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Abstract. Parameterised Boolean Equation Systems (PBESs) are used
to express and solve various model checking and equivalence checking
problems. However, it may not always be efficient, or even possible, to find
a solution to PBESs since they may encode undecidable problems. One
particular technique towards finding a solution to a PBES is the concept
of exploiting global PBES invariants. Although invariants have been
studied extensively, there is a lack of research towards invariant discovery
and exploitation in PBESs. Our paper presents PBES invariant extraction
techniques inspired from various concepts found in program verification
literature well as provide new conditions for invariance properties. We
also present a novel graph structure, namely relevancy graphs, which
characterize relevant predicate variable instances of instantiated PBES
equations. Using relevancy graphs, we illustrate how invariants interact
with PBESs as well as provide an alternative criteria to proving the PBES
global invariant condition in simple functions.

1 Introduction

Parameterised Boolean Equation Systems (PBESs) [1] allow one to express
model checking and equivalence checking problems of infinite size; by solving
the PBES associated with a particular problem, one finds the solution to the
original problem. Although verification problems may be undecidable, various
techniques has been developed to solve their PBES encodings. These techniques
include symbolic approximation [1,2], pattern matching [1], instantiation [3],
static analysis [4, 5], and invariants [6]. Our research focuses on PBES invariants.
While there has been research on invariants and their application in PBESs, it is
not yet clear how to automatically extract these invariants from arbitrary PBES
equations. Additionally, to what extent these invariants play a role in PBES
solving tools has not been thoroughly explored.

Invariants appear in a variety of areas. Their use can be seen in algebra,
geometry, topology, and more [7-10]. In the realm of computer science, invariant
based programming methodologies have stressed the importance of constructing
invariants before program code has been established [11]. In particular, loop
invariants in programs allow one to formally reason about correctness using
Hoare logic [12] and have been used in various formal specification languages
and tools [13-15]. Alternatively, high performance computing applications take



advantage of invariants to determine data dependencies, enabling safe and efficient
execution of code in massive parallel processor architectures [16]. Furthermore,
invariants have also been used to prove safety properties in various protocols [17,
18]. While invariants play a significant role in a variety of applications, formulation
of these invariants may not always be trivial. Therefore, it is meaningful to find
and extract these invariants automatically.

Our research utilizes techniques found in program verification literature to
construct PBES invariants. Specifically, we take concepts from static analysis
techniques, such as PBES guards and control flow graphs, to derive PBES
invariants. We uncover the relationship between guards and invariants by showing
how invariants of a given structure can be generated from guards. Additionally,
we investigate invariant extraction using control flow graphs. Since work by
Keiren et al. has shown how irrelevant parameters in PBESs could be eliminated
by means of control flow graphs (CFGs) [5], we analyze CFG properties and
show how global PBES invariants are derived from such graphs. In the process,
we have uncovered flaws with the original CFG definitions and have defined
additional constraints to avoid erroneous CFG constructions and properly prove
our CFG derived invariant theorem. Along with the theorems in this paper,
we also provide a variety of lemmas that adds onto the original analysis of
global PBES invariants by Orzan et al. [6]. Moreover, we present a novel graph
structure, namely relevancy graphs, providing an alternative characterization of
global invariants and assists in visualizing the relationship between invariants and
equation instantiations of PBESs. These relevancy graphs also give rise to a new
approach as to how one may prove the invariance property for simple functions in
PBESs. Thus, the aim of this paper is to answer the following research questions:

How can PBES invariants be derived from techniques found in various
program verification literature?

Namely, our paper answers the following research questions in detail:

How are invariants derived from PBES guards?

What is the relationship between Control Flow Graphs (CFGs) and
PBES global invariants?

In addition, we also address the following research question:

Are there alternative characterizations of PBES invariants and how
could they be used to prove invariance properties in PBESs?

In the following section, we provide related work on the topic of invariants
and PBES solving techniques. To provide theoretical background information, we
discuss preliminaries in Section 3. Sections 4, 5 and 6 illustrates our work: guard
derived invariants are discussed in Section 4, Section 5 shows how invariants are
constructed using control flow graphs, and the concept of relevancy graphs and
their relationship with PBES invariants is presented in Section 6. We conclude
the paper as well as discuss future work in Section 7. For the sake of brevity and
conciseness, full details are provided in Appendix A for lemmas and properties
for which we have omitted the proof in the main sections of this paper.



2 Related Works

There have been numerous developments towards finding solutions in Param-
eterised Boolean Equation Systems. In [1,2], symbolic approximations allow
substitution of equations with their stable approximates. However, this proce-
dure does not guarantee termination due to the infinite nature of the lattices
in question. In such cases, one may instead attempt transfinite approximations.
Groote et al. also formalizes the pattern matching technique [1]; PBES equations
may simply be solved by looking up a solution to a pattern. Another technique
is PBES instantiation; instantiation has been used to derive solutions by trans-
forming PBESs into Boolean Equation Systems (BESs) and solving the resulting
BES [3]. An alternative approach for solving PBESs is finding and solving a
bisimulation quotient of a given PBES [19]. Moreover, static analysis techniques
tailored for PBESs have also been explored in [4] and [5]. Specifically, Orzan et
al. have developed methods for eliminating redundant constant parameters [4].
In a similar vein, Keiren et al. have defined a graph structure which characterizes
the values of certain parameters of PBESs, enabling elimination of quantifiers in
certain cases and potentially reducing the underlying BES instantiation [5].

Our focus is the use of invariants in the context of PBESs. Although Groote
et al. [1] introduces the notion of local PBES invariants, these invariants do not
hold under certain PBES transformation techniques. Later works by Orzan et
al. fixes these issues by introducing the notion of global invariants [6]. In their
paper, it has been observed that PBES invariants may have the potential to
realize solutions that would have otherwise been difficult to extract via other
PBES solving techniques.

There have been numerous studies on the application of invariants. For ex-
ample, geometric invariants have been used to express unchanging structures in
objects for object recognition [8]; topological invariants can be seen in spacial
data modeling for geographical information systems [20]; knot invariants are
used to distinguish mathematical knots in knot theory [10]; algebraic invariants
express equivalence classes in equations [7]. In computer science, invariants have
been used in programming to enhance the correctness of software components.
Loop invariants have been used to reason on the correctness of program loops
through formal reasoning, such as Hoare logic [12,21]. Language specifications,
such as JML [14], utilize loop invariants to ensure program correctness. Addi-
tionally, tools such as Dafny [15] and Spec# [13] use SMT-based verification
with user defined invariants to analyze program code and generate correct pro-
grams. Furthermore, Invariant-based programming methodologies stresses the
use of formalizing invariants before development of software to enforce the idea
of program correctness [21,11]. Moreover, there have been various papers on
how invariants are used to verify the maintenance of safety properties in various
protocols, e.g. [17,18,22].

In addition to the application of invariants, there has been research on auto-
matically deriving invariants. For instance, research has been done on discovering
invariants in imperative programs. In particular, the Daikon system discovers
likely invariants from programs via trace analysis [23]. To generate additional



invariants, Zhang et al. has paired symbolic program execution with Daikon [24].
Symbolic approaches also appear in [25] where researchers utilize iterative tech-
niques to strengthen and refine invariants. Others, such as [26], use a collection
of automated heuristics to strengthen a given invariant; these heuristics perform
operations on the reachable set of states in a finite instance of the system. Like-
wise, [27] has applied heuristics to strengthen invariants on failed proof attempts.
Similarly, papers such as [17,28, 18] have used a counterexample-based approach
to generate invariants to strengthen a given safety property. Meanwhile, Garoche
et al. has proposed automatic generation of abstract interpreters which give rise
to on-the-fly invariant generation [29].

The methods for invariant generation mentioned thus far have been primarily
focused on strengthening some safety property in the form of an invariant by
discovering and adding so called auziliary invariants. Rather than simply finding
some invariant, these methods aim to automatically discover inductive invariants,
i.e. invariants that remain true in all possible transitions in a given state space
rather than a set of reachable transitions. In addition to the previously mentioned
works, papers such as [30] and [31] propose methods on how to generate such
auxiliary invariants using transition systems.

While some of the techniques mentioned thus far seem promising, preliminary
research needs to be conducted on PBESs beforehand. For instance, it is not clear
how to automatically generate statements satisfying PBES invariance conditions
from a given template when working with arbitrary PBESs consisting of multiple
equations with parameters of arbitrary sorts. Additionally, unlike transition
systems, PBESs do not exhibit a natural transition relation, preventing us from
simply applying techniques used for imperative programs.

3 Preliminaries

This section provides an introduction to the theory behind Parameterised Boolean
Equation Systems (PBESs) and how invariants are defined over PBESs. We first
discuss the notion of predicate formulae and the structure of PBESs. Afterwards,
we introduce the notion of global invariants in the context of PBESs.

In this paper, we work with abstract data types; we assume non-empty data
sorts typically written as letters D, E, F'. We also assume the existence of a sort
B representing the Booleans B and the sort N representing natural numbers N.
For these sorts, we assume the existence of the standard associated operations.
Observe that we differentiate between syntactic objects and semantic objects by
using distinguishing fonts, e.g. B for syntactic boolean sorts and B for semantic
booleans. To represent vectors of data variables, we use bold fonts, e.g. d. This
notation also extends to vectors of data sorts D and vectors of data terms e.

Let P be the set of predicate variables. For predicate variable X € P, we
associate a vector of data variables dx of sort Dx.

Definition 1. Predicate formulae ¢, are defined using the following grammar:

b u=bloAp |V |Vd:D.¢|3d: D.b| X(e)



where b is a data term of sort B possibly containing data variables d € D, X(e) a
predicate variable instance (PVI), X a predicate variable from P of sort Dx — B,
and e a vector of data terms of sort Dx.

Remark 1. We assume that data terms do not contain predicate variables. E.g.
X (X (e)) would not be a valid predicate formula.

The set of free variables of predicate formula ¢, denoted FV(¢), is a set of
variables not bounded by a universal or existential quantifier in ¢. This concept
extends to data terms and vectors in a standard way. Additionally, we denote
the set of all predicate formulas as Pred.

A predicate formula ¢ that does not contain predicate variables is a simple
predicate. Furthermore, we say a predicate formula ¢ is normalized iff negations
only occur before a boolean term b. Moreover, ¢ is capture-avoiding iff all free
variables of ¢ does not have a bound occurrence in ¢, i.e. there does not exist a
subformula (Qd:D. 1) of ¢ such that d € FV(¢), where Q € {3,V}. Note that a
predicate formula can be transformed into an equivalent capture-avoiding formula
via appropriate renamings of variables bound in quantifiers.

Throughout our paper, we may reference specific PVIs in a predicate formula.
Specifically, the ith PVT in a predicate formula ¢ is denoted as PVI(¢,4) for i € N
and 1 < i < npred(¢), where npred(¢) is the number of PVIs in ¢. Furthermore,
we write pv(¢, 1) to refer to the ith predicate variable in ¢ and arg(¢, ) for the
arguments in the ith PVI of ¢. In other words, PVI(¢,i) = pv(¢,i)(arg(¢p,i)). We
may also refer to the jth argument in the ith PVI of ¢ as arg,(¢,1).

We also define syntactic replacement of PVIs; given predicate formulas ¢, v,
the replacement of the ith PVI with ¢ in ¢ is denoted as ¢[i — 1]. The complete
definition is provided below:

Definition 2. Let ¢ be a predicate formula and 1 < i < npred(¢). The syntactic
replacement of the ith PVI in ¢ with 1, denoted ¢[i — 1], is defined inductively
as follows:

bli =] =0
. w ifi=1
Y(e)li = ¢ = {Y(e) otherwise
(Vd:D. ¢)[i = ¢] = Vd:D. ¢li — ¢]
(3d:D. ¢)[i = ] = 3d:D. ¢li — 9]

_ 1 A gal(i — npred(¢n)) = ¥] if i > npred(¢1)
(o1 A do)[i — ] = {¢1[i s Y] A éo if i < npred(¢)
. | é1 Aa[(i — npred(¢1)) > 9] if i > npred(¢n)
(1 V do)i — ] = {¢1[i s Y] A éo if i < npred(¢)

At times, we perform consecutive syntactic replacement:



Definition 3. Let ¢ be an arbitrary predicate formula and I = (iy,...,i,) be a
vector of indices such that n < npred(¢). Let 1;,, ..., be arbitrary predicate
formulae. Consecutive syntactic replacement ¢[i +— ¥;]jc(,,....i,) for predicate
formulae ¢ is defined as follows:

Bli v bjlieqy = &
Bli = Yilici,....in) = (Ol = i, DI = Vjljetia, . in)

One must exercise caution when using consecutive syntactic replacement
as replacing a PVI with a predicate formula which does not contain exactly
one predicate variable may lead to unintended or undefined behavior. Thus, we
generally utilize consecutive replacements in a safe way, i.e. the formula replacing
a PVI contains exactly one predicate variable. In the case where consecutive
syntactic replacement behaves as simultaneous syntactic replacement, we may
write @i — 1], ;. In some cases, we may even write ¢[i — 1] (¢ for the
simultaneous syntactic replacement of all PVIs in ¢.

Given a closed term ¢, i.e. FV(¢) = @, the interpretation function [_] maps
the term ¢ to the semantic data element [t] it represents. For open terms, we
utilize a data environment ¢ that maps each variable d € D to a data element of
the appropriate sort. The interpretation of an open term ¢ under the context of
a data environment ¢ is denoted as [t]e which is evaluated in the standard way.
Interpretation of vectors consisting of terms are also done in a standard way.

Predicate formulae are interpreted under the context of a data environment &
and predicate environment 1) : P — (D — B), mapping predicate variables X to a
function of type Dx — B. For an arbitrary environment 6 € {¢, n}, the notation
O[v/d] denotes that variable d has been assigned value v, i.e. 8[v/d](d") = 6(d’)
for d # d’ and 0[v/d](d) = v otherwise. Extensions for vector substitutions are
standard.

i<npred

Definition 4. Let ¢ be a predicate formula, € be a data environment, and 7 be
a predicate environment. The interpretation of ¢ in the context of € and n is
denoted as [Pp]ne where:

[b]ne = [o]e
[X(e)]ne = n(X)([e]e)
[¢1 A d2]ne = [¢1]ne and [¢2]ne
[¢1 V ¢2ne = [#1]ne or [¢2]ne
[Vd:D. ¢ne = for all v € D, [¢]nelv/d]
[3d:D. ¢]ne = for some v € D, [¢]ne[v/d]

We write ¢ — v iff for all predicate environments 7 and data environments ¢,
[#]ne implies [¢p]ne. This gives rise to a logical equivalence between predicate
formulas, where ¢ <> ¥ iff ¢ — ¢ and ¢ — ¢. Additionally, we operate with
the assumption of the general principle of substitutivity, i.e. if ¢ — 1, then

¢lv/d] — ¢lv/d].



