. We have shown that there exist three SMMT specifications that contain
states for which all OnEvents that are processed lead to the failure state. Furthermore, we
found one SMMT specification that contains a state that can never become active, an On-
Event that never is enabled and a transition that can never fire. Unfortunately, due to a lack
of time, we have not been able to prove whether SMMT specification specific properties
hold on the existing SMMT specifications. These results demonstrate the power of using
the mCRL2 model checker to determine the correctness of SMMT specifications.

84 Formalising the State Machine Modelling Tool (SMMT)

Chapter 9

Future Research

In this chapter we present some open issues that deserve further research.

Integration of the translation and verification in MPS The SMMT2MCRL2 translation that
is defined to generate an mCRL2 specification from an SMMT specification and all steps
to analyse properties on the generated mCRL2 specifications are performed using Python
scripts. These scripts are not integrated with the implementation of SMMT in JetBrains MPS.
It could be interesting to integrate the generation of the mCRL2 specification and verification
of the properties with the implementation of SMMT in MPS. This would allow the engineer
to automatically get feedback on the modelled SMMT specifications in JetBrains MPS.

Extending the Formal Definition of SMMT Due to a lack of time we have not been able
to formally define the syntax and semantics of the complete set of constructs of SMMT. The
syntax and semantics of SMMT specifications that include all constructs, except for Forward
and SelfPost BehavioralActions, are defined in mCRL2 and can be found in Appendix C. Using
the mCRL2 specification in Appendix C, the formal definition as presented in Chapter 5 can
be extended with JointStates, Guards, DoEvents, entry handlers and exit handlers.

Out of the 26 SMMT specification that exist at the time of writing, no SMMT specification
contains either an Forward or SelfPost BehaviorAction. It would be interesting to analyse why
these two constructs do not occur in the existing SMMT specifications. Depending on this
analysis, the formal definition and translation of SMMT specifications to mCRL2 specifica-
tions can be extended with Forward and SelfPost BehaviorActions.

Multi-threaded conversion of the generated mCRL2 specifications The experiments
that we performed in Chapter 7 show that the runtime of the conversion of the generated
mCRL2 specifications into LPSs and LTSs is not reduced when multiple cores are used to
perform the conversions. It could be interesting to investigate why the runtime of these
conversions is not reduced when multiple cores are used.

SMMT specification specific properties Due to a lack of time we have not been able to
verify SMMT specification specific properties. It could be interesting to define and verify a
number of properties that must hold for the existing SMMT specifications.

Formalising the State Machine Modelling Tool (SMMT) 85

CHAPTER 9. FUTURE RESEARCH

86 Formalising the State Machine Modelling Tool (SMMT)

References

[1] Jan Friso Groote and Mohammad R. Mousavi. Modeling and analysis of communicating
systems. English. MIT Press, 2014. isbn: 978-0-262-02771-7.

[2] Olav Bunte et al. “The mCRL2 Toolset for Analysing Concurrent Systems”. In: Tools and
Algorithms for the Construction and Analysis of Systems. TACAS 2019, LNCS vol. 11428.
Cham: Springer International Publishing, 2019, pp. 21–39. isbn: 978-3-030-17465-1.

[3] Jan A. Bergstra and Jan W. Klop. “Process algebra for synchronous communication”.
In: Information and Control 60.1 (1984), pp. 109–137. issn: 0019-9958. doi: https://
doi.org/10.1016/S0019-9958(84)80025-X.

[4] Boost C++ Libraries. Accessed on 19 October 2023. url: https://www.boost.org/.
[5] Boost Statechart Documentation. Accessed on 19 October 2023. url: https://www.

boost.org/doc/libs/1_83_0/libs/statechart/doc/index.html.
[6] Olav Bunte, Louis C.M. van Gool, and Tim A.C. Willemse. “Formal verification of OIL

component specifications using mCRL2”. In: International Journal on Software Tools for
Technology Transfer 24.3 (June 2022), pp. 441–472. issn: 1433-2787. doi: 10.1007/
s10009-022-00658-y. url: https://doi.org/10.1007/s10009-022-00658-y.

[7] Jasper Denkers, Louis C.M. van Gool, and Eelco Visser. “Migrating Custom DSL Imple-
mentations to a Language Workbench (Tool Demo)”. In: Proceedings of the 11th ACM
SIGPLAN International Conference on Software Language Engineering. SLE 2018. Boston,
MA, USA: Association for Computing Machinery, 2018, pp. 205–209. isbn: 9781450360296.
doi: 10.1145/3276604.3276608. url: https://doi.org/10.1145/3276604.
3276608.

[8] Lennart C.L. Kats and Eelco Visser. “The Spoofax Language Workbench: Rules for Declar-
ative Specification of Languages and IDEs”. In: SIGPLAN Not. 45.10 (Oct. 2010), pp. 444–
463. issn: 0362-1340. doi: 10.1145/1932682.1869497. url: https://doi.org/10.
1145/1932682.1869497.

[9] Mark H.M. Frenken. “Code Generation and Model-Based Testing in Context of OIL”.
Master’s thesis. Dec. 2019. url: https://research.tue.nl/nl/studentTheses/
code-generation-and-model-based-testing-in-context-of-oil.

[10] Tom Buskens. “Optimizing the Code Generator for OIL”. Master’s thesis. Oct. 2021.
url: https://research.tue.nl/en/studentTheses/optimizing-the-code-
generator-for-oil.

[11] Rutger van Beusekom et al. “Dezyne: Paving the Way to Practical Formal Software
Engineering”. In: Proceedings of the 6th Workshop on Formal Integrated Development
Environment, F-IDE@NFM 2021, Held online, 24-25th May 2021. Ed. by José Proença and
Andrei Paskevich. Vol. 338. EPTCS. 2021, pp. 19–30. doi: 10.4204/EPTCS.338.4. url:
https://doi.org/10.4204/EPTCS.338.4.

[12] Rutger van Beusekom et al. “Formalising the Dezyne Modelling Language in mCRL2”.
In: Aug. 2017, pp. 217–233. isbn: 978-3-319-67112-3. doi: 10.1007/978- 3- 319-
67113-0_14.

Formalising the State Machine Modelling Tool (SMMT) 87

https://doi.org/https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/https://doi.org/10.1016/S0019-9958(84)80025-X
https://www.boost.org/
https://www.boost.org/doc/libs/1_83_0/libs/statechart/doc/index.html
https://www.boost.org/doc/libs/1_83_0/libs/statechart/doc/index.html
https://doi.org/10.1007/s10009-022-00658-y
https://doi.org/10.1007/s10009-022-00658-y
https://doi.org/10.1007/s10009-022-00658-y
https://doi.org/10.1145/3276604.3276608
https://doi.org/10.1145/3276604.3276608
https://doi.org/10.1145/3276604.3276608
https://doi.org/10.1145/1932682.1869497
https://doi.org/10.1145/1932682.1869497
https://doi.org/10.1145/1932682.1869497
https://research.tue.nl/nl/studentTheses/code-generation-and-model-based-testing-in-context-of-oil
https://research.tue.nl/nl/studentTheses/code-generation-and-model-based-testing-in-context-of-oil
https://research.tue.nl/en/studentTheses/optimizing-the-code-generator-for-oil
https://research.tue.nl/en/studentTheses/optimizing-the-code-generator-for-oil
https://doi.org/10.4204/EPTCS.338.4
https://doi.org/10.4204/EPTCS.338.4
https://doi.org/10.1007/978-3-319-67113-0_14
https://doi.org/10.1007/978-3-319-67113-0_14

REFERENCES

[13] International Organization for Standardization, ed. ISO/IEC 14977:1996 Information Tech-
nology - Syntactic Metalanguage - Extended BNF. 1996.

[14] Thomas Gibson-Robinson and Philippa Hopcroft. Coco Platform. url:https://cocotec.
io/.

[15] Thomas Gibson-Robinson et al. “FDR3 — A Modern Refinement Checker for CSP”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Erika Ábrahám
and Klaus Havelund. Vol. 8413. Lecture Notes in Computer Science. 2014, pp. 187–201.

[16] K. Morris et al. “Formal verification and validation of run-to-completion style state
charts using Event-B”. In: Innovations in Systems and Software Engineering 18.4 (Dec.
2022), pp. 523–541. issn: 1614-5054. doi: 10.1007/s11334- 021- 00416- 4. url:
https://doi.org/10.1007/s11334-021-00416-4.

[17] Yi Ling Hwong et al. “Formalising and analysing the control software of the Compact
Muon Solenoid Experiment at the Large Hadron Collider”. In: Science of Computer Pro-
gramming 78.12 (2013). Special Section on International Software Product Line Con-
ference 2010 and Fundamentals of Software Engineering (selected papers of FSEN
2011), pp. 2435–2452. issn: 0167-6423. doi: https://doi.org/10.1016/j.scico.
2012.11.009. url: https://www.sciencedirect.com/science/article/pii/
S0167642312002365.

[18] Anna Stramaglia and Jeroen J.A. Keiren. “Formal Verification of an Industrial UML-like
Model using mCRL2”. In: Formal Methods for Industrial Critical Systems. Ed. by Jan Friso
Groote and Marieke Huisman. Cham: Springer International Publishing, 2022, pp. 86–
102. isbn: 978-3-031-15008-1.

[19] Helle H. Hansen et al. “Towards model checking executable UML specifications in mCRL2”.
In: Innovations in Systems and Software Engineering 6.1 (Mar. 2010), pp. 83–90. issn:
1614-5054. doi: 10.1007/s11334- 009- 0116- 1. url: https://doi.org/10.
1007/s11334-009-0116-1.

[20] Michele Pasqua, Massimo Comuzzo, and Marino Miculan. “The AbU Language: IoT
Distributed Programming Made Easy”. In: IEEE Access 10 (2022), pp. 132763–132776.
doi: 10.1109/ACCESS.2022.3230287.

[21] JetBrains MPS. url: https://www.jetbrains.com/mps/.
[22] MPS Sequence Type. url: https://www.jetbrains.com/help/mps/sequence.

html.
[23] mCRL2 Tool Documentation: ltscompare. Accessed on 23 October 2023. url: https:

//www.mcrl2.org/web/user_manual/tools/release/ltscompare.html.
[24] mCRL2 Tool Documentation: mcrl22lps. Accessed on 23 October 2023. url: https://

www.mcrl2.org/web/user_manual/tools/release/mcrl22lps.html.
[25] mCRL2 Tool Documentation: lps2lts. Accessed on 23 October 2023. url: https://www.

mcrl2.org/web/user_manual/tools/release/lps2lts.html.
[26] Rob P. Nederpelt and Fairouz D. Kamareddine. “Precedence of Logical Connectives”.

In: Logical reasoning A first course. College Publications, 2011, pp. 13–80.
[27] mCRL2 Tool Documentation: lts2pbes. Accessed on 23 October 2023. url: https://

www.mcrl2.org/web/user_manual/tools/release/lts2pbes.html.
[28] mCRL2 Tool Documentation: pbessolve. Accessed on 23 October 2023. url: https://

www.mcrl2.org/web/user_manual/tools/release/pbessolve.html.

88 Formalising the State Machine Modelling Tool (SMMT)

https://cocotec.io/
https://cocotec.io/
https://doi.org/10.1007/s11334-021-00416-4
https://doi.org/10.1007/s11334-021-00416-4
https://doi.org/https://doi.org/10.1016/j.scico.2012.11.009
https://doi.org/https://doi.org/10.1016/j.scico.2012.11.009
https://www.sciencedirect.com/science/article/pii/S0167642312002365
https://www.sciencedirect.com/science/article/pii/S0167642312002365
https://doi.org/10.1007/s11334-009-0116-1
https://doi.org/10.1007/s11334-009-0116-1
https://doi.org/10.1007/s11334-009-0116-1
https://doi.org/10.1109/ACCESS.2022.3230287
https://www.jetbrains.com/mps/
https://www.jetbrains.com/help/mps/sequence.html
https://www.jetbrains.com/help/mps/sequence.html
https://www.mcrl2.org/web/user_manual/tools/release/ltscompare.html
https://www.mcrl2.org/web/user_manual/tools/release/ltscompare.html
https://www.mcrl2.org/web/user_manual/tools/release/mcrl22lps.html
https://www.mcrl2.org/web/user_manual/tools/release/mcrl22lps.html
https://www.mcrl2.org/web/user_manual/tools/release/lps2lts.html
https://www.mcrl2.org/web/user_manual/tools/release/lps2lts.html
https://www.mcrl2.org/web/user_manual/tools/release/lts2pbes.html
https://www.mcrl2.org/web/user_manual/tools/release/lts2pbes.html
https://www.mcrl2.org/web/user_manual/tools/release/pbessolve.html
https://www.mcrl2.org/web/user_manual/tools/release/pbessolve.html

Appendix A

Proofs for Chapter 5

Lemma 1 (Entry Child Relation ⊏ES). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification.
The entry child relation ⊏ES as defined in Definition 9 is equivalent to ⊏ ∩ (ES × SC), that
is:

⊏ES ≡ ⊏ ∩ (ES × SC)

Proof. Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification. By Definition 9 we have that:

∀s,s′ ∈ S(M) : s ⊏ES s′ ⇔ s ∈ EC(M, s′)

Hence, it follows that:

⊏ES = {(s, s′) ∈ (S(M)× S(M)) | s ∈ EC(M, s′)}

We show that ⊏ES ≡ ⊏ ∩ (ES × SC):

⊏ES = {(s, s′) ∈ (S(M)× S(M)) | s ∈ EC(M, s′)}
≡ {(s, s′) ∈ (S(M)× S(M)) | s ∈ {x ∈ ES | x ⊏ s′}} (Definition 8)
≡ {(s, s′) ∈ (S(M)× S(M)) | s ∈ ES ∧ s ⊏ s′}
≡ {(s, s′) ∈ (ES × S(M)) | s ⊏ s′} (ES ⊆ S(M))
≡ {(s, s′) ∈ (ES × SC) | s ⊏ s′} (Restriction 4)
≡ {(s, s′) ∈ (⊏ ∩ (ES × SC)) | true}
≡ ⊏ ∩ (ES × SC)

Hence, this proves that ⊏ES ≡ ⊏ ∩ (ES × SC)

Formalising the State Machine Modelling Tool (SMMT) 89

APPENDIX A. PROOFS FOR CHAPTER 5

Lemma 2 (Execution State). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification. The
set of execution states EXS(M) consists of exactly one execution state for each SimpleState
s ∈ SS that consists of state s and all ancestors of state s. Hence, the set of execution states
can be derived as follows:

EXS(M) ≡
⋃

s ∈ SS

{
{s′ ∈ S(M) | s ⊏∗ s′}

}
Proof. Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification. To prove that the claim holds,
we show the that:

1. All execution states EX ∈ EXS(M) consist of exactly one SimpleState s ∈ SS and all
ancestors of state s, that is:

∀EX ∈ EXS(M) : ∃!s ∈ SS
: EX = {s′ ∈ S(M) | s ⊏∗ s′}

2. For each SimpleState s ∈ SS , EXS(M) contains exactly one execution state EX ∈ EXS(M)
such that s ∈ EX, that is:

∀s ∈ SS
: ∃!EX ∈ EXS(M) : s ∈ EX

We first prove that each execution state EX ∈ EXS(M) consists of exactly one SimpleState
s ∈ SS and all ancestors of s. Let EX ∈ EXS(M) be an execution state of SMMT specification
M. We show that execution stateEX contains exactly one SimpleState s ∈ SS and all ancestors
of state s. By Definition 11, it follows that EX contains exactly one root state. We distinguish
two cases:

• Assume that execution state EX consists of only one state, that is, EX = {t} for some
t ∈ S(M). By Definition 11 it follows that state t ∈ R(M). Furthermore, as execution
state EX contains exactly one state and since execution state EX must contain a child
c ∈ S(M) for each CompositeState c′ ∈ (SC ∩ EX), it follows that state t is a SimpleState.
By the definition of a root state, state t has no parents. Hence, it trivially follows that
execution state EX contains of exactly one SimpleState t and all ancestors of state t.

• Assume that execution state EX consists of more than one state, that is |EX| > 1.
Therefore, it follows that the root state of EX must be a CompositeState. By Definition
11, it follows that exactly one child c ∈ S(M) of each CompositeStates c′ ∈ (EX ∩ SC)
must be contained in EX. As the set of CompositeStates is finite and the child relation is
acyclic, it follows that there exist exactly one CompositeState c′′ ∈ (EX ∩ SC) of which a
child is contained in EX that is a SimpleState. Furthermore, it follows that EX contains
exactly one SimpleState s ∈ SS and that all CompositeStates in EX must be an ancestor
of SimpleState s.

Hence, in both cases we have shown that each execution state EX ∈ EXS(M) consists of
exactly one SimpleState s ∈ SS and all ancestors of state s. It remains to prove that EXS(M)
contains exactly one execution state EX ∈ EXS(M) for each SimpleState s ∈ SS such that
s ∈ EX. We show that there exists at least and at most one execution state EX ∈ EXS(M)
for each SimpleState s ∈ SS such that s ∈ EX.

• We show that there exists at most one execution state EX ∈ EXS(M) for each Sim-
pleState s ∈ SS such that s ∈ EX. Assume, to derive a contradiction, there exist two
distinct execution states EX,EX ′ ∈ EXS(M) such that s ∈ EX ∧ s ∈ EX ′. By the child
relation (Definition 2) it follows that each state has at most one parent. As we have
shown that each execution state consist of exactly one SimpleState and all ancestors of
that SimpleState, it follows that EX = EX ′. We derive a contradiction. There exists at
most one execution state EX ∈ EXS(M) for each SimpleState s ∈ SS such that s ∈ EX.

90 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX A. PROOFS FOR CHAPTER 5

• We show that there exists at least one execution state EX ∈ EXS(M) for each Sim-
pleState s ∈ SS such that s ∈ EX. Assume, to derive a contradiction, there exists a
SimpleState s′ ∈ SS for which there does not exist an execution state EX ∈ EXS(M)
such that s′ ∈ EX. Consider set of state X ⊆ S(M) that is defined as follows:

X = {s′′ ∈ S(M) | s′ ⊏∗ s′′}

We show that X ∈ EXS(M). By Definition 11, we have that X ∈ EXS(M) if, and only if:

P1: X ⊆ S(M)
P2: ∃!r ∈ X : r ∈ R(M)

P3: ∀s′ ∈ (SC ∩ X) : (∃!s ∈ S(M) : s ⊏ s′ ∧ s ∈ X))

P4: ∀t ∈ X : (∀t′ ∈ S(M) : (t ⊏+ t′ ⇒ t′ ∈ X))

Property P1 trivially holds by the definition of X. As each state has at most one parent
and the set of states is finite, there exists exactly one ancestor of s′ that has no par-
ent. Therefore, property P2 is satisfied. By definition of X, we have that X consists of
SimpleState s′ and all ancestor thereof. As all states have at most one parent, it trivially
follows that exactly one child of each CompositeState ancestor of s′ is contained in X.
Therefore, propertyP3holds for setX. PropertyP4 trivially holds by the definition ofX.
Hence, this shows that X ∈ EXS(M). We derive a contradiction as s′ ∈ X ∧X ∈ EXS(M).

Hence, we have shown that for each SimpleState s ∈ SS , EXS(M) contains exactly one execu-
tion state EX ∈ EXS(M) such that s ∈ EX.
As we have shown that each execution stateEX ∈ EXS(M) consists of exactly one SimpleState
s ∈ SS and all ancestors of s and since we have shown that there exists exactly one execution
state EX ∈ EXS(M) for each SimpleState s ∈ SS such that s ∈ EX, it trivially follows that the
claim holds. That is, it holds that:

EXS(M) ≡
⋃

s ∈ SS

{
{s′ ∈ S(M) | s ⊏∗ s′}

}

Lemma 3 (Initial Execution State is an Execution State). Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an
SMMT specification. The initial execution state I(M) is an execution state, that is:

I(M) ∈ EXS(M)

Proof. By Lemma 2 it follows that I(M) ∈ EXS(M) if, and only if, there exists a SimpleState
s ∈ (SS ∩ I(M)) such that all states in initial execution state I(M) are either state s or an
ancestor of state s, that is:

∃s ∈ (SS ∩ I(M)) : I(M) = {s′ ∈ S(M) | s ⊏∗ s′}

By Restrictions 2 and 3 we have that there exists exactly one entry root state and that each
CompositeState has exactly one entry child. Therefore, it trivially follows that there exists
exactly one SimpleState t ∈ (SS ∩ ES) of which all ancestors are entry states. By Definition
12 we have that:

I(M) = {s ∈ ES | ∀s′ ∈ S(M) : s ⊏
+ s′ ⇒ s′ ∈ ES}

Hence, it trivially follows that initial execution state I(M) consists of state t and all ancestors
of state t. Therefore, it follows that I(M) ∈ EXS(M).

Formalising the State Machine Modelling Tool (SMMT) 91

APPENDIX A. PROOFS FOR CHAPTER 5

Lemma 4 (Exactly One Prioritised Transition for an Enabled OnEvent). Let M = ⟨E,SS , SC , ES,⊏
, T ⟩ be an SMMT specification. The set of prioritised transitions PT e(M, EX) contains exactly
one target state if OnEvent e ∈ E is enabled in execution state EX ∈ EXS(M), that is:

∀EX ∈ EXS(M) : (∀e ∈ E : (E(M, EX, e) ⇒ (|PT e(M, EX)| = 1)))

Proof. Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification and EX ∈ EXS(M) be an exe-
cution state of SMMT specification M. Let OnEvent e ∈ E be an enabled OnEvent. We prove
that PT e(M,EX) contains exactly one state by proving that PT e(M,EX) contains at least
and at most one state.

• Set PT e(M,EX) contains at least 1 state, that is:

|PT e(M,EX)| ≥ 1

Since OnEvent e is an enabled onEvent, it follows by Definition 14 that: PT e(M,EX) ̸= ∅.
Hence, it trivially follows that |PT e(M,EX)| ≥ 1.

• Set PT e(M,EX) contains at most 1 state, that is:

|PT e(M,EX)| ≤ 1

Assume, to derive a contradiction, that the set of prioritised transitions PT (M, EX) con-
tains two or more transitions that are defined for OnEvent e. By Restriction 5 it follows
that each state s ∈ S(M) has at most one transition defined for each OnEvent e. Hence,
there must exist two distinct active states s, s′ ∈ EX that have a transition defined for
OnEvent e. Let ⟨e, t⟩ ∈ T (s) and ⟨e, t′⟩ ∈ T (s′), where t, t′ ∈ S(M′).
By Definition 13 we have that:

⟨e, t⟩ ∈ PT (M, EX) if, and only if, ¬∃x ∈ EX : (x ⊏+ s ∧ (∃x′ ∈ S(M) : ⟨e, x′⟩ ∈ T (x)))

⟨e, t′⟩ ∈ PT (M, EX) if, and only if, ¬∃y ∈ EX : (y ⊏+ s′ ∧ (∃y′ ∈ S(M) : ⟨e, y′⟩ ∈ T (y)))

By Lemma 2, it follows that execution state EX consists of exactly one SimpleState
t ∈ SS and all ancestors of state t. Therefore, all states in EX are related by descendant
relation ⊏+. As s and s′ are distinct states it follows that either s ⊏+ s′ or s′ ⊏+ s holds.
We distinguish two cases:

– If s ⊏+ s′ then it follows that transition ⟨e, t′⟩ ̸∈ PT (M, EX). This holds as s ⊏+

s′ ∧ ⟨e, t⟩ ∈ T (s). We derive a contradiction. If s ⊏+ s′ then PT (M, EX) contains at
most one transition that is defined for OnEvent e.

