Technische Universiteit
Eindhoven
University of Technology
Department of Mathematics and Computer Science
Formal System Analysis Group

Modeling and Verifying
Concurrent Data Structures

Master Thesis

Roxana Paval / 0834605

Supervisors:
dr. S.P. (Bas) Luttik

dr.ir. T.A.C. (Tim) Willemse

Eindhoven, January 2018

Abstract

Concurrent data structures can be used to communicate between parallel processes in a system.
The challenge in manipulating these objects arises from the many possible ways in which the
processes can interleave. To ensure correct executions, the system should fulfill linearizability.
Verifying linearizability consists of checking that every concurrent execution is equivalent to some
sequential execution that respects the runtime ordering of methods. This work proposes building
two process specifications of the object using the mCRL2 language. The concrete specification
is built according to the implementation of the concurrent data structure, while the abstract
specification is linearizable by construction. Then, linearizability can be tested by checking that
their respective labeled transition systems, generated from the mCRL2 tool, are equivalent. This
approach was applied on a number of concurrent data structures, and it detected both correct and
faulty implementations.

Modeling and Verifying Concurrent Data Structures i

Contents

Contents ii
Listings iii
Glossary and Acronyms iv
1 Introduction 1
2 Preliminaries 3
2.1 Linearizabilityo 4
2.2 Labeled Transition Systems L 7
2.3 mCRL2 e 8
2.4 Verifying Linearizability oo 12
2.4.1 Formalization of proof techniques 13

3 Treiber’s Stack 16
3.1 mCRL2 specifications 17

4 Linearizability in mCRL2 22
4.1 Defining specifications e 22
4.1.1 Concrete specification L oL L 23

4.1.2 Abstract specification 24

4.2 Verification e e e 26

5 Case Studies 28
5.1 Concurrent set 28
5.1.1 Coarse-grained set 28

5.1.2 Fine-grained set 31

5.1.3 Optimisticset 33

5.1.4 Lazyset e 36

5.2 Non-blocking queue. 37

6 Results 41
7 Related Work 43
8 Conclusion 44
Bibliography 45
Bibliography 45
A TImplementation of concurrent data structures 47
B Concrete specifications of case studies 52
Modeling and Verifying Concurrent Data Structures ii

Listings

2.1
2.2
3.1
3.2
3.3
4.1
4.2
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
Al
A2
A3
A4
A5
B.1
B.2
B.3
B.4
B.5

Stack process specification in mCRL2 10
Most general client of a stack 11
Implemetation of push and pop methods of Treiber’s stack 16
Concrete specification of Treiber’'s stack 17
Abstract specification of Treiber’s stack 20
Snapshot of the Treiber’s stack concrete specification 24
Atomic process defined in an abstract specification 0oL 25
Data structures of the coarse-grained set 28
Data specification of the coarse-grained set 28
Implementation of the add method of the coarse-grained set 29
Method specification of the coarse-grained set 29
Client of the coarse-grained set 30
Start process of the coarse-grained set 30
Action refinement of the coarse-grained set 30
Implementation of the add method of the fine-grained set 31
Data specification of the fine-grained set 31
Method specification of the fine-grained set 32
Start process of the fine-grained set oL oL 33
Implementation of the add method of the optimisticset 33
Data specification of the optimisticset 34
Method specification of the optimisticset 35
Start process of the optimisticset L oo 35
Implementation of the remove method of the optimisticset 36
Data specification of the lazy set 36
Data structures of the non-blocking queue 37
Implementation of the enqueue method of the non-blocking queue 37
Data specification of the non-blocking queue 38
Method specification of the non-blocking queue 39
Client of the coarse-grained set 39
Start process of the non-blocking queue oo 39
Action refinement of the non-blocking queue 40
Implementation of the coarse-grained set 47
Implementation of the fine-grained set 48
Implementation of the optimisticset 49
Implementation of the lazy set L. 50
Implementation of the non-blocking queue 51
Concrete specification of the coarse-grained set 52
Concrete specification of the fine-grained set 54
Concrete specification of the optimisticset 56
Concrete specification of the lazy set 58
Concrete specification of the non-blocking queue 60

Modeling and Verifying Concurrent Data Structures iii

Glossary and Acronyms

abstract specification A specification obtained from the concrete specification by adding an
atomic layer; by this construction, the specification is linearizable. 2, 13

CAS Compare-And-Swap. 16

concrete specification A specification that formalizes the implementation of the concurrent
data structure; this includes the execution histories. 1, 23

event An invocation or a response. 4
history A sequence of events. 5

LP linearization point. 1, 12

LTS labeled transition system. 2, 7

prime action An action that is either an invocation or response marked with prime. 23

Modeling and Verifying Concurrent Data Structures iv

1. Introduction

The advancements realized in multiprocessor architectures have made it desirable to build con-
current systems, where parallelism is employed. Specifically, the system consists of a number
of threads running in parallel, where each thread is a sequential process. These processes can
communicate either via message-passing or via shared-memory, where the second method of com-
munication is the focus of this work.

In a shared-memory architecture, the data is captured by shared objects, which are data structures
in the memory. The data structure has a type that determines the values that can be stored, and
a set of methods that facilitate interaction with it. Since this data structure can be manipulated
by parallel threads, it should support concurrent execution of methods. Data structures that
have been designed to allow for concurrent executions are called concurrent data structures. The
challenge that arises when designing for concurrency stems from the many possible ways in which
processes can interleave. To ensure that the data accessed and written in an object is correct,
synchronization mechanisms are employed. These mechanisms safeguard the data by allowing
threads to manipulate it only under certain conditions, such as accessing the object in an exclu-
sive manner or verifying that the object has not changed from the previous access. To guarantee
that the concurrent executions are correct, the behavior of the concurrent data structure should
be characterized through a correctness property.

All notions of correctness for concurrent data structures are based on some notion of equivalence
with sequential behavior [14]. The reason behind this notion is quite straightforward: sequential
data structures can be defined in terms of pre- and post-conditions, since the methods of the data
structure are executed one by one. Thus, any intermediate states that may occur while a method
is still executing may be safely ignored. However, this is not the case for a concurrent data struc-
ture, since its methods can be invoked by parallel processes. In this case, the intermediate states
might influence the net effect of the methods, and cannot be ignored anymore.

One correctness property that applies to concurrent systems is linearizability. Informally, the
observable behavior of a linearizable system illustrates that changes on the system occur instan-
taneously at a given point, where a change on the system represents a modification of one of its
respective objects. Thus, it is desirable for a system to be linearizable when dealing with con-
current processing. In this context, the execution of a method starts with an invocation, which
provides the required input, and concludes with a response, which provides some output. The
method takes effect at some moment between its invocations and its response, where this moment
is called a linearization point (LP). Linearizability can apply to systems where multiple objects are
shared, and it maintains the modularity of the system. The reason behind this is that a concurrent
system is linearizable if and only if every object is linearizable 77?.

The most intuitive approach of proving linearizability is identifying the linearization point of
each method, and checking that this point is the only moment where the object is modified. This
approach would require fixed LPs, meaning that there is one statement that modifies the data
structure in all possible executions. However, there are concurrent methods that contain non-
fixed LPs ([12], [11], [9]), meaning that the LPs might depend on the current execution history
or other characteristics of the system. As mentioned above, an object can be shown to be cor-
rect by establishing an equivalence between its concurrent behavior and its sequential behavior.
Thus, proving that the object is linearizable boils down to verifying that every possible execution
histories is consistent with some sequential execution histories. In this context, another approach
to proving linearizability is using trace refinement checking [17], where a concrete specification

Modeling and Verifying Concurrent Data Structures 1

CHAPTER 1. INTRODUCTION

refines an abstract specification. The concrete specification represents the behavior of the system.
The abstract specification restricts the execution histories of the object to those that are lineariz-
able. Then, the set of execution traces of the concrete specification should be a subset of the set
of execution traces of the abstract one in order to establish linearizability. This approach does
not require identifying linearization points. The work in this report builds on this approach, by
building concrete specifications of the concurrent data structures and verifying their equivalence
with the abstract specifications.