We now introduce predicate functions which casts predicate formulas to
functions. To indicate that predicate formula ¢ has been lifted to a function
(Mdx : Dx. ¢), we write ¢(q,). The interpretation of ¢,y under predicate
environment 7 and data environment ¢, written as [¢(q)]7e, is defined in the
following way:

[¢(ax)Ine = Av € Dx. [¢]ne[v/dx]

The syntactic substitution of predicate function g, for predicate variable X
in predicate formula ¢ is defined as follows:

Bt axy/X] = b
Y(e)[tay)/X] = {;/i[e/dx] ifYy=X

$1[Ya

(e) otherwise

(D1 A @2)[Piax)/X] = O/ XI A P2thiayy/X]
(61 V ¢2)[Yiax)/X] = ¢1 W(dX)/X}\/%W(dXMX]
(Vd:D. ¢)[thiaxy/X] = Vd:D. ¢[thay)/X]
(3d:D. ¢)[thiax /X]_HdD Pliax)/X]

Rather than perform a single substitution, we may wish to perform a series of
substitutions. The definition for a finite sequence of substitutions of the form

qﬁ[wl(Xm)/Xl][w2<dx2>/X2] .. [¢n<dxn>/Xn] is as follows:

Definition 5. Let V = (X1,...,X,,) be a vector of predicate variables and let ;
be arbitrary predicate formulae for all i € N, 1 < i < n. Consecutive substitution
Olx,evitay )/ Xil for predicate formula ¢ is defined as follows:

6l Wi/ Xi| =0

Vitax )/ Xi] = (@l61ay,)/X1)

X, €()

¢{ ¢i(dxi>/Xi:|

When variable X; only occurs in ¢; for all i and all variables in the vec-
tor (X1,...,X,) are distinct, consecutive substitution behaves as simultaneous
substitution. Lemma 16 of Invariants for PBESs [6] expresses this phenomenon.
Generally, we utilize consecutive substitutions in a way that behaves as simulta-
neous substitution and we abuse notation by writing ¢[x,cx,....x,}®i (dx,) /X

At times, we shift syntactic substitutions to semantic updates for env1ronments.
Since we assume that a data term b of sort B is evaluated in a standard way, we
also operate under the assumption that [ble/d]]e = [b]e[[e]e/d].

Xi€(X1,..,.Xn) Xi€(X2,...,.Xn)

Definition 6. A Parameterised Boolean Equation System (PBES or simply
equation system) is defined by the following grammar:

E:=c|(uX(dx :Dx)=0¢)&| (wX(dx : Dx) = ¢)&

where € is the empty PBES, p is the least fixed point, v is the greatest fixed
point, and ¢ is a predicate formula where dx of sort Dx is a vector of formal
parameters of X and is considered bound in the equation for X.



For convenience, ¢ x refers to the right-hand side of the defining equation for
X in a PBES &. Moreover, par(X) denotes the set of formal parameters of X.
At times, there may be situations where equations share the same parameter
name; we distinguish the differences by using superscripts. E.g. if ¢ € par(X) and
i € par(Y), then we write i* to denote the parameter i in equation X. We may
also write o, which could stand for y or v.

An equation system is closed whenever all predicate variables on the right-
hand side of every equation occur in the left-hand side of some equation, otherwise
the equation system is considered open. For our paper, we only consider closed
equation systems. In addition, given an equation system &, the set of defined
variables (notated as bnd(&)) consists of all predicate variables occurring in the
left-hand side of each equation in &.

Counsider all functions f,g : D — B for some arbitrary data set D. The
ordering C on the set of all functions D to B, denoted as [ — BJ, is defined as
fCygiffforallveD, f(v) implies g(v). Observe that ([D — B],C) is a complete
lattice. A predicate transformer associated to [¢(q,)]ne is a function of type
[Dx — B] — [Dx — B], defined as

Af € Dx = Bl [¢ax)Inlf/X]e

This predicate transformer is monotonic [1,32]; the existence of the least and
greatest fixed points of this operator in the lattice ([Dx — BJ,C) is guaranteed
to exist by Tarski’s fixed point Theorem [33]. We denote these fixed points as
of € [Dx — Bl.[¢(ax)nlf/X]e where o € {u,v}.

Definition 7. The solution of an equation system in the context of a predicate
environment 1 and data environment € is defined as follows

[elne =n
[(0X(dx : Dx) = ¢)&ne = [€](nlo f € [Dx — B].[d(ax)[([€]nlf/X]e)e]/X)e

where o € {u,v}.

Although the notion of invariants in PBESs has been first discussed in [1],
Orzan et al. has shown that certain PBES manipulation techniques violate
invariance requirements [6]. Therefore, we focus on a stronger notion of invariants,
namely global invariants. Global invariants use a notion of simple functions: a
function f:V — Pred, such that V' C P, is considered simple iff for all X € V,
the predicate f(X) is simple.

Definition 8. A simple function f : V — Pred is a global invariant for an
equation system & iff V.2 bnd(&) and for each equation (cX(dx : Dx) = ¢) in
&, we have that:

(FX)A9) & ((FOO) A0 [y, ey (F(X) A Xildx,)) i, /X))

For the remainder of the paper, whenever we refer to a simple function as an
‘invariant’ for a PBES, we refer to the global invariant definition (Definition 8),
rather than the definition presented in [1].



Intuitively, f(X) is an invariant for the equation associated with predicate
variable X iff for the parameter space of the equation where the invariant holds,
the solution for equation X is not changed by the addition of all invariants
defined in f. Note that by adding invariants we might change the solution of the
equation since the solutions with and without the invariant are only guaranteed
to coincide when the invariant holds.

When working with invariants, we generally limit the scope of the free variables
in an invariant to the set of parameters of the corresponding equation. For
instance, if 0 X (dx : Dx) is an equation in some PBES &, we would like that
FV(f(X)) C dx for some invariant f. This is to ensure that we do not introduce
open equations to PBESs during implementation of the invariant using Theorem
35 of [6].

In our proofs, we require the observation that the evaluation of an invariant
does not depend on its predicate environment. Additionally, evaluations of invari-
ants do not depend on its data environment as long as we have guarantees on
the evaluation of its free variables. The lemmas we present generalize the claims
to arbitrary simple predicates. First, since we work on environments and their
updates, we operate with the following remark in mind:

Remark 2. Let 6 € {n,e} be some environment. If two updates to 0 affects the
same variable, the last environment update takes priority. Le. (8[v/d])[w/d]|(d) =
w.

We also use the next remark to prove the following lemmas.

Remark 3. For the sake of simplicity, we associate a single variable dx of sort
Dx to predicate variables X rather than use vectors dx of sort Dx. This does
not result in a loss of generality as one could utilize a data sort which is able to
express more complex formulae.

Lemma 1. Let ¢ be a simple, capture-avoiding predicate such that FV(¢) C {d}
where d : D. Then we have that for any environments n,¢,& and v € D,

[8]nelv/d] = [g]ne’[v/d]
Lemma 2. Let ¢ be a simple predicate formula. Then for any environments
n1'€,
[6]ne = [8]n'e
Proof. Since ¢ is a simple predicate, there does not exist predicate variables in ¢

to evaluate. Thus, the choice of predicate environments during evaluation of ¢ is
irrelevant. O

It follows from these two lemmas that we may use arbitrary data and predicate
environments when evaluating simple, capture-avoiding predicates, given that we
have guarantees on the evaluation of free variables:

Corollary 1. Let ¢ be a simple, capture-avoiding predicate such that FV(¢) C
{d}, where d: D. Then for any environments n,e,n’,&' and v € D,

[6]nelv/d] = [¢]n'e’[v/d]



This corollary is useful in proofs when dealing with interpretation of invariants.
Since Corollary 1 requires capture-avoiding predicates, we define capture-avoiding
functions. Similar to simple functions, a function f : V — Pred, where V C P, is
capture-avoiding iff for all X € V', the predicate f(X) is capture-avoiding.

The following lemma is also useful. It states that we may shift syntactic
substitutions of free variables to the data environment on simple, capture-avoiding
predicates.

Lemma 3. Let ¢ be a simple, capture-avoiding predicate formula and let d €
FV(¢) for some d: D. Then, for some e : D and any environments n, e, we have

[ole/d]]ne = [#lnele(e)/d]

4 Guards

There have been various approaches towards formula reduction techniques to
solve PBESs. Examples include constant elimination [4], partial-order reductions
in parity games [34], liveness analysis and control flow graphs [32, 5] to name a
few. Some of these techniques analyze the syntactic structure of PBES equations
to discover irrelevant subformulae. For instance, in the formula n # 3V X (n),
X (n) becomes irrelevant whenever n # 3. Or in other words, we need only to
consider the solution of X (3). One method of detecting irrelevant subformulae
is to utilize guards: a simple predicate formula that characterizes the relevant
values of a predicate variable instance. Since guards allow for various techniques
to simplify PBES equations, it becomes beneficial to investigate whether there
exist a relationship between guards and invariants.

Similar work has been done by Orzan et al. [4]; via static analysis of PBESs,
invariants were constructed by detecting constant parameters, which includes the
use of guards. However, Orzan et al. requires that equations of PBESs to be in, or
transformed to, Predicate Formula Normal Form (PFNF). Transformations into
PENF may result in an exponential increase in formula size. The work presented
in this section does not require formulas to adhere to a certain structure.

This section operates under Remark 3. We restate this remark for convenience:

Remark 3. For the sake of simplicity, we associate a single variable dx of sort
Dx to predicate variables X rather than use vectors dx of sort Dx. This does
not result in a loss of generality as one could utilize a data sort which is able to
express more complex formulae.

The need for computing guards first appear in Keiren’s thesis [32], where
heuristics were created for their concept of PBES control flow graphs. These
control flow graphs required constraints on predicate variable instances, with
stronger constraints being preferable. Unfortunately, these constraints are not
always efficiently computable. Hence, efficient approximations have been devel-
oped to construct constraints, as seen in [32, 5, 34]. These heuristics analyze the
syntactic conditions of PVIs within a given predicate formula to determine when
a PVI is relevant. We refer to these conditions as guards.

10



Definition 9. Given a predicate formula ¢, a simple formula v is a guard for
the ith PVI of ¢ iff ¢ < ¢[i — (¥ A PVI(g,14))].

For instance, the following guard function from [34] is one such heuristic for
generating guards from the structure of predicate formulas.

Definition 10. Let ¢ be a predicate formula. The function guard® : Pred — Pred
is defined inductively as follows where i < npred(¢):

guard’(b) = false guard"(Vd:D. ¢) = s(Vd:D. ¢) A guard(¢)
guard’ (Y (e)) = true guard’(3d:D. ¢) = s(—3d:D. ¢) A guard’(¢)
i ) s(o) A guard ~"d(@) (4) if i > npred(¢)
guard'(9 A 9) = {s ¥) A guard’ () if i < npred(9)

9)

guard' (¢ V ¢) = { 0

(
s(—1p) V guard® () if i < npred(

where

s(¢p) = Pli — true]ignpred(@
s(_'d)) = _'d)[z = false}ignpred(qb)
While Keiren et al. [5] proposed a similar guard function, we opt to use Neele’s
definition. As noted by Neele [34], the current definition of guards (Definition 9)
is not compositional, i.e. simultaneous syntactic replacement of all guards into
an equation ¢ is not maintained under <». Neele combats this by strengthening

their computation guards. A detailed proof of its compositionality is in Neele’s
thesis [34].

Ezample 1. Consider the formula ¢ = X (1) V X(1). By Definition 9, false is a
guard for both PVIs since
X(1)vX()
<~
(X (1) v X(1)[1+ false A X(1)]
>
(X(1) v X(1)[2+ false A X(1)]
However, both guards cannot be applied at the same time:
X(1)vX(Q1) ¢ false < (X (1) V X(1))[1 — false N X(1)][2 — false A X (1)]
Hence, we will mainly be focused on compositional guards.

Definition 11. Let ¢ be a predicate formula and I C {1,...,npred(¢)} be a set
of PVI indices. Let ; be a guard for PVI(¢,i) where i € I. The collection of
guards v; are compositional iff ¢ < ¢[i — ; APV, 1)]icr-

11



Theorem 7.38 (Reductions for Parity Games and Model Checking [34]).
For all normalized, capture-avoiding formulae ¢, it holds that

¢ ¢ oli = (guard'(¢) A PVI(6,))]; <ppred(s)

To assist in finding invariants, Orzan et al. has shown that the following
property provides a sufficient condition for a simple function f to be a global
invariant [6].

Property 1. Let & be a closed equation system. Additionally, assume that there
exists a guard for all PVIs in &. Let f : bnd(&) — Pred be a simple function
such that for every equation (60X (dx : Dx) = ¢x) in & we have:

fX) = A (FO)le/dy]
PVI($x i)=Y (e)
Then f is a global invariant for &

This property states that a simple function f is a global invariant if we can prove
that for all equations 0 X (dx : Dx) = ¢x, the invariants of all PVIs in ¢x hold
after substitution of argument values. However, this property assumes that all
PVIs in a given equation are relevant regardless of their surrounding context.

Ezxample 2. Consider the following PBES:
pX(i: N) = (true Vv X(1)) A X(2)

Let f(X) = (i = 2). By Property 1, to show that f is a global invariant we must
show that

(i=2)—=(1=2
(i
However, X (1) is irrelevant since (true V 1) < true for any predicate formula
¥. It is sufficient to only show (i = 2) — (2 = 2) to prove that f is a global
invariant.

2
2

)= (2=2

Therefore, we add an additional condition to this property which states that an
invariant of a certain PBES equation must be considered only if its guard holds.

Property 2. Let & be a closed equation system. For every equation (cX(dx :
Dx) = ¢x) in &, assume the existence of compositional guards 4 ;.. ., ’yg‘;red(qu )
for ¢ x where vé,x is the guard for PVI(¢x, ). Let f : bnd(&) — Pred be a simple

function such that for every equation (60X (dx : Dx) = ¢x) in & and all
PV|(¢X,Z) = Xi(ei):
FX) Ay = f(Xi)ei/dx,]

Then f is a global invariant for &.
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Proof. Consider an equation (60X (dx : Dx) = ¢x) for which f(X) A V;X —
f(X;)[e/dx,] holds for all PVI(¢x,i) = X;(e;). By definition of compositional
guards, we have that

dx < dx [.7 = Yox A PVI(¢X’J)]j§npred(¢x)

Note that ¢ x[j — Vi N PVI(¢X,3)]j§npred(¢X) can be described by the following

grammar since each PVI occurs within the scope of a conjunction:

Gdu=b|yAX(e)| b1 Ado| b1 Vs |Vd:D. ¢|3d:D. ¢

where v is the guard for X (e).
We now perform structural induction on the structure of the subformulae v
of px[j— 'yéx APVI(ox,j)] For each subformula, it suffices to prove

that

j<npred(¢x)’
(F(X) A9) & (F(X) A9) |

We first consider the base cases:

Zebnd(é")(f(Z) A Z(dZ))<dz>/Z}

Case ¢ = b. Immediately follows from the definition of syntactic substitution:

(F(X) Ab) ¢ (f(X) AD) (F(2) A 2(d2)) 4. /7]

[zebnd(g)

Case ¢ = fyéﬁx AY (e). Let Y(e) = PVI(¢x,i). We then reason as follows:

(F(X) A (v AY ()| (F(2) A 2(d2)) az) /7]

<+ {Definition of syntactic substitution; f(X) and 7} are simple}
FE) A )e/dy]) A (g, AY(e))

< {Assumption: f(X) A, — f(Y)[e/dy]}
FIX)A (v, AY (€))

The remaining cases follows from the definition of substitution in a straightforward
way. For brevity, we place the remainder of the proof in Appendix A.2. O

Zebnd(&)

Although guards appear to resemble a structure similar to the definition of
global invariants, guards alone fail to be invariants. Intuitively, guards characterize
when a certain PVI is relevant in a particular PBES equation while invariants
describe what must hold when exploring predicate variables with certain values.
A guard shows what must hold at a particular location within a given predicate
formula, and by itself, does not provide sufficient information on the values of
parameters when considering the arguments of PVIs.

Ezxample 3. Consider the following PBES.
(uX(i:N)=(0<8 AY(i+2))
(WY (G :N) =G =4V ([ <5AX(2)))

13



The guard function from Definition 10 gives rise to the following guards:
pv((bYa 1) =X pv(¢X? 1) =Y
guard' (¢y) = (j £ 4) A (j < 5) guard' (¢x) = (i < 8)

In other words, the truth of X(2j) in ¢y is irrelevant when j = 4 or if j > 5.
However, observe that constructing a simple function f such that

fX)=0#HYN0G<5) fY)=(<8)

will not yield proper invariants. First of all, f(X) contains the variable j, which
is free in the equation of X. Recall that to avoid open equations when integrating
invariants into a PBES, we do not want variables that are not part of an equation’s
parameters to be in the invariant. The problem is symmetrical for Y. For this
example, we can remedy this particular issue by swapping the variables such that
f does not contain irrelevant free variables. Note that this approach may not
work in general due to quantifier bound variables; we address this issue later in
this section. For now, let f be the simple function such that

FX) = (i #4) (<5 fY)=3G<9)
Still, the function f cannot be a global invariant.