– If s′ ⊏+ s then it follows that transition ⟨e, t⟩ ̸∈ PT (M, EX). This holds as s′ ⊏+

s ∧ ⟨e, t′⟩ ∈ T (s′). We derive a contradiction. If s′ ⊏+ s then PT (M, EX) contains at
most one transition that is defined for OnEvent e.

Hence, in both cases PT (M, EX) contains at most one transition that is defined for On-
Event e. As PT e(M, EX) is defined as the set consisting of all target states of the transi-
tions that are defined in PT (M, EX) for OnEvent e, it trivially follows that |PT e(M, EX)| ≤
1

As we have shown that |PT e(M,EX)| ≥ 1 and |PT e(M,EX)| ≤ 1 hold, it trivially follows
that |PT e(M,EX)| = 1. Hence, The set of target states of the prioritised transitions that are
defined for OnEvent e in PT (M, EX) contains exactly one state, that is

|PT e(M,EX)| = 1

92 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX A. PROOFS FOR CHAPTER 5

Lemma 5 (Execution State Update returns an Execution State). Let M = ⟨E,SS , SC , ES,⊏, T ⟩
be an SMMT specification. For each execution state EX ∈ EXS(M) and each enabled OnEvent
e ∈ E, ESU(M, EX, e) is an execution state, that is:

∀EX ∈ EXS(M) : (∀e ∈ E : (E(M, EX, e) ⇒ (ESU(M, EX, e) ∈ EXS(M))))

Proof. Let M = ⟨E,SS , SC , ES,⊏, T ⟩ be an SMMT specification, EX ∈ EXS(M) be an execution
state of SMMT specification M and e ∈ E be an enabled OnEvent. By Definition 15 we have
that:

ESU(M, EX, e) = {s ∈ S(M) | ∃s′∈PT e(M,EX) : s
′ ⊏+ s ∨ s ⊏∗

ES s′}

As OnEvent e is enabled, it follows by Lemma 4 that |PT e(M, EX)| = 1. Let t ∈ S(M) be the
target state in PT e(M, EX), that is, PT e(M, E) = {t}. Hence, we have that:

ESU(M, EX, e) = {s ∈ S(M) | ∃s′∈PT e(M,EX) : s
′ ⊏+ s ∨ s ⊏∗

ES s′}
= {s ∈ S(M) | ∃s′∈{t} : s′ ⊏+ s ∨ s ⊏∗

ES s′}
= {s ∈ S(M) | t ⊏+ s ∨ s ⊏∗

ES t}

By Lemma 2 it follows that ESU(M, EX, e) ∈ EXS(M) if, and only if, there exists a SimpleState
s ∈ (SS ∩ ESU(M, EX, e)) such that all states in ESU(M, EX, e) are either state s or an ancestor
of state s, that is:

ESU(M, EX, e) = {s′ ∈ S(M) | s ⊏∗ s′}

We distinguish two cases:

• Assume that state t is a SimpleState. By Restriction 4 it follows that state t has no chil-
dren. Hence, it follows that:

ESU(M, EX, e) = {s′ ∈ S(M) | t ⊏∗ s′}

• Assume that state t is a CompositeState. By Restriction 4 it follows that all ancestors of
state t are CompositeStates. As all CompositeStates have exactly one entry child (Restric-
tion 3), the set of CompositeStates is finite and the child relation is acyclic, it follows that
state thas exactly one entry descendant that is a SimpleState. Hence, ESU(M, EX, e) con-
tains exactly one SimpleState x ∈ SS . Trivially, it follows that all states r ∈ ESU(M, EX, e)
are either equal to state x or an ancestor of state x. Hence, it follows that:

ESU(M, EX, e) = {s′ ∈ S(M) | x ⊏∗ s′}

We have shown in both cases that the set of states ESU(M, EX, e) can be expressed as a
SimpleState s ∈ SS and all ancestors of state s. Therefore, it follows by Lemma 2 that
ESU(M, EX, e) ∈ EXS(M).

Formalising the State Machine Modelling Tool (SMMT) 93

APPENDIX A. PROOFS FOR CHAPTER 5

Lemma 6 (Entry Child Relation ⊏ES (SMMT Specifications with ParallelStates)). Let M′ =
⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification. The entry child relation ⊏ES as defined in
Definition 9 where all occurrences of M are replaced by M′ is equivalent to⊏ ∩ (ES×(SC∪SP)),
that is:

⊏ES ≡ ⊏ ∩ (ES × (SC ∪ SP))

Proof. Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification. The definition of the entry
child relation of SMMT specification M′ corresponds to Definition 9 where all occurrences of
M are replaced by M′, hence we have that:

∀s,s′ ∈ S(M′) : s ⊏ES s′ ⇔ s ∈ EC(M′, s′)

Hence, it follows that:

⊏ES = {(s, s′) ∈ (S(M′)× S(M′)) | s ∈ EC(M′, s′)}

We show that ⊏ES ≡ ⊏ ∩ (ES × (SC ∪ SP)):

⊏ES = {(s, s′) ∈ (S(M′)× S(M′)) | s ∈ EC(M′, s′)}
≡ {(s, s′) ∈ (S(M′)× S(M′)) | s ∈ {x ∈ ES | x ⊏ s′}} (Definition 8)
≡ {(s, s′) ∈ (S(M′)× S(M′)) | s ∈ ES ∧ s ⊏ s′}
≡ {(s, s′) ∈ (ES × S(M′)) | s ⊏ s′} (ES ⊆ S(M′))
≡ {(s, s′) ∈ (ES × (SC ∪ SP)) | s ⊏ s′} (Restriction 4)
≡ {(s, s′) ∈ (⊏ ∩ (ES × (SC ∪ SP))) | true}
≡ ⊏ ∩ (ES × (SC ∪ SP))

Hence, this proves that ⊏ES ≡ ⊏ ∩ (ES × (SC ∪ SP))

94 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX A. PROOFS FOR CHAPTER 5

Lemma 7 (Initial Execution State is an Execution State (SMMT Specifications with Parallel-
States)). Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification. The initial execution
state I(M′) is an execution state, that is:

I(M′) ∈ EXS(M′)

Proof. By Definition 19, we have that I(M′) ∈ EXS(M′) if, and only if:

P1: I(M′) ⊆ S(M′)

P2: ∃!r ∈ I(M′) : r ∈ R(M′)

P3: ∀s′ ∈ (SC ∩ I(M′)) : (∃!s ∈ S(M′) : s ⊏ s′ ∧ s ∈ I(M′))

P4: ∀t′ ∈ (SP ∩ I(M′)) : (∀t ∈ S(M′) : t ⊏ t′ ⇒ t ∈ I(M′))

P5: ∀u ∈ I(M′) : (∀u′ ∈ S(M′) : (u ⊏+ u′ ⇒ u′ ∈ I(M′)))

The initial execution state I(M′) is defined as in Definition 12 where all occurrences of M are
replaced by M′, that is:

I(M′) = {s ∈ ES | ∀s′∈S(M′) : s ⊏
+ s′ ⇒ s′ ∈ ES}

To prove that the initial execution state I(M′) is an execution state, we show that properties
P1 to P5 hold on I(M′).

P1. By the definition of I(M′) we have that I(M′) ⊆ ES. Since ES ⊆ S(M′) (Definitions 17 and
18), it follows that I(M′) ⊆ S(M′).

P2. We prove that I(M′) contains exactly one root state, that is:

∃!r ∈ I(M′) : r ∈ R(M′)

By Restriction 2 we have that there exists exactly one entry root state, that is, |ES ∩
R(M′)| = 1. Let r ∈ S(M′) be the entry root state of SMMT specification M′, that is, ES ∩
R(M′) = {r}. By the definition of a root state, it follows that root state r has no parent.
Hence, it trivially follows that all ancestors of root state r are entry states, that is:

∀r′ ∈ S(M′) : r ⊏+ r′ ⇒ r′ ∈ ES

Therefore, it follows by the definition of initial execution state I(M′) that root state r is
contained in initial execution state I(M′), that is: r ∈ I(M′). As r ∈ I(M′), I(M′) ⊆ ES and
ES ∩ R(M′) = {r} it follows that I(M′) contains exactly one root state.

P3. We show that exactly one child s ∈ I(M′) of each CompositeStates s′ ∈ (SC ∩ I(M′)) is
contained in I(M′), that is:

∀s′ ∈ (SC ∩ I(M′)) : (∃!s ∈ S(M′) : s ⊏ s′ ∧ s ∈ I(M′))

Let c′ ∈ (SC ∩ I(M′)) be a CompositeState that is contained in initial execution state
I(M′). We prove that exactly one child c ∈ S(M′) of CompositeState c′ is contained in
I(M′).
By Restriction 3 we have that each CompositeState has exactly one entry child. Let c′′ ∈
S(M′) be the entry child of CompositeState c′. As c′ ∈ I(M′), it follows by the definition of
initial execution state I(M′) that all ancestors of state c′ are entry states, that is:

∀x ∈ S(M′) : (c
′ ⊏+ x ⇒ x ∈ ES)

Formalising the State Machine Modelling Tool (SMMT) 95

APPENDIX A. PROOFS FOR CHAPTER 5

As c′′ ⊏ES c′ ∧ c′ ∈ ES, it follows that:

∀x ∈ S(M′) : (c
′′ ⊏+ x ⇒ x ∈ ES)

Hence, by the definition of initial execution state I(M′) it follows that c′′ ∈ I(M′). As
c′′ ∈ I(M′) and state c′′ is the only entry child of CompositeState c′ it follows that initial
execution state I(M′) contains exactly one child c ∈ S(M′) of each CompositeState c′ ∈
(SC ∩ I(M′)).

P4. We show that all children t ∈ S(M′) of each ParallelState t′ ∈ (SP ∩ I(M′)) are contained
in initial execution state I(M′), that is:

∀t′ ∈ (SP ∩ I(M′)) : (∀t ∈ S(M′) : t ⊏ t′ ⇒ t ∈ I(M′))

Let p′ ∈ (SP ∩ I(M′)) be a ParallelState that is contained in initial execution state I(M′).
We prove that all children p ∈ S(M′) of ParallelState p′ is contained in initial execution
state I(M′).
By Restriction 6 we have that all children of a ParallelState are entry states. Hence,
for each child p ∈ S(M′) of ParallelState p′ it follows that p ⊏ES p′. By the definition of
initial execution state I(M′) it follows that p′ and all ancestors of state p′ are entry states.
Therefore, it trivially follows that all ancestors of each child p are entry states, that is:

∀p ∈ S(M′) : (p ⊏ES p′ ⇒ ∀p′′ ∈ S(M′) : (p ⊏+ p′′ ⇒ p′′ ∈ ES))

Hence, it follows by the definition of initial execution state I(M′) that all children p ∈
S(M′) of a ParallelState p′ ∈ (SP ∩ I(M′)) are contained in initial execution state I(M′).

P5. We show that all ancestors u′ ∈ S(M′) of each state u ∈ I(M′) are contained in initial
execution state I(M′), that is:

∀u ∈ I(M′) : (∀u′ ∈ S(M′) : (u ⊏+ u′ ⇒ u′ ∈ I(M′)))

Let u ∈ S(M′) be a state that is contained in initial execution state I(M′). We prove that
all ancestors u′ ∈ S(M′) of state u are contained in initial execution state I(M′).
Assume, to derive a contradiction, that there exists a state s ∈ I(M′) that has an ances-
tor s′ ∈ S(M′) that is not contained in initial execution state I(M′). As s ∈ I(M′), it follows
by the definition of initial execution state I(M′) that state s and all ancestors of state s
are entry states, that is:

∀s′′ ∈ S(M′) : s ⊏
+ s′′ ⇒ s′′ ∈ ES

As s ⊏+ s′ it follows that s′ ∈ ES and that ∀s′′ ∈ S(M′) : s
′ ⊏+ s′′ ⇒ s′′ ∈ ES. Therefore, by

the definition of initial execution state I(M′), it follows that s′ ∈ I(M′). Hence, this shows
that all ancestors u′ ∈ S(M′) of each state u ∈ I(M′) are contained in initial execution
state I(M′).

As we have shown that properties P1 to P5 hold for initial execution state I(M′), it follows
that the initial execution state I(M′) is an execution state.

96 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX A. PROOFS FOR CHAPTER 5

Lemma 8 (Conflicting Targets).Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification,
EX ∈ EXS(M′)be an execution state and e ∈ E be an OnEvent. The target states inPT e(M

′, EX)
conflict if, and only if, there does not exist an execution state EX ′ ∈ EXS(M′) such that
PT e(M

′, EX) ⊆ EX ′. Hence, it follows that:

CT (M′, EX, e) ≡ ¬∃EX′ ∈ EXS(M′) : PT e(M
′, EX) ⊆ EX ′

Proof. Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification and EX ∈ EXS(M′) be an
execution state of SMMT specification M′. We prove that

CT (M′, EX, e) ≡ ¬∃EX′ ∈ EXS(M′) : PT e(M
′, EX) ⊆ EX ′

CT (M′, EX, e) = ∃s,s′ ∈ PT e(M′,EX) : CS(M′, s, s′) (Definition 21)
≡ ∃s,s′ ∈ PT e(M′,EX) : (¬∃EX′ ∈ EXS(M′) : {s, s′} ⊆ EX ′) (Definition 20)
≡ ¬∃EX′ ∈ EXS(M′) : PT e(M

′, EX) ⊆ EX ′

Formalising the State Machine Modelling Tool (SMMT) 97

APPENDIX A. PROOFS FOR CHAPTER 5

Lemma 9 (Execution State Update returns an Execution State (SMMT Specifications with
ParallelStates)). For all SMMT specifications M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩, for each execution
state EX ∈ EXS(M′) and for each enabled OnEvent e ∈ E, the execution state update function
ESU(M′, EX, e) returns an execution state, that is:

E(M′, EX, e) ⇒ ESU(M′, EX, e) ∈ EXS(M′)

Proof. Let M′ = ⟨E,SS , SC , SP , ES,⊏, T ⟩ be an SMMT specification and EX ∈ EXS(M′) be an
execution state of SMMT specification M′. Let e ∈ E be an enabled OnEvent. By Definition 28
we have that:

ESU(M′, EX, e) = INIT
(
M′, (EX \ XS(M′, EX, e)) ∪ ET (M′, EX, e)

)
By Definition 19, we have that ESU(M′, EX, e) ∈ EXS(M′) if, and only if:

P1: ESU(M′, EX, e) ⊆ S(M′)

P2: ∃!r ∈ ESU(M′,EX,e) : r ∈ R(M′)

P3: ∀s′ ∈ (SC ∩ ESU(M′,EX,e)) : (∃!s ∈ S(M′) : s ⊏ s′ ∧ s ∈ ESU(M′, EX, e))

P4: ∀t′ ∈ (SP ∩ ESU(M′,EX,e)) : (∀t ∈ S(M′) : t ⊏ t′ ⇒ t ∈ ESU(M′, EX, e))

P5: ∀u ∈ ESU(M′,EX,e) : (∀u′ ∈ S(M′) : (u ⊏+ u′ ⇒ u′ ∈ ESU(M′, EX, e)))

We show that ESU(M′, EX, e) ∈ EXS(M′)by proving that propertiesP1 toP5hold for ESU(M′, EX, e).

P1. We prove that ESU(M′, EX, e) is a subset of set of states S(M′), we have that:

ESU(M′, EX, e)

= INIT
(
M′, (EX \ XS(M′, EX, e)) ∪ ET (M′, EX, e)

)
(Definition 28)

= ((EX \ XS(M′, EX, e)) ∪ ET (M′, EX, e)) ∪ {s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏
∗
ES s′} (Definition 27)

⊆ ((EX \ XS(M′, EX, e)) ∪ ET (M′, EX, e)) ∪ S(M′)
= ((EX \ XS(M′, EX, e)) ∪ {s ∈ S(M′) | ∃s′ ∈ PT e(M′,EX) : s

′ ∈ SR(M′, s)}) ∪ S(M′) (Definition 24)
⊆ (EX \ XS(M′, EX, e)) ∪ S(M′)
⊆ EX ∪ S(M′)
= S(M′) (EX ⊆ S(M′))

Hence, we have that ESU(M′, EX, e) ⊆ S(M′).

P2. We prove that ESU(M′, EX, e) contains exactly one root state r ∈ R(M′), that is:

∃!r ∈ ESU(M′,EX,e) : r ∈ R(M′)

As EX ∈ EXS(M′), it follows by Definition 19 that EX contains exactly one root state
r ∈ R(M′), that is:

∃r ∈ EX : r ∈ R(M′)

We first prove that ET (M′, EX, e) has exactly one root state, that is:

∃!r∈R(M′) : r ∈ ET (M′, EX, e)

98 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX A. PROOFS FOR CHAPTER 5

– Since OnEvent e is enabled in execution state EX, we have by Definition 23 that,
among others:

PT e(M
′, EX) ̸= ∅ ∧ ¬CT (M′, EX, e)

As PT e(M
′, EX) ̸= ∅, it follows that there exists a state s ∈ PT e(M

′, EX). By defini-
tion of the set of entered targets (Definition 24), it follows that s and all ancestors
of s are contained in ET (M′, EX, e). Hence, it trivially follows that ET (M′, EX, e) con-
tains at least one root state.
As ¬CT (M′, EX, e), it follows by Definition 21 that there exists an execution state
EX ′ ∈ EXS(M′) such that PT e(M

′, EX) ⊆ EX ′. By Definition 19, it follows that all
ancestors u′ ∈ S(M′) of each state u ∈ EX ′ are contained in execution state EX ′.
Therefore, as the set of entered targets is defined as the states in PT e(M

′, EX) and
all ancestors thereof, it trivially follows that ET (M′, EX, e) ⊆ EX ′. By Definition 19
it follows that EX ′ has at most one root state. As ET (M′, EX, e) ⊆ EX ′, it therefore
follows that ET (M′, EX, e) has at most one root state.
As we have shown that ET (M′, EX, e) contains at least and at most one root state,
we can conclude that ET (M′, EX, e) contains exactly one root state.

Let X = (EX \ XS(M′)) ∪ ET (M′, EX, e). We show that set X contains exactly one root
state, that is:

∃!r ∈ X : r ∈ R(M′)

As mentioned before, both EX and ET (M′, EX, e) have each exactly one root state.
Let t ∈ R(M′) be the root state that is contained in execution state EX and let t′ ∈
R(M′) be the root state that is contained in the set of entered targets ET (M′, EX, e). We
distinguish two cases:

– Execution state EX and the set of entered targets ET (M′, EX, e) contain the same
root state, that is t = t′. We show that the set of exited states XS(M′, EX, e) has no
root states, that is (XS(M′, EX, e) ∩ R(M′)) = ∅. As XS(M′, EX, e) ⊆ EX, it follows
that XS(M′, EX, e) has at most one root state, namely root state t. Since OnEvent
e is enabled in execution state EX, it follows by Definition 23 that ¬CT (M′, EX, e).
Therefore, it follows by Definition 21 that there must exist an execution state
EX ′ ∈ EXS(M′) such that PT e(M

′, EX) ⊆ EX ′, that is:

∃EX′ ∈ EXS(M′) : PT e(M
′, EX) ⊆ EX ′

⇔ ¬∃s′ ∈ ET (M′,EX,e) : (¬∃EX′ ∈ EXS(M′) : {t′, s′} ⊆ EX ′

Hence, it follows by the definition of the set of exited states XS(M′, EX, e) (Defini-
tion 25) that:

t ∈ XS(M′, EX, e) ⇔ ∃s′ ∈ ET (M′,EX,e) : CS(M′, t, s′)
⇔ ∃s′ ∈ ET (M′,EX,e) : (¬∃EX′ ∈ EXS(M′) : {t′, s′} ⊆ EX ′)

⇔ false

Hence, XS(M′, EX, e) ∩ R(M′) = ∅. Therefore, as EX ∩ R(M′) = ET (M′, EX, e) ∩
R(M′) = {t}, it follows that X ∩ R(M′) = {t}. Hence X contains exactly one root
state.

– Execution state EX and the set of entered targets ET (M′, EX, e) have distinct root
states, that is t ̸= t′. As XS(M′, EX, e) ⊆ EX, it follows that XS(M′, EX, e) has at
most one root state, namely root state t. We show that t ∈ XS(M′, EX, e). By Defi-
nition 19, we have that there does not exist an execution state that contains more
than one root states, therefore we have that there does not exist an execution
state that contains both t and t′, that is:

¬∃EX′ ∈ EXS(M′) : {t, t′} ⊆ EX ′

Formalising the State Machine Modelling Tool (SMMT) 99

APPENDIX A. PROOFS FOR CHAPTER 5

As t′ ∈ ET (M′, EX, e) ∧ ¬∃EX′ ∈ EXS(M′) : {t, t′} ⊆ EX ′, it follows that states t and t′

are conflicting, that is:
CS(M′, t, t′)

Hence, we have that ∃s′ ∈ ET (M′,EX,e) : CS(M′, t, s′). By Definition 25, it therefore
follows that t ∈ XS(M′, EX, e).
Hence, as EX ∩ R(M′) = {t}, ET (M′, EX, e) ∩ R(M′) = {t′} and t ∈ XS(M′, EX, e),
it follows that X ∩ R(M′) = {t′}. Therefore, we conclude that X contains exactly
one root state.

As set X contains exactly one root state, it follows that ESU(M′, EX, e) has exactly one
root state if (INIT (M′, X) \X) ∩R(M′) = ∅. That is:

¬∃r ∈ R(M′) : r ∈ {s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏
∗
ES s′}

Assume, to derive a contradiction, that there exists a root state r ∈ R(M′) in (INIT (M′, X)\
X). Hence, we have that:

∃s′ ∈ MC(M′,X) : r ⊏∗
ES s′

As r is a root state, we have that there does not exist a state r′ ∈ S(M′) that is a parent
of r. That is, we have that:

¬∃s′ ∈ MC(M′,X) : r ⊏+
ES s′

Hence, it follows that:
r ∈ MC(M′, X)

By Definition 26, it follows that r ∈ MC(M′, X) if, among others, there exists a Compos-
iteState or ParallelState that is a parent of state r. As r is a root state, it trivially follows
that r has no parent. Hence, r ̸∈ MC(M′, X). We derive a contradiction. Hence, we
conclude that ESU(M′, EX, e) contains exactly one root state.

P3. We prove that exactly one child s ∈ S(M′)of each CompositeState c′ ∈ (SC ∩ ESU(M′, EX, e))
is contained in the set ESU(M′, EX, e), that is:

∀s′ ∈ (SC ∩ ESU(M′,EX,e)) : (∃!s ∈ S(M′) : s ⊏ s′ ∧ s ∈ ESU(M′, EX, e))

Let X = (EX \ XS(M′)) ∪ ET (M′, EX, e). In order to prove that ESU(M′, EX, e) contains
exactly one child s ∈ S(M′) of each CompositeState s′ ∈ SC ∩ ESU(M′, EX, e), we show
that:

R1. Set X contains at most one child t ∈ S(M′) of each CompositeState t′ ∈ (SC ∩X).
R2. All ancestors s′ ∈ S(M′) of each state s ∈ X are contained in X

R3. Set INIT (M′, X) contains exactly one child u ∈ S(M′) given that R1 and R2 hold.