The specifications in this work are built using mCRL2, which is a process algebra with an as-
sociated toolset [10]. A process algebra can be used to formally specify concurrent systems, by
describing the behavior of the system through user-defined actions. Complex behavior can be
specified using operators to compose actions, as well as processes. The mCRL2 language contains
operators to define parallel behavior, and it can include data in the processes and actions. Based
on a specification, mCRL2 can generate a labeled transition system (LTS), which serves as the
underlying semantic model of the system. The equivalence between specifications is then expressed
on the labeled transition systems. One limitation of this approach is verifying concurrent data
structures with infinite domains or unbounded number of processes. While this type of data struc-
tures can be modeled in mCRL2, the corresponding LTS cannot be generated.

The methodology described here can be applied on different classes of concurrent data struc-
tures. The semantic models can be generated for objects that are used by a finite client, namely
a client consisting of a fixed number n of threads running in parallel, where each thread calls
non-deterministically a fixed number m of methods. Applying this methodology on a number of
concurrent data structures ([14], [21], [20]) provides expected results, namely both linearizable
and faulty implementations are detected.

Chapter 2 introduces the essential concepts of this work, namely defining and verifying lineariz-
ability, presenting the mCRL2 language and introducing the semantic model. Chapter 3 presents
Treiber’s stack, which serves as a motivating example. Chapter 4 formalizes the methodology of
modeling and verifying concurrent data structures in mCRL2. Chapter 5 showcases the models
of various data structures, while Chapter 6 presents the results of verifying them. Chapter 7
discusses related work, and Chapter 8 concludes the report.

Modeling and Verifying Concurrent Data Structures 2

2. Preliminaries

A system can consist of a number of threads running in parallel, where a thread is considered to
be a sequential process. The parallelism of such a system arises from the possible interleavings
occurring when operations are executed by the different threads. The communication amongst
these threads can happen either via message-passing or via shared memory. This work focuses on
communication via shared memory. This shared memory can be represented as a data structure.
However, not all data structures allow correct operations when accessed in a parallel system. Data
structures that have been designed to support concurrent access (i.e. reads and writes) are called
concurrent data structures [19].

To define the correctness of a system, the notion of safety should be introduced. In general,
safety of a program or a system states that some unwanted (i.e. bad) behavior should never
happen. In this context, sequential correctness can be expressed by some safety property [14].
This can be achieved because the semantics of a sequential data structure can be expressed in a
straightforward manner, by defining how the states change according to the methods. For exam-
ple, assume a counter is provided as the sequential data structure. The only method allowed on
the counter is increase. The transition function is quite simple: if the system is in a state where
the counter has value x, then after executing increase, the counter will have value x + 1. This
reasoning does not hold for a concurrent data structure, due to many possible interleavings that
can happen on the data structure. An example is shown in Figure 2.1, where the method increase
is executed twice, both in a sequential setting and a concurrent setting. While in the sequential
processing, the internal actions of the method are processed one at a time, in the concurrent pro-
cessing, it can happen that the internal actions are ordered in such a way that information gets
overwritten. To mitigate for this kind of information loss, a synchronization mechanism should be
used. Then, the data structure can be checked whether it satisfies a correctness property.

read counter x : 4 x=4 read counter x : 4 x=4

calculate x + 1: 5 read counter x : 4
write 5 > x x=5 calculate x + 1: 5

read counter x: 5 write 5 ->x

calculate x + 1: 6 calculate x+ 1: 5

write 5 -» x

Ed
I
%3]

write 6 > x

Figure 2.1: Left: Sequential processing. Right: Parallel processing

Linearizability is such a correctness property. In general, correctness properties are established
by finding an equivalence between the concurrent behavior and a sequential behavior. Hence,
reasoning about a concurrent data structure could be transformed into simpler reasoning about
its sequential equivalent. Additionally, verifying that a concurrent data structure is linearizable
ensures that all possible interleavings of the operations of this data structure will reach a correct
state. The next section provides a formal definition of linearizability. Concurrent data structures
should be abstracted into a model. Subsequent sections describe a way to represent and model
processes. Finally, methods to verify linearizability are given.

Modeling and Verifying Concurrent Data Structures 3

CHAPTER 2. PRELIMINARIES

2.1. Linearizability

Linearizability is a correctness property for concurrent data structures, which ensures that certain
undesirable behavior cannot occur. Intuitively, when reasoning about this type of correctness
property, two requirements seem to make sense. First, each operation should appear to take ef-
fect instantaneously, to ensure that changes on the system (i.e. data structure) are consistent.
Second, the order of non-concurrent operations should be preserved. Linearizability meets these
requirements, providing the illusion that each operation applied by concurrent processes takes
effect instantaneously at some point between its invocation and its response [15].

To define linearizability, a few notions should be introduced. Firstly, a concurrent system consists
of a collection of sequential threads of control called processes that communicate through shared
data structures called objects. Each object has a type, which defines the set of possible values,
and a set M of primitive methods that provide the only means to create and manipulate that
object [15]. This idea is demonstrated by the following example.

Example 2.1. (Stack) A stack is a data structure, whose elements are processed in a last-in-
first-out order. Implementations of the stack usually have a pointer referring to the latest element
added, called top. The stack then allows for two methods: adding an element at the top of the
stack (i.e. push), or removing and returning the element from the top (i.e. pop). The stack is
stored in the shared memory as a linked list, and it can be accessed by many threads at the same
time. However, without a manner to properly handle concurrent access and modification of the
data structure, the stack might not behave correctly. An example of a stack, storing integer values,
can be seen in Figure 2.2.

The stack object stores elements of type T', and the set M consists of following methods:
{push(T a), pop(): T}. Additionally, the stack is a recurring example throughout the chapter.

Top

16

128 | null

\ 4
[os]
\ 4
=

y

Figure 2.2: Example of a stack with integer elements

Linearizability was formally defined by Herlihy and Wing [15], and this definition concerns arbi-
trarily many objects. However, we assume only one shared object in the system. This assumption
is based on the fact that objects do not interact with, and thus influence, each other. Hence,
information about the name or the type of the object may be stripped from subsequent examples
and concepts.

The only option for manipulating an object is through calling its methods. Each method call
has an invocation and a response associated with it. An invocation denotes the moment when the
method call is initiated. A response denotes the moment when the method finishes its execution.
Let z be an object, and let M be the set of methods allowed by the object. Each method has
associated with it an invocation event and a response event. The invocation event might have
some arguments, while the response event might return some values. Let S denote the set of
processes that can interact with the object.

Definition 2.2. (Invocation and response events) An invocation is formally represented as
<x, Miny (args=), P>, where x is the object name, m € M is the method name, args= is a sequence
of arguments, and P € S is the process calling the method. A response is formally represented as
<x, Moypes(Tesk), P>, where res* may be a sequence of results. An event is either an invocation or
a response [15].