FY) Aoy [(f(X) A X(dx)) g,y /X]
+» {Construction of f}
(J <8) Ay [(f(X) A X(dx))(ax)/X]
> {Definition of simultaneous substitution}
<8N =4V (I <HA((25#4) A (2] <5)AX(2]))))
# {Global invariant requirement }
(J<8)A(I=4V (i <5AX(2))))
The global invariant requirement fails to hold if j = 2. The problem lies with
operations within PVI arguments. In this example, the fact that we double j
in X(2j), the invariant of X would need to be (i # 8) A (i < 10); if j # 4 at

X (27), in X(2j) it must be ¢ # 8 since 25 # 8. In the end, we would like to get
the following invariants from the information of guards:

J(X) = (i £ 8) A (i < 10) F¥) = (j < 10)

As we have seen, one problem preventing guards from becoming invariants is
substitution with arguments of PVIs. Because arguments may contain operations
or functions, guards alone are not sufficient in determining the values of variables
after certain operations. One option is to replace PVIs containing operators
within their arguments with PVIs that do not contain operators by introducing
existential quantifiers. For instance, PBES (1) can be transformed into

(uX (@ :N)=00<8 AFInuN.((n=i+2)AY(n))
(WY (G :N) =G =4 A0[ <5AIN. ((n=25) A (j <5)AX(n))))

14



While these transformations address the problem with operators in PVI argu-
ments, such replacement of PVIs will introduce unnecessary complexity in larger
equation systems when checking and proving the validity of invariants. Addition-
ally, we wish to reason about individual predicate variable instances of equations
rather than subformulae consisting of existential quantifiers. We therefore take
inspiration from Hoare logic [12] and Dijkstra’s predicate transformers [35]. A
Hoare triple {P}S{Q} describes the execution of statement S; if the precondition
P holds, the postcondition @ will be maintained after the execution of S. In
our case, we wish to find the strongest statement that will hold after traversing
through some PVI. Thus, if PVI(¢,7) = X(e), we wish to find the strongest
postcondition @ such that

{75} (dx:=e){Q}

where 'y; is a guard for the ¢th PVI of predicate ¢ and dx := e represents the
assignment of variable dx with e.

Ezample 4. Consider PBES (1) in Example 3. We wish to find a suitable post-
condition () such that

{G#D NG <5 :=2){Q}

Observe that (i # 8) A (i < 10) is a suitable option for Q.

Taking concepts from Dijkstra’s predicate transformers [35], we define the
following definition for the strongest postcondition function when assigning a
data variable d of type D to a data term e, where ¢ is a simple predicate formula
representing the precondition.

Definition 12. Let d be a data variable of type D, e a data term of type D, and
¢ be a simple predicate formula. The predicate formula sp(d := e, ¢) represents
the strongest postcondition when assigning a data variable d to the term e, given
a precondition ¢. It is defined as follows:

sp(d = e,¢) = 3d":D. ((d = e|d' /d]) A ¢|d'/d))

where d' does not occur in ¢.

Lemma 4. Let ¢ be some predicate formula, d : D a data variable, and e a data
term. We have that ¢ — sp(d := e, ¢)[e/d].

15



Proof.

sp(z := e, ¢)[e/d]
<> {Definition of sp}
(3d':D. (d = e[d'/d]) A (¢[d'/d]))[e/d]
> {Substitution}
(3d":D. (dle/d] = (e[d'/d])[e/d]) A ([d'/d])[e/d])
<+ {d' is fresh; d does not exist in (e[d’'/d]) or (¢p[d’/d])}
(3d':D. (e = eld'/d)) A $[d' /d])
+ {Choose d’' = d}
¢

O

Ezxample 5. Consider the PBES and its guards in Example 3. Using Definition 12,
we have that

f(X) =sp(dx = arg(¢y, 1), guard (¢y))
=sp(i:=2j,(j #4) N (J <5))
= In:N. ((i = 2j[n/i]) A (5 # 4) A (G <5))[n/i])
(i=2))N(G#4) N <5)
F(Y) = sp(dy := arg(¢x, 1), guard (¢x))
=sp(j:=i+2,(i <8))
=3n:N. ((j = (i +2)[n/j]) A ((i < 8))[n/j])
=({J=i+2)A (i <8)

and that f is a global invariant for PBES (1).

However, unlike in Hoare logic where variables of the same names are generally
of the same types, different equations in a given PBES are not restricted to using
the same parameter types, leading to undesirable consequences.

Ezxample 6. Consider the following PBES.

(uX(i: N)=1i<5AY(even(i)))
(uY (i B) =)

We have that guard' (¢x) = (i < 5), and

sp(i := even(i), (i < 5)) = 3d":B. ((i = (even(i))[d'/i]) A (i <5)[d'/i])
= 3d":B. ((i = even(d')) A (d' <5))

However, d’ is of type B. It becomes unclear on how (d’ < 5) is evaluated.
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Still, with appropriate renamings of parameters, PBESs can be transformed
into an equivalent equation system with unique parameter names. Thus, for the
remainder of this section, we abide by the following remark.

Remark 4. Without loss of generality, we consider PBESs in which all equations
contain unique parameter names. More specifically, let & be some PBES and let
(6X(dx : Dx) = ¢x), (Y (dy : Dy) = ¢y) be any two equations in & where
X #Y. Then, dx # dy.

Observe that if unique parameter names are used, the existential quantifier in the
strongest postcondition function sp becomes irrelevant when multiple equations
are involved. This can be seen in Example 5. The existential quantifier is still
necessary when dealing with self-recursion.

While the definition for strongest postcondition is sufficient in developing
invariants as seen in Example 5, we do not wish for free variables to occur in
invariants. We therefore place an additional constraint and only consider relevant
variables by restricting the free variables of a potential invariant to be within the
scope of a given equation’s parameters.

Definition 13. Let 0 X(dx : Dx) = ¢x be an equation in some PBES &.
Additionally, let v be a guard for PVI(¢x,i) =Y (e), where oY (dy : Dy) = ¢y is
also in &. A simple formula 1) is a relevant guard derived invariant for PVI(¢x, 1)
iff FV(v) C {dy} and

(sp(dy :=e,7) = ¥)

We can now show that guards give rise to invariants with the following
theorem.

Theorem 1. Let & be a closed PBES and assume for all equations o X (dx :
Dx) = ¢x in &, there exists a guard 'yéx for all PVIs PVI(¢x,i) such that

'yéx, . ,7;';“9(1(@5’( ) s compositional. Let Lfbx be a relevant guard derived invariant

for PVI(¢x,4) constructed from ’yéx. Define the simple function f : bnd(&) —
Pred such that for all equations o X (dx : Dx) = ¢, we have

fx= '\ 4,

PV(py i)=X

where oY (dy : Dy) = ¢y is some equation in &. Then f is a global invariant
for the PBES &.

Proof. Let 06X (dx : Dx) = ¢x be an equation in & and assume the equivalence
above holds. By Property 2, it suffices to prove that

FX) Ay = F(Xi)lei/dx,]

for all PVI(¢x,i) = X;(e;), where 'yéx is a compositional guard for PVI(¢x,1).
Consider the jth PVIin ¢ x such that 1 < j < npred(¢x) and PVI(¢x,j) = Y (e).
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Assume that ’yéx holds. We must show that f(Y)[e/dy] also holds. We argue as
follows:

J
Tox
— {Lemma 4}

sp(dy = e,7},)le/dy]

— {Definition 13}
i le/dy]

— {PV(¢x,j) =Y, thus oj  — f(Y) by assumption}
f(Y)le/dy]

Since vix — f(Y)[e/dy] for arbitrary equation X (dx : Dx) = ¢x and any
j such that PVI(¢x,7) = Y(e), via Property 2 we conclude that f is a global
invariant. O

Theorem 1 expresses that the disjunct of all relevant guard derived invariants
of a predicate variable is itself a global invariant. It follows from Definition 12
and 13 that stronger guards results in stronger relevant guard derived invariants,
which in turn provides more meaningful global invariants. Unfortunately, due
to the disjunct in our theorem, weak guards may result in weak, or completely
useless, invariants. At the moment, it is not clear whether a stronger invariant
construct could be extracted from relevant guard derived invariants. Additionally,
from the requirements for relevant guard derived invariants, it is not clear how
to exactly compute these predicates given a guard. For example, true will always
satisfy the condition in Definition 13. Thus, when finding relevant guard derived
invariants, we wish to find the strongest predicate which satisfies the requirements.
Similar to guards, one option is to develop heuristics to derive such predicates.

One can recompute relevant guard derived invariants to potentially get
stronger invariants. Given a PBES &, one can add invariants derived from
Theorem 1 to obtain an updated PBES &”’. We can then repeat the process for
&': add invariants using Theorem 1 on &’ to obtain the PBES &”.

Ezxample 7. Consider the following PBES taken from Example 3.
(X(i: N) = (i < 8) AV (i +2))
(WY (G :N) =G =4V ([ <5AX(2)))
It follows from Theorem 1 that we have the following invariants:
f(X)=(i#8) (i< 10)
f(Y)=(j <10)
Using the Apply(f, &) function from Orzan et al. [6], we get the following PBES:
(X@E:N)=((1 £8)ANE<I0))A(E <8 AY(i+2))
(WY (j:N) =G <10)A (G =4)V(J <5AX(2))))
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Now applying Theorem 1 again yields slightly different invariants:

f(X) = (i #8) A (i < 10)
fY) =@ <10)

Notice that the invariant for Y has been slightly strengthened from j < 10 to
j < 10.

Although repeated application of Theorem 1 seems promising, it is not guaranteed
to terminate.

Ezxample 8. Consider the following PBES:
uX@:N)=0G@E>b)AX(E+1)

We then have the invariant f(X) = (¢ > 6) and the updated PBES:
uX@:N)=>@E>6)ANX(1E+1)

Observe that repeated application of Theorem 1 will not terminate for this PBES.

Still, more research is needed to realize the potential of this method.

4.1 Application

In this section, we provide an example on how Theorem 1 may be applied.
Specifically, we study the system of a one-place buffer and analyze the constant
input stream property as seen in [1].

Buffer

OO | ~EEE -

Fig. 1. One-place buffer.

Our one-place buffer reads natural numbers one-by-one from an infinite
stream and outputs a stream of data. The following is a uCRL process Buffer
which contains action r to represent reading a natural number and action s for
outputting a natural number.

procBuffer(b: B,n: N) = Z r(m) - Buffer(false,m) <b> s(n) - Buffer(true,n)
m:N

where the initial state is Buffer(true,n) for any n : N.
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We now analyze the constant input stream property on the buffer. This
property states that provided an input stream k“ where k : N, the output must
be k“. I.e. the buffer does not modify the contents of a constant input. This
property can be expressed and translated into the following PBES:

vX(b:B,nk:N)=Vl:N. (Ym:N. (bA(m=1) = ((l=k) = X(false,m,k)))) A
(mbA(l=n) = ((I=k)AX(true,n,k)))

Using the guard function in Definition 10, we have the following guards for
both PVIs in equation X:

guard1(¢X) =bAm=D)AN(I=k))

Observe that we may derive the following strongest postconditions:

sp((b := false,n :=m, k := k), guard' (¢x)) =
W Bn K N.b=false \(n=m)AN(k=K)ANO A(m=1)A(1=Fk))

sp((b := true,n = n, k := k), guard®(¢x)) =
I B0 K N.b=trueA(n=n")A(k=K)AN(VAN(I=n)AN({1=F))

Now observe that we may derive the following guard derived invariants:

véx = (b= false) N (n=k)
’yix = (b=true) AN(n=k)

One may verify that indeed FV(’yq})X) C {b,n, k}, FV(’Y(%X) C {b,n, k}, and

sp((b := false,n := m, k := k), guard' (¢x)) — 'y(},x
sp((b:= true,n :=n, k := k), guard®(¢x)) — Vix

By Theorem 1, we have that a function f defined in the following way is a global
invariant:

f(X) = ((b= false) A(n=k))V ((b=true) A (n=k))

We may then add our invariant into the PBES via the Apply function from [6]
and use Corollary 4.12 of [1] arrive at a simplified equation system:

vX(:B,n,k:N)=(n=k)N(X(false,n, k) V X (true, k, k))
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5 Control Flow Graphs

Guards have been generally used within various PBES static analysis techniques
to combat the state explosion problem. Their use can be seen in the technique by
Orzan et al. where methods have been developed to detect constant parameters
and eliminate redundant parameters, leading to an increase of performance when
applying PBES instantiation [4]. Similarly, Keiren et al. used guards to generate
constraints on PBES equations, enabling the construction of control flow graphs
(CFGs) which allow for detection of live parameters and elimination of irrelevant
quantifiers [5]. These CFGs provide a graph structure which illustrates the possible
values certain parameters in PBES equations will have when attempting to solve a
certain PBES instantiation. Thus, we wish to investigate the relationship between
CFGs and invariants to explore whether we are able to express the relevant values
of parameters in the form of PBES invariants. Our focus of this section is to
bridge the gap between CFGs and global invariants by showing how states in a
CFG can be expressed in an invariant.

Ezxample 9. As an example to express the power of CFGs, consider the following
constructed example taken from [5].

vX(i,j k0t N)=(G#1Vji#1VX(2,],k1+1))
A (Vm:N. Z(i,2,m + k, k))
WY (i k1 NY=k=1V (i=2AX(1,jk1))
vZ(i, 5kl N)=(k<10Vj=2)A( #2VY(L1LL1)AY(221,1)

(2)

Due to the universal quantifier in ¢x, attempting to solve for X(1,1,1,1) via
instantiation into a BES does not terminate. Using techniques developed by
Keiren et al., one obtains the following graph which illustrates the possible values
for parameters i and j:

Since this graph shows the possible values of parameters, it is worth investigating
whether we can extract invariants from these graphs to constrain the values of
parameters.

Before proceeding, we first provide some preliminaries in relation to control
flow graphs. For a more comprehensive and complete description on control
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flow graphs and their use, we refer readers to the paper Liveness Analysis for
Parameterised Boolean Equation Systems [5].

The construction of a control flow graph (CFG) is rather involved; CFGs rely
on control flow parameters (CFPs) which are constructed from unicity constraints.
Essentially, unicity constraints are a collection of guards that characterize the
values of certain parameters of a PVI. Collect enough contextual information on
parameters, we may realize the values of certain parameters throughout the entire
equation system. In other words, if a parameter has sufficiently many constraints,
we know what the value of the parameter will be at all times. Parameters of
which we can determine all values given an initial instantiation are control flow
parameters (CFPs). Using CFPs, we can then construct a control flow graph
(CFG) to illustrate the values of CFPs and the relationship between relevant
PVIs for a predicate variable.

We now provide the definition of unicity constraints.

Definition 14. Let s,t: (P x NxN) = D and ¢: (P x Nx N) — N be partial
functions, where D is the union of terms not containing data variables. The triple
(s,t,c) is a unicity constraint for some PBES & if for all X € bnd(&), 4,4,k € N,
and e € D:
- (source) if s(X,i,7) = e then ¢x < ¢x[i — (d; = e APVI(¢x,1))]
~ (target) if t(X,i,7) = e then ¢x < ¢x[i — (arg;(dx,1) = e APVI(ox,1))]
— (copy) if ¢(X,4,5) =k then ¢x < ¢x[i — (arg,(dx,i) = d; APVI(éx,1))]
In other words, if s(X,1,7) is defined, the formal parameter d; must have
the value s(X,4,j) whenever PVI(¢x,7) needs to be considered in ¢x. Similarly,
if t(X,1,7) is defined, the value of the jth argument of PVI(¢x, ) has the fixed
value t(X, 1, 7). And if ¢(X,4,j) = k, the parameter d; is copied to position k of
PVI(¢x,i)’s arguments.
We may write s(X,14,7) = L if s(X,4,7) is undefined. From hereon, assume
& is some arbitrary PBES where (source, target, copy) is its associated unicity
constraint.