We prove requirements R1 to R3:

R1. As EX ∈ EXS(M′) we have by Definition 19 that:

∀s′ ∈ (SC ∩ EX) : (∃!s ∈ EX) : s ⊏ s′)

Hence, it trivially follows that EX\XS(M′, EX, e) contains at most one child of each
CompositeState in EX \ XS(M′, EX, e), that is:

∀s′ ∈ (SC ∩ (EX\XS(M′,EX,e))) : (¬∃s,s′′ ∈ (EX\XS(M′,EX,e))) : s ̸= s′′ ∧ s ⊏ s′ ∧ s′′ ⊏ s′)

Furthermore, as OnEvent e is enabled, it follows that ¬CT (M′, EX, e). Hence, by
Definition 21 we have that:

∃EX′ ∈ EXS(M′) : PT e(M
′, EX) ⊆ EX ′

100 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX A. PROOFS FOR CHAPTER 5

By Definition 19, it therefore follows that at most one child of each CompositeState
in ET (M′, EX, e) is contained in ET (M′, EX, e):

∀s′ ∈ (SC ∩ ET (M′,EX,e)) : (¬∃s,s′′ ∈ ET (M′,EX,e)) : s ̸= s′′ ∧ s ⊏ s′ ∧ s′′ ⊏ s′)

Assume, to derive a contradiction, that there exists a CompositeState c ∈ (X ∩
SC) for which two or more children are contained in X. Let c′, c′′ ∈ X be distinct
children of CompositeState c that are contained in X.
As sets EX \ XS(M′, EX, e) and ET (M′, EX, e) both contain at most one child per
CompositeState, it follows that {c, c′} ⊆ (EX \XS(M′, EX, e)) and c′′ ∈ ET (M′, EX, e).
As {c, c′} ⊆ (EX \ XS(M′, EX, e)), it follows that c′ ̸∈ XS(M′, EX, e). Hence, by
Definition 25 we have that:

¬∃s ∈ ET (M′,EX,e) : CS(M′, s, c′)

By Definition 20 it follows that states c′ and c′′ are conflicting as they are both
contained in X and are a child of CompositeState c, that is:

∃s ∈ ET (M′,EX,e) : CS(M′, s, c′)

Hence, we derive a contradiction. Each CompositeState c ∈ (X ∩ SC) has at most
one child c ∈ S(M′) in set X.

R2. We show that all ancestors s′ ∈ S(M′) of each state s ∈ X are contained in X, that
is:

∀s ∈ X : ∀s′ ∈ S(M′) : (s ⊏
+ s′ ⇒ s′ ∈ X))

Assume, to derive a contradiction, that there exists a state x ∈ X of which an
ancestor x′ ∈ S(M′) is not contained in X. As EX ∈ EXS(M′), it follows that all
ancestors r′ ∈ S(M′) of each state r ∈ EX are contained in EX, that is:

∀r ∈ EX : ∀r′ ∈ S(M′) : (r ⊏+ r′ ⇒ r′ ∈ EX))

We distinguish two cases:
* State x is contained in execution state EX, that is x ∈ EX. By Definition 19 it

follows that x′ ∈ EX as EX ∈ EXS(M′) and x ⊏+ x′. Since x′ ̸∈ X, it follows
that x′ is an exited state but it not contained in the set of entered targets, that
is:

x′ ∈ XS(M′, EX, e) ∧ x′ ̸∈ ET (M′, EX, e)

As x′ ∈ XS(M′, EX, e), it follows by Definition 25 that there exists a state x′′ ∈
ET (M′, EX, e) such that state x′ conflicts with x′′, that is:

∃s′′ ∈ ET (M′,EX,e) : CS(M′, x′, x′′)

As state x is an descendant of state x′, it therefore follows that states x and
x′′ are also conflicting. Therefore, it follow that:

∃s′′ ∈ ET (M′,EX,e) : CS(M′, x, x′′)

By Definition 25 it follows that x ∈ XS(M′, EX, e). Hence, x ̸∈ (EX\ET (M′, EX, e)).
Since x ∈ X, it follows by the definition of X that x must be contained in the
set of entered targets, that is x ∈ ET (M′, EX, e). Hence, by Definition 24 it
follows that:

∃t ∈ PT e(M′,EX) : t ⊏
∗ x

As state x is an descendant of state x′, it therefore follows that:

∃t ∈ PT e(M′,EX) : t ⊏
∗ x′

Hence, by Definition 24 it follows that x′ ∈ ET (M′, EX, e) and thus by the defi-
nition of X that x′ ∈ X. We derive a contradiction.

Formalising the State Machine Modelling Tool (SMMT) 101

APPENDIX A. PROOFS FOR CHAPTER 5

* State x is not contained in execution state EX, that is x ̸∈ EX. If x ∈ X ∧ x ̸∈
EX, then it follows by the definition of X that x ∈ ET (M′, EX, e). As shown in
the previous case, it follows that x′ ∈ X if x ∈ ET (M′, EX, e) ∧ x ⊏ x′. Hence,
we derive a contradiction.

As both cases lead to a contradiction, it follows that all ancestors s′ ∈ S(M′) of each
state s ∈ X are contained in X.

R3. We prove that set INIT (M′, X) contains exactly one child c ∈ S(M′) of each Com-
positeState c′ ∈ (SC ∩ ESU(M′, EX, e), given that requirements R1 and R2 hold.
* We first prove that set INIT (M′, X) contains at least one child c ∈ S(M′) of each

CompositeState c′ ∈ (SC ∩ ESU(M′, EX, e)). Assume, to derive a contradiction,
that there exists a CompositeState c′ ∈ ESU(M′, EX, e) of which no children are
contained in ESU(M′, EX, e), that is:

¬(∃s′′ ∈ ESU(M′,EX,e) : s
′′ ⊏ c)

By Definitions 27 and 28 it therefore follow that:

¬∃c ∈ S(M′) : c ⊏ c′ ∧ (c ∈ X ∨ c ∈ {s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏
∗
ES s′})

Hence, it holds that:

¬∃c ∈ S(M′) : c ⊏ c′ ∧ ∃s′ ∈ MC(M′,X) : c ⊏
∗
ES s′

By Restriction 3, we have that each CompositeState has exactly one entry state.
Let c′′ ∈ S(M′) be the entry state of CompositeState c′, that is, c′′ ⊏ES c′. As
c′ ∈ (SC ∩ ESU(M′, EX, e)), c′′ ⊏ES c′ and ¬(∃s′′ ∈ ESU(M′,EX,e) : s′′ ⊏ c), it
follows by Definition 26 that state c′′ is a missing child of state c′. Hence, it
follows that:

∃c′′ ∈ S(M′) : c
′′ ⊏ c′ ∧ ∃s′ ∈ MC(M′,X) : c

′′ ⊏∗
ES s′

We derive a contradiction, therefore set INIT (M′, X) contains at least one
child c ∈ S(M′) of each CompositeState c′ ∈ (SC ∩ ESU(M′, EX, e)).

* We prove that set INIT (M′, X) contains at most one child c ∈ S(M′) of each
CompositeState c′ ∈ (SC ∩ ESU(M′, EX, e)), given that requirements R1 and
R2 hold. Assume, to derive a contradiction, there exists a CompositeState c′ ∈
ESU(M′, EX, e) that has children c, c′′ ∈ S(M′) that are contained in ESU(M′, EX, e).
We distinguish four cases:
· Both states c and c′′ are contained in X, that is {c, c′′} ⊆ X. By requirement
R1 we have that:

∀s′ ∈ (SC ∩ X) : (¬∃s,s′′ ∈ S(M′) : (s ̸= s′′ ∧ s ⊏ s′ ∧ s′′ ⊏ s′))

Hence, it trivially follows that c and c′′ cannot both be contained in X.
· State c is contained in X and state c′′ is not contained in X, that is, c ∈
X ∧ c′′ ̸∈ X. Since c′′ ̸∈ X ∧ c′′ ∈ ESU(M′, EX, e) it follows by Definition 27
that:

c′′ ∈ {s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏
∗
ES s′}

Hence, it follows that:

∃s′ ∈ MC(M′,X) : c
′′ ⊏∗

ES s′

Let r ∈ MC(M′, X) be a missing child such that c′′ ⊏∗
ES r. By requirement

R2 we have that all ancestors of c are contained in X, that is:

∀s′ ∈ S(M′) : c ⊏
+ s′ ⇒ s′ ∈ X

102 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX A. PROOFS FOR CHAPTER 5

Hence, as c ⊏ c′ ∧ c′′ ⊏ c′, it follows that all ancestors of c′′ are contained
in X, that is:

∀s′ ∈ S(M′) : c
′′ ⊏+ s′ ⇒ s′ ∈ X

Hence, it follows that all ancestors of c′′ have at least one child that is either
c′′ or an ancestor of c′′. Therefore, it follows by Definition 26 that there
does not exist a missing child that is an ancestor of c′′, that is:

¬∃s′ ∈ MC(M′,EX) : c
′′ ⊏∗

ES s′

Hence, we derive a contradiction.
· State c is not contained in X and state c′′ is contained in X, that is, c ̸∈
X ∧ c′′ ∈ X. The proof of this case is equal to the proof of the previous
case, where the occurrence of c and c′′ are swapped.

· Both states c and c′′ are not contained in X, that is c ̸∈ X ∧ c′′ ̸∈ X. As
{c, c′′} ⊆ ESU(M′, EX, e), it follows by Definition 26 that:

(∃s ∈ MC(M′,X) : c ⊏
∗
ES s) ∧ (∃s′ ∈ MC(M′,X) : c

′′ ⊏∗
ES s′)

As states c and c′′ are both children of state c′ and each CompositeState has
exactly one entry state (Restriction 3), it follows by Definition 26 that at
most one child of each CompositeState can be a missing child. Therefore,
it follows that at most one child of CompositeState c′ is contained in set
{s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏∗

ES s′}. Hence, we derive a contradiction.
As all four cases lead to a contradiction, we can conclude that set INIT (M′, X)
has at most one child c ∈ S(M′) of each CompositeState c′ ∈ INIT (M′, X) in
INIT (M′, X).

As we showed that set INIT (M′, X) contains at least and at most one child c ∈
S(M′) of each CompositeState c′ ∈ INIT (M′, X) in INIT (M′, X), we can conclude
that set INIT (M′, X) contains exactly one child c ∈ S(M′) of each CompositeState
c′ ∈ INIT (M′, X) in INIT (M′, X).

P4. Assume to derive a contradiction, that there exists a ParallelState t′ ∈ (SP ∩ ESU(M′, EX, e))
with child t ∈ S(M′) that is not contained in ESU(M′, EX, e), that is, t ̸∈ ESU(M′, EX, e).
We distinguish two cases:

– State t′ is contained in set X, that is, t′ ∈ X. As t ̸∈ ESU(M′, EX, e), it follows by
Definition 27 that:

t ̸∈ X ∧ t ̸∈ {s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏
∗
ES s′}

By Restriction 6, it follows that all children of a ParallelState are entry children.
Hence, state t is an entry child of state t′: t ⊏ES t′. As t ⊏ES t′ ∧ t′ ∈ (SP ∩ X) ∧ t ̸∈
X, it follows by Definition 26 that t ∈ MC(M′, X).
Since t ∈ MC(M′, X) ∧ t ⊏∗

ES t it follows by Definition 27 that:

t ∈ {s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏
∗
ES s′}

Therefore, t ∈ ESU(M′, EX, e). We derive a contradiction.
– State t′ is not contained in set X, that is t′ ̸∈ X. It follows by Definition 27 that:

t′ ∈ {s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏
∗
ES s′}

Hence, we have that:
∃s′ ∈ MC(M′,X) : t

′ ⊏∗
ES s′

As t ⊏∗
ES t′, it follows that:

∃s′ ∈ MC(M′,X) : t ⊏
∗
ES s′

Hence, by Definition 27 we have that t ∈ ESU(M′, EX, e). We derive a contradiction.

Formalising the State Machine Modelling Tool (SMMT) 103

APPENDIX A. PROOFS FOR CHAPTER 5

As both cases lead to a contradiction, we can conclude that all children of each Paral-
lelState t′ ∈ (SP ∩ ESU(M′, EX, e)) are contained in ESU(M′, EX, e)

P5. We show that all ancestors u′ ∈ S(M′) of each state u ∈ ESU(M′, EX, e) are contained in
ESU(M′, EX, e). Let u′ ∈ S(M′)be an ancestor of state u. We show that u′ ∈ ESU(M′, EX, e)
if u ∈ ESU(M′, EX, e). We distinguish two cases:

– State u is contained in X, that is, u ∈ X. When proving property P3, we proved that
all ancestors s′ ∈ S(M′) of each state s ∈ X are contained in X. Hence, if u ∈ X,
it trivially follows that ancestor u′ is contained in X. Therefore, by Definitions 27
and 28 it follows that u′ ∈ ESU(M′, EX, e).

– State u is not contained in X, that is, u ̸∈ X. By Definitions 27 and 28 it therefore
follows that:

u ∈ {s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏
∗
ES s′}

Hence, we have that:
∃s′ ∈ MC(M′,X) : u ⊏∗

ES s′

Let x ∈ MC(M′, X) be the missing child for which holds that u ⊏∗
ES x. We distin-

guish two cases:
* State u′ is either equal to state x or u′ is an ancestor of state x, that is u′ ⊏∗

ES x.
As x ∈ MC(M′, X) ∧ u′ ⊏∗

ES x it follows that:

∃s′ ∈ S(M′) : s
′ ∈ MC(M′, X) ∧ u′ ⊏∗

ES s′

Hence, it follows that:

u′ ∈ {s ∈ S(M′) | ∃s′ ∈ MC(M′,X) : s ⊏
∗
ES s′}

Therefore, by Definitions 27 and 28 we have that u′ ∈ ESU(M′, EX, e).
* State u′ is an ancestor of state x. As x ∈ MC(M′, EX) it follows by Definition 26

that there exists a parent of x that is contained in X, that is:

∃s′ ∈ X : x ⊏ s′

Let x′ ∈ X be the parent of missing child x. As x ⊏+ u′ ∧ x ⊏ x′, it follows that
x′ ⊏∗ u′. Since x′ ∈ X, it follows that u′ ∈ X. Therefore, by Definitions 27 and
28 we have that u′ ∈ ESU(M′, EX, e).

In both cases we have shown that all ancestors u′ ∈ S(M′)of each state u ∈ ESU(M′, EX, e)
are contained in ESU(M′, EX, e). Hence, property P5 hold for set ESU(M′, EX, e).

As we have shown that properties P1 to P5 hold for X and as X = ESU(M′, EX, e), it fol-
lows that the set of active states after enabled OnEvent e is processed in execution state EX,
denoted by ESU(M′, EX, e), is an execution state.

104 Formalising the State Machine Modelling Tool (SMMT)

Appendix B

mCRL2 Specification of Figure 5.3

1 % mCRL2 S p e c i f i c a t i o n representing SMMT S p e c i f i c a t i o n pr inter (Namespace : cpp . j o r d i . examples . pr inter)
2
3 % mCRL2 Representation of the SMMT S p e c i f i c a t i o n
4
5 sort
6 OnEvent = struct ev_pr int_ job | ev_ f in ish_ job | e v _ f i n i s h _ c o l o r | e v _ f i n i s h _ s c a l i n g |
7 ev_resolve_error | ev_reset_error | ev_color_error | ev_submit_job ;
8 State = struct s t _ i d l e | st_error | st_unresolved | st_resolved | st_pr in t ing | st_preparing_job |
9 st_co lor_correct ion | st_pre_cc | st_post_cc | s t _ s c a l i n g | st_pre_sca l ing |

10 st_post_sca l ing | st_pr in t ing_ job ;
11 Transi t ion = struct tra (onEvent : OnEvent , target : State) ;
12 LState = struct states (ss_ss : L i s t (State) , ss_cs : L i s t (State) , ss_ps : L i s t (State)) ;
13 Spec = struct sm(
14 OnEvents : L i s t (OnEvent) ,
15 States : LState ,
16 EntryStates : L i s t (State) ,
17 Children : State → L i s t (State) ,
18 Descendants : State → L i s t (State) ,
19 EntryDescendants : State → L i s t (State) ,
20 Transi t ions : State → L i s t (Transi t ion)
21) ;
22
23 map c h i l d _ r e l a t i o n : State → L i s t (State) ;
24 eqn c h i l d _ r e l a t i o n (s t _ i d l e) = [] ;
25 c h i l d _ r e l a t i o n (s t_error) = [st_unresolved , st_resolved] ;
26 c h i l d _ r e l a t i o n (st_unresolved) = [] ;
27 c h i l d _ r e l a t i o n (st_resolved) = [] ;
28 c h i l d _ r e l a t i o n (s t _pr in t ing) = [st_preparing_job , s t_pr int ing_ job] ;
29 c h i l d _ r e l a t i o n (st_preparing_job) = [st_co lor_correct ion , s t _ s c a l i n g] ;
30 c h i l d _ r e l a t i o n (s t_co lor_correct ion) = [st_pre_cc , st_post_cc] ;
31 c h i l d _ r e l a t i o n (st_pre_cc) = [] ;
32 c h i l d _ r e l a t i o n (st_post_cc) = [] ;
33 c h i l d _ r e l a t i o n (s t _ s c a l i n g) = [st_pre_scal ing , s t_post_sca l ing] ;
34 c h i l d _ r e l a t i o n (st_pre_sca l ing) = [] ;
35 c h i l d _ r e l a t i o n (s t_post_sca l ing) = [] ;
36 c h i l d _ r e l a t i o n (s t_pr int ing_ job) = [] ;
37
38 map desc_relat ion : State → L i s t (State) ;
39 eqn desc_relat ion (s t _ i d l e) = [] ;
40 desc_relat ion (s t_error) = [st_unresolved , st_resolved] ;
41 desc_relat ion (st_unresolved) = [] ;
42 desc_relat ion (st_resolved) = [] ;
43 desc_relat ion (s t _pr in t ing) = [st_preparing_job , st_co lor_correct ion , st_pre_cc , st_post_cc ,
44 st_sca l ing , st_pre_scal ing , st_post_scal ing , s t _pr int ing_ job] ;
45 desc_relat ion (st_preparing_job) = [st_co lor_correct ion , st_pre_cc , st_post_cc , s t_sca l ing ,
46 st_pre_scal ing , s t_post_sca l ing] ;
47 desc_relat ion (s t_co lor_correct ion) = [st_pre_cc , st_post_cc] ;
48 desc_relat ion (st_pre_cc) = [] ;
49 desc_relat ion (st_post_cc) = [] ;
50 desc_relat ion (s t _ s c a l i n g) = [st_pre_scal ing , s t_post_sca l ing] ;
51 desc_relat ion (st_pre_sca l ing) = [] ;
52 desc_relat ion (st_post_sca l ing) = [] ;
53 desc_relat ion (s t_pr int ing_ job) = [] ;
54
55 map entry_desc_relat ion : State → L i s t (State) ;
56 eqn entry_desc_relat ion (s t _ i d l e) = [] ;
57 entry_desc_relat ion (s t_error) = [st_unresolved] ;

Formalising the State Machine Modelling Tool (SMMT) 105

APPENDIX B. MCRL2 SPECIFICATION OF FIGURE 5.3

58 entry_desc_relat ion (st_unresolved) = [] ;
59 entry_desc_relat ion (st_resolved) = [] ;
60 entry_desc_relat ion (s t _pr in t ing) = [st_preparing_job , st_co lor_correct ion , st_pre_cc , s t_sca l ing ,
61 st_pre_sca l ing] ;
62 entry_desc_relat ion (st_preparing_job) = [st_co lor_correct ion , st_pre_cc , s t_sca l ing ,
63 st_pre_sca l ing] ;
64 entry_desc_relat ion (s t_co lor_correct ion) = [st_pre_cc] ;
65 entry_desc_relat ion (st_pre_cc) = [] ;
66 entry_desc_relat ion (st_post_cc) = [] ;
67 entry_desc_relat ion (s t _ s c a l i n g) = [st_pre_sca l ing] ;
68 entry_desc_relat ion (st_pre_sca l ing) = [] ;
69 entry_desc_relat ion (s t_post_sca l ing) = [] ;
70 entry_desc_relat ion (s t _pr in t ing_ job) = [] ;
71
72 map t r a n s i t i o n _ r e l a t i o n : State → L i s t (Transi t ion) ;
73 eqn t r a n s i t i o n _ r e l a t i o n (s t _ i d l e) = [tra (ev_submit_job , s t _pr in t ing)] ;
74 t r a n s i t i o n _ r e l a t i o n (s t_error) = [] ;
75 t r a n s i t i o n _ r e l a t i o n (st_unresolved) = [tra (ev_resolve_error , st_resolved)] ;
76 t r a n s i t i o n _ r e l a t i o n (st_resolved) = [tra (ev_reset_error , s t _ i d l e)] ;
77 t r a n s i t i o n _ r e l a t i o n (s t _pr in t ing) = [] ;
78 t r a n s i t i o n _ r e l a t i o n (st_preparing_job) = [] ;
79 t r a n s i t i o n _ r e l a t i o n (s t_co lor_correct ion) = [tra (ev_color_error , s t_error)] ;
80 t r a n s i t i o n _ r e l a t i o n (st_pre_cc) = [tra (ev_ f in ish_co lor , st_post_cc) ,
81 tra (ev_ f in ish_sca l ing , s t_error)] ;
82 t r a n s i t i o n _ r e l a t i o n (st_post_cc) = [tra (ev_print_ job , s t _pr int ing_ job)] ;
83 t r a n s i t i o n _ r e l a t i o n (s t _ s c a l i n g) = [] ;
84 t r a n s i t i o n _ r e l a t i o n (st_pre_sca l ing) = [tra (ev_ f in ish_sca l ing , s t_post_sca l ing)] ;
85 t r a n s i t i o n _ r e l a t i o n (s t_post_sca l ing) = [tra (ev_print_ job , s t _pr int ing_ job)] ;
86 t r a n s i t i o n _ r e l a t i o n (s t_pr int ing_ job) = [tra (ev_f in ish_ job , s t _ i d l e)] ;
87
88 map smmt_spec : Spec ;
89 eqn smmt_spec = sm(
90 [ev_print_ job , ev_f in ish_ job , ev_ f in ish_co lor , ev_ f in ish_sca l ing , ev_resolve_error , ev_reset_error ,
91 ev_color_error , ev_submit_job] ,
92 states (
93 [s t _ i d l e , st_unresolved , st_resolved , st_pre_cc , st_post_cc , st_pre_scal ing , st_post_scal ing ,
94 s t_pr in t ing_ job] ,
95 [st_error , s t_pr int ing , st_co lor_correct ion , s t _ s c a l i n g] ,
96 [st_preparing_job]
97) ,
98 [s t _ i d l e , st_unresolved , st_preparing_job , st_co lor_correct ion , st_pre_cc , s t_sca l ing ,
99 st_pre_sca l ing] ,

100 c h i ld _r e la t i on ,
101 desc_relat ion ,
102 entry_desc_relat ion ,
103 t r a n s i t i o n _ r e l a t i o n
104) ;
105
106 map ss_s : LState → L i s t (State) ;
107 ss_c : LState → L i s t (State) ;
108 ss_p : LState → L i s t (State) ;
109 var ss , cs , ps : L i s t (State) ;
110 eqn ss_s (states (ss , cs , ps)) = ss ;
111 ss_c (states (ss , cs , ps)) = cs ;
112 ss_p (states (ss , cs , ps)) = ps ;
113
114 map sm_o : Spec → L i s t (OnEvent) ;
115 sm_s : Spec → L i s t (State) ;
116 sm_ss : Spec → LState ;
117 sm_es : Spec → L i s t (State) ;
118 sm_cr : Spec → State → L i s t (State) ;
119 sm_dr : Spec → State → L i s t (State) ;
120 sm_edr : Spec → State → L i s t (State) ;
121 sm_tr : Spec → State → L i s t (Transi t ion) ;
122 var lo : L i s t (OnEvent) ;
123 s : LState ;
124 l s2 : L i s t (State) ;
125 cr : State → L i s t (State) ;
126 dr : State → L i s t (State) ;
127 edr : State → L i s t (State) ;
128 t r : State → L i s t (Transi t ion) ;
129 eqn sm_o (sm(lo , s , ls2 , cr , dr , edr , t r)) = lo ;
130 sm_s (sm(lo , s , ls2 , cr , dr , edr , t r)) = ss_s (s) ++ ss_c (s) ++ ss_p (s) ;
131 sm_ss (sm(lo , s , ls2 , cr , dr , edr , t r)) = s ;
132 sm_es (sm(lo , s , ls2 , cr , dr , edr , t r)) = ls2 ;
133 sm_cr (sm(lo , s , ls2 , cr , dr , edr , t r)) = cr ;
134 sm_dr (sm(lo , s , ls2 , cr , dr , edr , t r)) = dr ;
135 sm_edr (sm(lo , s , ls2 , cr , dr , edr , t r)) = edr ;
136 sm_tr (sm(lo , s , ls2 , cr , dr , edr , t r)) = t r ;
137