Modeling and Verifying Concurrent Data Structures 4

CHAPTER 2. PRELIMINARIES

Example 2.3. (Events for the stack methods) Consider the stack z shown in Figure 2.2.
Popping the top of this stack may give rise to the following events: <popim,(), P>7 <p0pres (16), P>.
This method call terminates successfully and provides as a result 16, i.e. the value from the top
of the stack.

Pushing the element 64 may render the following events: <pushim, (64), P>, <pushms()7 P>. This
method call terminates successfully and returns no values, thus the sequence of results is empty.

Herlihy and Wing introduced the notion of a history. Formally, a single execution of a concurrent
system can be modeled by a history, which is a finite sequence of events. In a history, a response
matches an invocation if it is the first response whose object name and process name agree [15].

Definition 2.4. (Matching response) Let e, be an invocation in a history eg,e1, ez, -+ , e,
meaning that e; is of the shape <:v,mmv(argsl*),P>. The matching response is the event ey,
where k < [, e; is of the shape <x,mres(resl*),P>, and #i with & < ¢ < [such that e; =

<x7 Myes(resa#), P>.

Given a history H, an invocation might not always have a matching response. When this happens,
the invocation is said to be pending. Furthermore, complete(H) is the maximal subsequence of H
without pending invocations [15].

Example 2.5. (Complete history) Consider the following history on the shared stack :
H = <pUShmu (4)a P>7 <pu<9him)(2)a Q>a <p0pinv(>y R>7 <pu<9h7'es()a P>7 <p0pres (4)7 R>
Then, complete(H) = <pushim)(4), P>7 <popmv(), R>, <push,es(), P>, <p0p,,es(4), R>.

Definition 2.6. (Sequential history) A history H is sequential when the following three con-
ditions are met: (1) the first event of H is an invocation; (2) each invocation, except possibly the
last, is immediately followed by a matching response; (3) each response is immediately followed
by an invocation.

Equivalently, a history is sequential when it is composed of alternating invocations and responses,
where an invocation and its succeeding response are matching. In this context, a history that is
not sequential is said to be concurrent.

The histories can be projected on a given process or on a given object, resulting in different
subhistories. Thus, a process subhistory, denoted H|P, of a history H is the subsequence of all
events in H executed by process P. An object subhistory H|z is similarly defined for an object x.
The notion of equivalence among histories uses process subhistories: two histories H and H' are
equivalent if for every process P, H|P = H'|P [15].

Furthermore, processes are assumed to be represented as sequential threads. Thus, each pro-
cess calls a sequence of methods on objects, alternatingly issuing an invocation and then receiving
a matching response. This is the underlying concept for the notion of well-formed histories. Thus,
a history H is well-formed if each process subhistory H|P of H is sequential. All histories consid-
ered in this work are assumed to be well-formed [15].

In a history H, an operation o is defined as a triple consisting of an invocation and its match-
ing response, as well as an execution id, which is a natural number representing the position
of the operation in the process subhistory. Let eld be the number of operations that have al-
ready finished on the process plus 1. A shorthand notation is used for denoting the events in
an operation o, namely inv(o) denotes the invocation of o, res(o) its response. Thus, an oper-
ation o = (inv(0),res(0),eld). Furthermore, a process subhistory can be expressed as follows:
01, 09, ..., O, Where o; are operations, for 1 < ¢ < k. Hereafter, each operation is uniquely identified
by the combination of the process id and the execution id.

Modeling and Verifying Concurrent Data Structures 5

CHAPTER 2. PRELIMINARIES

Example 2.7. (Histories) Consider the following histories:

H, Hy

POPiny (), P), pushin,(256),Q),
(pushiny(256),Q), (pushyes(), Q).
(pushres(), Q), {popins(), P),
{popres(256), P), {popres(256), P),
(pushin,(2), P), (pushiny(2), P),
(pushies(), P) (pushyes(), P)

In the two histories H; and Hs, P and () are the process names. The invocations include the
method name and, possibly, arguments, e.g. push;,,(256), and the responses may include the
returned values, e.g. pop,s(256). Since the operation push(256) is the first operation executed by
process @, its execution id is 1. Thus, the operation push(256) on process @ consists of the fol-
lowing triple: <<pushmv(256), Q>, <resPush(), Q>, 1>. Then, res(push(256))) = <TesPush(), Q>.

The history H; is concurrent, while history Hs is sequential. When projecting on the two pro-
cesses, the following subhistories are obtained:

Hi|P : {popiny(), P), {popres(256), P), {pushin,(2),P), {pushes(),P),

H|Q : <pushmv(256), Q>, <pushres(), Q>,

Hs|P : {popiny(), P), {popres(256), P), {pushin,(2),P), {pushes(),P),

H,|Q : <pushmv(256), Q>, <pushres(), Q>,

The histories H; and H, are equivalent, since their subhistories are equivalent for all processes.

The execution of operation o consists of the interval between its invocation and its response events.
Two executions can overlap, meaning that both operations have been invoked before either of them
returned. In contrast, two executions can also be ordered sequentially, meaning that one operation
has returned before the other operation has been invoked. Then, a history H induces an irreflexive
partial order <y on operations: 01 <pg 09 if res(o1) precedes inv(o2) in H. Operations unrelated
by <p are said to be concurrent. If H is sequential, then <p is a total order [15].

The history H; in the above example induces the following partial order among operations:
pop() <m, push(2) and push(256) <m, push(2). The operation pop() consists of the following
triple: <<popim,(), P>7 <popres()7 P>7 1>; similar definitions can be given for the other two oper-
ations. Considering there is no ordering between the operations pop() and push(256), these two
operations are concurrent. On the other hand, the history Hs induces a total order, meaning that
any two distinct operations are comparable: push(256) <p, pop() <m, push(2).

In general, correctness for concurrent data structures is based on some type of equivalence with
sequential behavior. To formally define such a sequential specification, a few notions should be
introduced. A set K of histories is prefiz-closed if, whenever H is in K, every prefix of H is also
in K. A single-object history is one in which all events are associated with the same object [15].
Both histories given in Example 2.6 are single-object, since all the events (i.e. invocations and
responses) are executed on the same stack.

Definition 2.8. (Sequential specification) A sequential specification for an object is a prefix-
closed set of single-object sequential histories for that object. A sequential history H is legal if
each object subhistory H|z belongs to the sequential specification for object x.

Using all the notions introduced thus far, linearizability can be formally defined, encompassing
the idea that concurrent histories may be equivalent to some sequential histories.

Definition 2.9. (Linearizability) A history H is linearizable if it can be extended (by appending
zero or more response events) to some history H’ such that: (1) complete(H') is equivalent to
some legal sequential history Lg; (2) <gS<r4 [15].

Modeling and Verifying Concurrent Data Structures 6

CHAPTER 2. PRELIMINARIES

Thus, when a history contains pending invocations, two options are available: append a matching
response or remove the invocation altogether. This decision is based on whether the invoked
operation has had effect on the state of the system. If an operation has changed the state, but it
has not returned a response yet, then a matching responses is added to the history. Otherwise,
since the operation had no effect on the system, it can be removed safely.

Example 2.10. (Removing or appending)

Given the history: <pushinv(32),P>, <popim,(),Q>7 <popms(32),Q>7 the invocation of push is
pending. Since the pop operation succeeding this invocation terminates successfully and returns
32, then the push operation has had effect over the state of the system, and a matching response
<pushres(), P>, is appended.

Given the history: <pushim(32),P>, <popim,(),Q>7 <popres(16),Q>, the invocation of push is
also pending. Since the pop operation succeeding this invocation terminates successfully and
returns 16, the push operation has not yet changed the state of the system. This invocation can
be removed.