Remark 5. In this section, we also operate under Assumption 6.13 of [5]: if
source(X,4,7) = e and copy(X,i,j) = k are defined, then target(X,i,k) = e.

Ezample 10. Consider PBES (2) in Example 9. We can derive the following
unicity constraints:

source(X,1,1) =1 source(Y,1,1) = source(Z,1,2) =
source(X,1,2) = target(Y,1,1) = target(Z,1,1) =
target(X,1,1) = copy(Y,1,2) =2 target(Z,1,2) =1
target(X,1,2) =1 copy(Y,1,3) = target(Z,1,4) =1
copy(X,1,2) =2 copy(Y,1,4) = copy(Z,1,4) =
copy(X,1,3) =3 target(Z,2,1) = 2
target(X,2,2) = target(Z,2,2) =2
copy(X,2,1) =1 target(Z,2,3) =1
copy(X,2,3) =4 copy(Z,2,4) =
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Before covering control flow parameters, we first define local control flow
parameters (LCFPs) and global control flow parameters (GCFPs). Intuitively,
LCFPs express the set of parameters for which we know their values under
self-recursion.

Definition 15. A parameter d,, € par(X) is a local control flow parame-
ter (LCFP) if for all i such that pv(¢x,i) = X, either source(X,i,n) and
target(X,i,n) are defined, or copy(X,i,n) =n.

Example 11. Parameters i~ , X, k% are LCFPs in equation X of PBES (2). The
parameter [X in equation X is not a LCFP since there are no unicity constraints
for IX. Observe that equation X is the only equation that contains self-recursion
and thus, parameters i, j, k, [ of equations Y and Z are LCFPs.

GCFPs refines the set of LCFPs by removing parameters to ensure that we
know the values of parameters even when they are present in any PBES equation.

Definition 16. A parameter d,, € par(X) is a global control flow parameter
(GCFP) if dy, is a LCFP, and for all' Y € bnd(&) \ {X} and all i such that
pv(py,i) = X, either target(Y,i,n) is defined, or copy(¢y,i,m) = n for some
GCFP d,, € par(Y).

Ezample 12. Only i, j are GCFPs in all equations of PBES (2). Since parameter
1X is not a LCFP, the parameter {¢ of equation Z cannot be a GCFP. Therefore,
the LCFP k¥ is not a GCFP since [ is not a GCFP.

To obtain a set of CFPs, we construct an equivalence relation that also
captures the set of GCFPs that are dependent on each other through copying.
The relation ~ on GCFPs expresses that they are related.

Definition 17. Let dX and dY be GCFPs. We say dX and dY, are related,
denoted dX ~ dY, if n = copy(Y,i,m) for some i.

m?’

We now characterize the set of GCFPs which are not mutually dependent on
each other. The parameters within this set are control flow parameters (CFPs).

Definition 18. Let C be a set of GCFPs, and let ~* denote the reflexive, sym-
metric and transitive closure of ~ on C. Assume ~C C X C is an equivalence
relation that satisfies ~*Crs. Then the pair (C,~) is a control structure if for
all X € bnd(&) and all d,d’ € CNpar(X), if d~d', then d=d'.

Definition 19. A formal parameter c is a control flow parameter (CFP) if there
is a control structure (C,~) such that ¢ € C.

Example 13. ({iX,5%,i¥,j¥,i% j%} a) is a control structure for PBES (2) from
Example 9. Formal parameters i and j are CFPs for each equation.

Using a control structure (C,~) allows all equations in a given PBES to have
the same set of CFPs. Even if equations may not contain the same set of CFPs,
without loss of generality, one could add CFPs that do not appear in an equation
to achieve identical sets of CFPs in all equations. Additionally, we partition the
parameters of equations such that the set of CFPs appear first in the parameter
list of equations. We operate under the assumption as seen in [5]:
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Remark 6. Assume that the set of CFPs is the same for all equations in a
PBES &, i.e. for all X,Y € bnd(&), d* € par(X) is a CFP iff d¥ € par(Y) is
a CFP, and dX =~ d¥. Moreover, assume all equations in & are of the form
cX(c:C,dx : Dx) = ¢x, where c is a vector of CFPs and dx is a vector of
data parameters for the PBES equation X.

Given a set of CFPs, we now define control flow graphs (CFGs). Vertices in
the graph represents values of CFPs and edges represent dependencies on PVIs.
Assume we wish to find the solution of X (e, f) where 0 X (c: C,dx : Dx) = ¢x
is an equation in some PBES &. Then the initial instantiated value of CFP cy
is defined as init(c;) = eg. The set of values of CFPs are restricted by the set
values(cy), defined as

{init(cg)} U U {v € D | source(X,i,k) = vV target(X,i, k) = v}
ieN, X ebnd(&)

For later proofs, we require that this set to be uniquely representable. For example,
if [5] = [2 + 3], we do not want both 5 € D and 2+ 3 € D for some uniquely
representable set D. A set of data terms D not containing data variables is
uniquely representable if for any a,b € D where a # b, [a] # [b]. We assume the
set values(c) is uniquely representable.

Definition 20. A control flow graph (CFG) of PBES & is a directed graph
(V,—) where
- V C bnd(&) x values(c)

- =5 C VXNXV is the least relation such that whenever (X,v) = (pv(dx,1), W)
then for every k, either

e source(X,i, k) = vi and target(X,i,k) = wy, or
e source(X,i, k) = L, copy(X,i, k) =k and v = wy, or
e source(X,i, k) = L, and target(X,i, k) = wy,

Ezxample 14. Taking the equation from Example 9, we can construct the CFG
graph in Figure 2 for when we wish to find the solution for X (1,1, k,1), where
k,l can be any value of type N. Here, we see that the solution for X (1,1, , )
depends on the solution of Z(1,2, , ) and X(2,1, , ) where (_) is some
value of type V.

Control flow graphs characterize the possible values CFPs are able to hold
within various equations given an initial instantiation. In other words, given an
equation X in a PBES & and corresponding CFG (V, —), the values of X’s CFPs
must be ¢, where (X, c) € V is some vertex in the graph. In Example 14, we
see that if we wish to find X (1,1,1,1) for equation vX (7,4, k,l : N) in PBES
(2), the values of X’s CFPs (4, j) must either be (1,1), (2,1), or (1,2). Similarly,
we can also characterize the potential values of formal parameters by means of
invariants.
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Fig. 2. Control flow graph for PBES (2).

5.1 Compositionality

Before proceeding further, we address a problem we encountered during our
research. So far, we have covered the definitions of CFGs as discussed in the
paper by Keiren et al. [5]. However, the definitions of CFGs are incomplete; a
flaw is present with the current definitions of CFGs that allow for illogical CFGs
to be constructed. As we have seen in Section 4, applying multiple syntactic
replacements does not always hold under <. The same problem comes up with
CFGs since there are no compositionality requirements on unicity constraints.

Ezxample 15. Consider the following PBES:
uX(i,5: N)=Y(0,0)VvY(0,0)
WY (i, - N) = X(0,0) v X(0,0)

and let (source, target, copy) be a unicity constraint for this PBES defined as
follows:

target(X,1,1) =5 target(Y,1,1) =2
target(X,1,2) =10 target(Y,1,2) =4
target(X,2,1) = 15 target(Y,2,1) =6
target(X, 2,2) = 20 target(Y,2,2) =

Observe that a unicity constraint defined this way is valid. For instance, consider
the constraint target(X,1,1) = 5. Then we have that

(Y(0,0)V Y (0,0)) ¢ (Y(0,0) VY (0,0)[L = (0 =5AY(0,0))]
& (0=5AY(0,0)) v Y(0,0)
& Y(0,0)

In fact, we even have that

ox < ¢x[1 — false NY(0,0)]
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If we defined our unicity constraints as above, we may show that ¢, j are CFPs
and derive a graph such as:

Since the goal of CFGs is to show the relevant values of CFPs, we would expect
our CFG to only contain the states (X, (0,0)) and (Y,(0,0)) when trying to
find the solution for X (0,0). However, this is not the case. We instead want our
constraint to be compositional, e.g.

dx & dx[1— (0=5AY(0,0))][2~ (0=10AY(0,0))]
Note that this statement is not valid since:
(Y(0,0) VY (0,0)) ¢4 (0=5)AY(0,0)) v ((0=10) AY(0,0)) < false
Therefore, we need a notion of compositionality in our constraints to ensure that
we have proper CFGs.

This compositionality problem in CFGs also impacts soundness of the liveness
analysis presented in [5]. In order to remedy this problem, we require that our
unicity constraints be compositional. Thus, we will be utilizing the following
remark:

Remark 7. We assume that the combination of unicity constraints are com-
positional. Le. let (s,t,¢) be unicity constraints for some PBES &. For every
X € bnd(&), let Sx,Tx,Cx be sets of indices defined in the following way:

i€ Sy if s(X,4,1) =€

K3

i€ Tx ift(X,i,i) = el
i€ Oy if e(X,i,i) = k;

We then assume that for all equations X (dx : Dx) = ¢x in &,

¢x < ((Ox[i = (dir = ef APVI(dx,4))]ics, )
[i = (arg; (¢, ) = € APVI(¢x,9))]iery)
[i — (argy, (¢x,1) = cir APVI(9x,0))]iecx

To assist in our proofs, we now define a function Collect : Pred x N — Pred
which combines all unicity constraints of a particular PVI into one predicate
formula.
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Definition 21. Let & be a PBES with a corresponding CFG (V,—). For an
equation X (c,dx) = ¢x, and 1 < i < npred(¢x), we define Collect(dpx,i) to
be a predicate formula collecting all unicity constraints defined on PVI(¢x,i) =
Y (e, f).
Collect(¢x,i) = /\ ag»qﬁx’i) A 5J(»¢X’Z) A 'yj@x’l)
cjEc

where

(éx+0) (c; = source(¢x,1,7)) if source(¢x, 1, ) is defined
Q- =
J true otherwise

TUe otherwise

5(¢X’i) _ {(ej = target(¢x,4,7)) if target(ox,i,7) is defined
; =
t

(6x,) _ ) (ej =cp) if copy(dx,i,j) =k is defined
73 ) true otherwise

The following two lemmas allow us to utilize Property 2 when proving our
theorem on CFG invariants.

Lemma 5. Let & be a PBES, 0 X(c,dy) an equation in &, and (V,—) a CFG
for &. Then Collect(¢x,i) is a guard for PVI(dx,1).

Proof. Follows from the definition of Collect(¢x,%), unicity constraints, and
Remark 7. O

Lemma 6. Let & be a PBES, 0X(c,dy) an equation in &, and (V,—) a CFG
for &. Then the collection of guards Collect(¢x, 1),. .., Collect(¢dx,npred(¢x, 1))
are compositional for ¢x .

Proof. Since Collect is constructed from unicity constraints, and by Remark 7 the
collection of unicity constraints are compositional, it follows that the collection
Collect(¢px,1), ..., Collect(¢x,npred(¢x,4)) is compositional for ¢x. O

5.2 CFG Invariants

While we have fixed the problem with compositionality on unicity constraints,
we must also notice that a CFG may not be minimal; there could exist nodes
within the CFG which may not be reachable from an initial state. Consider the
following example.

Ezample 16. Addition of the state (X, (2,2)) with edge (X, (2,2)) — (Z, (2,2))
in the CFG of Example 14 would also be a valid CFG for PBES (2).
VX (i kL N) = (i £1V ) £1V X(2,],k 1 +1))
A (Vm:N. Z(i,2,m + k, k))
pY (i,j,k,l: N)=k=1V (i=2AX(1,4,k,1))
vZ(i,5, k1 N)=(k<10Vj=2)A(j £2VY(1,1,1,1)AY(2,2,1,1)

(2)
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Fig. 3. A valid control flow graph for PBES (2).

When solving for X(1,1,1,1), it would be unnecessary to consider the values

1 =2 and j = 2 for X since we never will reach a point where we depend on
(X,(2,2)).

Ezxample 17. Consider the CFG in Figure 2. If one is only interested in finding the
solution for Z(1,2,k,1), where k, [ are any values of type N, then the following
CFG provides sufficient information for the relevant values the CFPs ¢ and j will
hold.

() @
Fig. 4. Another valid control flow graph for PBES (2).

As can be seen, if one is interested in finding the solution for some predicate
variable instantiation, we only need to consider states that are reachable from a
certain vertex in the CFG to determine the set of values CFPs will ever hold.

Therefore, to deal with irrelevant states, we provide a notion of reachability
within a CFG graph.

Definition 22. Let & be a PBES and (V,—) be its corresponding CFG. Let
(X,v) €V be some state in the CFG. Then, R CV is the reachable set of states
originating from (X,v). We define R as the least set satisfying:

(X,v) € R, and
(Y,w) € Rif (Y, w') — (Y, w) for some (Y',w') € R

In our invariant proof, we use the notion of an ‘initial state’ in a CFG. While
Definition 20 does not have the notion of an initial state, we consider an initial
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state (X, v) to be one where we wish to find the solution for X (v, w) for some
PBES &.

Assume we are interested in finding the solution for X (e, f), where o X(c :
C,dx : Dx) is an equation in PBES &. We now show that given a CFG graph
(V,—) of &, the values of the CFPs ¢ of some equation oY (c: C,dx : Dx) in
& must be equal to v, where (Y,v) is some state in V that is reachable from
(X, e). The following theorem formally states this idea.

Theorem 2. Let & be a PBES and let the corresponding CFG graph be (V, —)
with initial state (X,v) € V. Let R C 'V be the set of vertices reachable from
(X,v), and let W be the set of predicate variables whose equation is reachable
from (X,v), defined as W = {X' | (X',v’') € R}. Let f : bnd(&) — Pred be a
simple function such that for all Y € W we have

=\ (e=v)

(Y,v')ER
and for allY ¢ W, f(Y) = false. Then f is a global invariant for PBES &.

Proof. Let 0 X(c,dx) = ¢x be an equation in £. From Lemma 6, we have that the
collection of guards Collect(¢x, 1),. .., Collect(dx, npred(¢x)) is compositional
for ¢x. To prove that f is a global invariant, by Property 2 it suffices to show for
every PVI(¢y,i) = Z(e,f) that f(Y) A Collect(¢y,i) — f(Z)[e/c][f/dz]. Since
dz does not occur in f(Z), it suffices to prove

f(Y) A Collect(¢y, i) — f(Z)]e/c]

Assume f(Y) A Collect(¢y, i) holds. Then it must be the case that there
exists a state (Y, w) € R such that (c = w) holds. We distinguish two cases on
PVI(¢y,i) = Z(e,f): Y =Z and Y # Z.