106 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX B. MCRL2 SPECIFICATION OF FIGURE 5.3

138 map tra_o : Transi t ion → OnEvent ;
139 t ra_s : Transi t ion → State ;
140 var e : OnEvent ;
141 s : State ;
142 eqn tra_o (tra (e , s)) = e ;
143 t ra_s (tra (e , s)) = s ;
144
145 %%
146 %%
147 %%
148
149 % Val idat ion Checks
150
151 map i s_wel l _def ined : Spec → L i s t (Nat) ;
152 var sp : Spec ;
153 eqn i s_wel l _def ined (sp) = val_non_empty_states (sp)
154 ++ val_one_entry_root_state (sp)
155 ++ val_cs_one_entry_chi ld (sp)
156 ++ val_ss_no_chi ldren (sp)
157 ++ v a l _ t r a n s i t i o n (sp)
158 ++ val_ps_entry_chi ldren (sp)
159 ++ val_ps_at least_two_chi ldren (sp)
160 ++ va l_ch i ld_re l _1_parent (sp)
161 ++ v a l _ c h i l d _ r e l _ a c y c l i c (sp) ;
162
163 % Val idat ion Check 1
164 map val_non_empty_states : Spec → L i s t (Nat) ;
165 var sp : Spec ;
166 eqn val_non_empty_states (sp) = i f (sm_s (sp) == [] , [1] , []) ;
167
168 % Val idat ion Check 2
169 map val_one_entry_root_state : Spec → L i s t (Nat) ;
170 var sp : Spec ;
171 eqn val_one_entry_root_state (sp) = i f (e x i s t s s : State . i s _entry_root_s ta te (sp , s) &&
172 ! (e x i s t s s′ : State . s ! = s′ && is_entry_root_s ta te (sp , s′)) , [] , [2]) ;
173
174 % Val idat ion Check 3
175 map val_cs_one_entry_chi ld : Spec → L i s t (Nat) ;
176 var sp : Spec ;
177 eqn val_cs_one_entry_chi ld (sp) = i f (f o r a l l s′ : State . s′ in ss_c (sm_ss (sp)) => (
178 e x i s t s s : State . s in sm_s (sp) && s in sm_cr (sp) (s′) && s in sm_es (sp)
179 && ! (e x i s t s r : State . r in sm_s (sp) && r in sm_cr (sp) (s′) && r in sm_es (sp) && s ! = r)
180) , [] , [3]) ;
181
182 % Val idat ion Check 4
183 map val_ss_no_chi ldren : Spec → L i s t (Nat) ;
184 var sp : Spec ;
185 eqn val_ss_no_chi ldren (sp) = i f (f o r a l l s′ : State . s′ in ss_s (sm_ss (sp)) =>
186 ! (e x i s t s s : State . s in sm_s (sp) && s in sm_cr (sp) (s′)) , [] , [4]) ;
187
188 % Val idat ion Check 5
189 map v a l _ t r a n s i t i o n : Spec → L i s t (Nat) ;
190 var sp : Spec ;
191 eqn v a l _ t r a n s i t i o n (sp) = i f (f o r a l l s : State . s in sm_s (sp) =>
192 (f o r a l l e : OnEvent . e in sm_o (sp) => (tr_count (sm_tr (sp) (s) , e) < 2)) , [] , [5]) ;
193
194 % Val idat ion Check 6
195 map val_ps_entry_chi ldren : Spec → L i s t (Nat) ;
196 var sp : Spec ;
197 eqn val_ps_entry_chi ldren (sp) = i f (f o r a l l s , s′ : State . (s′ in ss_p (sm_ss (sp)) &&
198 s in sm_s (sp) && s in sm_cr (sp) (s′)) => s in sm_es (sp) , [] , [6]) ;
199
200 % Val idat ion Check 7
201 map val_ps_at least_two_chi ldren : Spec → L i s t (Nat) ;
202 var sp : Spec ;
203 eqn val_ps_at least_two_chi ldren (sp) = i f (f o r a l l s′′ : State . s′′ in ss_p (sm_ss (sp)) => (
204 e x i s t s s , s′ : State . s in sm_s (sp) && s′ in sm_s (sp) && s ! = s′ && s in sm_cr (sp) (s′′) &&
205 s′ in sm_cr (sp) (s′′)
206) , [] , [7]) ;
207
208 map tr_count : L i s t (Transi t ion) # OnEvent → Nat ;
209 var e , e′ : OnEvent ;
210 s′ : State ;
211 T : L i s t (Transi t ion) ;
212 eqn tr_count ([] , e′) = 0 ;
213 (e == e′) → tr_count (tra (e , s′) |> T , e′) = 1 + tr_count (T , e′) ;
214 (e ! = e′) → tr_count (tra (e , s′) |> T , e′) = tr_count (T , e′) ;
215
216 % Val idat ion Check 8
217 map va l _ch i ld_re l _1_parent : Spec → L i s t (Nat) ;

Formalising the State Machine Modelling Tool (SMMT) 107

APPENDIX B. MCRL2 SPECIFICATION OF FIGURE 5.3

218 var sp : Spec ;
219 eqn va l _ch i ld_re l _1_parent (sp) = i f (f o r a l l x1 , x2 , x3 : State . (x1 in sm_cr (sp) (x2) &&
220 x1 in sm_cr (sp) (x3)) => (x2 == x3) , [] , [8]) ;
221
222 % Val idat ion Check 9
223 map v a l _ c h i l d _ r e l _ a c y c l i c : Spec → L i s t (Nat) ;
224 var sp : Spec ;
225 eqn v a l _ c h i l d _ r e l _ a c y c l i c (sp) = i f (f o r a l l s , s′ : State . ! (i s_desc_of (sp , s , s′) &&
226 i s_desc_of (sp , s′ , s)) , [] , [9]) ;
227
228 %%
229 %%
230 %%
231
232 % Def in i t ions speci fy ing the semantics in mCRL2
233
234
235 %%
236
237 % L i s t Interact ion
238
239 map subset : L i s t (State) # L i s t (State) → Bool ;
240 var s : State ;
241 l s , l s ′ : L i s t (State) ;
242 eqn subset ([] , l s ′) = true ;
243 ! (s in l s ′) → subset (s |> ls , l s ′) = f a l s e ;
244 (s in l s ′) → subset (s |> ls , l s ′) = subset (ls , l s ′) ;
245
246 map get_unique : L i s t (State) → L i s t (State) ;
247 var S : L i s t (State) ;
248 eqn get_unique (S) = get_unique_helper (S , []) ;
249
250 map get_unique_helper : L i s t (State) # L i s t (State) → L i s t (State) ;
251 var s : State ;
252 ls1 , l s2 : L i s t (State) ;
253 eqn get_unique_helper ([] , l s2) = [] ;
254 ! (s in ls2) → get_unique_helper (s |> ls1 , l s2) = [s] ++ get_unique_helper (ls1 , l s2 ++ [s]) ;
255 (s in ls2) → get_unique_helper (s |> ls1 , l s2) = get_unique_helper (ls1 , l s2) ;
256
257 map l i s t _minus_state : L i s t (State) # L i s t (State) → L i s t (State) ;
258 var s : State ;
259 ls1 , l s2 : L i s t (State) ;
260 eqn l i s t _minus_state ([] , l s2) = [] ;
261 ! (s in ls2) → l i s t _minus_state (s |> ls1 , l s2) = [s] ++ l i s t _minus_state (ls1 , l s2) ;
262 (s in ls2) → l i s t _minus_state (s |> ls1 , l s2) = l i s t _minus_state (ls1 , l s2) ;
263
264 map sort_s tates : L i s t (State) # L i s t (State) → L i s t (State) ;
265 var s : State ;
266 l s , ex : L i s t (State) ;
267 eqn sort_s tates (ex , []) = [] ;
268 s in ex → sort_s tates (ex , s |> l s) = [s] ++ sort_s tates (ex , l s) ;
269 ! (s in ex) → sort_s tates (ex , s |> l s) = sort_s tates (ex , l s) ;
270
271 map l i s t _ u n i o n : L i s t (State) # L i s t (State) → L i s t (State) ;
272 var l s , l s ′ : L i s t (State) ;
273 s : State ;
274 eqn l i s t _ u n i o n (ls , l s ′) = get_unique (l s ++ l s ′) ;
275
276 map l i s t _ i n t e r s e c t : L i s t (State) # L i s t (State) → L i s t (State) ;
277 var l s , l s ′ : L i s t (State) ;
278 s : State ;
279 eqn l i s t _ i n t e r s e c t ([] , l s ′) = [] ;
280 (s in l s ′) → l i s t _ i n t e r s e c t (s |> ls , l s ′) = [s] ++ l i s t _ i n t e r s e c t (ls , l s ′) ;
281 ! (s in l s ′) → l i s t _ i n t e r s e c t (s |> ls , l s ′) = l i s t _ i n t e r s e c t (ls , l s ′) ;
282
283 map overlap : L i s t (State) # L i s t (State) → Bool ;
284 var s : State ;
285 l s , l s ′ : L i s t (State) ;
286 eqn overlap ([] , l s ′) = f a l s e ;
287 (s in l s ′) → overlap (s |> ls , l s ′) = true ;
288 ! (s in l s ′) → overlap (s |> ls , l s ′) = overlap (ls , l s ′) ;
289
290
291 %%
292
293 % IsSimpleState
294
295 map i s _ s s : Spec # State → Bool ;
296 var sp : Spec ;
297 s : State ;

108 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX B. MCRL2 SPECIFICATION OF FIGURE 5.3

298 eqn i s _ s s (sp , s) = s in ss_s (sm_ss (sp)) ;
299
300 % IsCompositeState
301 map i s _ c s : Spec # State → Bool ;
302 var sp : Spec ;
303 s : State ;
304 eqn i s _ c s (sp , s) = s in ss_c (sm_ss (sp)) ;
305
306 % I s P a r a l l e l S t a t e
307 map i s_ps : Spec # State → Bool ;
308 var sp : Spec ;
309 s : State ;
310 eqn i s_ps (sp , s) = s in ss_p (sm_ss (sp)) ;
311
312 %%
313
314 % IsRootState
315 map i s _ r o o t _ s t a t e : Spec # State → Bool ;
316 var sp : Spec ;
317 s : State ;
318 eqn i s _ r o o t _ s t a t e (sp , s) = e x i s t s s′ : State . s′ in sm_s (sp) &&
319 ! (e x i s t s s′′ : State . s in sm_cr (sp) (s′′)) ;
320
321 % IsEntryRootState
322 map i s _entry_root_s ta te : Spec # State → Bool ;
323 var sp : Spec ;
324 s : State ;
325 eqn i s _entry_root_s ta te (sp , s) = i s _ r o o t _ s t a t e (sp , s) && s in sm_es (sp) ;
326
327 %%
328
329 % IsDescendantOf
330 map i s_desc_of : Spec # State # State → Bool ;
331 var sp : Spec ;
332 s , s′ : State ;
333 eqn i s_desc_of (sp , s , s′) = s in sm_dr (sp) (s′) ;
334
335 % IsEntryChi ldOf
336 map i s _ e n t r y _ c h i l d _ o f : Spec # State # State → Bool ;
337 var sp : Spec ;
338 s , s′ : State ;
339 eqn i s _ e n t r y _ c h i l d _ o f (sp , s , s′) = s in sm_cr (sp) (s′) && s in sm_es (sp) ;
340
341 % IsEntryDescendantOf
342 map is_entry_descendant_of : Spec # State # State → Bool ;
343 var sp : Spec ;
344 s , s′ : State ;
345 eqn is_entry_descendant_of (sp , s , s′) = s in sm_edr (sp) (s′) ;
346
347 % GetEntryChildren
348 map get_entry_chi ldren : Spec # State → L i s t (State) ;
349 var sp : Spec ;
350 s : State ;
351 eqn get_entry_chi ldren (sp , s) = get_entry_chi ldren_helper (sm_cr (sp) (s) , sm_es (sp)) ;
352
353 map get_entry_chi ldren_helper : L i s t (State) # L i s t (State) → L i s t (State) ;
354 var s : State ;
355 ls1 , l s2 : L i s t (State) ;
356 eqn get_entry_chi ldren_helper ([] , l s2) = [] ;
357 (s in ls2) →
358 get_entry_chi ldren_helper (s |> ls1 , l s2) = [s] ++ get_entry_chi ldren_helper (ls1 , l s2) ;
359 ! (s in ls2) →
360 get_entry_chi ldren_helper (s |> ls1 , l s2) = get_entry_chi ldren_helper (ls1 , l s2) ;
361
362 % getAncestors
363 map get_ancestors : Spec # State → L i s t (State) ;
364 var sp : Spec ;
365 s : State ;
366 eqn get_ancestors (sp , s) = get_ancestors_helper (sp , sm_s (sp) , s) ;
367
368 map get_ancestors_helper : Spec # L i s t (State) # State → L i s t (State) ;
369 var sp : Spec ;
370 s , s′ : State ;
371 S : L i s t (State) ;
372 eqn get_ancestors_helper (sp , [] , s′) = [] ;
373 (i s_desc_of (sp , s′ , s)) →
374 get_ancestors_helper (sp , s |> S , s′) = [s] ++ get_ancestors_helper (sp , S , s′) ;
375 ! (i s_desc_of (sp , s′ , s)) →
376 get_ancestors_helper (sp , s |> S , s′) = get_ancestors_helper (sp , S , s′) ;
377

Formalising the State Machine Modelling Tool (SMMT) 109

APPENDIX B. MCRL2 SPECIFICATION OF FIGURE 5.3

378 %%
379
380 % I n i t S t a t e
381 map i n i t _ s t a t e : Spec → L i s t (State) ;
382 var sp : Spec ;
383 eqn i n i t _ s t a t e (sp) = i n i t _ s t a t e _ h e l p e r (sp , sm_s (sp)) ;
384
385 % I n i t State Helper
386 map i n i t _ s t a t e _ h e l p e r : Spec # L i s t (State) → L i s t (State) ;
387 var sp : Spec ;
388 s : State ;
389 l s : L i s t (State) ;
390 eqn i n i t _ s t a t e _ h e l p e r (sp , []) = [] ;
391 (i s _entry_root_s ta te (sp , s) || (e x i s t s s′ : State . i s _entry_root_s ta te (sp , s′) &&
392 is_entry_descendant_of (sp , s , s′))) →
393 i n i t _ s t a t e _ h e l p e r (sp , s |> l s) = [s] ++ i n i t _ s t a t e _ h e l p e r (sp , l s) ;
394 ! (i s _entry_root_s ta te (sp , s) || (e x i s t s s′ : State . i s _entry_root_s ta te (sp , s′) &&
395 is_entry_descendant_of (sp , s , s′))) →
396 i n i t _ s t a t e _ h e l p e r (sp , s |> l s) = i n i t _ s t a t e _ h e l p e r (sp , l s) ;
397
398 %%
399
400 % HasOutgoingTransitionForEvent
401 map has_out_tr_for_event : Spec # State # OnEvent → Bool ;
402 var sp : Spec ;
403 s : State ;
404 e : OnEvent ;
405 eqn has_out_tr_for_event (sp , s , e) = e x i s t s s′ : State . tra (e , s′) in sm_tr (sp) (s) ;
406
407 % isTransit ionDefinedForEvent
408 map i s _ t r _ d e f _ e v : Spec # L i s t (State) # OnEvent → Bool ;
409 var sp : Spec ;
410 s : State ;
411 ex : L i s t (State) ;
412 e : OnEvent ;
413 eqn i s _ t r _ d e f _ e v (sp , ex , e) = e x i s t s s : State . s in ex && has_out_tr_for_event (sp , s , e) ;
414 i s _ t r _ d e f _ e v (sp , [] , e) = f a l s e ;
415 has_out_tr_for_event (sp , s , e) → i s _ t r _ d e f _ e v (sp , s |> ex , e) = true ;
416 ! has_out_tr_for_event (sp , s , e) → i s _ t r _ d e f _ e v (sp , s |> ex , e) = i s _ t r _ d e f _ e v (sp , ex , e) ;
417
418 % GetTransit ion
419 map get_ t rans i t ion : Spec # State # OnEvent → Transi t ion ;
420 var sp : Spec ;
421 s : State ;
422 e : OnEvent ;
423 eqn get_ t rans i t ion (sp , s , e) = get_trans i t ion_helper (sm_tr (sp) (s) , e) ;
424
425 map get_trans i t ion_helper : L i s t (Transi t ion) # OnEvent → Transi t ion ;
426 var T : L i s t (Transi t ion) ;
427 t : Transi t ion ;
428 e : OnEvent ;
429 eqn tra_o (t) == e → get_trans i t ion_helper (t |> T , e) = t ;
430 tra_o (t) ! = e → get_trans i t ion_helper (t |> T , e) = get_trans i t ion_helper (T , e) ;
431
432 % GetPr ior i t i sedTrans i t ionsEvent
433 map get_pr io_tr_event : Spec # L i s t (State) # OnEvent → L i s t (Transi t ion) ;
434 var sp : Spec ;
435 s : State ;
436 ex : L i s t (State) ;
437 e : OnEvent ;
438 eqn ! i s _ t r _ d e f _ e v (sp , ex , e) → get_pr io_tr_event (sp , ex , e) = [] ;
439 i s _ t r _ d e f _ e v (sp , ex , e) → get_pr io_tr_event (sp , ex , e) = get_pr io_tr_event_helper (sp , ex , ex , e) ;
440
441 map get_pr io_tr_event_helper : Spec # L i s t (State) # L i s t (State) # OnEvent → L i s t (Transi t ion) ;
442 var sp : Spec ;
443 s : State ;
444 ex : L i s t (State) ;
445 ss : L i s t (State) ;
446 e : OnEvent ;
447 eqn get_pr io_tr_event_helper (sp , ex , [] , e) = [] ;
448 (has_out_tr_for_event (sp , s , e) && ! (e x i s t s s′ : State . s′ in ex && is_desc_of (sp , s′ , s) &&
449 has_out_tr_for_event (sp , s′ , e))) → get_pr io_tr_event_helper (sp , ex , s |> ss , e) =
450 [get_ t rans i t ion (sp , s , e)] ++ get_pr io_tr_event_helper (sp , ex , ss , e) ;
451 ! (has_out_tr_for_event (sp , s , e) && ! (e x i s t s s′ : State . s′ in ex && is_desc_of (sp , s′ , s) &&
452 has_out_tr_for_event (sp , s′ , e))) →
453 get_pr io_tr_event_helper (sp , ex , s |> ss , e) = get_pr io_tr_event_helper (sp , ex , ss , e) ;
454
455 %%
456
457 map css : Spec # State # State → Bool ;

110 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX B. MCRL2 SPECIFICATION OF FIGURE 5.3

458 var sp : Spec ;
459 s , s′ : State ;
460 eqn css (sp , s , s′) = cs_rs (sp , sm_s (sp) , s , s′) || cs_sr (sp , sm_s (sp) , s , s′) ;
461
462 map cs_rs : Spec # L i s t (State) # State # State → Bool ;
463 var sp : Spec ;
464 s , s′ , r : State ;
465 l s : L i s t (State) ;
466 eqn cs_rs (sp , [] , s , s′) = true ;
467 (i s _ r o o t _ s t a t e (sp , r) && s in sr (sp , r) && s′ in sr (sp , r)) →
468 cs_rs (sp , r |> ls , s , s′) = f a l s e ;
469 ! (i s _ r o o t _ s t a t e (sp , r) && s in sr (sp , r) && s′ in sr (sp , r)) →
470 cs_rs (sp , r |> ls , s , s′) = cs_rs (sp , ls , s , s′) ;
471
472 map cs_sr : Spec # L i s t (State) # State # State → Bool ;
473 var sp : Spec ;
474 c , s , s′ : State ;
475 l s : L i s t (State) ;
476 eqn cs_sr (sp , [] , s , s′) = f a l s e ;
477 (i s _ c s (sp , c) && is_desc_of (sp , s , c) && is_desc_of (sp , s′ , c)) →
478 cs_sr (sp , c |> ls , s , s′) =
479 cs_sr (sp , ls , s , s′) || cs_sr_h (sp , sm_cr (sp) (c) , c , s , s′) ;
480 ! (i s _ c s (sp , c) && is_desc_of (sp , s , c) && is_desc_of (sp , s′ , c)) →
481 cs_sr (sp , c |> ls , s , s′) = cs_sr (sp , ls , s , s′) ;
482
483 map cs_sr_h : Spec # L i s t (State) # State # State # State → Bool ;
484 var sp : Spec ;
485 l s : L i s t (State) ;
486 c , c′ , s , s′ : State ;
487 eqn cs_sr_h (sp , [] , c′ , s , s′) = f a l s e ;
488 (s in sr (sp , c)) → cs_sr_h (sp , c |> ls , c′ , s , s′) =
489 cs_sr_hh (sp , sm_cr (sp) (c′) , c , s , s′) ;
490 ! (s in sr (sp , c)) → cs_sr_h (sp , c |> ls , c′ , s , s′) =
491 cs_sr_h (sp , ls , c′ , s , s′) ;
492
493 map cs_sr_hh : Spec # L i s t (State) # State # State # State → Bool ;
494 var sp : Spec ;
495 l s : L i s t (State) ;
496 c , c′ , s , s′ : State ;
497 eqn cs_sr_hh (sp , [] , c′ , s , s′) = f a l s e ;
498 (c ! = c′ && s′ in sr (sp , c)) →
499 cs_sr_hh (sp , c |> ls , c′ , s , s′) = true ;
500 ! (c ! = c′ && s′ in sr (sp , c)) →
501 cs_sr_hh (sp , c |> ls , c′ , s , s′) = cs_sr_hh (sp , ls , c′ , s , s′) ;
502
503 %%
504
505 map sr : Spec # State → L i s t (State) ;
506 var sp : Spec ;
507 s : State ;
508 eqn sr (sp , s) = [s] ++ sm_dr (sp) (s) ;
509
510 map cuo : Spec # L i s t (State) # OnEvent → Bool ;
511 var sp : Spec ;
512 ex : L i s t (State) ;
513 e : OnEvent ;
514 eqn cuo (sp , ex , e) = cuoh (sp , ex , ex , e) ;
515
516 map cuoh : Spec # L i s t (State) # L i s t (State) # OnEvent → Bool ;
517 var sp : Spec ;
518 ex , ex′ : L i s t (State) ;
519 s : State ;
520 e : OnEvent ;
521 eqn cuoh (sp , ex , [] , e) = f a l s e ;
522 (has_out_tr_for_event (sp , s , e) && cuo_ps_rg (sp , ex , ps_anc (sp , get_ancestors (sp , s)) , s , e)) →
523 cuoh (sp , ex , s |> ex′ , e) = true ;
524 ! (has_out_tr_for_event (sp , s , e) && cuo_ps_rg (sp , ex , ps_anc (sp , get_ancestors (sp , s)) , s , e)) →
525 cuoh (sp , ex , s |> ex′ , e) = cuoh (sp , ex , ex′ , e) ;
526
527 map ps_anc : Spec # L i s t (State) → L i s t (State) ;
528 var sp : Spec ;
529 l s : L i s t (State) ;
530 s : State ;
531 eqn ps_anc (sp , []) = [] ;
532 i s_ps (sp , s) → ps_anc (sp , s |> l s) = [s] ++ ps_anc (sp , l s) ;
533 ! i s_ps (sp , s) → ps_anc (sp , s |> l s) = ps_anc (sp , l s) ;
534
535 map cuo_ps_rg : Spec # L i s t (State) # L i s t (State) # State # OnEvent → Bool ;
536 var sp : Spec ;