In Example 2.6, the history H; is linearizable. There exists a legal sequential history Hs, such
that H; and Hs are equivalent, satisfying the first requirement of the definition. Furthermore,
the ordering induced by H; is included into the ordering induced by Hs, satisfying the second
requirement. In this case, Hs is a linearization of Hj.

Linearizability is a local property, meaning that a concurrent system is said to be linearizable
whenever each individual object is linearizable. This locality principle supports the assumption
of one shared object in the system. Additionally, an object is linearizable if all its concurrent
histories are linearizable with respect to some sequential specification [15].

2.2. Labeled Transition Systems

As mentioned above, a concurrent system is a parallelization of some sequential processes. While
parallel processes can perform one or more actions at a given moment, a sequential process can
perform at most one action at a given moment [23]. The order in which the actions occur within
the processes defines the behavior of the system [10]. To capture this behavior, a labeled transition
system(LTS) can be used.

Definition 2.11. (LTS) A labeled transition system is a four-tuple L = (S, Act, —, s), where S
is a set of states, Act is a set of actions, —» € S x Act x S is a transition relation, and s € S is the
initial state.

The communication in a concurrent system can occur through a concurrent data structure. In
this context, methods are used to access and manipulate the data structure. A method consists
of a number of statements. Then, the set Act contains actions that represent those statements.
Furthermore, a transition label can be either a visible or an invisible action. The 7-transition is
the only transition labeled with an invisible action, and 7 € Act. Given an LTS L, a finite path is a
sequence of alternating states and actions, starting and ending with states 7 = <so, g, 81, al...sn>,
where (s;, a;, $;+1) € —, for all . Then, a path of the LTS is a path in which the first state cor-
responds to the initial state, i.e. sg = s. Given a path m, the weak trace of 7 is then the sequence
obtained by omitting states and invisible actions [17].

The LTS can capture the behavior of a system by recording its possible executions. This implies
that an LTS can serve as the underlying semantic model for the defined processes. Furthermore,
two different processes might behave in an equivalent fashion. Thus, one can check if the semantic
models of two processes are equivalent, expressed by giving an equivalence relation (e.g. bisimi-
larity) between them. The chosen equivalence relation might vary depending on the requirements

Modeling and Verifying Concurrent Data Structures 7

CHAPTER 2. PRELIMINARIES

on the system, for example ensure that the two processes behave equivalently or that the two pro-
cesses contain the same traces. Two equivalence relations relevant in the context of linearizability
are described in the next two definitions.

Definition 2.12. (Weak trace equivalence [10]) Let L = (.5, Act, —, s) be a labelled transition
system. The set of weak traces for a state t € S is the minimal set weakTraces(t) satisfying:

1. € € weakTraces(t), where ¢ denotes the empty trace

2. if there is a state ¢’ € S such that ¢ > ¢/, where a € Act, a # 7, and o € weakTraces(t'),
then ao € weakTraces(t)

3. if there is a state ¢ € S such that ¢t = ¢/, and o € weakTraces(t'), then o € weakTraces(t)

Two states ¢t and u are called weak trace equivalent iff weakTraces(t) = weakTraces(u). Two
labelled transition systems are weak trace equivalent iff their initial states are weak trace equivalent.

Definition 2.13. (Branching bisimulation [10]) Let L = (.5, Act, —, s) be a labelled transition
system. A relation R € S x S is a branching bisimulation relation if for all ¢, v € S such that tRu,
the following conditions hold for all actions a € Act:

1. if t 5 t/, then either ¢ = 7 and ¢ Ru, or there is a sequence u — --- — ' of T-transitions
such that tRu’ and v % v with ¢/ Ru”.

2. symmetrically, if u — u’, then either a = 7 and tRv/, or there is a sequence t — - -t of
a

T-transitions such that ¢ Ru and ¢ — t" with t" Ru/'.
Two states t and w are branching bisimilar, denoted by ¢ <, u, iff there is a branching bisimulaton
relation R such that tRu. Two labelled transition systems are branching bisimilar if their initial
states are branching bisimilar.

Since an LTS captures the executions of a system, it can also be used to represent the histories
of a system. As mentioned above, an object provides a number of methods, that allow threads
to interact with the object. A method consists of an invocation, a number of processing steps
and a response. However, linearizability is only concerned with operations, which are formed of
invocations and responses. Hence, processing steps should be hidden (i.e. abstracted from). An
LTS is operational when all its visible actions are restricted to invocations and responses of oper-
ations, while all the other actions are invisible (i.e. silent actions). Let o range over the set O of
operations contained in a history. Then Act. = {inv(0), res(0)|Vo € O}u{r}. Consequently, for an
operational LTS L,, a trace through the LTS will then consist only of invocations and responses,
exactly capturing an execution history.

Thus, an operational LTS can be used to represent the relevant execution histories of a concur-
rent system, composed of shared objects. To prove linearizability for an object, all its concurrent
histories should be proven linearizable. This can be translated into a question on LTSs: given an
object shared by parallel processes, generate the LTS of this system, then prove that all traces
satisfy some condition (e.g. traces are linearizable). These proof techniques will be elaborated in
a subsequent section.

2.3. mCRL2

To generate an LTS, process algebra specifications can be used. These algebras are tools to for-
mally specify complex systems, in particular distributed and concurrent systems [3]. Furthermore,
these process algebras are usually equipped with operational semantics, that can be used to gen-
erate transition systems.

Modeling and Verifying Concurrent Data Structures 8

CHAPTER 2. PRELIMINARIES

One process algebra is mCRL2, which is a specification language with an associated toolset [10].
This toolset can receive as input the specification of a process, and then verify certain properties of
that process. This verification may also include proving equivalence with other processes. Then,
two process specifications are given, and the tool can be used to check whether they are equivalent
to each other (e.g. bisimilar or weak trace equivalent). The process specifications need to be
expressed in the mCRL2 language, which is based on the Algebra of Communicating Processes

(ACP) ?7.

Operator Syntax Informal Semantics
multi-action alp actions « and 3 occurring at the same moment
. - non-deterministic choice between the two pro-
alternative composition p+q
cesses

sequential composition p.q process p followed by process g

. if condition c is true, then proceed with process
conditional operator c->p<>gq

p, else proceed with process ¢

sum operator

sum n:Nat. p(n)

generalization of the alternative operator: non-
deterministic choice between p(0), p(1), p(2)...

parallel composition

pllg

the first action in process p, the first action in
process ¢, or the communication of the two pro-
cesses

communication operator

comm({a|B -> v}, p)

in process p, the actions a and S must communi-
cate to vy

allow operator

allow({a, B}, p)

in process p, only actions «, 8 and 7 can be exe-
cuted; all other actions are blocked

hide operator

hide({a}, p)

in process p, all instances of « are transformed
into invisible actions

rename operator

rename({a -> 8},p)

in process p, all instances of « are renamed to 3

Table 2.1: mCRL2 operators

The Algebra of Communicating Processes provides elements to specify complex behavior. One
of the building blocks of such a specification are actions. These can be user-defined actions (i.e.
ReturnPush), representing simple events of a system. One can formally compose and define com-
plex behavior from these actions using a set of operators. These operators can be applied on
two processes, actions, or constants, and are described in Table 2.1. Through these constructs,
processes can communicate with each other, and this communication can also be enforced [3].