Case: Y = Z. Since c is a vector of CFPs, ¢ must also be a vector of LCFPs.
Because pv(¢y,i) = Y and by definition of LCFPs, it must be the case that
for all ¢, € c, either source(Y,i,n) = e? and target(Y,i,n) = e for some
e?, el € values(c,), or copy(Y,i,n) = n. Then in Collect(¢y,?), we have that
either (¢, = e?) A (e, = e}") holds or (e, = ¢,). We investigate these two cases:
o (c, =e?)A(e, =e}). Since (c = w), it must be the case that ¢, = e = w,.
Le. source(Y,i,n) = el = w,.
e (e, =c,). Since (c = w) and (e, = c,), we have that e, = ¢c,, = wy,.
Let u be a vector of values such that

ep  if target(Y,i,n) = e} is defined
u, =
w,, if copy(Y,i,n) = n is defined

Observe that it must be the case that (¢ = u)[e/c] since for all n, (e, = e}')

whenever target(Y,i,n) = €}, and (e, = ¢, = w,,) whenever copy(Y,i,n) = n.
Since (Y, w) € R, and for every n, either source(Y,i,n) = w,, and target(Y,i,n) =

el = u,, or copy(Y,i,n) = n and w,, = u,, there must be a transition in the

CFG graph such that (Y, w) — (Y,u). Then it must be the case that (¢ = u) is

in f(Y). Because (c = u)[e/c] holds, also f(Y)[e/c].
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— Case: Y # Z. Since c is a vector of CFPs, it must also be a vector of GCFPs.
We have that Y # Z and thus it must be the case that target(Y,i,n) = e} for
some e} € values(c,,), or copy(Y,i,m) =n for all ¢,, € ¢ and some ¢, € c. First,
we investigate these two cases:

e target(Y,i,n) = ef. Since Collect(¢y,4) holds, it must be the case that
e, =ey.

e copy(Y,i,m) = n. Since (V,—) is defined using a control structure, if
copy(Y,i,m) = n we have that ¢, ~ ¢, and by Definition 18, we have
that n = m and copy(Y,i,n) = n. Because Collect(¢y,i) holds, we have
e, = ¢,. We also have that ¢ = w, and so e,, = w,,.

Observe that if source(Y,4,n) is defined such that source(Y,i,n) = €, it must

be that (c, = €?) is in Collect(¢x,). Since ¢ = w, w,, = e whenever

source(Y,i,n) = e?. Also note that by Remark 5, if source(Y,i,n) = €7 and
copy(Y,i,n) = n, it must be the case that also target(Y,,n) = eZ.

Let u be a vector defined in the following way:

ey if target(Y,i,n) = e} is defined
u, =
w,, if copy(Y,i,n) = n is defined

Observe that (¢ = u)le/c] since for all u, either e, = u,, = e whenever
target(Y,i,n) = e}, and e,, = u,, = w,, whenever copy(Y,i,n) = n.
Since (Y, w) € R and for every n, either
e source(Y,i,n) = e = w,, and target(Y,i,n) = e} = u,, or
e source(Y,i,n) = L, copy(Y,i,n) = n and w,, = u,, or
e source(Y,i,n) = L and target(Y,i,n) =€} = u,
Then by definition of CFGs, there must be a transition such that (Y, w) — (Z,u)

and (Z,u) € R. Since this is the case, (c = u) is in f(Z). We then have that
f(Y)[e/c] holds since (¢ = u)[e/c] holds.

As we have proven in both cases that f(Z)[e/c][f/dz] holds assuming f(Y) A
Collect(¢y, i), by Property 2, we may conclude that f is a global invariant. [

Theorem 2 shows that a PBES’s CFG gives rise to an invariant. Since CFGs
illustrate the possible values of CFPs, invariants from Theorem 2 characterize
the set of CFP values for a given initial instance. We can then utilize Theorem
35 from [6] to solve a PBES & by including these invariants into & and solving
the modified PBES.

Ezample 18. Consider PBES (2) in Example 9. For convenience, we write the
equation system here:

vX (i, 5,k l:N)=(0@#1Vj#1VX(24,kl+1)A(m:N. Z(i,2,m+ k,k))
wY (i, 5,k l: N)=k=1VvV (i=2AX(1,4,k,1))

vZ(ij k0 N)=(k<10Vj=2)A(j #2VY(L,1,1,1) AY(2,2,1,1)

30



Using Theorem 2 and the CFG in Figure 2, we obtain the following invariants:
fX)=>G=1Aj=1)V(Ei=1Aj=2)V(i=2Aj=1)
fY)=3G=1Aj=1)V(i=2Aj=2)
f(Z)y=>G=1Nnj=2)V(i=2ANj=2)

Adding these invariants to the original PBES yields the following;:

VX (0,5, k1 N)= F(X)AG#LIV A1V X2, 1,k 1+1)A(VmuN. Z(i,2,m+ k, k)
pY i,k L: N) = f(Y)A (B =1V (i=2AX(1,2,k1)))
vZ(i, 5.k, 12 N) = f(Z) ANY(1,1,1,1) AY(2,2,1,1)

Observe the simplification of equation Z and the insertion of values in PVI
arguments within equations X and Y.

Invariants derived from our theorem provide an overapproximation of the
values parameters may hold given an initial instantiation. Note that Theorem 2
only provides information regarding CFP values; information regarding non-CFPs
are not considered. Additionally, the extent for which this theorem simplifies
PBES equations have not been analyzed. For instance, we cannot exploit the
full potential of CFGs by only using invariants. In particular, Keiren et al. uses
CFGs to remove ‘dead’ parameters in a PBES by analyzing relevant values at
each vertex of a corresponding CFG [5]. However, we are not able to express this
technique only using invariants. Nevertheless, adding invariants may enable other
PBES solving techniques. The following example shows how invariants alone are
unable to remove quantifiers, unlike liveness analysis techniques, but enables
redundant parameter elimination.

Ezample 19. Consider the following PBES:

uX(i,j: N)=VuN.Y(2,n+j)
pY(i,j: N)=(i=2Vj<5) AX(,2)

Assume we wish to find a solution for X (1,1). Observe that for any instantiation
of X, we depend on Y (2, ). Therefore, j < 5 is irrelevant in Y since i = 2 will
always hold if we start with any instance of X. Furthermore, other than the
subformula j < 5, j does not occur elsewhere in Y. In the work by Keiren et
al. [5], we may replace Yn:N. Y (2,n + j) with Vn:N. Y (2,1) and still arrive at
the same solution, effectively eliminating the universal quantifier.

Unfortunately, invariants cannot express that j € par(Y) is irrelevant and
thus can be any value. This is due to the fact that the invariant for X cannot not
assume that a parameter of Y is irrelevant. The best we can do is to propagate
the information that (i =2V j < 5) must always hold for Y'; we are not able to
express that the value of n 4 j is not relevant in Y'(2,n + j).

Still, invariants may enable other techniques to simplify PBES equations.
Consider the invariant f(Y) = (i = 2). This invariant yields the following
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simplified PBES:

pX(i,j: N)=Vn:N.Y(2,n+ j)
pY(i,j: N)=(i=2) A X(i,2)

Using redundant parameter elimination [4], we may remove parameter j from
both equations.

6 Relevancy Graphs

As seen thus far, proving the invariance property for simple functions is mathe-
matically involved; from Definition 8, it is difficult to intuitively understand how
simple functions remain invariant throughout an equation system. To provide
insight on how simple functions satisfying the global invariant property behaves
in PBESs, we present a novel graph structure: relevancy graphs. Similar to guards,
relevancy graphs characterize the relevant predicate variables in an equation.
Unlike guards, relevancy graphs do not operate on single PVIs, rather on all
predicate variable instances for which their arguments evaluate to a certain value.
In this section, we present the concept of relevancy graphs and its relationship
between invariants. We not only show that a global invariant gives rise to rel-
evancy graphs with certain properties, we also provide a condition for when a
simple functions satisfies the invariance property via relevancy graphs, allowing
one to use relevancy graphs as an alternative proof method. In the latter half
of this section, we provide examples to demonstrate how our theorems could be
used. In particular, we prove the theorem on CFG derived invariants (Theorem 2)
using relevancy graphs.

While various graph representations of PBESs exists, such as proof graphs [36,
37] or structure graphs [38,32], it is difficult to express the relationship between
these graphs and invariants. Proof graphs acts as a certificate of a solution for
a given PBES. However, these graphs fail to illustrate the predicates that may
be explored but are not necessarily needed in the final solution. Meanwhile,
structure graphs provide a view on the syntactic structure of PBESs to allow for
simplification of equations, but fail to provide information on when a particular
PVI is irrelevant under certain parameters. Therefore, we present a new graph
representation for PBES, namely relevancy graphs, and show the connections
between invariants of a PBES and its associated relevancy graph.

Without loss of generality, this section will be operating under Remark 3. For
the reader’s convenience, we restate this remark:

Remark 3. For the sake of simplicity, we associate a single variable dx of sort
Dx to predicate variables X rather than use vectors dx of sort Dx. This does
not result in a loss of generality as one could utilize a data sort which is able to
express more complex formulae.

Our relevancy graph takes inspiration from proof graphs [37]. Similar to proof
graphs, we take a look at parameters with specific parameter instantiations.
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Thus, for some PBES &, the vertices of our graph are elements of the set
sig(&) = {(X,v) | X € bnd(&),v € Dx}, where elements of sig(&’) are called
instantiations. At times, we may write X (v) for (X, v), especially in figures. Unlike
proof graphs, relevancy graphs considers all possible parameter instantiations in
a given equation.

Ezample 20. Consider the following equation system and its proof graph showing
that X (false) is true. Informally, given a state X (v) in a proof graph, successor
states show what instantiation must be true for X (v) to be true. For additional
information, refer to the paper by Cranen et al. [37].

uX(b:B)=Y(0)V Z(b) X (false) X(true)\
vY(n: N)=odd(n)V X (true) J / ] Z(true)
uZ(b: B)=(-b = Y(0)) /S

Ab = Y(1)) Y (0) Y(1)

As can be seen, X (false) is true if Y/(0) is also true, which requires X (¢rue) to be
true and so on. However, invariants cannot determine the truth value of predicate
variables in an equation and thus must consider all predicates that may affect the
solution. For instance, let f : {X,Y,Z} — Pred be a simple function such that
f(X) evaluates to true for all instances of X. In order for f to be an invariant
in the instance X (false), we must check whether the invariant remains true for
both Y'(0) and Z(false). Additionally, observe that the edge Y (1) — X (true) is
not necessary since odd(1) is true. Moreover, adding the edge X (false) — Y (5)
would not violate proof graph definitions since the truth of Y'(5) does not affect
the truth of X (false).

From this example, to express when an invariant may hold or not for a given
PBES, we need additional information that proof graphs do not necessarily
provide. In addition, relevancy graphs should omit transitions to instances of
PVIs that do not affect the outcome of an equation. Rather than showing
true successor instantiations for a given instance to be true, relevancy graphs
capture the predicate variables that are relevant to instantiations and leaves out
dependencies that are unnecessary.

Throughout this section, we abuse notation by writing n[3/X (e)] for 5 € B
to denote the predicate environment where n[8/X (e)](Y)(f) =8 if X =Y and
f =e,and n[8/X()](Y)(f) = n(Y)(f) otherwise. We now provide a formal
definition for relevancy graphs.

Definition 23. A relevancy graph for a closed PBES & is defined as a tuple
G = (S,—), where

— S Csig(&) is a set of states,
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— — C S x 8 a transition relation such that for any (X,v) € S,

(X,v) = (Y,w) iff
In,e. [ox]nltrue/Y (w)le[v/dx] # [¢x[nlfalse/Y (w)lelv/dx]

We say G = (S, =) is a relevancy graph for (X,v) iff (X,v) € S.

Intuitively, given a relevancy graph G = (S, —) and a specific instantiation
(X,v) € S, we have an edge (X,v) — (Y, w) iff changing the truth value of Y (w)
can affect the evaluation of ¢x when dx = v.

Ezxample 21. Consider the equation system found in Example 20. According to
Definition 23, we have the following relevancy graph G = (S, —) with (X,v) € S.

X (false) X (true)

Z (false) 1 Z (true)

When considering X (false), we must not only consider Y (0) but also Z(false). In
addition, since odd(1) occurs in Y (1), the truth value of X (w), for any w : Dy,
does not affect the truth of Y (1).

Before relating invariants to relevancy graphs, we require some lemmas to
assist in future proofs. In particular, we need to address minimality of relevancy
graphs.

Ezample 22. Consider the relevancy graph of the previous example (Example 21).
We may add Y'(3) into the graph without any additional edges and still obtain a
valid relevancy graph. However, if one was interested in the solution of X (false),
it would be unnecessary to include Y'(3).

To achieve minimal relevancy graphs, we first prove the following lemma,
which shows that given some relevancy graph G = (S, —) for (X, v), a sub-graph
consisting of the set of vertices reachable from some state (X,v) € S is still a
relevancy graph.

Lemma 7. Let & be a PBES and G = (5, —) be its corresponding relevancy
graph such that (X, v) € S. Define the reachable sub-graph originating from (X, v)
to be Reach(x ) (G) = (S, —='), where

S ={(X"0) | (X,v) =" (X',0)}
—'==n(9" x5

Then, Reach(x ,)(G) is also a relevancy graph for (X, v).

The next lemma shows that relevancy graphs derived from a reachable set of
vertices is minimal:
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Lemma 8. Let & be a PBES and G = (S,—) be its corresponding relevancy
graph for some (X,v), and let Reach(x . (G) = (S",—=') be the sub-graph of G
consisting of vertices reachable from (X,v). Let V be a nonempty set such that
V C S, and let the graph G" = (5", —") be the graph Reachx .y without vertices
in V. Specifically,

S// — S/ \ V
%/l — %/ m (S/l X S//)

Then, G’ cannot be a relevancy graph for (X, v).

We state that a function f is true, or holds, in a state (X,v) € S for some
relevancy graph G = (S, —) if [f(X)]ne[v/dx] = true. Likewise, f is false, or
fails to hold, for (X, v) if [f(X)]ne[v/dx] = false.

We first present a theorem which states that if a PBES global invariant f(X)
is true for a specific instance v, there exists a minimal relevancy graph containing
(X, v), and for all states in the graph, the corresponding invariant also holds. In
other words, the invariant holds in all states of the graph. We utilize the following
helper lemma to assist in our proof.

Lemma 9. Let f : V — Pred be a simple, capture-avoiding function where
V C P. Assume that for every X € V, FV(f(X)) C {dx} with dx : Dx. Let
X €V and [f(X)]n'e'[v/dx] = false for some v € Dx and environments n',e’.
Then, for any predicate formula ¢ and arbitrary environments n, e,

0], ., (¥ A Yildy) ay, /Y] | ltrue/ X (0)e

91, o, (PO A Yidv))ay,y/ Vi) | mlfalse/ X (v)]e

Proof. Intuitively, if [f(X)]n'e’[v/dx] evaluates to false, the truth of X (v) is
irrelevant in ¢[y;ev (f(Y:) AYi(dy;))(ay,)/Yil- In other words, due to simultaneous
substitution, X (e) in ¢ will be replaced with f(X) A X (e), and if e is eventually
evaluated to v, we must also evaluate [f(X)]n’e’[v/dx], which is false. Thus, the
truth of X (e) in ¢y;ev (f(Yi) AYi(dy;))(ay,)/Yi] is irrelevant when e is evaluated
to v. A complete proof, which proceeds by induction on the structure of ¢, can
be found in Appendix A.3. O

We now show that global invariants which hold in a given instance also gives
rise to a relevancy graph where the invariant holds in all states.

Theorem 3. Let & be a closed PBES, and let f : V — Pred be a simple, capture-
avoiding function where V- =bnd(&). Let X (dx : Dx) = ¢x be some equation
in & and let the following statements hold:

— [ is a global invariant for &, and
— [f(X)]nelv/dx] holds for some n,e and v € Dx
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Then there exists a minimal relevancy graph G = (S, —) such that (X,v) € S
and for all states (Y,w) € S, [f(Y)]nelw/dy] holds.

Proof. Let & be a closed PBES and f : V' — P be a global invariant for & such
that [f(X)]ne[v/dx] holds for some v € Dx. Let G' = (S’,—’) be a relevancy
graph with (X,v) € S’. Then G = Reach(x ,)(G’) is a minimal relevancy graph
containing (X, v).

We now prove that for any state (Y,w) € S, [f(Y)]ne[w/dy] holds. We
proceed with induction on the length of paths n starting from (X, v).

Base Case: n = 0. Holds by assumption; [f(X)]ne[v/dx] holds.