Formalising the State Machine Modelling Tool (SMMT) 111

APPENDIX B. MCRL2 SPECIFICATION OF FIGURE 5.3

537 ex , ps : L i s t (State) ;
538 s , s′ : State ;
539 e : OnEvent ;
540 eqn cuo_ps_rg (sp , ex , [] , s′ , e) = f a l s e ;
541 cuo_ps_one (sp , ex , sm_cr (sp) (s) , e) → cuo_ps_rg (sp , ex , s |> ps , s′ , e) = true ;
542 ! cuo_ps_one (sp , ex , sm_cr (sp) (s) , e) → cuo_ps_rg (sp , ex , s |> ps , s′ , e) =
543 cuo_ps_rg (sp , ex , ps , s′ , e) ;
544
545 map cuo_ps_one : Spec # L i s t (State) # L i s t (State) # OnEvent → Bool ;
546 var sp : Spec ;
547 ex , cr : L i s t (State) ;
548 s , s′ : State ;
549 e : OnEvent ;
550 eqn cuo_ps_one (sp , ex , [] , e) = f a l s e ;
551 unhandled_subregion (sp , ex , sr (sp , s) , e , f a l s e) → cuo_ps_one (sp , ex , s |> cr , e) = true ;
552 ! unhandled_subregion (sp , ex , sr (sp , s) , e , f a l s e) → cuo_ps_one (sp , ex , s |> cr , e) =
553 cuo_ps_one (sp , ex , cr , e) ;
554
555 map unhandled_subregion : Spec # L i s t (State) # L i s t (State) # OnEvent # Bool → Bool ;
556 var sp : Spec ;
557 ex , st : L i s t (State) ;
558 s : State ;
559 e : OnEvent ;
560 b : Bool ;
561 eqn unhandled_subregion (sp , ex , [] , e , b) = b ;
562 (has_out_tr_for_event (sp , s , e) && (s in ex)) →
563 unhandled_subregion (sp , ex , s |> st , e , b) = f a l s e ;
564 (has_out_tr_for_event (sp , s , e) && ! (s in ex)) →
565 unhandled_subregion (sp , ex , s |> st , e , b) = unhandled_subregion (sp , ex , st , e , true) ;
566 ! has_out_tr_for_event (sp , s , e) →
567 unhandled_subregion (sp , ex , s |> st , e , b) = unhandled_subregion (sp , ex , st , e , b) ;
568
569 %%
570
571 % getEnteredTargets
572 map get_et : Spec # L i s t (Transi t ion) → L i s t (State) ;
573 var sp : Spec ;
574 e : OnEvent ;
575 s′ : State ;
576 T : L i s t (Transi t ion) ;
577 eqn get_et (sp , []) = [] ;
578 get_et (sp , tra (e , s′) |> T) = get_unique ([s′] ++ get_ancestors (sp , s′) ++ get_et (sp , T)) ;
579
580 %%
581
582 map get_as : Spec # L i s t (State) # L i s t (Transi t ion) → L i s t (State) ;
583 var sp : Spec ;
584 s : State ;
585 l s : L i s t (State) ;
586 l t : L i s t (Transi t ion) ;
587 eqn get_as (sp , [] , l t) = [] ;
588 as_h (sp , s , l t) → get_as (sp , s |> ls , l t) = [s] ++ get_as (sp , ls , l t) ;
589 ! as_h (sp , s , l t) → get_as (sp , s |> ls , l t) = get_as (sp , ls , l t) ;
590
591 map as_h : Spec # State # L i s t (Transi t ion) → Bool ;
592 var sp : Spec ;
593 s : State ;
594 t : Transi t ion ;
595 l t : L i s t (Transi t ion) ;
596 eqn as_h (sp , s , []) = f a l s e ;
597 css (sp , s , t ra_s (t)) → as_h (sp , s , t |> l t) = true ;
598 ! css (sp , s , t ra_s (t)) → as_h (sp , s , t |> l t) = as_h (sp , s , l t) ;
599
600 %%
601
602 % i n i t i a t e
603 map i n i t i a t e : Spec # L i s t (State) → L i s t (State) ;
604 var sp : Spec ;
605 l s : L i s t (State) ;
606 eqn i n i t i a t e (sp , l s) = get_unique (i n i t i a t e _ h e l p e r (sp , ls , l s)) ;
607
608 % i s _ c s _ i n i t i a t e d
609 map i s _ c s _ i n i t i a t e d : Spec # L i s t (State) # State → Bool ;
610 var sp : Spec ;
611 s , s′ : State ;
612 l s : L i s t (State) ;
613 eqn i s _ c s _ i n i t i a t e d (sp , [] , s′) = f a l s e ;
614 (s in sm_cr (sp) (s′)) → i s _ c s _ i n i t i a t e d (sp , s |> ls , s′) = true ;
615 ! (s in sm_cr (sp) (s′)) → i s _ c s _ i n i t i a t e d (sp , s |> ls , s′) = i s _ c s _ i n i t i a t e d (sp , ls , s′) ;
616

112 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX B. MCRL2 SPECIFICATION OF FIGURE 5.3

617 map i n i t i a t e _ h e l p e r : Spec # L i s t (State) # L i s t (State) → L i s t (State) ;
618 var sp : Spec ;
619 s : State ;
620 ls1 , l s2 : L i s t (State) ;
621 eqn i n i t i a t e _ h e l p e r (sp , [] , l s2) = [] ;
622 i s _ s s (sp , s) → i n i t i a t e _ h e l p e r (sp , s |> ls1 , l s2) = [s] ++ i n i t i a t e _ h e l p e r (sp , ls1 , l s2) ;
623 i s _ c s (sp , s) && i s _ c s _ i n i t i a t e d (sp , ls2 , s) →
624 i n i t i a t e _ h e l p e r (sp , s |> ls1 , l s2) = [s] ++ i n i t i a t e _ h e l p e r (sp , ls1 , l s2) ;
625 i s _ c s (sp , s) && ! i s _ c s _ i n i t i a t e d (sp , ls2 , s) → i n i t i a t e _ h e l p e r (sp , s |> ls1 , l s2) =
626 [s] ++ get_entry_chi ldren (sp , s) ++ i n i t i a t e _ h e l p e r (sp , l s1 ++ get_entry_chi ldren (sp , s) , l s2) ;
627 i s_ps (sp , s) → i n i t i a t e _ h e l p e r (sp , s |> ls1 , l s2) =
628 [s] ++ get_entry_chi ldren (sp , s) ++ i n i t i a t e _ h e l p e r (sp , l s1 ++ get_entry_chi ldren (sp , s) , l s2) ;
629
630 %%
631
632 % Execution State Update
633 map esu : Spec # L i s t (State) # L i s t (Transi t ion) → L i s t (State) ;
634 var sp : Spec ;
635 ex : L i s t (State) ;
636 t : L i s t (Transi t ion) ;
637 eqn esu (sp , ex , t) =
638 i n i t i a t e (sp , get_unique (l i s t _minus_state (ex , get_as (sp , ex , t)) ++ get_et (sp , t))) ;
639
640 %%
641
642 map cts : Spec # L i s t (State) → Bool ;
643 var sp : Spec ;
644 l s t : L i s t (State) ;
645 eqn cts (sp , l s t) = cts_h (sp , l s t , l s t) ;
646
647 map cts_h : Spec # L i s t (State) # L i s t (State) → Bool ;
648 var sp : Spec ;
649 l s t , l s t ′ : L i s t (State) ;
650 s : State ;
651 eqn cts_h (sp , [] , l s t ′) = f a l s e ;
652 cts_hh (sp , s , l s t ′) → cts_h (sp , s |> l s t , l s t ′) = true ;
653 ! cts_hh (sp , s , l s t ′) → cts_h (sp , s |> l s t , l s t ′) = cts_h (sp , l s t , l s t ′) ;
654
655 map cts_hh : Spec # State # L i s t (State) → Bool ;
656 var sp : Spec ;
657 s , s′ : State ;
658 l s t : L i s t (State) ;
659 eqn cts_hh (sp , s , []) = f a l s e ;
660 css (sp , s , s′) → cts_hh (sp , s , s′ |> l s t) = true ;
661 ! css (sp , s , s′) → cts_hh (sp , s , s′ |> l s t) = cts_hh (sp , s , l s t) ;
662
663 %%
664
665 map get_targets : L i s t (Transi t ion) → L i s t (State) ;
666 var t : Transi t ion ;
667 l t : L i s t (Transi t ion) ;
668 eqn get_targets ([]) = [] ;
669 get_targets (t |> l t) = [t ra_s (t)] ++ get_targets (l t) ;
670
671 map enabled : Spec # L i s t (State) # OnEvent → Bool ;
672 var sp : Spec ;
673 ex : L i s t (State) ;
674 e : OnEvent ;
675 eqn enabled (sp , ex , e) = i s _ t r _ d e f _ e v (sp , ex , e) && ! cuo (sp , ex , e) &&
676 ! c ts (sp , get_targets (get_pr io_tr_event (sp , ex , e))) ;
677
678 %%
679 %%
680 %%
681
682
683 act FAIL ;
684 ev_pr int_ job ;
685 ev_ f in i sh_ job ;
686 e v _ f i n i s h _ c o l o r ;
687 e v _ f i n i s h _ s c a l i n g ;
688 ev_resolve_error ;
689 ev_reset_error ;
690 ev_color_error ;
691 ev_submit_job ;
692 val_non_empty_states ;
693 val_one_entry_root_state ;
694 val_cs_one_entry_chi ld ;
695 val_ps_entry_chi ldren ;
696 val_ss_no_chi ldren ;

Formalising the State Machine Modelling Tool (SMMT) 113

APPENDIX B. MCRL2 SPECIFICATION OF FIGURE 5.3

697 va l _cs_at least_one_ch i ld ;
698 val_ps_at least_two_chi ldren ;
699 v a l _ t r a n s i t i o n ;
700 v a l _ c h i l d _ r e l _ i r r e f l ;
701 va l _ch i ld_re l _1_parent ;
702 v a l _ c h i l d _ r e l _ a c y c l i c ;
703
704 proc SM(sp : Spec , ex : L i s t (State) , v a l i d : L i s t (Nat)) =
705 (v a l i d == []) → (
706 (enabled (sp , ex , ev_pr int_ job)
707 → ev_pr int_ job .SM(sp , esu (sp , ex , get_pr io_tr_event (sp , ex , ev_pr int_ job)) , v a l i d)
708 <> ev_pr int_ job . F ())
709 + (enabled (sp , ex , ev_ f in i sh_ job)
710 → ev_ f in i sh_ job .SM(sp , esu (sp , ex , get_pr io_tr_event (sp , ex , ev_ f in i sh_ job)) , v a l i d)
711 <> ev_ f in i sh_ job . F ())
712 + (enabled (sp , ex , e v _ f i n i s h _ c o l o r)
713 → e v _ f i n i s h _ c o l o r .SM(sp , esu (sp , ex , get_pr io_tr_event (sp , ex , e v _ f i n i s h _ c o l o r)) , v a l i d)
714 <> e v _ f i n i s h _ c o l o r . F ())
715 + (enabled (sp , ex , e v _ f i n i s h _ s c a l i n g)
716 → e v _ f i n i s h _ s c a l i n g .SM(sp , esu (sp , ex , get_pr io_tr_event (sp , ex , e v _ f i n i s h _ s c a l i n g)) , v a l i d)
717 <> e v _ f i n i s h _ s c a l i n g . F ())
718 + (enabled (sp , ex , ev_resolve_error)
719 → ev_resolve_error .SM(sp , esu (sp , ex , get_pr io_tr_event (sp , ex , ev_resolve_error)) , v a l i d)
720 <> ev_resolve_error . F ())
721 + (enabled (sp , ex , ev_reset_error)
722 → ev_reset_error .SM(sp , esu (sp , ex , get_pr io_tr_event (sp , ex , ev_reset_error)) , v a l i d)
723 <> ev_reset_error . F ())
724 + (enabled (sp , ex , ev_color_error)
725 → ev_color_error .SM(sp , esu (sp , ex , get_pr io_tr_event (sp , ex , ev_color_error)) , v a l i d)
726 <> ev_color_error . F ())
727 + (enabled (sp , ex , ev_submit_job)
728 → ev_submit_job .SM(sp , esu (sp , ex , get_pr io_tr_event (sp , ex , ev_submit_job)) , v a l i d)
729 <> ev_submit_job . F ())
730) <> (
731 (head (v a l i d) == 1) → val_non_empty_states .SM(sp , ex , t a i l (v a l i d) ++ [0])
732 + (head (v a l i d) == 2) → val_one_entry_root_state .SM(sp , ex , t a i l (v a l i d) ++ [0])
733 + (head (v a l i d) == 3) → val_cs_one_entry_chi ld .SM(sp , ex , t a i l (v a l i d) ++ [0])
734 + (head (v a l i d) == 4) → val_ss_no_chi ldren .SM(sp , ex , t a i l (v a l i d) ++ [0])
735 + (head (v a l i d) == 5) → v a l _ t r a n s i t i o n .SM(sp , ex , t a i l (v a l i d) ++ [0])
736 + (head (v a l i d) == 6) → val_ps_entry_chi ldren .SM(sp , ex , t a i l (v a l i d) ++ [0])
737 + (head (v a l i d) == 7) → val_ps_at least_two_chi ldren .SM(sp , ex , t a i l (v a l i d) ++ [0])
738 + (head (v a l i d) == 8) → va l _ch i ld_re l _1_parent .SM(sp , ex , t a i l (v a l i d) ++ [0])
739 + (head (v a l i d) == 9) → v a l _ c h i l d _ r e l _ a c y c l i c .SM(sp , ex , t a i l (v a l i d) ++ [0])
740) ;
741
742 proc F = FAIL . F () ;
743
744 i n i t SM(smmt_spec , i n i t _ s t a t e (smmt_spec) , i s_wel l _def ined (smmt_spec))

114 Formalising the State Machine Modelling Tool (SMMT)

Appendix C

Complete mCRL2 Specification

1 % mCRL2 S p e c i f i c a t i o n representing SMMT S p e c i f i c a t i o n pr inter (Namespace : cpp . j o r d i . examples . pr inter)
2
3 % mCRL2 Representation of the SMMT S p e c i f i c a t i o n
4
5 sort
6 CustomType = struct a ;
7 OnEvent = struct ev_pr int_ job | ev_ f in ish_ job | e v _ f i n i s h _ c o l o r | e v _ f i n i s h _ s c a l i n g |
8 ev_resolve_error | ev_reset_error | ev_color_error | ev_submit_job ;
9 DoEvent = struct do_event ;

10 State = struct s t _ i d l e | st_error | st_unresolved | st_resolved | st_pr in t ing | st_preparing_job |
11 st_co lor_correct ion | st_pre_cc | st_post_cc | s t _ s c a l i n g | st_pre_sca l ing |
12 st_post_sca l ing | st_pr in t ing_ job | st_INTERNAL ;
13 Pair = st ruct p (p_ex : L i s t (State) , p_d : L i s t (DoEvent)) ;
14 OEH = struct oeh (doEvents : L i s t (DoEvent) , target : State) ;
15 Transi t ion = struct tra (onEvent : OnEvent , doEvents : L i s t (DoEvent) , target : State) ;
16 LState = struct states (ss_ss : L i s t (State) , ss_cs : L i s t (State) , ss_ps : L i s t (State) ,
17 s s _ j s : L i s t (State)) ;
18 Spec = struct sm(
19 OnEvents : L i s t (OnEvent) ,
20 DoEvents : L i s t (DoEvent) ,
21 States : LState ,
22 EntryStates : L i s t (State) ,
23 Children : State → L i s t (State) ,
24 Descendants : State → L i s t (State) ,
25 EntryDescendants : State → L i s t (State) ,
26 Transi t ions : State → L i s t (Transi t ion) ,
27 Jo ins : State → L i s t (State) ,
28 CondEntryHandlers : State → L i s t (Transi t ion) ,
29 OtherEntryHandlers : State → L i s t (OEH) ,
30 ExitHandlers : State → L i s t (DoEvent)) ;
31
32 map c h i l d _ r e l a t i o n : State → L i s t (State) ;
33 eqn c h i l d _ r e l a t i o n (s t _ i d l e) = [] ;
34 c h i l d _ r e l a t i o n (s t_error) = [st_unresolved , st_resolved] ;
35 c h i l d _ r e l a t i o n (st_unresolved) = [] ;
36 c h i l d _ r e l a t i o n (st_resolved) = [] ;
37 c h i l d _ r e l a t i o n (s t _pr in t ing) = [st_preparing_job , s t_pr int ing_ job] ;
38 c h i l d _ r e l a t i o n (st_preparing_job) = [st_co lor_correct ion , s t _ s c a l i n g] ;
39 c h i l d _ r e l a t i o n (s t_co lor_correct ion) = [st_pre_cc , st_post_cc] ;
40 c h i l d _ r e l a t i o n (st_pre_cc) = [] ;
41 c h i l d _ r e l a t i o n (st_post_cc) = [] ;
42 c h i l d _ r e l a t i o n (s t _ s c a l i n g) = [st_pre_scal ing , s t_post_sca l ing] ;
43 c h i l d _ r e l a t i o n (st_pre_sca l ing) = [] ;
44 c h i l d _ r e l a t i o n (s t_post_sca l ing) = [] ;
45 c h i l d _ r e l a t i o n (s t_pr int ing_ job) = [] ;
46 c h i l d _ r e l a t i o n (st_INTERNAL) = [] ;
47
48 map desc_relat ion : State → L i s t (State) ;
49 eqn desc_relat ion (s t _ i d l e) = [] ;
50 desc_relat ion (s t_error) = [st_unresolved , st_resolved] ;
51 desc_relat ion (st_unresolved) = [] ;
52 desc_relat ion (st_resolved) = [] ;
53 desc_relat ion (s t _pr in t ing) = [st_preparing_job , st_co lor_correct ion , st_pre_cc , st_post_cc ,
54 st_sca l ing , st_pre_scal ing , st_post_scal ing , s t _pr in t ing_ job] ;
55 desc_relat ion (st_preparing_job) = [st_co lor_correct ion , st_pre_cc , st_post_cc , s t_sca l ing ,
56 st_pre_scal ing , s t_post_sca l ing] ;
57 desc_relat ion (s t_co lor_correct ion) = [st_pre_cc , st_post_cc] ;

Formalising the State Machine Modelling Tool (SMMT) 115

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

58 desc_relat ion (st_pre_cc) = [] ;
59 desc_relat ion (st_post_cc) = [] ;
60 desc_relat ion (s t _ s c a l i n g) = [st_pre_scal ing , s t_post_sca l ing] ;
61 desc_relat ion (st_pre_sca l ing) = [] ;
62 desc_relat ion (st_post_sca l ing) = [] ;
63 desc_relat ion (s t_pr int ing_ job) = [] ;
64 desc_relat ion (st_INTERNAL) = [] ;
65
66 map entry_desc_relat ion : State → L i s t (State) ;
67 eqn entry_desc_relat ion (s t _ i d l e) = [] ;
68 entry_desc_relat ion (s t_error) = [st_unresolved] ;
69 entry_desc_relat ion (st_unresolved) = [] ;
70 entry_desc_relat ion (st_resolved) = [] ;
71 entry_desc_relat ion (s t _pr in t ing) = [st_preparing_job , st_co lor_correct ion , st_pre_cc , s t_sca l ing ,
72 st_pre_sca l ing] ;
73 entry_desc_relat ion (st_preparing_job) = [st_co lor_correct ion , st_pre_cc , s t_sca l ing ,
74 st_pre_sca l ing] ;
75 entry_desc_relat ion (s t_co lor_correct ion) = [st_pre_cc] ;
76 entry_desc_relat ion (st_pre_cc) = [] ;
77 entry_desc_relat ion (st_post_cc) = [] ;
78 entry_desc_relat ion (s t _ s c a l i n g) = [st_pre_sca l ing] ;
79 entry_desc_relat ion (st_pre_sca l ing) = [] ;
80 entry_desc_relat ion (s t_post_sca l ing) = [] ;
81 entry_desc_relat ion (s t _pr in t ing_ job) = [] ;
82 entry_desc_relat ion (st_INTERNAL) = [] ;
83
84 map t r a n s i t i o n _ r e l a t i o n : State → L i s t (Transi t ion) ;
85 eqn t r a n s i t i o n _ r e l a t i o n (s t _ i d l e) = [tra (ev_submit_job , [] , s t _pr in t ing)] ;
86 t r a n s i t i o n _ r e l a t i o n (s t_error) = [tra (ev_reset_error , [] , s t _ i d l e)] ;
87 t r a n s i t i o n _ r e l a t i o n (st_unresolved) = [tra (ev_resolve_error , [] , st_resolved)] ;
88 t r a n s i t i o n _ r e l a t i o n (st_resolved) = [] ;
89 t r a n s i t i o n _ r e l a t i o n (s t _pr in t ing) = [] ;
90 t r a n s i t i o n _ r e l a t i o n (st_preparing_job) = [] ;
91 t r a n s i t i o n _ r e l a t i o n (s t_co lor_correct ion) = [tra (ev_color_error , [] , s t_error)] ;
92 t r a n s i t i o n _ r e l a t i o n (st_pre_cc) = [tra (ev_ f in ish_co lor , [] , s t_post_cc) ,
93 tra (ev_ f in ish_sca l ing , [] , s t_error)] ;
94 t r a n s i t i o n _ r e l a t i o n (st_post_cc) = [tra (ev_print_ job , [] , s t _pr int ing_ job)] ;
95 t r a n s i t i o n _ r e l a t i o n (s t _ s c a l i n g) = [] ;
96 t r a n s i t i o n _ r e l a t i o n (st_pre_sca l ing) = [tra (ev_ f in ish_sca l ing , [] , s t_post_sca l ing)] ;
97 t r a n s i t i o n _ r e l a t i o n (s t_post_sca l ing) = [tra (ev_print_ job , [] , s t _pr int ing_ job)] ;
98 t r a n s i t i o n _ r e l a t i o n (s t_pr int ing_ job) = [tra (ev_f in ish_ job , [] , s t _ i d l e)] ;
99 t r a n s i t i o n _ r e l a t i o n (st_INTERNAL) = [] ;