The specification language mCRL2 extends ACP with data types. Both actions and processes
can be parameterised with data. Then, processes can communicate with each other data via
these parameters. Additionally, by checking conditions on these data, conditional behavior can
be specified. One mechanism to verify that the data fulfills certain conditions is the conditional
operator. Furthermore, data transformation and initialization rules can be defined in an mCRL2
specification by using functions and constructors. Thus, besides composing processes, an mCRL2
specification also allows data manipulation in processes [10].

A concurrent system is comprised of processes running in parallel, that operate on a shared object.
To examine the possible executions of the object, the most general client can be used, as in [26]
and [2]. The most general client of a concurrent object is a process that nondeterministically
invokes all the object’s methods, with all the possible parameters, in an infinite loop. Therefore,
each process represents the most general client. The next example encompasses all the described
concepts.

Modeling and Verifying Concurrent Data Structures 9

CHAPTER 2. PRELIMINARIES

Example 2.14. (Stack process specification) In this process specification, a stack is a col-
lection of nodes, where each node stores some value and a reference to the next node. The stack
process needs to only store the top, which is either null or a list with a pointer to the next node.
A specification in mCRL2 is given in Listing 2.1.

This specification has a Stack process, used as a single point of interaction for reading or modifying
the top variable. This variable has the type Node, which stores an integer value and a reference
to the next node. Furthermore, the Stack process provides actions for accessing and modifying
the top variable.

sort Node = struct null | node(dt: Nat, nxt: Node);

map data: Node —> Int;
next: Node —> Node;

var d: Nat; n: Node;

eqn data(node(d, n)) = d; data(null) = —1;
next(node(d, n)) = n; mnext(null) = null;

act CallPush: Int#Nat; CallPop: Int;
ReturnPush: Int; ReturnPop: Int#Int;
snd _PushNode: Nat; rcv_PushNode: Nat; PushNode: Nat;
snd PopNode: Int; rcv_PopNode: Int; PopNode: Int;
rcv_ReadTop: Node; snd_ ReadTop: Node; ReadTop: Node;

proc Stack(top: Node) = rcv_ReadTop(top).Stack(top) +
sum v: Nat. rcv_PushNode(v). Stack(node(v, top)) +
snd PopNode(data(top)). Stack(next(top));

proc Push(tid: Int, v: Nat) = CallPush(tid, v). snd PushNode(v). ReturnPush(tid);
proc Pop(tid: Int) = CallPop(tid). sum n: Int. rcv_PopNode(n). ReturnPop(tid, n);

proc Thread(id: Nat) = Push(id, 128). Push(id, 4). Push(id, 8). Push(id, 16).
sum t1: Node. snd ReadTop(tl). Pop(id).
sum t2: Node. snd ReadTop(t2);

init hide({ PushNode, PopNode },
allow ({ CallPush, CallPop, ReturnPush, ReturnPop, ReadTop, PushNode, PopNode},
comm({ rcv_ReadTop | snd ReadTop —> ReadTop,
rcv_PushNode | snd PushNode —> PushNode,
rcv_PopNode | snd PopNode —> PopNode
}, Thread (1) || Stack(null))));

Listing 2.1: Stack process specification in mCRL2

As mentioned, there are two methods to interact with a stack: push and pop. These methods are modeled
as different processes in the specification. This way of modeling is motivated by the desire to verify lin-
earizability. Since a linearizability proof requires execution histories, each method can be annotated with
an invocation action and a response actions. Also, each of these processes has as parameter the thread id,
to distinguish between method calls initiated from different processes. The Push process is also param-
eterized with the value to be added in the stack. To push an element v on the stack, communicate this
value to the Stack process, which will create a new node whose value is v and its next pointer references
the current top. Finally, update the top of the stack to be the new node. To pop an element from the
stack, communicate this to the Stack process, which will read and return the value stored in the current
top, then update top to point to the next node of top.

The thread interacting with the Stack process is modeled as a process that has an identifier and calls some
methods of the object. In this scenario, the thread has predefined values that are pushed on the stack.
After all values have been added on the stack, the process reads the content of the stack through the action
ReadTop. The purpose of executing this action is to inspect the contents of the stack. The resulting stack
is the one given as an example at the beginning of the section. Finally, one value is removed from the stack.

Furthermore, the specification enforces communication and abstracts from certain actions. The emphasis
of such process specifications is on invocations, modeled as calls of the methods (e.g. CallPop(tid)), and

Modeling and Verifying Concurrent Data Structures 10

CHAPTER 2. PRELIMINARIES

on responses, modeled as returns of the methods (e.g. ReturnPop(tid)). All the other actions should
be abstracted from, and thus they may appear as arguments for the hide operator. For the purpose of
showing how methods behave on the stack, the ReadT op actions is not hidden.

Finally, the system is represented as a parallel composition of the Stack process and a number of Thread
processes. In this example, only one thread is included. From this mCRL2 specification, a labeled tran-

sition system can be generated. The labeled transition systems then can be reduced modulo a behavioral
equivalence (e.g. branching bisimulation). The resulting LTS is shown in Figure 2.3.

callPush(1, 128} RewmPush(l) /7 CalPush({L, 9 /7 T £y
- i Ay
Returnpush(L)
T _ GalPush(n 6] RetwrnPush(L) 07 T
(} Ny

CallPush(1, 8)

S

Returnfush(L)

Y

S
eadTopinode(18, nede(s, node(4, nede(128, nul))) calPoo(1) T Y ReturnPop(l, 18))
S S TN/ /

ReadTop(node(s, nodg(4, node(128, null)

S

Figure 2.3: LTS generated from the stack process specification

A thread could also be modeled to represent the most general client of the stack. In this case, the thread
would be a process that has an identifier. The thread is making progress by non-deterministically calling
one of the possible methods of an object. In the case of the stack, the thread makes a choice between call-
ing the Push process or the Pop process. Thus, this process would consist of an infinite non-deterministic
sequence of method calls, as given in Listing 2.2. However, mCRL2 imposes some limitations on the
number of states that a generated LTS could contain. An infinite sequence of method calls, with different
parameters, can be specified, but the state space cannot be generated. To mitigate this, each process
should have a fixed number of operations that it can execute. Given a positive number of operations nOp,
the thread still proceeds in a non-deterministic manner. This represents a finite client of the object.

proc Thread(id: Nat, nDone: Nat) = (Push(id, nDone) + Pop(id)).
Thread (id , nDone+1);

Listing 2.2: Most general client of a stack

In the specification given in the previous example, by replacing the given Thread process with
a finite client that executes two methods, the LTS in Figure 2.4 is generated. Furthermore, by
abstracting from all internal actions, and allowing only the invocations and responses of methods
to be visible, the resulting LTS is operational. The thread consists of calling two times all object’s
methods, in any order. Since the stack’s methods are only push and pop, the possible interleav-
ings are: push-push, push-pop, pop-push, and pop-pop. It can also be noticed that all possible
interleavings are present in the LTS.

Modeling and Verifying Concurrent Data Structures 11

CHAPTER 2. PRELIMINARIES

ReturnPushil)

RatwmPop(1, -1}

Figure 2.4: LTS generated from the stack process specification

2.4. Veritying Linearizability

Formally, linearizability is defined in terms of the invocations and responses of high-level methods.
In a real concurrent program, the high-level methods are implemented by algorithms that operate
on concrete shared data structures. Therefore, the execution of high-level methods may allow
complicated interleavings at lower levels. Linearizability of a concurrent object requires that, de-
spite complicated low-level interleaving, the history of high-level invocation and response events
still has a sequential permutation that respects both the runtime ordering among operations and
the sequential specification of the object [17].