Step Case: n # 0. Assume the following induction hypothesis. For all i such
that 0 < i < n and (X,v) —=¢ (Z,u), [f(Z)]ne[u/dz] holds. We prove that
[f(Y)]ne[w/dy] holds, where (X, v) =™ (Y, w). Consider some predecessor vertex
(Z,u) € S such that (X,v) =""! (Z,u) — (Y, w). By Definition 23, let n/,&’ be
environments such that

[6z2]n'[true/Y (w)]e’[u/dz] # [$z]n'[false/Y (w)]e"[u/dz] 3)

We also have that [f(Z)]ne[u/dz] holds via the induction hypothesis. It follows
from Corollary 1 that [f(Z)]ne[u/dz] = [f(Z)]n'e'[u/dz]. By definition of [_]
and Equation (3), the following must hold:

[£(2) A ¢z]n'[true/Y (w)]e'[u/dz] # [f(Z) A ¢z]n[false/Y (w)]e’[u/dz]  (4)

Since f is a global invariant, by Definition 8 we have

[£(2) A ozl [true/ Y (w))e'[u/dz) =
[F@) Noa|, | (FOW) AWildw)) o,y /Wi | Terue/ ¥ (w)le'[u/dz]

i

and

[/(Z) Aozl false/Y (w)]e/[u/dz) =
[F@) Noa|, _ (FOW) AWildw))aw,y /Wi | talse/ ¥ (w)le'[u/dz]

7

It follows from (4) that the following must also hold:

[r@ynoz| POV AWildw,)) i, /Wi | ' lerue/ Y (w)e' [u/dz)
# (5)

(F(W2) AWVi(dw,)) vy, /Wi | o alse/ Y (w)]e [/ dz]

wW;eVv

|12 noz|

W, eVv
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By definition of [_] and Equation (5),

[£(Z)]n'[true/Y (w)]e’[u/dz] and
[[¢z [Wiev(f (W) AWi(dw;)) (dw,) /Wi} ]] 1 [true/Y (w))e'[u/dz)

#
[£(2)]n' [false/Y (w)]e"[u/dz] and

[92],,, o OV A Waldiw ), /Wi | s/ ¥ () /7]
By Lemma 1, we have that

[F(2)]n [true/Y (w)]e'[u/dz] = [f(Z)]n'[false/Y (w)]e'[u/dz]

Therefore, it must be the case that:

[[¢Z {Wiev(f(Wi) A Wi(dwi))<dwi>/Wi}Hn’[true/Y(w)]g’[u/dz]
? (6)
Hsz {Wiev(f(Wi) A Wi(dwi))wwi)/Wi]Hn’[false/Y(w)]g’[u/dZ]

For the sake of contradiction, assume that [f(Y)]n'e’[w/dy] = false. By
Lemma 1, we get that [f(Y)]n'e'[w/dy] = [f(Y)]7' (¢'[u/dz])[w/dy]. Then, by
Lemma 9, we have the following.

[02],,, _, POV AWildw,) /Wi [ lerue/ Y (w)le' /7]

[02],,, _, POV AWildw,) /Wi [ lalse/ Y (w)]e'u/ 7]

However, this statement contradicts Equation (6). Since we have arrived at a con-
tradiction, our assumption is invalid and the contrary is true: it must be the case
that [f(Y)]n'e'[w/dy] = true. By Corollary 1, we then have [f(Y)]n'e'[w/dy] =
[f(Y)]ne[w/dy] = true.

We have shown via induction that for all states (Y, w) € S satisty [f(Y)]ne[w/dy],
given that G is a minimal dependency graph containing (X, v). Thus, we have
shown that our claim holds. O

From Theorem 3, we can illustrate how invariants operate in the context
of PBESs. Given an instance of some equation, say X (v), and assuming the
invariant f(X) holds under v (i.e. [f(X)]nelv/dx] for any n,€), it must be the
case that for any relevant predicate variable instantiation Y (w) of ¢x must have
its invariant hold under w. In other words, given an invariant f, whenever this
invariant holds for the equation X the invariant must hold for all equations that
are relevant in ¢x.
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Example 23. Consider the following PBES and its corresponding global invariant
I

puX(n:N)=mn>0) = Y(n-1) f(X) = even(n)
pY(n:N)=n=0)VX(n-1) f(Y) = odd(n)

Then, by Theorem 3, we can construct a relevancy graph G = (S, —) by fist
starting at some instantiation for which the invariant holds, e.g. X (4), and use
the edge definition in Definition 23. We then obtain the following relevancy graph
for this PBES.

X(4) — Y(3)

/

(0 e i

Note that since even(4) holds, also [f(X)]ne[4/dx] holds. Also observe that for
each instance X (v) in the graph, the evaluation [f(X)]ne[v/dx] remains true,
and similarly the same holds for all instances of predicate Y in the graph.

As seen in Example 23, Theorem 3 realizes a minimal relevancy graph which
shows how a global invariant remains invariantly true throughout the state space
of the equation system, assuming the invariant was true initially. However, while
Theorem 3 shows how an invariant of a PBES remains invariant throughout the
traversal of relevant predicate variable instantiations, this theorem does not give
us information as to what a simple function needs to satisfy in a given relevancy
graph to fulfill global invariant requirements. Intuitively, a simple function f
is an invariant for some PBES & if there exists an associated relevancy graph
G = (S, —) such that for all states (X,v) € S the invariant holds under v (i.e.
for any n,e, [f(X)]ne[v/dx] = true), and for all other states (Y,w) & S, the
invariant fails to hold under w (i.e. for any n, e, [f(Y)]ne[w/dy] = false).

Ezample 24. Consider the PBES below.
uXn:N)=((0<n<b) = X(n—-1))A((n>5) = X(n+1))

By Definition 23, we can construct the following minimal relevancy graph G =
(S,—) such that (X,5) € S.

Now let f(X) = (n > 3). Observe that for all states (X,v) € S, [f(X)]ne[v/dx] =
true. However, f fails to be an invariant for this PBES since X (3) relies on X (2),
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which violates the invariant that n > 3. Therefore, for a simple function to be an
invariant, it must also fail for all states not in the relevancy graph.

To assist in proving the relevancy graph invariant condition, we prove the
following lemma. This lemma expresses that for some right-hand side of an
equation ¢x of PBES &, adding the simple function f to all PVIs does not affect
the solution to the evaluation of ¢x assuming that there is a relevancy graph
G = (5, —) for & such that the simple function holds under (X, v) iff the state
(X,v) isin S.

Lemma 10. Let & be a closed PBES and let f : bnd(&) — Pred be a simple,
capture-avoiding function. Let G = (S, —) be a relevancy graph for &. Assume
that (Y,w) € S iff [f(Y)]nelw/dy] holds for all environments n,e. Then, for any
(X,v) € S and for all environments n,e, we have that

[oxTInelv/dx] = [ox| (F(Y3) A Yi(dy,))ay,y /Y] | melo/dx]

Y; €bnd(&)

Proof. Here, we provide some intuition for the proof. For the complete proof,
refer to Appendix A.3. Assume that we are in some state (X,v) € S of the
relevancy graph. Consider some PVI(¢x, i) where pv(¢x,i) =Y. If this PVI is
relevant under the evaluation of ¢x under v, then there must be a transition in
the relevancy graph such that (X,v) — (Y, w) for some w € Dy. Since (Y, w) € S,
[f(Y)]ne[w/dy] holds and adding the invariant to this PVI would not affect the
evaluation of ¢x with instance v. If this PVI is not relevant, the outcome of the
evaluation of PVI(¢x,1) is irrelevant and thus knowledge on the truth of f(Y) is
irrelevant for PVI i of ¢x. O

We now prove that for some PBES & and an associated relevancy graph
G = (S, —), a simple function f : bnd(&) — Pred is a global invariant whenever
f holds under state (X,v) iff (X,v) € S.

Theorem 4. Let & be a closed PBES and let f : bnd(&) — Pred be a simple,
capture-avoiding function. Let G = (S, —) be a relevancy graph for &. For all
X € bnd(&), assume that FV(f(X)) C {dx} and let f(X) be evaluated in the
following way:

true if (X,v) €S

[f(Xnelv/dx] = {false if (X,v) &S

for all v € Dx and any environments n,e. Then f is a global invariant for & .

Proof. Let & be some arbitrary PBES and let f : bnd(&) — Pred be a simple,
capture-avoiding function. Let G = (S, —) be a relevancy graph and assume f
satisfies the conditions above.

By Definition 8, if for all equations 0 X (dx : Dx) = ¢x in &,

F(X) A dx e (F(X) A ox)| (F(Y) A Yildy,)) ay, /Y

Y; €bnd(&)
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then f is a global invariant. By the definition of <+, we show that for all environ-
ments e, 7 and all equations 0 X (dx : Dx) = ¢x the following holds.

[/(X) A dxIne = [(F(X) A ox)| (f(Y2) AYildy))ar,) /Yi) [ e

Y; €bnd(&)

Let 1, e be any environment and 0 X (dx : Dx) = ¢x be any equation in &.
We distinguish two cases: [f(X)]ne = true and [f(X)]ne = false.
First, consider the case where [f(X)]ne = false. Then, we have that

[f(X) A ¢x]ne
= {Definition of [_]}

[£(X)]ne and [¢x]ne
= {Case [f(X)]ne = false}
false

= {[f(X)]ne = false}
[£(X)Ine and [ox |

= {Definition of [_]}
[700 nox|

vieomagey T DA E(dn))um/ﬁﬂ]ns

(F(Y5) A Yildy ) ar,y /Y3 [ e

Y; ebnd(&)

Now consider the case where [f(X)]ne = true. Then for some v € Dy, € =
elv/dx] and [f(X)]ne = [f(X)]nelv/dx] = true. By definition of f, since
[f(X)]ne = true, there exists a (X, v) € S, otherwise (X, v) ¢ S and [f(X)]nev/dx] =
false. We now argue as follows:

L£(X) A éxlnelofdx]
= {Definition of [ ]}

[f(X)]nelv/dx] and [¢x]nelv/dx]
= {Case [f(X)]ne[v/dx] = true, and Lemma 10}

[/ (X)Inelv/dx] and [ox | (F(Yi) A Yildy))av,y / Vi) [ relv/dx]
= {Definition of [_]}
[rx) nox|

Y; €bnd(&)

YiEbnd(é")(f(Y;) A E(dn))wm/YiH]ne[v/dx]

As can be seen, we have proven that for any 7, ¢,

[F(X) Aexlne = [(£(0) nox)| (f(Y3) A Yi(dy))ay,) /Y] | me

Y; €bnd(&)

As this argument can be applied to all Y € bnd(&’), by Definition 8, we have
proven that f is a global invariant for &. O
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Theorem 4 provides an alternate characterization of global invariants in
PBESs. Whenever we have some PBES &, to verify that f : bnd(&) — Pred is a
global invariant, one can construct a relevancy graph such that f holds for state
(X,v) iff (X,v) € S. Note that this theorem is not a strict requirement for global
invariants. For instance, consider Example 23 and observe that f(X) = even(n)
is still an invariant even though (X, 6) is not in the relevancy graph.

6.1 Proving with Relevancy Graphs

To show how one can utilize our theorem to show that a simple function is a
global invariant, we provide a few examples on the application of Theorem 4 in
this section. We later show an alternative proof for our CFG invariant described
in Section 5.

While we have proven Theorem 4 under the assumption that all PBES
equations have exactly one parameter, one can use pairing and projection functions
to obtain more complex formulae. Thus, we show an application of Theorem 4
on a PBES with multiple parameters.

Ezxample 25. Consider the following PBES consisting of one equation:
uX(t, 4,k N)=((k=3)VX(i+1,7k+1)VX(i,j+1,k+1)

We now prove that f defined in the following way satisfies the global invariant
property:

fX)=(k<3)A(i+j=k)
The following figure illustrates the minimal relevancy graph G = (S, —) such
that (X,(0,0,0)) € S:

(X,(3,0,3))  (X,(2,1,3))  (X,(1,2,3))  (X,(0,3,3))

Observe that for any state (X,v) € S, we have that [f(X)]ne[v/dx] holds. For
any other state (X,w) ¢ S, [f(X)]ne[w/dx] fails to hold. Thus, by Theorem 4,
f is a global invariant.

If one wants to prove a more general invariant, one must provide a more
complete relevancy graph. For instance, assume that we wish f to be defined as
follows:

fX)=(i+j=k)
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We can still prove that f is a global invariant using Theorem 4 by defining a
relevancy graph consisting of more vertices. In particular, let G’ = (S’, —=') be
a minimal relevancy graph where (X, (a,b,c)) € S’ for all a,b,c : N such that
a + b = ¢ holds. Then, one must argue that there cannot be edges to vertices
such that the invariant is invalidated.

Control Flow Graphs
We now prove Theorem 2 using relevancy graphs. The remainder of this section
operates under the remarks found in Section 5:

Remark 6. Assume that the set of CFPs is the same for all equations in a
PBES &, i.e. for all X,Y € bnd(&), dX € par(X) is a CFP iff d¥ € par(Y) is
a CFP, and dX ~ d¥. Moreover, assume all equations in & are of the form
cX(c:C,dx : Dx) = ¢x, where c is a vector of CFPs and dx is a vector of
data parameters for the PBES equation X.

Before providing the formal proof, we first provide some intuition by using
Example 9 as a running example. For the reader’s convenience, we provide the
equation system and its corresponding relevancy graph in this section:

VX (i kol N) = (i A1V #1V X(2, ], k1 +1))
A (Ym:N. Z(i,2,m + k, k))
WY (i gk s N) =k =1V (i =2 A X(L,j, k1))
vZ(i,j k0 N) = (k<10Vj=2)A(j £2VY(1,1,1,1) AY(2,21,1)

(2)

Fig. 2. CFG of PBES (2).

Recall that 4, j are control flow parameters (CFPs) for this equation system,
and that the CFG in Figure 2 shows that the solution for X (1,1, , ) depends
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on the solution of Z(1,2, , ) and X(2,1,_,_). Assume we wish to find the
solution for X (1,1,1,1). We may construct a minimal relevancy graph G = (S, —)
for PBES (2) such that (X,(1,1,1,1)) € S:

X(1,1,1,1)

X(2,1,1,2)

Fig. 5. Relevancy graph of PBES (2), where (X, (1,1,1,1)) € S.

Observe the similarities to Figure 2; each state in the relevancy graph can be
associated to a state in the CFG. In other words, when finding the solution for
X(1,1,1,1), the CFPs of each state in the relevancy graph must be related to
some state in the CFG. We highlight the similarities in the following figure:

X(1,1,1,1)

2,1,1) —— Y(2,2,1,1)
N\ X(1,2,1,2) —— Y(2,2.1,2)

Fig. 6. Similarities between a CFG and a relevancy graph of a given PBES.
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However, according to Theorem 4, we must also show that the invariant fails to
hold for states not present in the graph; e.g. we must show that the invariant fails
for all (X, (1,1,a,b)) ¢ S, where a # 1 and b # 1. Thus, proving the invariance
property of simple functions that characterizes the CFPs in a CFG is not possible
using Theorem 4 with our current relevancy graph. We can overcome this by
defining a minimal relevancy graph such that all possible parameter values are
included in the relevancy graph for non-CFPs. Using the running example, for
all a, b, we require that (X, (1,1, a,b)) is in S. This applies for all corresponding
states in the CFG. We then use Theorem 4 to prove that a simple function
satisfying Theorem 2 is a global invariant. We now provide the formal proof:

Theorem 5. Let & be a PBES and let the corresponding CFG graph be (V, —)
with initial state (X,v) € V. Let R C 'V be the set of vertices reachable from
(X,v), and let W be the set of predicate variables whose equation is reachable
from (X,v), defined as W = {X' | (X',v') € R}. Let f : bnd(&) — Pred be a
simple function such that for all Y € W we have

)=\ (e=v)

(Y,v')ER
and for allY ¢ W, f(Y) = false. Then f is a global invariant for PBES &.