100
101 map j o i n _ r e l a t i o n : State → L i s t (State) ;
102 eqn j o i n _ r e l a t i o n (s t _ i d l e) = [] ;
103 j o i n _ r e l a t i o n (s t_error) = [] ;
104 j o i n _ r e l a t i o n (st_unresolved) = [] ;
105 j o i n _ r e l a t i o n (st_resolved) = [] ;
106 j o i n _ r e l a t i o n (s t _pr in t ing) = [] ;
107 j o i n _ r e l a t i o n (st_preparing_job) = [] ;
108 j o i n _ r e l a t i o n (s t_co lor_correct ion) = [] ;
109 j o i n _ r e l a t i o n (st_pre_cc) = [] ;
110 j o i n _ r e l a t i o n (st_post_cc) = [] ;
111 j o i n _ r e l a t i o n (s t _ s c a l i n g) = [] ;
112 j o i n _ r e l a t i o n (st_pre_sca l ing) = [] ;
113 j o i n _ r e l a t i o n (s t_post_sca l ing) = [] ;
114 j o i n _ r e l a t i o n (s t _pr in t ing_ job) = [] ;
115 j o i n _ r e l a t i o n (st_INTERNAL) = [] ;
116
117 map cond_entry_handler : State → L i s t (Transi t ion) ;
118 eqn cond_entry_handler (s t _ i d l e) = [] ;
119 cond_entry_handler (s t_error) = [] ;
120 cond_entry_handler (st_unresolved) = [] ;
121 cond_entry_handler (st_resolved) = [] ;
122 cond_entry_handler (s t _pr in t ing) = [] ;
123 cond_entry_handler (st_preparing_job) = [] ;
124 cond_entry_handler (s t_co lor_correct ion) = [] ;
125 cond_entry_handler (st_pre_cc) = [] ;
126 cond_entry_handler (st_post_cc) = [] ;
127 cond_entry_handler (s t _ s c a l i n g) = [] ;
128 cond_entry_handler (s t_pre_sca l ing) = [] ;
129 cond_entry_handler (s t_post_sca l ing) = [] ;
130 cond_entry_handler (s t _pr int ing_ job) = [] ;
131 cond_entry_handler (st_INTERNAL) = [] ;
132
133 map other_entry_handler : State → L i s t (OEH) ;
134 eqn other_entry_handler (s t _ i d l e) = [] ;
135 other_entry_handler (s t_error) = [] ;
136 other_entry_handler (st_unresolved) = [] ;
137 other_entry_handler (st_resolved) = [] ;

116 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

138 other_entry_handler (s t _pr in t ing) = [] ;
139 other_entry_handler (st_preparing_job) = [] ;
140 other_entry_handler (s t_co lor_correct ion) = [] ;
141 other_entry_handler (st_pre_cc) = [] ;
142 other_entry_handler (st_post_cc) = [] ;
143 other_entry_handler (s t _ s c a l i n g) = [] ;
144 other_entry_handler (s t_pre_sca l ing) = [] ;
145 other_entry_handler (s t_post_sca l ing) = [] ;
146 other_entry_handler (s t _pr int ing_ job) = [] ;
147 other_entry_handler (st_INTERNAL) = [] ;
148
149 map exit_handler : State → L i s t (DoEvent) ;
150 eqn exit_handler (s t _ i d l e) = [] ;
151 exit_handler (s t_error) = [] ;
152 exit_handler (st_unresolved) = [] ;
153 exit_handler (st_resolved) = [] ;
154 exit_handler (s t _pr in t ing) = [] ;
155 exit_handler (st_preparing_job) = [] ;
156 exit_handler (s t _co lor_correct ion) = [] ;
157 exit_handler (st_pre_cc) = [] ;
158 exit_handler (st_post_cc) = [] ;
159 exit_handler (s t _ s c a l i n g) = [] ;
160 exit_handler (s t_pre_sca l ing) = [] ;
161 exit_handler (s t_post_sca l ing) = [] ;
162 exit_handler (s t _pr in t ing_ job) = [] ;
163 exit_handler (st_INTERNAL) = [] ;
164
165 map smmt_spec : Spec ;
166 eqn smmt_spec = sm(
167 [ev_print_ job , ev_f in ish_ job , ev_ f in ish_co lor , ev_ f in ish_sca l ing , ev_resolve_error , ev_reset_error ,
168 ev_color_error , ev_submit_job] ,
169 [do_event] ,
170 states (
171 [s t _ i d l e , st_unresolved , st_resolved , st_pre_cc , st_post_cc , st_pre_scal ing , st_post_scal ing ,
172 s t_pr in t ing_ job] ,
173 [st_error , s t_pr int ing , st_co lor_correct ion , s t _ s c a l i n g] ,
174 [st_preparing_job] ,
175 []
176) ,
177 [s t _ i d l e , st_unresolved , st_preparing_job , st_co lor_correct ion , st_pre_cc , s t_sca l ing ,
178 st_pre_sca l ing] ,
179 c h i ld _r e la t i on ,
180 desc_relat ion ,
181 entry_desc_relat ion ,
182 t r a n s i t i o n _ r e l a t i o n ,
183 j o i n _ r e l a t i o n ,
184 cond_entry_handler ,
185 other_entry_handler ,
186 exit_handler
187) ;
188
189 map ss_s : LState → L i s t (State) ;
190 ss_c : LState → L i s t (State) ;
191 ss_p : LState → L i s t (State) ;
192 s s _ j : LState → L i s t (State) ;
193 var ss , cs , ps , j s : L i s t (State) ;
194 eqn ss_s (states (ss , cs , ps , j s)) = ss ;
195 ss_c (states (ss , cs , ps , j s)) = cs ;
196 ss_p (states (ss , cs , ps , j s)) = ps ;
197 s s _ j (states (ss , cs , ps , j s)) = j s ;
198
199 map sm_o : Spec → L i s t (OnEvent) ;
200 sm_d : Spec → L i s t (DoEvent) ;
201 sm_s : Spec → L i s t (State) ;
202 sm_ss : Spec → LState ;
203 sm_es : Spec → L i s t (State) ;
204 sm_cr : Spec → State → L i s t (State) ;
205 sm_dr : Spec → State → L i s t (State) ;
206 sm_edr : Spec → State → L i s t (State) ;
207 sm_tr : Spec → State → L i s t (Transi t ion) ;
208 sm_jr : Spec → State → L i s t (State) ;
209 sm_ce : Spec → State → L i s t (Transi t ion) ;
210 sm_oe : Spec → State → L i s t (OEH) ;
211 sm_ex : Spec → State → L i s t (DoEvent) ;
212 var lo : L i s t (OnEvent) ;
213 ld : L i s t (DoEvent) ;
214 s : LState ;
215 l s2 : L i s t (State) ;
216 cr : State → L i s t (State) ;
217 dr : State → L i s t (State) ;

Formalising the State Machine Modelling Tool (SMMT) 117

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

218 edr : State → L i s t (State) ;
219 t r : State → L i s t (Transi t ion) ;
220 j r : State → L i s t (State) ;
221 c : State → L i s t (Transi t ion) ;
222 o : State → L i s t (OEH) ;
223 ex : State → L i s t (DoEvent) ;
224 eqn sm_o (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = lo ;
225 sm_d (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = ld ;
226 sm_s (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = ss_s (s) ++ ss_c (s) ++ ss_p (s) ++ s s _ j (s) ;
227 sm_ss (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = s ;
228 sm_es (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = ls2 ;
229 sm_cr (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = cr ;
230 sm_dr (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = dr ;
231 sm_edr (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = edr ;
232 sm_tr (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = t r ;
233 sm_jr (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = j r ;
234 sm_ce (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = c ;
235 sm_oe (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = o ;
236 sm_ex (sm(lo , ld , s , ls2 , cr , dr , edr , tr , j r , c , o , ex)) = ex ;
237
238 map tra_o : Transi t ion → OnEvent ;
239 tra_d : Transi t ion → L i s t (DoEvent) ;
240 t ra_s : Transi t ion → State ;
241 var e : OnEvent ;
242 s : State ;
243 ld : L i s t (DoEvent) ;
244 eqn tra_o (tra (e , ld , s)) = e ;
245 tra_d (tra (e , ld , s)) = ld ;
246 t ra_s (tra (e , ld , s)) = s ;
247
248 map oeh_d : OEH → L i s t (DoEvent) ;
249 oeh_s : OEH → State ;
250 var ld : L i s t (DoEvent) ;
251 s ’ : State ;
252 eqn oeh_d (oeh (ld , s ’)) = ld ;
253 oeh_s (oeh (ld , s ’)) = s ’ ;
254
255 map pair_ex : Pair → L i s t (State) ;
256 pair_de : Pair → L i s t (DoEvent) ;
257 var l s : L i s t (State) ;
258 ld : L i s t (DoEvent) ;
259 eqn pair_ex (p (ls , ld)) = l s ;
260 pair_de (p (ls , ld)) = ld ;
261
262 %%
263 %%
264 %%
265
266 % Val idat ion Checks
267
268 map i s_wel l _def ined : Spec → L i s t (Nat) ;
269 var sp : Spec ;
270 eqn i s_wel l _def ined (sp) = val_non_empty_states (sp)
271 ++ val_one_entry_root_state (sp)
272 ++ val_cs_one_entry_chi ld (sp)
273 ++ val_ps_entry_chi ldren (sp)
274 ++ va l _ j s _not_entry_s ta te (sp)
275 ++ val_ss_no_chi ldren (sp)
276 ++ val_ps_at least_two_chi ldren (sp)
277 ++ va l_ j s_no_ch i ldren (sp)
278 ++ v a l _ j s _ c h i l d _ o f _ p s (sp)
279 ++ v a l _ t r a n s i t i o n (sp)
280 ++ v a l _ o n l y _ j o i n s _ j s (sp)
281 ++ v a l _ j o i n _ r e l a t i o n (sp)
282 ++ val_cond_entry_handler (sp)
283 ++ val_other_entry_handler (sp)
284 ++ va l_ch i ld_re l _1_parent (sp)
285 ++ v a l _ c h i l d _ r e l _ a c y c l i c (sp) ;
286
287 % Val idat ion Check 1
288 map val_non_empty_states : Spec → L i s t (Nat) ;
289 var sp : Spec ;
290 eqn val_non_empty_states (sp) = i f (sm_s (sp) == [] , [1] , []) ;
291
292 % Val idat ion Check 2
293 map val_one_entry_root_state : Spec → L i s t (Nat) ;
294 var sp : Spec ;
295 eqn val_one_entry_root_state (sp) = i f (e x i s t s s : State . i s _entry_root_s ta te (sp , s) &&
296 ! (e x i s t s s ’ : State . s ! = s ’ && is_entry_root_s ta te (sp , s ’)) , [] , [2]) ;
297

118 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

298 % Val idat ion Check 3
299 map val_cs_one_entry_chi ld : Spec → L i s t (Nat) ;
300 var sp : Spec ;
301 eqn val_cs_one_entry_chi ld (sp) = i f (f o r a l l s ’ : State . s ’ in ss_c (sm_ss (sp)) => (
302 e x i s t s s : State . s in sm_s (sp) && s in sm_cr (sp) (s ’) && s in sm_es (sp)
303 && ! (e x i s t s r : State . r in sm_s (sp) && r in sm_cr (sp) (s ’) && r in sm_es (sp) && s ! = r)
304) , [] , [3]) ;
305
306 % Val idat ion Check 4
307 map val_ps_entry_chi ldren : Spec → L i s t (Nat) ;
308 var sp : Spec ;
309 eqn val_ps_entry_chi ldren (sp) = i f (f o r a l l s , s ’ : State . (s ’ in ss_p (sm_ss (sp)) && s in sm_s (sp) &&
310 ! (s in s s _ j (sm_ss (sp))) && s in sm_cr (sp) (s ’)) => s in sm_es (sp) , [] , [4]) ;
311
312 % Val idat ion Check 5
313 map va l _ j s _not_entry_s ta te : Spec → L i s t (Nat) ;
314 var sp : Spec ;
315 eqn va l _ j s _not_entry_s ta te (sp) = i f (l i s t _ i n t e r s e c t (s s _ j (sm_ss (sp)) , sm_es (sp)) == [] , [] , [5]) ;
316
317 % Val idat ion Check 6
318 map val_ss_no_chi ldren : Spec → L i s t (Nat) ;
319 var sp : Spec ;
320 eqn val_ss_no_chi ldren (sp) = i f (f o r a l l s ’ : State . s ’ in ss_s (sm_ss (sp)) =>
321 ! (e x i s t s s : State . s in sm_s (sp) && s in sm_cr (sp) (s ’)) , [] , [6]) ;
322
323 % Val idat ion Check 7
324 map val_ps_at least_two_chi ldren : Spec → L i s t (Nat) ;
325 var sp : Spec ;
326 eqn val_ps_at least_two_chi ldren (sp) = i f (f o r a l l s ’ ’ : State . s ’ ’ in ss_p (sm_ss (sp)) => (
327 e x i s t s s , s ’ : State . s in sm_s (sp) && s ’ in sm_s (sp) && s ! = s ’ && s in sm_cr (sp) (s ’ ’) &&
328 s ’ in sm_cr (sp) (s ’ ’)
329) , [] , [7]) ;
330
331 % Val idat ion Check 8
332 map va l_ j s_no_ch i ldren : Spec → L i s t (Nat) ;
333 var sp : Spec ;
334 eqn va l_ j s_no_ch i ldren (sp) = i f (f o r a l l s ’ : State . s ’ in s s _ j (sm_ss (sp)) =>
335 ! (e x i s t s s : State . s in sm_s (sp) && s in sm_cr (sp) (s ’)) , [] , [8]) ;
336
337 % Val idat ion Check 9
338 map v a l _ j s _ c h i l d _ o f _ p s : Spec → L i s t (Nat) ;
339 var sp : Spec ;
340 eqn v a l _ j s _ c h i l d _ o f _ p s (sp) = i f (f o r a l l s : State . s in s s _ j (sm_ss (sp)) =>
341 (e x i s t s s ’ : State . s ’ in ss_p (sm_ss (sp)) && s in sm_cr (sp) (s ’)) , [] , [9]) ;
342
343 % Val idat ion Check 10
344 map v a l _ t r a n s i t i o n : Spec → L i s t (Nat) ;
345 var sp : Spec ;
346 eqn v a l _ t r a n s i t i o n (sp) = i f (f o r a l l s : State . s in sm_s (sp) =>
347 (f o r a l l e : OnEvent . e in sm_o (sp) => (tr_count (sm_tr (sp) (s) , e) < 2)) , [] , [1 0]) ;
348
349 map tr_count : L i s t (Transi t ion) # OnEvent → Nat ;
350 var e , e ’ : OnEvent ;
351 D : L i s t (DoEvent) ;
352 s ’ : State ;
353 T : L i s t (Transi t ion) ;
354 eqn tr_count ([] , e ’) = 0 ;
355 (e == e ’) → tr_count (tra (e , D, s ’) |> T , e ’) = 1 + tr_count (T , e ’) ;
356 (e ! = e ’) → tr_count (tra (e , D, s ’) |> T , e ’) = tr_count (T , e ’) ;
357
358 % Val idat ion Check 11
359 map v a l _ o n l y _ j o i n s _ j s : Spec → L i s t (Nat) ;
360 var sp : Spec ;
361 eqn v a l _ o n l y _ j o i n s _ j s (sp) = i f (f o r a l l s : State . s in sm_s (sp) =>
362 ((s in s s _ j (sm_ss (sp))) == (# sm_jr (sp) (s) > 0)) , [] , [1 1]) ;
363
364 % Val idat ion Check 12
365 map v a l _ j o i n _ r e l a t i o n : Spec → L i s t (Nat) ;
366 var sp : Spec ;
367 eqn v a l _ j o i n _ r e l a t i o n (sp) = i f (f o r a l l s , s ’ : State . (s in s s _ j (sm_ss (sp)) &&
368 s ’ in ss_p (sm_ss (sp)) && s in sm_cr (sp) (s ’)) => (
369 f o r a l l s ’ ’ : State . s ’ ’ in sm_jr (sp) (s) => s ’ ’ in sm_dr (sp) (s ’)
370) , [] , [1 2]) ;
371
372 % Val idat ion Check 13
373 map val_cond_entry_handler : Spec → L i s t (Nat) ;
374 var sp : Spec ;
375 eqn val_cond_entry_handler (sp) = i f (f o r a l l s : State . s in sm_s (sp) =>
376 (f o r a l l c : Transi t ion . c in sm_ce (sp) (s) => (tra_d (c) == [] => s ! = tra_s (c))) , [] , [1 3]) ;
377

Formalising the State Machine Modelling Tool (SMMT) 119

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

378 % Val idat ion Check 14
379 map val_other_entry_handler : Spec → L i s t (Nat) ;
380 var sp : Spec ;
381 eqn val_other_entry_handler (sp) = i f (f o r a l l s : State . s in sm_s (sp) =>
382 (f o r a l l o : OEH . o in sm_oe (sp) (s) => (oeh_d (o) == [] => s ! = oeh_s (o))) , [] , [1 4]) ;
383
384 % Val idat ion Check 15
385 map va l _ch i ld_re l _1_parent : Spec → L i s t (Nat) ;
386 var sp : Spec ;
387 eqn va l _ch i ld_re l _1_parent (sp) = i f (f o r a l l x1 , x2 , x3 : State .
388 (x1 in sm_cr (sp) (x2) && x1 in sm_cr (sp) (x3)) => (x2 == x3) , [] , [1 5]) ;
389
390 % Val idat ion Check 16
391 map v a l _ c h i l d _ r e l _ a c y c l i c : Spec → L i s t (Nat) ;
392 var sp : Spec ;
393 eqn v a l _ c h i l d _ r e l _ a c y c l i c (sp) = i f (f o r a l l s , s ’ : State .
394 ! (i s_desc_of (sp , s , s ’) && is_desc_of (sp , s ’ , s)) , [] , [1 6]) ;
395
396 %%
397 %%
398 %%
399
400 % Def in i t ions speci fy ing the semantics in mCRL2
401
402 %%
403
404 %% L i s t Interact ion
405
406 map subset : L i s t (State) # L i s t (State) → Bool ;
407 var s : State ;
408 l s , l s ’ : L i s t (State) ;
409 eqn subset ([] , l s ’) = true ;
410 ! (s in ls ’) → subset (s |> ls , ls ’) = f a l s e ;
411 (s in ls ’) → subset (s |> ls , ls ’) = subset (ls , ls ’) ;
412
413 map get_unique : L i s t (State) → L i s t (State) ;
414 var S : L i s t (State) ;
415 eqn get_unique (S) = get_unique_helper (S , []) ;
416
417 map get_unique_helper : L i s t (State) # L i s t (State) → L i s t (State) ;
418 var s : State ;
419 ls1 , l s2 : L i s t (State) ;
420 eqn get_unique_helper ([] , l s2) = [] ;
421 ! (s in ls2) → get_unique_helper (s |> ls1 , l s2) = [s] ++ get_unique_helper (ls1 , l s2 ++ [s]) ;
422 (s in ls2) → get_unique_helper (s |> ls1 , l s2) = get_unique_helper (ls1 , l s2) ;
423
424 map l i s t _minus_state : L i s t (State) # L i s t (State) → L i s t (State) ;
425 var s : State ;
426 ls1 , l s2 : L i s t (State) ;
427 eqn l i s t _minus_state ([] , l s2) = [] ;
428 ! (s in ls2) → l i s t _minus_state (s |> ls1 , l s2) = [s] ++ l i s t _minus_state (ls1 , l s2) ;
429 (s in ls2) → l i s t _minus_state (s |> ls1 , l s2) = l i s t _minus_state (ls1 , l s2) ;
430
431 map l ist_minus_doevent : L i s t (DoEvent) # DoEvent → L i s t (DoEvent) ;
432 var d , d ’ : DoEvent ;
433 ld : L i s t (DoEvent) ;
434 eqn l ist_minus_doevent ([] , d ’) = [] ;
435 d ! = d ’ → l ist_minus_doevent (d |> ld , d ’) = [d] ++ list_minus_doevent (ld , d ’) ;
436 d == d ’ → l ist_minus_doevent (d |> ld , d ’) = l ist_minus_doevent (ld , d ’) ;
437
438 map f t : L i s t (Transi t ion) → L i s t (Transi t ion) ;
439 var t : Transi t ion ;
440 l t : L i s t (Transi t ion) ;
441 eqn f t ([]) = [] ;
442 (t ra_s (t) ! = st_INTERNAL) → f t (t |> l t) = [t] ++ f t (l t) ;
443 (t ra_s (t) == st_INTERNAL) → f t (t |> l t) = f t (l t) ;
444
445 map sort_s tates : L i s t (State) # L i s t (State) → L i s t (State) ;
446 var s : State ;
447 l s , ex : L i s t (State) ;
448 eqn sort_s tates (ex , []) = [] ;
449 s in ex → sort_s tates (ex , s |> l s) = [s] ++ sort_s tates (ex , l s) ;
450 ! (s in ex) → sort_s tates (ex , s |> l s) = sort_s tates (ex , l s) ;
451
452 map l i s t _ u n i o n : L i s t (State) # L i s t (State) → L i s t (State) ;
453 var l s , l s ’ : L i s t (State) ;
454 s : State ;
455 eqn l i s t _ u n i o n (ls , ls ’) = get_unique (l s ++ ls ’) ;
456
457 map l i s t _ i n t e r s e c t : L i s t (State) # L i s t (State) → L i s t (State) ;

120 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

458 var l s , l s ’ : L i s t (State) ;
459 s : State ;
460 eqn l i s t _ i n t e r s e c t ([] , l s ’) = [] ;
461 (s in ls ’) → l i s t _ i n t e r s e c t (s |> ls , ls ’) = [s] ++ l i s t _ i n t e r s e c t (ls , ls ’) ;
462 ! (s in ls ’) → l i s t _ i n t e r s e c t (s |> ls , ls ’) = l i s t _ i n t e r s e c t (ls , ls ’) ;
463
464 map overlap : L i s t (State) # L i s t (State) → Bool ;
465 var s : State ;
466 l s , l s ’ : L i s t (State) ;
467 eqn overlap ([] , l s ’) = f a l s e ;
468 (s in ls ’) → overlap (s |> ls , ls ’) = true ;
469 ! (s in ls ’) → overlap (s |> ls , ls ’) = overlap (ls , ls ’) ;
470
471
472 %%
473
474 %% IsSimpleState
475
476 map i s _ s s : Spec # State → Bool ;
477 var sp : Spec ;
478 s : State ;
479 eqn i s _ s s (sp , s) = s in ss_s (sm_ss (sp)) ;
480
481 %% IsCompositeState
482 map i s _ c s : Spec # State → Bool ;
483 var sp : Spec ;
484 s : State ;
485 eqn i s _ c s (sp , s) = s in ss_c (sm_ss (sp)) ;
486
487 %% I s P a r a l l e l S t a t e
488 map i s_ps : Spec # State → Bool ;
489 var sp : Spec ;
490 s : State ;
491 eqn i s_ps (sp , s) = s in ss_p (sm_ss (sp)) ;
492
493 %% I s J o i n t S t a t e
494 map i s _ j s : Spec # State → Bool ;
495 var sp : Spec ;
496 s : State ;
497 eqn i s _ j s (sp , s) = s in s s _ j (sm_ss (sp)) ;
498
499 %%
500
501 %% IsRootState
502 map i s _ r o o t _ s t a t e : Spec # State → Bool ;
503 var sp : Spec ;
504 s : State ;
505 eqn i s _ r o o t _ s t a t e (sp , s) = e x i s t s s ’ : State . s ’ in sm_s (sp) &&
506 ! (e x i s t s s ’ ’ : State . s in sm_cr (sp) (s ’ ’)) ;
507
508 %% IsEntryRootState
509 map i s _entry_root_s ta te : Spec # State → Bool ;
510 var sp : Spec ;
511 s : State ;
512 eqn i s _entry_root_s ta te (sp , s) = i s _ r o o t _ s t a t e (sp , s) && s in sm_es (sp) ;
513
514 %%
515
516 %% IsDescendantOf
517 map i s_desc_of : Spec # State # State → Bool ;
518 var sp : Spec ;
519 s , s ’ : State ;
520 eqn i s_desc_of (sp , s , s ’) = s in sm_dr (sp) (s ’) ;
521
522 %% IsEntryChi ldOf
523 map i s _ e n t r y _ c h i l d _ o f : Spec # State # State → Bool ;
524 var sp : Spec ;
525 s , s ’ : State ;
526 eqn i s _ e n t r y _ c h i l d _ o f (sp , s , s ’) = s in sm_cr (sp) (s ’) && s in sm_es (sp) ;
527
528 %% IsEntryDescendantOf
529 map is_entry_descendant_of : Spec # State # State → Bool ;
530 var sp : Spec ;
531 s , s ’ : State ;
532 eqn is_entry_descendant_of (sp , s , s ’) = s in sm_edr (sp) (s ’) ;
533
534 %% GetEntryChildren
535 map get_entry_chi ldren : Spec # State → L i s t (State) ;
536 var sp : Spec ;
537 s : State ;