Linearizability can be verified through different methods, using both informal and formal reason-
ing. The informal definition of linearizability states that, given a system, each method call should
appear to take effect instantaneously at some moment between its invocation and response. This
time point is considered a linearization point (LP). Thus, the most intuitive approach is to deter-
mine these linearization points for all methods of a concurrent object implementation [14].

Linearization points were also used in [2]. Their approach formalizes the reasoning and inter-
pretation of linearization points. They present a technique for automatically verifying lineariz-
ability. However, this approach is limited to methods of concurrent linked data structures, that
contain fixed linearization points. This solution employs correlating semantics, which consists of
simultaneously analyzing the concurrent implementation with a sequential implementation. Two
disjoint instances of the data structure are maintained: the candidate state, which represents
the interleaved execution and is built by the concurrent implementation, and the reference state,
which is used to build the sequential history. The manipulation of the two instances occurs as
follows: whenever a linearization point in a concurrent method is encountered, the execution on
the candidate state is temporarily suspended to invoke this method with the same arguments on
the reference state. Then, the reference response is saved and compared with the corresponding
candidate response, once the method terminates. If these two responses do not match, then one

Modeling and Verifying Concurrent Data Structures 12

CHAPTER 2. PRELIMINARIES

can conclude that the interleaved execution is not linearizable. This solution builds during runtime
the sequential history (witness) needed to prove that an interleaved execution is linearizable [2].
Furthermore, this algorithm was used for checking linearizability in the tool implemented in [24],
which constructs linearizable concurrent algorithms starting from a given sequential implemen-
tation. This approach demonstrates how linearization points can be used to built the sequential
history necessary for proving linearizability.

Both approaches require linearization points for all methods of a concurrent object. However,
these ideas might not be applicable when the LPs are not fixed in the code of object methods. For
a large class of lock-free algorithms with helping mechanisms, such as [12], the LP of one method
might be in the code of some other method. Additionally, in optimistic and lazy algorithms (see
[11], [8]), the LPs might depend on unpredictable future interleavings [16]. Thus, it is desirable
to reason about linearizability without requiring the knowledge of LPs.

2.4.1 Formalization of proof techniques

Liu et al. proposed expressing linearizability through trace refinement, which is a subset relation-
ship between traces of two given systems. The methods of a concurrent object can be captured
through invocations and responses. Thus, linearizability can then be captured through trace re-
finement of these invocations and responses from a specification to an implementation, where the
specification is correct with respect to the sequential semantics [17].

To reason about shared objects, a shared memory model should be defined. A shared mem-
ory model M is a triple (O, inito, P), where O is a finite set of shared objects, inito is the
initial valuation of the objects in O, and P is a finite set of processes accessing the objects. Then,
an execution of a shared memory model M is modeled by a history. The behavior of M is then
defined as the set H of all possible histories together [17]. Considering that linearizability is local,
one can assume that the set O consists of one shared object, without loss of generality.

To capture the behavior of shared memory models, Liu et al. use labeled transition systems
(LTSs) as their semantic model. Thus, linearizability can be defined as the refinement relation-
ship between two system models (or equivalently two LTSs).

Definition 2.15. (Weak trace refinement) Given two LTSs Ly and Lo, L; refines Lo, written
as Ly 27 Lo, if and only if weakTraces(L1) € weakTraces(Ls).

To prove linearizability through trace refinement of two labeled transition systems, several notions
have to be introduced. Firstly, these LTSs capture two different implementations of a concurrent
object, an abstract one and a concrete one. The abstract implementation is described through a
linearizable specification.

The underlying concept behind the abstract specification is that any linearizable object has within
its methods linearization points, whether fixed or non-fixed. Thus, in any linearizable history, the
moment when the method manipulates the data structure is concentrated in the linearization
point, which modifies the data structure atomically. One way to achieve this, as seen in the corre-
lating semantics solution, is to consider the method as occurring in an atomic block. However, Liu
et. al relax this principle by decomposing a method o, i.e. an operation in a process, into three
atomic steps: the invocation action, the linearization action lin(o), and the response action. The
linearization action performs the computations based on the sequential specification of the object.
In particular, it maps the invocation and the object state before the method call to a new object
state and a response, based on the sequential specification of the object and the old object state.
Then, it changes the object to the new state, and stores the response locally [17]. This approach
allows interleavings of the three actions, but not of the actions within the method body.

Modeling and Verifying Concurrent Data Structures 13

CHAPTER 2. PRELIMINARIES

In this context, each operation o performed by a process is defined as a circular state machine
with three states: (1) an idle state sg, (2) a state s; after the invocation of the method, but before
the linearization action, and (3) a state for every response s(res)s, representing the state after the
linearization action but before returning the response [17]. Figure 2.5 depicts the state machine
for the executions of the method pop, executed by a single process.

res(pop, 2)

res(pop, 8)
res(pop, 4)
Figure 2.5: Circular state machine for the method pop

The invocation and response actions are visible, while all linearization actions are invisible actions.
Each process is then defined as the nondeterministic choice of invoking all the allowed methods.
Then, the semantic model of the linearizable specification is defined as the composition of the
state machines for all processes [17].

Informally, in the abstract specification, the mechanisms for synchronization are removed, since
all state changes happen atomically at the linearization action. This atomicity is enforced when
building the specification, for example by encapsulating all actions in an atomic block. Thus, there
is no need to compare previously read information or to block other processes. This specification
might not be sequential, but it fulfills the linearizability property.

The second specification needed in the trace refinement proof is for the concrete implementa-
tion. The starting point for this specification is the concrete concurrent algorithm, implementing
the methods of a shared object. The implementation model consists of a parallel execution of a
number of processes. The behavior of each process is defined as nondeterministic invocations of all
the methods supported by the object. The execution of program statements are then considered
as actions. Furthermore, local statements, that have no influence over the system state, may be
grouped into one atomic action to reduce the state space of the resulting LTS, since a reduced
LTS might ensure in a faster comparison of the two semantic models. To prove linearizability of
the concurrent algorithm, its histories have to be built. Thus, an invocation action is added at
the beginning of each operation and a response action is added to every return statement of each
operation. All other actions inside the algorithm are treated as invisible actions since they do not
contribute to the histories [17].

Liu et al. formalized linearizability in terms of these two specifications. The underlying assump-
tions for this formalization is that all shared objects have finite domains, and that all processes
have finitely many local states [17]. These assumptions are needed to ensure that the LTSs of the
implementations can be constructed. The following theorem characterizes the refinement relation.

Theorem 2.16. (Linearizability as trace refinement) Let L;,, be the implementation LTS
and Ly, be the corresponding specification LTS. All traces of Ly, are linearizable if and only if
Lim 27 Lsp.

Modeling and Verifying Concurrent Data Structures 14

CHAPTER 2. PRELIMINARIES

The idea behind this theorem is that, for any trace o € weakT'races(Lsp), there is a sequential
permutation 7 of o, that is built based on the order of the linearization actions of all the opera-
tions. This order is established based on the irreflexive partial order induced amongst operations.
That is, if a response of an operation op; has occurred before the invocation of an operation
ops, this also implies that the linearization action of op; has occurred before the linearization ac-
tions of ops, since the linearization actions always occur between the invocation and the response.
Thus, the sequential permutation 7 follows the definition of linearizability as given by Herlihy
and Wing, maintaining the irreflexive partial order induced by o. Furthermore, 7 is a legal se-
quential history of the object, since the object state is only influenced by the linearization action
of every operation, and 7 respects the order of these operations as defined in the execution history.