Proof. Our proof construction is similar to the one provided in Section 5. However,
rather than utilizing Property 2 we use relevancy graphs. Let & be a PBES
and let the corresponding CFG be (V, —¢) with (X,v) € V. Let R C V be the
set of reachable vertices from (X,v). Because relevancy graphs operate under
semantic data terms and v is a vector of syntactic data terms not containing data
variables, we write [v] to be the interpretation of vector v, i.e. {[v1],...,[va])
where v = (vy,...,v,). Observe that since v does not contain data variables or
predicate variables, we do not need environments 7, ¢.

Let S’ be defined such that for every vertex (Y,w) € R, (Y, ([w],w’)) € S’
for all vectors w’ consisting of elements of type Dy. Let G = (S,—g) be a
minimal relevancy graph satisfying S’ C S. We now show that S = 5’. In other
words, S\ S’ = 0.

For the sake of contradiction, assume that S\ S” # (). Then there exist a state
(Y,w) € R and (Y, ([w],w’)) € S’ such that

Y ([w], w')) = (2, ([u], u’))

where (Z,u) ¢ R and (Z, ([u],u’)) ¢ S’. It follows from Definition 23 that the
following must hold:

n,e. [dy[nltrue/Z([u], u)]e[[w]/c][w'/dy]
# [¢vInlfalse/Z([ul, w')le[[w]/c][w'/dy]

Let 7, e be the two environments from the statement above. Let I be an index
set where i € T if PVI(¢y,14) is evaluated to true in

[6y [nltrue/Z([u], w’)le[[w]/c][w'/dy] (7)
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and false in
[¢v]nlfalse/Z([u], u')]e[[w]/c][w’/dy] (®)
Recall that Collect(¢y, 1), ..., Collect(¢y, npred(¢y)) is compositional. Le.

dy > ¢y [j — (Collect(py, j) A PVI(dy, 7))]j<npred(oy) 9)

Therefore, whenever PVI(¢y, i) evaluates to true, Collect(¢y, 4) must be evaluated
to true.

By Remark 6, all equations in & have the same set of CFPs c. Thus, by
Definitions 16 and 20, we have that the vector of CFPs ¢ is also a vector of
GCFPs and LCFPs. Let PVI(¢y,i) = Z(e,f) where i € I. By Equation (9),
it must be the case that whenever PVI(¢y, i) holds, it must be the case that
Collect(¢y, i) must also hold. Additionally, due to our construction of I, we have
that e is eventually evaluated to [u] in Equations (7) and (8). Similarly, ¢ will
be evaluated to [w] in Equations (7) and (8).

Consider a CFP c¢,, € c. We investigate the cases when PVI(¢y,4) has certain
unicity constraints.

— source(¢y,i,n) = e is defined. By Definition 21, (¢, = e?) occurs in
Collect(¢y, 7). Since Collect(¢y, i) must hold in Equation (7), € must be
equivalent to w,, since c is evaluated to [w] in Equation (7). Thus, we have
that e? = w,, and may conclude that source(¢y,i,n) = wy,

— target(dy,i,n) = e is defined. By Definition 21, (e, = el') occurs in
Collect(¢y, 7). Since Collect(¢y, i) must hold in Equation (7), e} must be
equivalent to u, since e is evaluated to [u] in Equation (7). Therefore,
target(oy, i, n) = u,.

— copy(¢y, i, m) = nis defined. By Definition 21, (e,, = ¢, ) occurs in Collect(¢y, 7).
We have seen that Collect(¢y,4) must hold in Equation (7). Since e,, must
be evaluated to [u,,] and ¢, is evaluated to [w,] in Equation (7), it must
be that [w,] = [u]. Since w,, and u,, come from a uniquely representable
set, we have that w,, = u,,.

We now distinguish two cases on PVI(¢y,i) = Z(e,f): Y =Z and Y # Z.

— CaseY = Z. By definition of LCFPs, for each CFP c,,, either source(Y,i,n) =
e? and target(Y,i,n) = e}, or copy(Y,i,n) = n is defined for every c, € c.
As we have investigated previously, we have that for each CFP ¢, € c,
source(Y,i,n) = w,, and target(Y,i,n) = u,, or copy(Y,i,n) = n and w,, =
u,. If this were the case, there must exist a transition (Y,w) —¢ (Z,u).
However, this violates the fact that (Z,u) ¢ R, and thus we have reached a
contradiction in this case.

— CaseY # Z. By definition of GCFPs, for all CFPs ¢,, € ¢, either copy(Y,4,m) =
n is defined for some ¢, € c, or target(Y,i,n) = e} is defined. Note that
by Remark 6 and Definition 18, it must be the case that n = m whenever
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copy(Y,i,m) = n is defined. As seen previously, we have that for each CFG
¢, € c, either copy(Y,i,n) = n and w,, = u,, or target(Y,i,n) = u,. Addi-
tionally, if source(Y,7,n) is defined, we have source(Y,,n) = w,,. Therefore,
by definition of CFGs, there must exist a transition such that (Y,w) —¢
(Z,u). But this violates our definition of the relevancy graph G and the
assumption that S\ S” # 0.

Since in both cases we have arrived at a contradiction, our assumption that
S\ S’ # ) is invalid and thus the contrary is true: S\ S’ = (). This implies that
(Y,w) € Riff (Y,([w],e)) € S for any e.

Now let f : bnd(&) — Pred be a simple function such that for all Y € {X’ |
(X',v') € R},

(Y,v')ER

and for all Y ¢ {X' | (X',v') € R}, f(Y) = false. Observe that for each state
(X, ([wl.e)) € S, [F(X)]ne[[w]/c][[e]/dx] holds since (X, ([w],e)) € S iff
(X,w) € R for any e. It also follows that [f(X)]ne[[w]/cl][[e]/dx] = false if
(X,w) ¢ R. Thus, from Theorem 4 and our construction of the relevancy graph
G, we conclude that f is a global invariant. O

7 Conclusion and Future Work

Using various work done on PBESs, we relate PBES reduction techniques to PBES
global invariants. Taking inspiration from static analysis techniques, we utilize
the concept of guards to characterize the contextual information surrounding
PVIs and derive invariants. By taking ideas from Hoare logics and Dijkstra’s
predicate transformers, we construct invariants by propagating guards through
predicate variable instances. We have also used the concept of control flow graphs
to obtain invariants. During our research, we have uncovered and fixed a slight
flaw in the current definitions of CFGs, preventing arbitrary graph constructions
for equations with certain structures. Along the way, we have developed new
conditions for simple functions to satisfy PBES global invariant properties that
acts as an extension to the work done by Orzan et al. [6]. Moreover, we presented
a new graph structure to assist in intuitively grasping the concepts of invariants,
but also provides an alternative characterizations of invariants.

In our paper, we mainly refer to works done in the formal methods domain even
though a variety of literature outside of formal verification has been published on
invariant generation. For instance, papers such as [28,23, 18] generate invariants
using syntax-guided synthesis [39], i.e. invariants automatically generated from
a defined grammar. However, additional preliminary work needs to be done on
PBES:s to realize this approach. Nguyen et al. [40] restrict themselves to numerical
data types while Schultz et al. [18] were aware of the structure and general contents
of their problem. But it is unclear what the structure of generated invariants
should be for arbitrary PBESs consisting of arbitrary data types. As an example,
while < y would make sense for numerical data types, it may be unclear when
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x and y are lists or booleans. Additionally, global PBES invariants are functions
containing invariants for multiple equations of a given PBES. Generation of an
invariant for an equation may require additional invariants to be placed in other
equations. If one were to only generate invariant candidates for only one equation,
it then becomes a question of how to convert local PBES invariants to global
PBES invariants, which requires additional research. On the other hand, it is not
clear how to generate invariants for multiple, or even all, equations of a given
PBES simultaneously. This generative approach may even lead to a combinatorial
explosion of invariant candidates.

When working with control flow graphs in Section 5, we have discovered an
flaw with the original definitions of CFGs provided in [5, 32]. As Neele pointed out
in his thesis [36], issues arise when performing multiple syntactic replacements
on PVIs. This issue also becomes apparent in CFGs, namely in the definitions of
unicity constraints; without compositionality conditions on unicity constraints,
one may produce illogical CFGs with PBES of certain structures. Additional
research is required to realize the implications of this flaw, especially within the
mCRL2 toolset [41] where CFGs are used.

In Section 6, we introduced the notion of relevancy graphs. These graphs are
still in their infancy as there are many research directions one may take. For
instance, these graphs are quite similar to BES instantiations; one may derive
properties which relate BES instantiations and relevancy graphs. Additionally,
analysis of relevancy graphs may provide insight as to how one may find a solution
to a particular instantiation. Moreover, it may be worth investigating whether
invariant generation techniques found in literature apply to relevancy graphs.
More work needs to be done on these graphs to realize their full potential.

Finally, while our paper was mainly focused on how PBES global invariants
could be generated, we have not considered the effectiveness of these invariants
via experiments. From Theorem 35 of Orzan et al. [6], we may use PBESs
strengthened with its invariant to evaluate a predicate formula, but we have not
analyzed equation systems with and without their invariants. For instance, one
could use mCRL2 to analyze the state spaces between invariant strengthened
PBESs and PBESs without invariants. Work still needs to be done to analyze
the benefits of adding invariants derived from our techniques.
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A Complete Proofs

This section consists of the complete proofs for various lemmas and theorems
found throughout this paper.

A.1 Preliminaries

Lemma 1. Let ¢ be a simple, capture-avoiding predicate such that FV(¢) C {d}
where d : D. Then we have that for any environments n,e,&’ and v € D,

[¢]nelv/d] = [#]ne’[v/d]

Proof. Let ¢ be a simple, capture-avoiding predicate formula such that FV(¢) C
{d} for some d: D. Then, let € and ¢’ be any two data environments, and let 7
be any predicate environment. Observe that for some v € D,

elv/d)(d) = &'[v/d](d) = v
We proceed with induction on the structure of subformulae 1 of ¢ and show that

[¢lnelv/d] = []ne'[v/d]

Base Cases:

e ¢ = b. Since FV(¢) C {d}, we have that FV(b) \ {d} C bnd(¢), i.e. all free
variables other than d in b is bound by a universal/existential quantifier in ¢,
otherwise FV(¢) € {d}. Therefore, for any variable = € FV(b) \ {d} of type X,
by definition of [_] we have that e = e[2’/z] and &’ = &’[2’ /z] for some 2’ : X.
In other words, all variables will in b will be evaluated the same in both
e[v/dx] and €'[v/dx]. We may conclude that [b]nev/dx] = [b]ne’[v/dx].

e ) =Y (e). This case contradicts the fact that ¢ is a simple predicate, i.e. ¢
cannot contain any predicate variables. Therefore, this case is vacuously true.

Step Cases: Assume the following induction hypothesis: for all subforumlae v; of
1, and for any environments n*,e*,e** and v € D,

[Wiln*e*[v/d] = [¥:]n*e™ [v/d]
o =11 Ao,
[41 A pa]nefv/d]

= {Definition of [ ]}

[¥1]nelv/d] and [¢s]nelv/d]
= {Induction Hypothesis}

[¢1]ne"[v/d] and [¢2]ne’[v/d]
= {Definition of [_]}

[11 A tpa]ne’[v/d]
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e Y = 1)1 V 1hs. Symmetrical to the case where ¢ = 11 A 5.
e ¢y =Ve:E. 9. Note that since ¢ is capture-avoiding, e # d.

[Ve:2. v lnelv/d]

= {Definition of [ ]}
for all ¢’ € E, [11]ne[v/d][e/e]

={d#e = e[v/d|[¢'/e] = ¢[¢'/e][v/d]}
for all €’ € E, [v1]nele’ /e][v/d]

= {Induction Hypothesis}
for all ¢’ € E, [11]ne’[e’/e][v/d]

= {e[v/d][¢’ /e] = €€ /e][v/d]; Definition of [ ]}
Ve:E. alne'[v/d]

e ¢y = de:F. ;. Symmetrical to the case where ¢ = Ve:E. 1.
O

Lemma 3. Let ¢ be a simple, capture-avoiding predicate formula and let d €
FV(¢) for some d: D. Then, for some e : D and any environments n, e, we have

[ole/d)]ne = [#lnele(e)/d]

Proof. Let ¢ be a simple, capture-avoiding predicate formula such that d € FV(¢)
for some d : D. We show that for any e : D, [¢[e/d][ne = [¢]ne[e(e)/d] for any
environments 7, by induction on the structure on subformulae 1 of ¢.

Base Cases:

e ¢y = b. Follows by assumption that [ble/d]]e = [b]ele(e)/d].

e ) =Y(f). Since ¢ is a simple predicate, this case is vacuously true.
Step Cases: Assume the following inductive hypothesis: for any subformulae 1;
of ¢ and for any environments 7', &', we have

[ile/dllne = [i]nele(e)/d]
o =11 A

[(o1 A 2)[e/d]]ne
= {Definition of substitution}

[(rle/d]) A ($2le/d])Ine
= {Definition of [_]}

[v1le/dl]ne and [2]e/d]]ne
= {Induction hypothesis}

[¥1]nele(e)/d] and [2]nele(e)/d]
= {Definition of [ ] and substitution}

[vo1 A tp2]nele(e)/d]
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e ) = 1)1 V 1hs. Symmetrical to the case ¥ = 11 A 1.
o ) =Vf:F. 9. Without loss of generality, assume f # e.

[(Vf:F. ¥1)[e/d]ne
= {Definition of substitution}
[Vf:F. (¢1le/d])]ne
= {Definition of [_]}
for all f* € F, [41]e/d]]ne(f'/ f]
= {Induction hypothesis}
for all " € F, [v1]ne(f'/ fllelf'/ f1(e)/d]
={e# f = elf'/fllv) =¢(v)}
for all f" € T, [¢n]nelf'/ flle(e)/d]
={deFV(¢); d# f = e[f'/flle(e)/d] = ele(e)/d][f'/ f]}
for all f' € F,[¢1]nelee)/d][f'] f]
= {Definition of [_]}
[(Vf:F. 1)]nele(e) /d]

e f(X)=3f:F. ¢;. Symmetrical to the case Vf:F. 1.

O
A.2 Guards
Property 2. Let & be a closed equation system. For every equation (oX (dx :
Dx) = ¢x)in &, assume the existence of compositional guards wéx - ,fy;’;:ed((bx )

for ¢ x where ’yéx is the guard for PVI(¢x, ). Let f : bnd(&) — Pred be a simple
function such that for every equation (cX(dx : Dx) = ¢x) in & and all
PV|(QI)X,Z) = Xi(ei):

FX) Ay — f(Xi)lei/dx,]

Then f is a global invariant for &.

Proof. Consider an equation (60X (dx : Dx) = ¢x) for which f(X) A 'yéx —
f(X;)[e/dx,] holds for all PVI(¢x,i) = X;(e;). By definition of compositional
guards, we have that

¢x © ox[i = Yo APVIOX D] eaion)

Note that ¢x [j — 75, A PVI(¢X’J)]j§npred(¢x) can be described by the following

grammar since each PVI occurs within the scope of a conjunction:
pu=blyANX(e)|p1 A2 | P1V 2 |Vd:D. ¢|3d:D. ¢

where v is the guard for X (e).
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We now perform structural induction on the structure of the subformulae v
of px[j = v}, NPVI(¢x,J)] For each subformula, it suffices to prove

that

j<npred(¢x)’

(F(X) Aw) & (F(X)A9) | (F(2) A 2(d2)) ) 2]

Zebnd(&)

We first consider the base cases:

Case b = b. Immediately follows from the definition of syntactic substitution:

(F(X) Ab) ¢ (f(X) A D) (F(2) A 2(d2)) 4, /7]

Zebnd(&)

Case ¢ =}, NY(e). Let Y (e) = PVI(¢x,7). We then reason as follows:

(F(X) A (v AY (D) | (F(2) A 2(d2)) 0. /7
+> {Definition of syntactic substitution; f(X) and 'yé, . are simple}

FEX)A(FY)e/dy]) A (15, A Y (€))
< {Assumption: f(X) /\'yéx = f(Y)[e/dy]}
FX) A (v, AY(€))

Zebnd(&)

Assume the following induction hypothesis: for any arbitrary subformulae ¢; of

b

FEY A & (FOO NG| (F(Z) N Z(d2)) 4z /2]

Zebnd(&)
Case ¥ = 11 V s.