Formalising the State Machine Modelling Tool (SMMT) 121

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

538 eqn get_entry_chi ldren (sp , s) = get_entry_chi ldren_helper (sm_cr (sp) (s) , sm_es (sp)) ;
539
540 map get_entry_chi ldren_helper : L i s t (State) # L i s t (State) → L i s t (State) ;
541 var s : State ;
542 ls1 , l s2 : L i s t (State) ;
543 eqn get_entry_chi ldren_helper ([] , l s2) = [] ;
544 (s in ls2) →
545 get_entry_chi ldren_helper (s |> ls1 , l s2) = [s] ++ get_entry_chi ldren_helper (ls1 , l s2) ;
546 ! (s in ls2) →
547 get_entry_chi ldren_helper (s |> ls1 , l s2) = get_entry_chi ldren_helper (ls1 , l s2) ;
548
549 %% getAncestors
550 map get_ancestors : Spec # State → L i s t (State) ;
551 var sp : Spec ;
552 s : State ;
553 eqn get_ancestors (sp , s) = get_ancestors_helper (sp , sm_s (sp) , s) ;
554
555 map get_ancestors_helper : Spec # L i s t (State) # State → L i s t (State) ;
556 var sp : Spec ;
557 s , s ’ : State ;
558 S : L i s t (State) ;
559 eqn get_ancestors_helper (sp , [] , s ’) = [] ;
560 (i s_desc_of (sp , s ’ , s)) →
561 get_ancestors_helper (sp , s |> S , s ’) = [s] ++ get_ancestors_helper (sp , S , s ’) ;
562 ! (i s_desc_of (sp , s ’ , s)) →
563 get_ancestors_helper (sp , s |> S , s ’) = get_ancestors_helper (sp , S , s ’) ;
564
565 %%
566
567 %% I n i t S t a t e
568 map i n i t _ s t a t e : Spec → Pair ;
569 var sp : Spec ;
570 eqn i n i t _ s t a t e (sp) = g e t _ i n i t _ s t a t e _ p a i r (sp , jsu (sp , i n i t _ s t a t e _ h e l p e r (sp , sm_s (sp)))) ;
571
572 map g e t _ i n i t _ s t a t e _ p a i r : Spec # L i s t (State) → Pair ;
573 var sp : Spec ;
574 l s : L i s t (State) ;
575 eqn g e t _ i n i t _ s t a t e _ p a i r (sp , l s) = p (ls , get_do_events_entry_state_ in i t (sp , l s)) ;
576
577 %% I n i t State Helper
578 map i n i t _ s t a t e _ h e l p e r : Spec # L i s t (State) → L i s t (State) ;
579 var sp : Spec ;
580 s : State ;
581 l s : L i s t (State) ;
582 eqn i n i t _ s t a t e _ h e l p e r (sp , []) = [] ;
583 (i s _entry_root_s ta te (sp , s) || (e x i s t s s ’ : State . i s _entry_root_s ta te (sp , s ’) &&
584 is_entry_descendant_of (sp , s , s ’))) →
585 i n i t _ s t a t e _ h e l p e r (sp , s |> l s) = [s] ++ i n i t _ s t a t e _ h e l p e r (sp , l s) ;
586 ! (i s _entry_root_s ta te (sp , s) || (e x i s t s s ’ : State . i s _entry_root_s ta te (sp , s ’) &&
587 is_entry_descendant_of (sp , s , s ’))) →
588 i n i t _ s t a t e _ h e l p e r (sp , s |> l s) = i n i t _ s t a t e _ h e l p e r (sp , l s) ;
589
590 %%
591
592 %% HasOutgoingTransitionForEvent
593 map has_out_tr_for_event : Spec # State # OnEvent → Bool ;
594 var sp : Spec ;
595 s : State ;
596 e : OnEvent ;
597 eqn has_out_tr_for_event (sp , s , e) =
598 e x i s t s s ’ : State . e x i s t s ld : L i s t (DoEvent) . t ra (e , ld , s ’) in sm_tr (sp) (s) ;
599
600 %% isTransit ionDefinedForEvent
601 map i s _ t r _ d e f _ e v : Spec # L i s t (State) # OnEvent → Bool ;
602 var sp : Spec ;
603 s : State ;
604 ex : L i s t (State) ;
605 e : OnEvent ;
606 eqn i s _ t r _ d e f _ e v (sp , ex , e) = e x i s t s s : State . s in ex && has_out_tr_for_event (sp , s , e) ;
607 i s _ t r _ d e f _ e v (sp , [] , e) = f a l s e ;
608 has_out_tr_for_event (sp , s , e) → i s _ t r _ d e f _ e v (sp , s |> ex , e) = true ;
609 ! has_out_tr_for_event (sp , s , e) → i s _ t r _ d e f _ e v (sp , s |> ex , e) = i s _ t r _ d e f _ e v (sp , ex , e) ;
610
611 %% GetTransit ion
612 map get_ t rans i t ion : Spec # State # OnEvent → Transi t ion ;
613 var sp : Spec ;
614 s : State ;
615 e : OnEvent ;
616 eqn get_ t rans i t ion (sp , s , e) = get_trans i t ion_helper (sm_tr (sp) (s) , e) ;
617

122 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

618 map get_trans i t ion_helper : L i s t (Transi t ion) # OnEvent → Transi t ion ;
619 var T : L i s t (Transi t ion) ;
620 t : Transi t ion ;
621 e : OnEvent ;
622 eqn tra_o (t) == e → get_trans i t ion_helper (t |> T , e) = t ;
623 tra_o (t) ! = e → get_trans i t ion_helper (t |> T , e) = get_trans i t ion_helper (T , e) ;
624
625 %% GetPr ior i t i sedTrans i t ionsEvent
626 map get_pr io_tr_event : Spec # L i s t (State) # OnEvent → L i s t (Transi t ion) ;
627 var sp : Spec ;
628 s : State ;
629 ex : L i s t (State) ;
630 e : OnEvent ;
631 eqn ! i s _ t r _ d e f _ e v (sp , ex , e) → get_pr io_tr_event (sp , ex , e) = [] ;
632 i s _ t r _ d e f _ e v (sp , ex , e) → get_pr io_tr_event (sp , ex , e) = get_pr io_tr_event_helper (sp , ex , ex , e) ;
633
634 map get_pr io_tr_event_helper : Spec # L i s t (State) # L i s t (State) # OnEvent → L i s t (Transi t ion) ;
635 var sp : Spec ;
636 s : State ;
637 ex : L i s t (State) ;
638 ss : L i s t (State) ;
639 e : OnEvent ;
640 eqn get_pr io_tr_event_helper (sp , ex , [] , e) = [] ;
641 (has_out_tr_for_event (sp , s , e) && ! (e x i s t s s ’ : State . s ’ in ex && is_desc_of (sp , s ’ , s)
642 && has_out_tr_for_event (sp , s ’ , e))) → get_pr io_tr_event_helper (sp , ex , s |> ss , e) =
643 [get_ t rans i t ion (sp , s , e)] ++ get_pr io_tr_event_helper (sp , ex , ss , e) ;
644 ! (has_out_tr_for_event (sp , s , e) && ! (e x i s t s s ’ : State . s ’ in ex && is_desc_of (sp , s ’ , s)
645 && has_out_tr_for_event (sp , s ’ , e))) → get_pr io_tr_event_helper (sp , ex , s |> ss , e) =
646 get_pr io_tr_event_helper (sp , ex , ss , e) ;
647
648 %%
649
650 map css : Spec # State # State → Bool ;
651 var sp : Spec ;
652 s , s ’ : State ;
653 eqn css (sp , s , s ’) = cs_rs (sp , sm_s (sp) , s , s ’) || cs_sr (sp , sm_s (sp) , s , s ’) ;
654
655 map cs_rs : Spec # L i s t (State) # State # State → Bool ;
656 var sp : Spec ;
657 s , s ’ , r : State ;
658 l s : L i s t (State) ;
659 eqn cs_rs (sp , [] , s , s ’) = true ;
660 (i s _ r o o t _ s t a t e (sp , r) && s in sr (sp , r) && s ’ in sr (sp , r)) →
661 cs_rs (sp , r |> ls , s , s ’) = f a l s e ;
662 ! (i s _ r o o t _ s t a t e (sp , r) && s in sr (sp , r) && s ’ in sr (sp , r)) →
663 cs_rs (sp , r |> ls , s , s ’) = cs_rs (sp , ls , s , s ’) ;
664
665 map cs_sr : Spec # L i s t (State) # State # State → Bool ;
666 var sp : Spec ;
667 c , s , s ’ : State ;
668 l s : L i s t (State) ;
669 eqn cs_sr (sp , [] , s , s ’) = f a l s e ;
670 (i s _ c s (sp , c) && is_desc_of (sp , s , c) && is_desc_of (sp , s ’ , c)) →
671 cs_sr (sp , c |> ls , s , s ’) = cs_sr (sp , ls , s , s ’) || cs_sr_h (sp , sm_cr (sp) (c) , c , s , s ’) ;
672 ! (i s _ c s (sp , c) && is_desc_of (sp , s , c) && is_desc_of (sp , s ’ , c)) →
673 cs_sr (sp , c |> ls , s , s ’) = cs_sr (sp , ls , s , s ’) ;
674
675 map cs_sr_h : Spec # L i s t (State) # State # State # State → Bool ;
676 var sp : Spec ;
677 l s : L i s t (State) ;
678 c , c ’ , s , s ’ : State ;
679 eqn cs_sr_h (sp , [] , c ’ , s , s ’) = f a l s e ;
680 (s in sr (sp , c)) → cs_sr_h (sp , c |> ls , c ’ , s , s ’) = cs_sr_hh (sp , sm_cr (sp) (c ’) , c , s , s ’) ;
681 ! (s in sr (sp , c)) → cs_sr_h (sp , c |> ls , c ’ , s , s ’) = cs_sr_h (sp , ls , c ’ , s , s ’) ;
682
683 map cs_sr_hh : Spec # L i s t (State) # State # State # State → Bool ;
684 var sp : Spec ;
685 l s : L i s t (State) ;
686 c , c ’ , s , s ’ : State ;
687 eqn cs_sr_hh (sp , [] , c ’ , s , s ’) = f a l s e ;
688 (c ! = c ’ && s ’ in sr (sp , c)) → cs_sr_hh (sp , c |> ls , c ’ , s , s ’) = true ;
689 ! (c ! = c ’ && s ’ in sr (sp , c)) → cs_sr_hh (sp , c |> ls , c ’ , s , s ’) = cs_sr_hh (sp , ls , c ’ , s , s ’) ;
690
691 %%
692
693 map sr : Spec # State → L i s t (State) ;
694 var sp : Spec ;
695 s : State ;
696 eqn sr (sp , s) = [s] ++ sm_dr (sp) (s) ;
697

Formalising the State Machine Modelling Tool (SMMT) 123

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

698 map cuo : Spec # L i s t (State) # OnEvent → Bool ;
699 var sp : Spec ;
700 ex : L i s t (State) ;
701 e : OnEvent ;
702 eqn cuo (sp , ex , e) = cuoh (sp , ex , ex , e) ;
703
704 map cuoh : Spec # L i s t (State) # L i s t (State) # OnEvent → Bool ;
705 var sp : Spec ;
706 ex , ex ’ : L i s t (State) ;
707 s : State ;
708 e : OnEvent ;
709 eqn cuoh (sp , ex , [] , e) = f a l s e ;
710 (has_out_tr_for_event (sp , s , e) && cuo_ps_rg (sp , ex , ps_anc (sp , get_ancestors (sp , s)) , s , e)) →
711 cuoh (sp , ex , s |> ex ’ , e) = true ;
712 ! (has_out_tr_for_event (sp , s , e) && cuo_ps_rg (sp , ex , ps_anc (sp , get_ancestors (sp , s)) , s , e)) →
713 cuoh (sp , ex , s |> ex ’ , e) = cuoh (sp , ex , ex ’ , e) ;
714
715 map ps_anc : Spec # L i s t (State) → L i s t (State) ;
716 var sp : Spec ;
717 l s : L i s t (State) ;
718 s : State ;
719 eqn ps_anc (sp , []) = [] ;
720 i s_ps (sp , s) → ps_anc (sp , s |> l s) = [s] ++ ps_anc (sp , l s) ;
721 ! i s_ps (sp , s) → ps_anc (sp , s |> l s) = ps_anc (sp , l s) ;
722
723 map cuo_ps_rg : Spec # L i s t (State) # L i s t (State) # State # OnEvent → Bool ;
724 var sp : Spec ;
725 ex , ps : L i s t (State) ;
726 s , s ’ : State ;
727 e : OnEvent ;
728 eqn cuo_ps_rg (sp , ex , [] , s ’ , e) = f a l s e ;
729 cuo_ps_one (sp , ex , sm_cr (sp) (s) , e) →
730 cuo_ps_rg (sp , ex , s |> ps , s ’ , e) = true ;
731 ! cuo_ps_one (sp , ex , sm_cr (sp) (s) , e) →
732 cuo_ps_rg (sp , ex , s |> ps , s ’ , e) = cuo_ps_rg (sp , ex , ps , s ’ , e) ;
733
734 map cuo_ps_one : Spec # L i s t (State) # L i s t (State) # OnEvent → Bool ;
735 var sp : Spec ;
736 ex , cr : L i s t (State) ;
737 s , s ’ : State ;
738 e : OnEvent ;
739 eqn cuo_ps_one (sp , ex , [] , e) = f a l s e ;
740 ! i s _ j s (sp , s) && unhandled_subregion (sp , ex , sr (sp , s) , e , f a l s e) →
741 cuo_ps_one (sp , ex , s |> cr , e) = true ;
742 i s _ j s (sp , s) || ! unhandled_subregion (sp , ex , sr (sp , s) , e , f a l s e) →
743 cuo_ps_one (sp , ex , s |> cr , e) = cuo_ps_one (sp , ex , cr , e) ;
744
745 map unhandled_subregion : Spec # L i s t (State) # L i s t (State) # OnEvent # Bool → Bool ;
746 var sp : Spec ;
747 ex , st : L i s t (State) ;
748 s : State ;
749 e : OnEvent ;
750 b : Bool ;
751 eqn unhandled_subregion (sp , ex , [] , e , b) = b ;
752 (has_out_tr_for_event (sp , s , e) && (s in ex)) →
753 unhandled_subregion (sp , ex , s |> st , e , b) = f a l s e ;
754 (has_out_tr_for_event (sp , s , e) && ! (s in ex)) →
755 unhandled_subregion (sp , ex , s |> st , e , b) = unhandled_subregion (sp , ex , st , e , true) ;
756 ! has_out_tr_for_event (sp , s , e) →
757 unhandled_subregion (sp , ex , s |> st , e , b) = unhandled_subregion (sp , ex , st , e , b) ;
758
759 %%
760
761 map i s _exec_state : Spec # L i s t (State) → Bool ;
762 var sp : Spec ;
763 l s : L i s t (State) ;
764 eqn i s _exec_state (sp , l s) = ies_one_root_state (sp , ls , f a l s e) && ies_cs (sp , ls , l s) &&
765 ies_ps (sp , ls , l s) && i e s _ j s (sp , ls , l s) && ies_parent (sp , ls , l s) ;
766
767 map ies_one_root_state : Spec # L i s t (State) # Bool → Bool ;
768 var sp : Spec ;
769 s : State ;
770 l s : L i s t (State) ;
771 b : Bool ;
772 eqn ies_one_root_state (sp , [] , b) = b ;
773 i s _ r o o t _ s t a t e (sp , s) && ! b →
774 ies_one_root_state (sp , s |> ls , b) = ies_one_root_state (sp , ls , true) ;
775 i s _ r o o t _ s t a t e (sp , s) && b →
776 ies_one_root_state (sp , s |> ls , b) = f a l s e ;
777 ! i s _ r o o t _ s t a t e (sp , s) →

124 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

778 ies_one_root_state (sp , s |> ls , b) = ies_one_root_state (sp , ls , b) ;
779
780 map i es_cs : Spec # L i s t (State) # L i s t (State) → Bool ;
781 var sp : Spec ;
782 s : State ;
783 l s , ex : L i s t (State) ;
784 eqn i es_cs (sp , [] , ex) = true ;
785 (! i s _ c s (sp , s) || (# l i s t _ i n t e r s e c t (sm_cr (sp) (s) , ex) == 1)) →
786 i es_cs (sp , s |> ls , ex) = ies_cs (sp , ls , ex) ;
787 (i s _ c s (sp , s) && (# l i s t _ i n t e r s e c t (sm_cr (sp) (s) , ex) ! = 1)) →
788 i es_cs (sp , s |> ls , ex) = f a l s e ;
789
790 map remove_js : Spec # L i s t (State) → L i s t (State) ;
791 var sp : Spec ;
792 s : State ;
793 l s : L i s t (State) ;
794 eqn remove_js (sp , []) = [] ;
795 i s _ j s (sp , s) → remove_js (sp , s |> l s) = remove_js (sp , l s) ;
796 ! i s _ j s (sp , s) → remove_js (sp , s |> l s) = [s] ++ remove_js (sp , l s) ;
797
798 map ies_ps : Spec # L i s t (State) # L i s t (State) → Bool ;
799 var sp : Spec ;
800 s : State ;
801 l s , ex : L i s t (State) ;
802 eqn ies_ps (sp , [] , ex) = true ;
803 (i s_ps (sp , s) && ! subset (remove_js (sp , sm_cr (sp) (s)) , ex)) →
804 ies_ps (sp , s |> ls , ex) = f a l s e ;
805 ! (i s_ps (sp , s) && ! subset (remove_js (sp , sm_cr (sp) (s)) , ex)) →
806 ies_ps (sp , s |> ls , ex) = ies_ps (sp , ls , ex) ;
807
808 map i e s _ j s : Spec # L i s t (State) # L i s t (State) → Bool ;
809 var sp : Spec ;
810 s : State ;
811 l s , ex : L i s t (State) ;
812 eqn i e s _ j s (sp , [] , ex) = true ;
813 (i s _ j s (sp , s) && ! subset (sm_jr (sp) (s) , ex)) →
814 i e s _ j s (sp , s |> ls , ex) = f a l s e ;
815 ! (i s _ j s (sp , s) && ! subset (sm_jr (sp) (s) , ex)) →
816 i e s _ j s (sp , s |> ls , ex) = i e s _ j s (sp , ls , ex) ;
817
818 map ies_parent : Spec # L i s t (State) # L i s t (State) → Bool ;
819 var sp : Spec ;
820 s : State ;
821 l s , ex : L i s t (State) ;
822 eqn ies_parent (sp , [] , ex) = true ;
823 (i s _ r o o t _ s t a t e (sp , s) || contains_parent (sp , ex , s)) →
824 ies_parent (sp , s |> ls , ex) = ies_parent (sp , ls , ex) ;
825 ! (i s _ r o o t _ s t a t e (sp , s) || contains_parent (sp , ex , s)) →
826 ies_parent (sp , s |> ls , ex) = f a l s e ;
827
828 map contains_parent : Spec # L i s t (State) # State → Bool ;
829 var sp : Spec ;
830 l s : L i s t (State) ;
831 s , s ’ : State ;
832 eqn contains_parent (sp , [] , s ’) = f a l s e ;
833 s ’ in sm_cr (sp) (s) → contains_parent (sp , s |> ls , s ’) = true ;
834 ! (s ’ in sm_cr (sp) (s)) → contains_parent (sp , s |> ls , s ’) = contains_parent (sp , ls , s ’) ;
835
836 %%
837
838 %% getEnteredTargets
839 map get_et : Spec # L i s t (Transi t ion) → L i s t (State) ;
840 var sp : Spec ;
841 e : OnEvent ;
842 s ’ : State ;
843 ld : L i s t (DoEvent) ;
844 T : L i s t (Transi t ion) ;
845 eqn get_et (sp , []) = [] ;
846 get_et (sp , tra (e , ld , s ’) |> T) = get_unique ([s ’] ++ get_ancestors (sp , s ’) ++ get_et (sp , T)) ;
847
848 %%
849
850 map get_xs : Spec # L i s t (State) # L i s t (Transi t ion) → L i s t (State) ;
851 var sp : Spec ;
852 s : State ;
853 l s : L i s t (State) ;
854 l t : L i s t (Transi t ion) ;
855 eqn get_xs (sp , [] , l t) = [] ;
856 xs_h (sp , s , l t) → get_xs (sp , s |> ls , l t) = [s] ++ get_xs (sp , ls , l t) ;
857 ! xs_h (sp , s , l t) → get_xs (sp , s |> ls , l t) = get_xs (sp , ls , l t) ;