Liu et al. also proposed an optimization to this approach, using the knowledge of LPs, if avail-
able. The concepts behind this optimization are quite straightforward: when building the abstract
specification, the invocation and response actions are hidden, while the linearization actions are
visible. Additionally, when building the concrete specification, invocation and response actions
are not added anymore, and the only visible actions are again the linearization actions. In both
specifications, the returned values are attached to the linearization actions. The resulting models
contain fewer states, and thus the verification is performed faster, since the comparison is done on
these fewer states.

Yang et al. proposed to verify linearizability by checking if the abstract and the concrete specifi-
cations are branching bisimilar. The abstract specifications are built from abstract objects, which
can be interpreted as concurrent specifications, where each method body of every object method
is a single atomic operation. The concrete specifications are built from the implementation of the
objects, which involve more intricate interleavings and have low-level synchronization mechanisms.
For both types of objects, the methods start with an invocation and end with a response [26].

The choice for branching bisimulation is justified by the fact that client programs expect that
the observable behavior of concrete object programs is equivalent to that of abstract ones. This
equivalence relationship supports the concept, since it is an action-based version of stutter bisim-
ulation that basically allows to abstract from sequences of internal steps [26]. Their claim is
expressed in the following theorem.

Theorem 2.17. (Linearizability through branching bisimulation) Let L. be the concrete
LTS and L, be the abstract LTS. If L. and L, are branching bisimilar, then L. is linearizable.

The idea behind this theorem is that, since L, and L. are branching bisimilar, this implies
that they are also weak trace equivalent. That is, traces(L,) = traces(L.), which implies that
traces(L.) € traces(L,). Thus, by Definition 2.15, L. refines L,. Finally, by Theorem 2.16, one
can conclude that L. is linearizable.

The use of abstract and concrete specifications are fundamental to the proof techniques expressed
thus far. By construction, the abstract specification represents the set of linearizable histories.
This is ensured by having atomic blocks or clear linearization actions. The concrete specification
should be constructed following the methods of the concurrent object. By finding an equivalence
between these two specifications, such as trace refinement or branching bisimulation, one can con-
clude that all the traces of the concrete specification are linearizable. Then, the concurrent object
is also linearizable.

As mentioned, linearizability is a safety property, so its violation can be detected with a finite
prefix of an execution history [17]. Given a tool that can check whether the two specifications
are equivalent, this tool might generate a counterexample when the equivalence relation is not
found. This counterexample represents an execution history generated by the system that is not
linearizable, i.e. the invocations and responses do not respect the sequential specification of the
object. Then, the concurrent object is not linearizable, since a non-linearizable history was found.

Modeling and Verifying Concurrent Data Structures 15

3. Treiber’s Stack

The Treiber’s stack [21] serves as a motivating example for using the methodology described in
the next chapter. In general, a stack is a first-in-last-out data type, which provides two methods:
push, which adds an element at the top of the stack, and pop, which removes the element from
the top of the stack. Any implementation given for the two methods would be broken down into
low-level instructions, executed by the processor. For example, in the pop, the method should
access the top of the stack and modify it to reference the next node (e.g. Top = Top.next).
However, this statement is represented by three instructions: access the current data stored in
Top, get the next node that should become the top of the stack, and replace the data stored in T'op.
Between any two instructions, interleavings from other processes can occur, and the references to
the current data can become outdated. Treiber’s stack mitigates this erroneous manipulation of
data by employing a synchronization mechanism. The implementation details of the two methods
are shown in Listing 3.1.

class Node {
int data; Node next;
Node(int d) {
data = d; next = null;
Iy
Node Top = null; //shared variable
void push(int v) {
bool done = false;
Node x = new Node(v);
while (!done) {
Node old = Top;

x.next = old;
done = CAS(&Top, old, x);
} return;
}
int pop() {
bool done = false;

while (!done) {
Node old = Top;
if (old = null)
return EMPTY;
Node x = old.next;
done = CAS(&Top, old, x);
} return old.data;

}

Listing 3.1: Implemetation of push and pop methods of Treiber’s stack

The stack is implemented as a linked list of nodes, which is referenced by the Top object. A node stores
some kind of data, and a reference to the next node in the list. When adding or removing an element
from the list, the T'op has to be updated. Furthermore, to ensure that no data is lost or overwritten when
updates occur, a synchronization mechanism should be used. In this case, the synchronization mechanism
is non-blocking, meaning that, if a process fails, it cannot propagate that failure to block other processes.
Additionally, Treiber’s stack is also lock-free, meaning that, from all threads present in the system, at
least one is guaranteed to make progress and return from its method.

The Compare-And-Swap (CAS) instruction is used to achieve the synchronization. This is an atomic
instruction, and it requires three parameters: a pointer to the variable to be updated p, the old value of
this variable old, and the new value of this variable new. This instruction checks if the current value of
the variable, accessed through p, is the same as the old value; if this check is successful, then the variable
gets updated to the new value and the instruction returns true. Otherwise, the variable retains the old
value, and the instruction returns false. This synchronization mechanism is employed in both methods of
the stack. The CAS instruction is placed inside a loop, which repeats as long as the instruction is not

Modeling and Verifying Concurrent Data Structures 16

CHAPTER 3. TREIBER’S STACK

successful. If the instruction is not successful, it implies that another thread modified the data structure
and made progress. Eventually, the loop in one of the threads exits and the method terminates.

3.1. mCRL2 specifications

To prove linearizability of a given concurrent data structure, two specifications should be defined: the
concrete one and the abstract one. These two specifications are then compared to each other to check
whether they are weak trace equivalent or branching bisimilar, and thus if linearizability of the concurrent
data structure can be established. The abstract specification is manually obtained from the concrete one.
For the comparison of the two specifications, mCRL2 is used. This requires that the processes representing
the objects should be specified in the mCRL2 specification language.

The first specification is the concrete one, given in Listing 3.2, which contains seven processes. The
first process is the LinkedList, which contains the low-level instructions of managing the memory trans-
actions on the stack. The implementation of a stack uses pointers to reference the memory locations, as
well as to access or modify those memory locations. However, the mCRL2 language lacks the concept of
global memory and variables, which could be referenced from within the processes. Therefore, a process is
introduced to represent the shared memory. The linked list can synchronize with other processes, to enable
them to read or update the contents at the top of the list. The update is achieved by communicating
data through the CAS instruction, whose low-level behavior is implemented by the linked list. However,
actions that do not modify the shared memory are not fine-grained into low-level instructions, since the
emphasis is put on the interleavings of actions that manipulate the shared memory.

The processes Push and PushWhile model the implementation of the push method. Since the purpose
of this specification is to serve as an input for verifying linearizability, invocations and responses of the
methods are relevant in the verification. Thus, every method of the data structure should be annotated
with an invocation and its matching response. Due to this reasoning, the first action of the process Push
is CallPushPrime. For each statement in the implementation, a matching action is added in the concrete
specification, e.g. AssignNext. Additionally, the implementation of the push method contains a while-loop,
which is executed until the CAS instruction succeeds. The only way of expressing a loop in mCRL2 is
through a recursive process, PushWhile. The actions representing the CAS instruction can synchronize
and carry data. The effect of communicating data impacts the local variables of a process, namely the new
value of the Top variable carried by the actions might change the value stored in the LinkedList process.
The last action in the while-loop is ReturnPushPrime. In the implementation of the push method, the
return is empty.