G A n), ()N 2(2)) 0 2]
« {f(X) = f(X) A f(X); definition of syntactic substitution}
GE) A, (D) A2 0 /2] A

(F(X) A )| (F(2) A 2(d2)) 4. /7

> {Induction hypothesis}
(f(X) A ) A (F(X) Atha)
o {Y =v1 Ao}
FX) N

»

Zebnd(&)

Case ¥ = 11 A 1. Analogous to the case where ¥ = 11 V 1s.
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Case v = Ve:E. 1. Without loss of generality, assume f does not contain e.

(F) AYeB )|, ()N 2(2)) 0 7]
+ {e does not occur in f(X)}
VeB. (f@) )|, (F2) A 2(d2) /7]

> {Induction Hypothesis}
Ve:E. (f(x) A1)

<+ {e does not occur in f(X)}
f(z) AVe:E. ¢

Case ¢ = Je:E. 1)1. Analogous to the case where 1) = Ve:E. ).

A.3 Relevancy Graphs

Lemma 7. Let & be a PBES and G = (S, —) be its corresponding relevancy
graph such that (X,v) € S. Define the reachable sub-graph originating from (X, v)
to be Reach(x ) (G) = (S, —'), where

S ={(X") | (X,0) =" (X', 0)}
—'==n(9 x9)
Then, Reach(x ,)(G) is also a relevancy graph for (X, v).

Proof. Observe that the first condition of Definition 23 is satisfied for S’. We
prove the second condition. Consider any state (X', v’) € S’

(=) We prove that if (X’,v") =’ (Y, w), then

n,e. [x]nltrue/Y (w)le[v'/dx-] # [ox]nlfalse/Y (w)]e[v’ /dx/]  (10)

Since (X’,v") =’ (Y,w), it must be the case that (X',v') — (Y, w).
Because G = (S, —) is a relevancy graph, (10) holds.
( <) Assume the following holds:

I, e. [dx]nltrue/Y (w)le[v/dx] # [ox]nlfalse/Y (w)]e[v/dx]

We have that by construction of S, (X’,v’) € S. Since G = (S, —) is
a relevancy graph, it must be the case that (X’,v") — (Y, w). Because
(X,v) =* (X',0) and (X',v") = (Y,w), also (X,v) —=* (Y,w), and
(Y,w) € 8. Tt follows that also (X',v") =’ (Y, w) by definition of —'.

As we have proven both directions, we have that Reachx ,,)(G) = (5", —') is also
a relevancy graph. O
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Lemma 8. Let & be a PBES and G = (S,—) be its corresponding relevancy
graph for some (X,v), and let Reach(x . (G) = (S",—=') be the sub-graph of G
consisting of vertices reachable from (X,v). Let V be a nonempty set such that
V C S, and let the graph G" = (5", —") be the graph Reachx .y without vertices
in V. Specifically,

S =S\V
_>// — _>/ m (S// X S//)

Then, G’ cannot be a relevancy graph for (X, v).

Proof. If (X,v) € V, then by definition of relevancy graphs, G’ cannot be a
relevancy graph for (X, v). Thus, assume (X, v) ¢ V. For the sake of contradiction,
assume that G’ is a relevancy graph for (X, v). Consider a state (X’,v') € 5’
such that (X',v") =’ (Y,w) for some (Y,w) € V. It must be the case that
(X' e 8" (Yyw) ¢ S”, and (X',v') A" (Y,w). Since Reach(x ,)(G) is a
relevancy graph and (X’,v") =’ (Y, w), it must be the case that

n,e. [dx]nltrue/Y (w)le[v'/dx] # [ox]nlfalse/Y (w)]e[v’/dx]

Since G’ is also a relevancy graph and (X', v’) € S”, it must be the case that
(X',v") =" (Y,w). However, this contradicts our construction of G’. Therefore,
our assumption is invalid; it cannot be the case that G’ is a relevancy graph. [0

Lemma 9. Let f : V — Pred be a simple, capture-avoiding function where
V C P. Assume that for every X € V, FV(f(X)) C {dx} with dx : Dx. Let
X eV and [f(X)]n'e'[v/dx] = false for some v € Dx and environments n',&’.
Then, for any predicate formula ¢ and arbitrary environments n, e,

0], (0¥ AYildy) ay, /Y] | ltrue/ X (v)e

91, ., PO A Yildv))ayy/ Vi) | mlfalse/ X (v)]e

Proof. Let f:V — Pred be a simple function with V' C P, and for all X € V,
FV(f(X)) C {dx} where dx : Dx. Let X € V and [f(X)]n'e'[v/dx] = false for
v : Dy and environments 7, &’. By induction on the structure of subformulae 1)
of ¢, we show that for environments 7, ¢,

4], T AYildv)ayy /Y] rlerue/ X (v)e

], _, ) A Yildy)) /] e/ X (v)e

Base Cases

e 1 = b Since the evaluation of b does is not affected by the environment 7, the
claim holds in this case.
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e ¢ = Z(e). We distinguish two subcases: Z = X and Z # X.

Subcase: 7 = X.

[X@], _, (PO A Yildy))ay /Y] | mltrue/ X ()
= {Definition of substitution}

[£(X)le/dx] 7 X (e)] mitrue/ X (v)]e
= {Definition of [_]}
Lf(X)[e/dx]Inltrue/ X (v))e and nltrue/ X (v))(X)(s(e))
= {Lemma 3}
[/ (X)Inltrue/ X (v)]e[e(e) /dx] and nftrue/ X (v)](X)(=(e))

We have that either e(e) = v or g(e) # v. First, consider the case when
ele) = .

[£(X)]n[true/ X (v)le[e(e) /dx] and nltrue/X (v)](X)(e(e))
= {Case e(e) = v}

[£(X)]n[true/ X (v)le[v/dx] and nltrue/ X (v)](X)(v)
= {[f(X)]n'e'[v/dx] = false and Corollary 1}

false

= {Definition of environment n[false/X (v)]}
nlfalse/ X (v)](X)(v)

[£(X)[e/dx]]nlfalse/ X (v)]e and nifalse/X (v)](X)(v)
= {Definition of substitution and [ ]}

(X (@], _, () AYildv)ayy /Y] e/ X (0)e
Now we consider the case when e(e) # v. Let w = £(e).

[£(X)]n[true/ X (v)le[e(e) /dx] and nltrue/X (v)](X)(e(e))
= {Case ¢(e) # v; e(e) = w}
[£(X)]nltrue/ X (v)le[w/dx] and 1(X)(w)
= {f is simple, Lemma 2; w # v}
[£(X)]n[false/ X (v)]e[w/dx] and nlfalse/ X (v)](X)(w)
= {Lemma 3; w = ¢(e)}
[£(X)le/dx]]nlfalse/ X (v)]e and nlfalse/X (v)](X)(w)
= {Definition of [_] and substitution}

[x@], _, (PO AYidy))ay/ Vi) | nlfalse/ X (v)]e
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Subcase: X # Z.

[z, _, ) AYildy))iar )/ Vi) [ mltrue/ X (w)e
= {Definition of substitution and [ ]}

[£(Z)[e/dz]Inltrue/ X (v)]e and nltrue/X (v)](Z)(e(e))
= {Lemma 3}

[f(Z)]nltrue/ X (v)lele(e)/dz] and nltrue/ X (v)](Z)(e(e))
= {f is simple; Lemma 2}

[£(Z)Infalse/ X (v)]e[e(e)/dz] and nltrue/ X (v)](Z)(e(e))
— {7 # Xinltue/ X (0)](Z) = nlfalse/ X ()] (2)}

[ (Z)]nlfalse/ X (v)]e[e(e) /dz] and m[false/ X (v)](Z)(e(e))
= {Lemma 3; Definition of [_] and substitution}

[z, _, V) AYildv)ayy Vi) | mlfalse/ X (v)e

Step Case. Assume the following induction hypothesis: for any subformulae v; of
1 and any environments n*, e*,

[[W [yiev(fm) A Yi(in))(dyi>/Yi} ]] n*[true/ X (v)]e*

Hwi [yiev(f(Y;) A E(dn))um/Yiﬂ]n* [false/ X (v)]e*
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o =11 Aho.
[ maa) | (FO) A Yidv))ayy/ Vi [ mltrue/ X (w)]e
= {Definition of substitution}
], _, (PO A Yaldv)) /Y]
A (FO6) AYildy)) /i | nltrue/ X (0)]e
= {Definition of [_]}
L], POV A Yildy)) g,/ i | mltroe/ X ()
and [ | (F() A Yidv)ay, / Vi) [ nltrue/ X (v)]e
= {Induction hypothesis}
], L (V) A Yildy))ay, /i | lfalse/ X (v)e
and [ (F(¥) A Yildv))iay,)/ Vi) [lfalse/ X (0)e
= {Definition of [ ] and substitution}
[winea)| (P00 AYildy) ar,y /Y] | ifalse/ X (v)e

Y, eV

e ) =11 V 1o. Symmetrical to the case where 1) = 11 A 5.

° w =Ve:FE. ¢1~

Vel (FO0) A Yild) /i [ ltrue/ X (0)]e
= {Definition of [_]}

forall ¢ € B, [i| _ (F(Y) AYi(dy)ay,/Yi] | mitrue/ X (0)]ele /€]

Y, eV
= {Induction hypothesis}

for all ¢ € . [ui[| (/¥ AYildy)) ) /Y] [ mifalse/ X ()l fe]
= {Definition of [ ]}
[VeBowi | (F0G) A Yildy)iar,)/ Vi | lfalse/ X (v)]e

Y;eV
e ) = Je:E. ;. Symmetrical to the case where ¢ = Ve:E. 1.
O

Lemma 10. Let & be a closed PBES and let f : bnd(&) — Pred be a simple,
capture-avoiding function. Let G = (S, —) be a relevancy graph for &. Assume
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that (Y, w) € S iff [f(Y)]ne[w/dy] holds for all environments n,e. Then, for any
(X,v) € S and for all environments n,e, we have that

[oxInelo/dx] = [ox |, (FO0) AYildv)ay) /i [ melo/x]

Proof. Let & be a PBES, f : bnd(&) — Pred a simple, capture-avoiding function,
and G = (S,—) a relevancy graph for &. Assume [f(Y)]ne[w/dy] holds for
any environments 7, iff (Y,w) € S. Consider some state (X,v) € S where
cX(dx : Dx) = ¢x is an equation in &, and consider environments 7,&’. We
aim to prove the following:

oxIne'lofdx] = [ox |, (FOR) AYildv)) ) Vi) [ne'lv/dx]

We proceed with induction on the structure of subformulae ¥; of ¢x. In other
words,

[idnelv/dx] = (F() A Yildy,))av,) / Vi | melo/dx]

for some environment €. Without loss of generality, assume that dx is free in ¢x.
Observe that by Definition 4, during the evaluation of a predicate formulae, the
predicate environment is not modified and thus, evaluations of subformulae rely
on the same predicate environment as ¢x. Additionally, since dx is free in ¢x,
evaluations of subformulae using some environment ¢ must satisfy € = e[v/dx].

[[% {Yiebnd(o@)

Base Cases:
e 1y = b. Follows from the definition of syntatic substitution.

e p=Y(e). Let e[v/dx](e) = w.
(F(Z:) A Zildz))az,) /%) | nelv/dx)
= {Definition of syntatic substitution}
[F(Y)le/dy] AY (e)lne[v/dx]
= {Definition of [_]}
[F(Y)le/dyInelv/dx] and [Y(e)]ne[v/dx]
= {Lemma 3}
[f(Y)]nelelv/dx](e)/dy] and [Y(e)[ne[v/dx]
= {ev/dx](e) = w}
[f(V)Inelw/dy] and [Y (e)]ne[v/dx]

We distinguish two cases: (Y,w) € S and (Y,w) ¢ S
* (Y,w) € S. By assumptlon we have [[f( ) ’5’[w/dy] for some 7', ¢’.

It follows from Corollary 1 that Vn*,e*. [f(Y)]n*e*[w/dy] = true. We
proceed with our proof:
[f(Y)]nelw/dy] and [Y (e)]nelv/dx]
= {Vn*, " [f(Y)]n"e*[w/dy] = true}
[Y (e)]nelv/dx]

[[Y(e) [ziebnd(g)
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* Y(w) ¢ S. It must be the case that (X, v) 4 (Y, w). Since G is a relevancy
graph for &, by Definition 23,

~In", e [ox]n*[true/Y (w)le*[v/dx] # [px]n*[false/Y (w)]e™[v/dx]
Rewriting the quantifier yields the following;:

vn*,e*. [ox]n*[true/Y (w)le*[v/dx] = [¢x]n"[false/Y (w)]e*[v/dx]
(11)
In other words, the outcome of the evaluation of [Y(e)]nelv/dx] =
n(Y)(e[v/dx](e)) = n(Y)(w) does not affect the solution to [¢x [ne’[v/dx].
Still, we may show that we arrive at [Y (e)]ne[v/dx]. By definition of
[_] and Equation (11), we have that

[Y (e)]nelv/dx]
[Y (e)lnltrue/Y (w)]efv/dx] (12)
[Y (e)]nlfalse/Y (w)le[v/dx]

By assumption, [f(Y)]n'e'[w/dy] = false. It follows from Corollary 1
that

' et [f(Y)]n*e* [w/dy] = false

We now argue as follows:

[f(¥)]ne[w/dy] and [Y (e)]nelv/dx]
= {vn*,e". [f(Y)]n*e*[w/dy] = false}
false
= {elv/dx](e) = w}
[Y (e)]nlfalse/Y (w)]e[v/dx]
= {Equation (12)}
[Y(e)]nelv/dx]

Step Cases: Assume the following induction hypothesis: for all subformulae v; of
¢x and any environments n*, £*, the following holds:

[ln"s"fo/dx] = s (F(Y5) A Y5(dy,)) ) /5] | e o/ dx]

Y, €bnd(&)
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® dox =1 Niho
[11 A ap2]melv/dx]
= {Definition of [_]}
[v1]nelv/dx] and [¢2]nelv/dx]
= {Induction hypothesis}
6 400 305 i

[[w2 |:YiEbnd(<§) (‘f(Y;) N YVZ(de))(dyﬁ)/Yz:| :|:| 77€[U/dx]
= {Definition of [_]}
[[wl [Yiebnd(é’) (FOa) A E(dm))wm/Yi} A

U, o PO A i) ay /i [/
= {Definition of substitution}
[ nua)| (F(Y) A Yi(dy,))ay /Y] | melo/dx]

Y; ebnd(&)
e ¢ox =1 V 1hy. Symmetrical to the case ¢px = 11 A Y.

o Ve:E. 1.

[Ve:E. ¢n]nelv/dx]
= {Definition of [ ]}

for all €' € E. [y1]nelv/dx][e’ /€]
= {dx is free in ¢x; dx # e}

for all € € E. [¢1]nele’/e][v/dx]
= {Induction hypothesis}

for all ¢’ € E. [ (F(Y3) A Yildy,)) a) /Y] | mele! fellv/dx]

Y; €bnd(&)
= {Definition of [ ]}

[veBo o (P05 AYildy))a /Y] relo/dx]

Y; €bnd(&)

e Je:E. ¢;. Symmetrical to the case Ve:E. 1.
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