Formalising the State Machine Modelling Tool (SMMT) 125

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

858
859 map xs_h : Spec # State # L i s t (Transi t ion) → Bool ;
860 var sp : Spec ;
861 s : State ;
862 t : Transi t ion ;
863 l t : L i s t (Transi t ion) ;
864 eqn xs_h (sp , s , []) = f a l s e ;
865 css (sp , s , t ra_s (t)) → xs_h (sp , s , t |> l t) = true ;
866 ! css (sp , s , t ra_s (t)) → xs_h (sp , s , t |> l t) = xs_h (sp , s , l t) ;
867
868 %%
869
870 %% i n i t i a t e
871 map i n i t i a t e : Spec # L i s t (State) → L i s t (State) ;
872 var sp : Spec ;
873 l s : L i s t (State) ;
874 eqn i n i t i a t e (sp , l s) = get_unique (i n i t i a t e _ h e l p e r (sp , ls , l s)) ;
875
876 %% i s _ c s _ i n i t i a t e d
877 map i s _ c s _ i n i t i a t e d : Spec # L i s t (State) # State → Bool ;
878 var sp : Spec ;
879 s , s ’ : State ;
880 l s : L i s t (State) ;
881 eqn i s _ c s _ i n i t i a t e d (sp , [] , s ’) = f a l s e ;
882 (s in sm_cr (sp) (s ’)) → i s _ c s _ i n i t i a t e d (sp , s |> ls , s ’) = true ;
883 ! (s in sm_cr (sp) (s ’)) → i s _ c s _ i n i t i a t e d (sp , s |> ls , s ’) = i s _ c s _ i n i t i a t e d (sp , ls , s ’) ;
884
885 map i n i t i a t e _ h e l p e r : Spec # L i s t (State) # L i s t (State) → L i s t (State) ;
886 var sp : Spec ;
887 s : State ;
888 ls1 , l s2 : L i s t (State) ;
889 eqn i n i t i a t e _ h e l p e r (sp , [] , l s2) = [] ;
890 s == st_INTERNAL →
891 i n i t i a t e _ h e l p e r (sp , s |> ls1 , l s2) = i n i t i a t e _ h e l p e r (sp , ls1 , l s2) ;
892 i s _ s s (sp , s) || i s _ j s (sp , s) →
893 i n i t i a t e _ h e l p e r (sp , s |> ls1 , l s2) = [s] ++ i n i t i a t e _ h e l p e r (sp , ls1 , l s2) ;
894 i s _ c s (sp , s) && i s _ c s _ i n i t i a t e d (sp , ls2 , s) →
895 i n i t i a t e _ h e l p e r (sp , s |> ls1 , l s2) = [s] ++ i n i t i a t e _ h e l p e r (sp , ls1 , l s2) ;
896 i s _ c s (sp , s) && ! i s _ c s _ i n i t i a t e d (sp , ls2 , s) →
897 i n i t i a t e _ h e l p e r (sp , s |> ls1 , l s2) = [s] ++ get_entry_chi ldren (sp , s) ++
898 i n i t i a t e _ h e l p e r (sp , l s1 ++ get_entry_chi ldren (sp , s) , l s2) ;
899 i s_ps (sp , s) →
900 i n i t i a t e _ h e l p e r (sp , s |> ls1 , l s2) = [s] ++ get_entry_chi ldren (sp , s) ++
901 i n i t i a t e _ h e l p e r (sp , l s1 ++ get_entry_chi ldren (sp , s) , l s2) ;
902
903 %%
904
905 map j su : Spec # L i s t (State) → L i s t (State) ;
906 var sp : Spec ;
907 s : State ;
908 ex : L i s t (State) ;
909 eqn j su (sp , ex) = jsu_helper (sp , remove_js (sp , ex) , sm_s (sp) , sm_s (sp) , f a l s e) ;
910
911 map jsu_helper : Spec # L i s t (State) # L i s t (State) # L i s t (State) # Bool → L i s t (State) ;
912 var sp : Spec ;
913 ex , ls , ls ’ : L i s t (State) ;
914 s : State ;
915 b : Bool ;
916 eqn jsu_helper (sp , ex , [] , l s ’ , true) = jsu_helper (sp , ex , ls ’ , l s ’ , f a l s e) ;
917 jsu_helper (sp , ex , [] , l s ’ , f a l s e) = ex ;
918 (i s _ j s (sp , s) && ! (s in ex) && subset (sm_jr (sp) (s) , ex)) →
919 jsu_helper (sp , ex , s |> ls , ls ’ , b) = jsu_helper (sp , ex ++ [s] , ls , l s ’ , true) ;
920 ! (i s _ j s (sp , s) && ! (s in ex) && subset (sm_jr (sp) (s) , ex)) →
921 jsu_helper (sp , ex , s |> ls , ls ’ , b) = jsu_helper (sp , ex , ls , ls ’ , b) ;
922
923 %%
924
925 %% Execution State Update
926 map esu : Spec # L i s t (State) # L i s t (Transi t ion) → L i s t (State) ;
927 var sp : Spec ;
928 ex : L i s t (State) ;
929 t : L i s t (Transi t ion) ;
930 eqn esu (sp , ex , t) = sort_s tates (jsu (sp , i n i t i a t e (sp ,
931 get_unique (l i s t _minus_state (ex , get_xs (sp , ex , f t (t))) ++ get_et (sp , f t (t))))) , sm_s (sp)) ;
932
933 %%
934
935 map get_do_events : Spec # L i s t (State) # L i s t (State) # L i s t (Transi t ion) # OnEvent → L i s t (DoEvent) ;
936 var sp : Spec ;
937 ent , exi : L i s t (State) ;

126 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

938 l t : L i s t (Transi t ion) ;
939 e : OnEvent ;
940 eqn get_do_events (sp , ent , exi , l t , e) = get_do_events_exit (sp , exi) ++
941 get_do_events_transit ions (l t) ++ get_do_events_entry (sp , ent , e) ;
942
943 map get_do_events_transit ions : L i s t (Transi t ion) → L i s t (DoEvent) ;
944 var o : OnEvent ;
945 ld : L i s t (DoEvent) ;
946 s : State ;
947 l t : L i s t (Transi t ion) ;
948 eqn get_do_events_transit ions ([]) = [] ;
949 get_do_events_transit ions (tra (o , ld , s) |> l t) = ld ++ get_do_events_transit ions (l t) ;
950
951 map get_do_events_exit : Spec # L i s t (State) → L i s t (DoEvent) ;
952 var sp : Spec ;
953 l s : L i s t (State) ;
954 s : State ;
955 eqn get_do_events_exit (sp , []) = [] ;
956 get_do_events_exit (sp , s |> l s) = sm_ex (sp) (s) ++ get_do_events_exit (sp , l s) ;
957
958 map get_do_events_entry : Spec # L i s t (State) # OnEvent → L i s t (DoEvent) ;
959 var sp : Spec ;
960 ent : L i s t (State) ;
961 s : State ;
962 e : OnEvent ;
963 eqn get_do_events_entry (sp , [] , e) = [] ;
964 get_do_events_entry (sp , s |> ent , e) =
965 get_do_events_entry_state (e , sm_ce (sp) (s) , sm_oe (sp) (s)) ++ get_do_events_entry (sp , ent , e) ;
966
967 map get_do_events_entry_state : OnEvent # L i s t (Transi t ion) # L i s t (OEH) → L i s t (DoEvent) ;
968 var l t : L i s t (Transi t ion) ;
969 e , e ’ : OnEvent ;
970 ld : L i s t (DoEvent) ;
971 s ’ : State ;
972 lo : L i s t (OEH) ;
973 eqn get_do_events_entry_state (e , [] , []) = [] ;
974 (e == e ’) → get_do_events_entry_state (e , tra (e ’ , ld , s ’) |> l t , lo) =
975 ld ++ get_do_events_entry_state (e , l t , []) ;
976 (e ! = e ’) → get_do_events_entry_state (e , tra (e ’ , ld , s ’) |> l t , lo) =
977 get_do_events_entry_state (e , l t , lo) ;
978 get_do_events_entry_state (e , [] , oeh (ld , s ’) |> lo) = ld ++ get_do_events_entry_state (e , [] , lo) ;
979
980 map get_do_events_entry_state_ in i t : Spec # L i s t (State) → L i s t (DoEvent) ;
981 var sp : Spec ;
982 l s : L i s t (State) ;
983 s : State ;
984 eqn get_do_events_entry_state_ in i t (sp , []) = [] ;
985 get_do_events_entry_state_ in i t (sp , s |> l s) =
986 get_do_from_oeh (sm_oe (sp) (s)) ++ get_do_events_entry_state_ in i t (sp , l s) ;
987
988 map get_do_from_oeh : L i s t (OEH) → L i s t (DoEvent) ;
989 var lo : L i s t (OEH) ;
990 o : OEH;
991 eqn get_do_from_oeh ([]) = [] ;
992 get_do_from_oeh (o |> lo) = oeh_d (o) ++ get_do_from_oeh (lo) ;
993
994 %%
995
996 map entry_ t r : Spec # L i s t (State) # OnEvent → L i s t (Transi t ion) ;
997 var sp : Spec ;
998 s : State ;
999 ex : L i s t (State) ;

1000 e : OnEvent ;
1001 eqn entry_ t r (sp , [] , e) = [] ;
1002 entry_ t r (sp , s |> ex , e) = ehth_other (sp , s , e) ++ ehth_cond (sp , s , e) ++ entry_ t r (sp , ex , e) ;
1003
1004 map ehth_other : Spec # State # OnEvent → L i s t (Transi t ion) ;
1005 var sp : Spec ;
1006 s : State ;
1007 e : OnEvent ;
1008 eqn ehth_other (sp , s , e) = ehth_other_helper (sm_oe (sp) (s) , s , e) ;
1009
1010 map ehth_other_helper : L i s t (OEH) # State # OnEvent → L i s t (Transi t ion) ;
1011 var ld : L i s t (DoEvent) ;
1012 s , s ’ : State ;
1013 lo : L i s t (OEH) ;
1014 e : OnEvent ;
1015 eqn ehth_other_helper ([] , s , e) = [] ;
1016 (s ! = s ’ && ld == []) →
1017 ehth_other_helper (oeh (ld , s ’) |> lo , s , e) = [tra (e , [] , s ’)] ++ ehth_other_helper (lo , s , e) ;

Formalising the State Machine Modelling Tool (SMMT) 127

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

1018 (s == s ’ || ld ! = []) →
1019 ehth_other_helper (oeh (ld , s ’) |> lo , s , e) = ehth_other_helper (lo , s , e) ;
1020
1021 map ehth_cond : Spec # State # OnEvent → L i s t (Transi t ion) ;
1022 var sp : Spec ;
1023 s : State ;
1024 e : OnEvent ;
1025 eqn ehth_cond (sp , s , e) = ehth_cond_helper (sm_ce (sp) (s) , s , e) ;
1026
1027 map ehth_cond_helper : L i s t (Transi t ion) # State # OnEvent → L i s t (Transi t ion) ;
1028 var ld : L i s t (DoEvent) ;
1029 s , s ’ : State ;
1030 l t : L i s t (Transi t ion) ;
1031 e , e ’ : OnEvent ;
1032 eqn ehth_cond_helper ([] , s , e ’) = [] ;
1033 (ld == [] && e == e ’ && s ! = s ’) → ehth_cond_helper (tra (e , ld , s ’) |> l t , s , e ’) =
1034 [t ra (e , [] , s ’)] ++ ehth_cond_helper (l t , s , e ’) ;
1035 ! (ld == [] && e == e ’ && s ! = s ’) → ehth_cond_helper (tra (e , ld , s ’) |> l t , s , e ’) =
1036 ehth_cond_helper (l t , s , e ’) ;
1037
1038 %%
1039
1040 map get_targets : L i s t (Transi t ion) → L i s t (State) ;
1041 var t : Transi t ion ;
1042 l t : L i s t (Transi t ion) ;
1043 eqn get_targets ([]) = [] ;
1044 (t ra_s (t) == st_INTERNAL) → get_targets (t |> l t) = get_targets (l t) ;
1045 (t ra_s (t) ! = st_INTERNAL) → get_targets (t |> l t) = [t ra_s (t)] ++ get_targets (l t) ;
1046
1047 % Transi t ion Handler
1048 map tr_handler : Spec # L i s t (State) # OnEvent → Pair ;
1049 var sp : Spec ;
1050 ex : L i s t (State) ;
1051 e : OnEvent ;
1052 eqn tr_handler (sp , ex , e) = tr_handler_helper_a (sp , ex , get_pr io_tr_event (sp , ex , e) , [] , e) ;
1053
1054 map tr_handler_helper_a : Spec # L i s t (State) # L i s t (Transi t ion) # L i s t (DoEvent) # OnEvent → Pair ;
1055 var sp : Spec ;
1056 ex : L i s t (State) ;
1057 l t : L i s t (Transi t ion) ;
1058 ld : L i s t (DoEvent) ;
1059 e : OnEvent ;
1060 eqn (l t == []) → tr_handler_helper_a (sp , ex , l t , ld , e) =
1061 p (ex , ld) ;
1062 (l t ! = []) → tr_handler_helper_a (sp , ex , l t , ld , e) =
1063 tr_handler_helper_b (sp , ex , esu (sp , ex , l t) , l t , ld , e) ;
1064
1065 map tr_handler_helper_b : Spec # L i s t (State) # L i s t (State) # L i s t (Transi t ion) # L i s t (DoEvent) #
1066 OnEvent → Pair ;
1067 var sp : Spec ;
1068 ex , ex ’ : L i s t (State) ;
1069 l t : L i s t (Transi t ion) ;
1070 ld : L i s t (DoEvent) ;
1071 e : OnEvent ;
1072 eqn tr_handler_helper_b (sp , ex , ex ’ , l t , ld , e) = tr_handler (sp , ex ’ , l t , ld , e ,
1073 l i s t _ u n i o n (l i s t _ i n t e r s e c t (ex ’ , g e t _ j r (sp , get_targets (l t))) ,
1074 l i s t _ u n i o n (get_targets (l t) , l i s t _minus_state (ex ’ , ex))) , l i s t _minus_state (ex , ex ’)) ;
1075
1076 map g e t _ j r : Spec # L i s t (State) → L i s t (State) ;
1077 var sp : Spec ;
1078 ent : L i s t (State) ;
1079 eqn g e t _ j r (sp , ent) = get_ j r_helper (sp , s s _ j (sm_ss (sp)) , ent) ;
1080
1081 map get_ j r_helper : Spec # L i s t (State) # L i s t (State) → L i s t (State) ;
1082 var sp : Spec ;
1083 j s , ent : L i s t (State) ;
1084 s : State ;
1085 eqn get_ j r_helper (sp , [] , ent) = [] ;
1086 overlap (sm_jr (sp) (s) , ent) → get_ j r_helper (sp , s |> js , ent) = [s] ++ get_ j r_helper (sp , js , ent) ;
1087 ! overlap (sm_jr (sp) (s) , ent) → get_ j r_helper (sp , s |> js , ent) = get_ j r_helper (sp , js , ent) ;
1088
1089 map tr_handler : Spec # L i s t (State) # L i s t (Transi t ion) # L i s t (DoEvent) # OnEvent # L i s t (State) #
1090 L i s t (State) → Pair ;
1091 var sp : Spec ;
1092 ex ’ , ent , exi : L i s t (State) ;
1093 l t : L i s t (Transi t ion) ;
1094 ld : L i s t (DoEvent) ;
1095 e : OnEvent ;
1096 eqn tr_handler (sp , ex ’ , l t , ld , e , ent , exi) = tr_handler_helper_a (sp , ex ’ , entry_ t r (sp , ent , e) ,
1097 ld ++ get_do_events (sp , ent , exi , l t , e) , e) ;

128 Formalising the State Machine Modelling Tool (SMMT)

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

1098
1099 %%
1100
1101 map cts : Spec # L i s t (State) → Bool ;
1102 var sp : Spec ;
1103 l s t : L i s t (State) ;
1104 eqn cts (sp , l s t) = cts_h (sp , l s t , l s t) ;
1105
1106 map cts_h : Spec # L i s t (State) # L i s t (State) → Bool ;
1107 var sp : Spec ;
1108 l s t , l s t ’ : L i s t (State) ;
1109 s : State ;
1110 eqn cts_h (sp , [] , l s t ’) = f a l s e ;
1111 cts_hh (sp , s , l s t ’) → cts_h (sp , s |> l s t , l s t ’) = true ;
1112 ! cts_hh (sp , s , l s t ’) → cts_h (sp , s |> l s t , l s t ’) = cts_h (sp , l s t , l s t ’) ;
1113
1114 map cts_hh : Spec # State # L i s t (State) → Bool ;
1115 var sp : Spec ;
1116 s , s ’ : State ;
1117 l s t : L i s t (State) ;
1118 eqn cts_hh (sp , s , []) = f a l s e ;
1119 css (sp , s , s ’) → cts_hh (sp , s , s ’ |> l s t) = true ;
1120 ! css (sp , s , s ’) → cts_hh (sp , s , s ’ |> l s t) = cts_hh (sp , s , l s t) ;
1121
1122 %%
1123
1124 map enabled : Spec # L i s t (State) # OnEvent → Bool ;
1125 var sp : Spec ;
1126 ex : L i s t (State) ;
1127 e : OnEvent ;
1128 eqn enabled (sp , ex , e) = i s _ t r _ d e f _ e v (sp , ex , e) && ! cuo (sp , ex , e) &&
1129 ! c ts (sp , get_targets (get_pr io_tr_event (sp , ex , e))) ;
1130
1131 %%
1132
1133
1134 act FAIL ;
1135 ev_pr int_ job ;
1136 ev_ f in i sh_ job ;
1137 e v _ f i n i s h _ c o l o r ;
1138 e v _ f i n i s h _ s c a l i n g ;
1139 ev_resolve_error ;
1140 ev_reset_error ;
1141 ev_color_error ;
1142 ev_submit_job ;
1143 val_non_empty_states ;
1144 val_one_entry_root_state ;
1145 val_cs_one_entry_chi ld ;
1146 val_ps_entry_chi ldren ;
1147 va l _ j s _not_entry_s ta te ;
1148 val_ss_no_chi ldren ;
1149 va l _cs_at least_one_ch i ld ;
1150 val_ps_at least_two_chi ldren ;
1151 va l_ j s_no_ch i ldren ;
1152 v a l _ j s _ c h i l d _ o f _ p s ;
1153 v a l _ t r a n s i t i o n ;
1154 v a l _ o n l y _ j o i n s _ j s ;
1155 v a l _ j o i n _ r e l a t i o n ;
1156 val_cond_entry_handler ;
1157 val_other_entry_handler ;
1158 v a l _ c h i l d _ r e l _ i r r e f l ;
1159 va l _ch i ld_re l _1_parent ;
1160 v a l _ c h i l d _ r e l _ a c y c l i c ;
1161
1162 proc SM(sp : Spec , pair : Pair , v a l i d : L i s t (Nat)) =
1163 (v a l i d == []) → (
1164 (pair_de (pair) == []) → (
1165 (enabled (sp , pair_ex (pair) , ev_pr int_ job)
1166 → ev_pr int_ job .SM(sp , tr_handler (sp , pair_ex (pair) , ev_pr int_ job) , v a l i d)
1167 <> ev_pr int_ job . F ())
1168 + (enabled (sp , pair_ex (pair) , ev_ f in i sh_ job)
1169 → ev_ f in i sh_ job .SM(sp , tr_handler (sp , pair_ex (pair) , ev_ f in i sh_ job) , v a l i d)
1170 <> ev_ f in i sh_ job . F ())
1171 + (enabled (sp , pair_ex (pair) , e v _ f i n i s h _ c o l o r)
1172 → e v _ f i n i s h _ c o l o r .SM(sp , tr_handler (sp , pair_ex (pair) , e v _ f i n i s h _ c o l o r) , v a l i d)
1173 <> e v _ f i n i s h _ c o l o r . F ())
1174 + (enabled (sp , pair_ex (pair) , e v _ f i n i s h _ s c a l i n g)
1175 → e v _ f i n i s h _ s c a l i n g .SM(sp , tr_handler (sp , pair_ex (pair) , e v _ f i n i s h _ s c a l i n g) , v a l i d)
1176 <> e v _ f i n i s h _ s c a l i n g . F ())
1177 + (enabled (sp , pair_ex (pair) , ev_resolve_error)

Formalising the State Machine Modelling Tool (SMMT) 129

APPENDIX C. COMPLETE MCRL2 SPECIFICATION

1178 → ev_resolve_error .SM(sp , tr_handler (sp , pair_ex (pair) , ev_resolve_error) , v a l i d)
1179 <> ev_resolve_error . F ())
1180 + (enabled (sp , pair_ex (pair) , ev_reset_error)
1181 → ev_reset_error .SM(sp , tr_handler (sp , pair_ex (pair) , ev_reset_error) , v a l i d)
1182 <> ev_reset_error . F ())
1183 + (enabled (sp , pair_ex (pair) , ev_color_error)
1184 → ev_color_error .SM(sp , tr_handler (sp , pair_ex (pair) , ev_color_error) , v a l i d)
1185 <> ev_color_error . F ())
1186 + (enabled (sp , pair_ex (pair) , ev_submit_job)
1187 → ev_submit_job .SM(sp , tr_handler (sp , pair_ex (pair) , ev_submit_job) , v a l i d)
1188 <> ev_submit_job . F ())
1189)
1190) <> (
1191 (head (v a l i d) == 1) → val_non_empty_states .SM(sp , pair , t a i l (v a l i d) ++ [0])
1192 + (head (v a l i d) == 2) → val_one_entry_root_state .SM(sp , pair , t a i l (v a l i d) ++ [0])
1193 + (head (v a l i d) == 3) → val_cs_one_entry_chi ld .SM(sp , pair , t a i l (v a l i d) ++ [0])
1194 + (head (v a l i d) == 4) → val_ps_entry_chi ldren .SM(sp , pair , t a i l (v a l i d) ++ [0])
1195 + (head (v a l i d) == 5) → va l _ j s _not_entry_s ta te .SM(sp , pair , t a i l (v a l i d) ++ [0])
1196 + (head (v a l i d) == 6) → val_ss_no_chi ldren .SM(sp , pair , t a i l (v a l i d) ++ [0])
1197 + (head (v a l i d) == 7) → va l _cs_at least_one_ch i ld .SM(sp , pair , t a i l (v a l i d) ++ [0])
1198 + (head (v a l i d) == 8) → val_ps_at least_two_chi ldren .SM(sp , pair , t a i l (v a l i d) ++ [0])
1199 + (head (v a l i d) == 9) → va l_ j s_no_ch i ldren .SM(sp , pair , t a i l (v a l i d) ++ [0])
1200 + (head (v a l i d) == 10) → v a l _ j s _ c h i l d _ o f _ p s .SM(sp , pair , t a i l (v a l i d) ++ [0])
1201 + (head (v a l i d) == 11) → v a l _ t r a n s i t i o n .SM(sp , pair , t a i l (v a l i d) ++ [0])
1202 + (head (v a l i d) == 12) → v a l _ o n l y _ j o i n s _ j s .SM(sp , pair , t a i l (v a l i d) ++ [0])
1203 + (head (v a l i d) == 13) → v a l _ j o i n _ r e l a t i o n .SM(sp , pair , t a i l (v a l i d) ++ [0])
1204 + (head (v a l i d) == 14) → val_cond_entry_handler .SM(sp , pair , t a i l (v a l i d) ++ [0])
1205 + (head (v a l i d) == 15) → val_other_entry_handler .SM(sp , pair , t a i l (v a l i d) ++ [0])
1206 + (head (v a l i d) == 16) → v a l _ c h i l d _ r e l _ i r r e f l .SM(sp , pair , t a i l (v a l i d) ++ [0])
1207 + (head (v a l i d) == 17) → va l _ch i ld_re l _1_parent .SM(sp , pair , t a i l (v a l i d) ++ [0])
1208 + (head (v a l i d) == 18) → v a l _ c h i l d _ r e l _ a c y c l i c .SM(sp , pair , t a i l (v a l i d) ++ [0])
1209) ;
1210
1211 proc F = FAIL . F () ;
1212
1213 i n i t SM(smmt_spec , i n i t _ s t a t e (smmt_spec) , i s_wel l _def ined (smmt_spec)) ;

130 Formalising the State Machine Modelling Tool (SMMT)

	Introduction
	Related Work
	Open Interaction Language (OIL)
	Dezyne
	Coco
	Event-B
	CERN
	Cordis SUITE
	Executable UML Specifications
	Internet of Things

	Problem Statement

	State Machine Modelling Tool
	Introduction to SMMT
	SMMT Constructs
	Name and Namespace
	Events
	Region

	Execution

	Analysis of SMMT
	Observations and Experiences of Engineers
	Language of the State Machine Modelling Tool
	JetBrains MPS
	SCM Test Library

	Analysis of Existing Models
	Conclusion

	Mathematical Preliminaries
	Formal Definition of SMMT
	Abstract Syntax of an SMMT Specification
	Semantics of an SMMT Specification
	Parallel States
	Abstract Syntax of an SMMT Specification
	Semantics of an SMMT Specification

	Translating SMMT to mCRL2
	The mCRL2 Model Checker
	Translation
	Representation of the mathematical model of an SMMT Specification
	Validation Checks on the SMMT Specification
	Translation of Definitions to Mappings
	mCRL2 Process Specification

	Experiments
	Correctness of the SMMT2MCRL2 Translation
	Verification Approach
	Results Correctness Verification SMMT2MCRL2

	Property Verification
	Properties
	Approach
	Results

	Conclusion

	Conclusion
	Future Research
	Proofs for Chapter 5
	mCRL2 Specification of Figure 5.3
	Complete mCRL2 Specification