The pop method is modeled through two processes, Pop and PopWhile. The same reasoning regard-
ing invocations and responses applies, thus the first action of the Pop process is CallPopPrime. The
pop method also contains a while-loop, modeled in the same way as the previous method. This process
can either try to pop an empty stack, and then the action ReturnEmptyPrime is taken, or try to pop a
non-empty stack until the CAS succeeds. In the latter scenario, the last action of this process is Return-
PopPrime, containing the element removed from the stack.

The previous processes employ the CAS instruction, which consists of two actions. The first one is
accessing the linked list, which will then check the received information against its current value. The
second action is providing a result, representing the success of the instruction. These two actions should
be modeled as one atomic step, to represent the execution of the CAS instruction. One way of modeling
this behavior is to use the multi-action facility of mCRL2.

sort Node = struct null | node(data: Nat, next: Node);

act rcv_ReadTop: Node; snd ReadTop: Node; ReadTop: Node;
rcv_CAS: Node#Node; snd CAS: Node#Node; CAS: Node#Node;
rcv__Result: Bool; snd_ Result: Bool; Result: Bool;
CallPush: Nat#Nat; CallPop: Nat;
ReturnPush: Nat; ReturnPop: Nat#Int; ReturnEmpty: Nat;
CallPushPrime: Nat#Nat; CallPopPrime: Nat;
ReturnPushPrime: Nat; ReturnPopPrime: Nat#Int; ReturnEmptyPrime: Nat;
NewNode: Nat; AssignNext: Node; GetNext: Node;

Modeling and Verifying Concurrent Data Structures 17

CHAPTER 3. TREIBER’S STACK

proc LinkedList (top: Node) = rcv_ReadTop(top).LinkedList (top) +
sum old: Node, new: Node. (rcv_CAS(old, new) | snd_ Result(old = top)).
((old = top) —> LinkedList (new) <> LinkedList(top));

proc Push(tid: Nat, v: Nat) = CallPushPrime(tid, v). NewNode(v). PushWhile(tid, v);
proc PushWhile(tid: Nat, v: Nat) = sum old:Node. snd ReadTop(old).
AssignNext (node (v, old)).
((snd_CAS(old, node(v, old)) | rcv_Result(true). ReturnPushPrime(tid)) +
(snd_CAS(old, node(v, old)) | rcv_Result(false)).PushWhile(tid, v));

proc Pop(tid: Nat) = CallPopPrime(tid). PopWhile(tid);
proc PopWhile(tid: Nat) = sum old:Node. snd ReadTop(old).
(old = null) —> ReturnEmptyPrime(tid)
<> GetNext(next (old)).
((snd_CAS(old, next(old)) | rcv_Result(true)).
ReturnPopPrime (tid , data(old)) +
(snd_CAS(old, next(old)) | rcv_Result(false)).PopWhile(tid));

proc Thread(id: Nat, nOp: Nat, elms: List(Nat)) = (nOp > 0) —>
ThreadProgress (id, nOp, elms, 1);

proc ThreadProgress(id: Nat, nOp: Nat, elms: List(Nat), nDone: Nat) =
(nDone <= nOp) —> (Push(id, head(elms)) + Pop(id)).
ThreadProgress (id, nOp, tail (elms), nDone+1);

init

hide ({ NewNode, AssignNext, GetNext, ReadTop, CAS, Result

}, allow ({ CallPush, CallPop, ReturnPush, ReturnPop, ReturnEmpty,
NewNode, AssignNext, GetNext, ReadTop, CAS | Result

}, comm({ rcv_ReadTop | snd ReadTop —> ReadTop,
rcv. CAS | snd CAS —> CAS, rcv_Result | snd_ Result —> Result

}, rename({ CallPushPrime —> CallPush,
CallPopPrime —> CallPop, ReturnPushPrime —> ReturnPush,
ReturnPopPrime —> ReturnPop, ReturnEmptyPrime —> ReturnEmpty

}, LinkedList(null) || Thread(1, 2, [2, 4]) || Thread(2, 2, [4, 8])))));

Listing 3.2: Concrete specification of Treiber’s stack

The last two processes, Thread and ThreadProgress, model the behavior of a finite approximation of the
most general client. Ideally, the most general client would be the one included in the specification. How-
ever, as concluded in the previous chapter, this approach is unfeasible to generate the state space. Thus,
the finite client is used to support the verification process. Each thread has an identifier, the number of
operations that should be executed by the thread and the a list of elements to be added on the stack. The
second parameter, representing the number of operations, can be tuned to allow for different scenarios,
depending on the speed and efficiency of the hardware. The process starts making progress by choosing
non-deterministically one of the two possible methods of this data structure. When two or more threads
are run in parallel, the resulting LTS will contain all the possible combinations, regarding the type of
operations.

As mentioned above, histories are analyzed when verifying linearizability. A history consists of only
invocations and responses. Thus, all the other actions are hidden from the LTS. Finally, the actual pro-
cess is a parallel composition of two threads and the linked list. This parallel composition mimics the
implementation and usage of concurrent data structures, where there is a shared object at a given memory
location and various threads access and modify that object through its methods.

The concrete specification can be transformed into an LTS, which depends on the finite client used.
One example of such an LTS is shown in Figure 3.1, which was generated from a client consisting of two
threads, each thread calling once the push method. To visualize the possible interleavings of this concrete
specification, the actions Read, CAS, and Result are not hidden. These actions are used to display how the
information was modified through the system. However, all the other actions are internal, do not modify
the stack, and should still be hidden. Furthermore, to be able to analyze how the actions occur and the
data is carried, the number of states and transitions should be reduced. This is achieved by reducing
the LTS modulo branching bisimulation, which abstracts from the invisible actions. From this LTS, it
becomes visible that the behavior described initially, where data gets overwritten, cannot happen. On the

Modeling and Verifying Concurrent Data Structures 18

CHAPTER 3. TREIBER’S STACK

right side of the LTS, two push methods start executing concurrently. Both methods read the top of the
stack. Once the first method modifies the top of the stack, the CAS instruction of the second method fails
and the loop in push method restarts. Eventually, the CAS instruction succeeds, and the stack contains
all the values that have been pushed.

calPush(y, 2)

cas(nul, nodefz, ml) Ifesut(tue)

caz(nul, nadedg, mull)) |Resut{tue)

) Resut(true)
cas(nul, nedels

) Resut{tue)

CalPush(z, 3)
RetumRush{L)

CalPush(z, 3)
CalPush(l, Z

ReadTop(nods

pde(2, null))) Resultitrue)

cas(heoda(s, nulhpede(2, nedal3, mal)) Result(rug]

Figure 3.1: LTS generated from the Treiber’s stack concrete specification

The second specification is the abstract one, given in Listing 3.3. This specification is obtained from the
concrete one, by adding a layer of atomicity. The processes, as defined in the concrete specification, re-
main unchanged. To ensure atomicity, the process Atomic is introduced, which has two options: to define
an atomic block and to define an atomic statement. This process can be interpreted as a resource, i.e.
time-slice on a CPU or a semaphore representing a lock [14], that needs to be shared by other processes,
in a mutual exclusion manner. Furthermore, the bodies of the methods have to be encapsulated in an
atomic block, which is achieved by ensuring that the action StartAtomicBlock occurs immediately after
an invocation, and that the action EndAtomicBlock occurs immediately before a response. To achieve
this behavior, five simple processes are introduced, that serve as a tool to refine the prime invocations and
responses as introduced in the concrete specification. In this context, the only actions outside the atomic
blocks are the invocations and responses. To ensure that the invocation and responses do not interleave
during atomic blocks, they are synchronized with AtomicStatement.

To model an approximation of the most general client, the same processes are used as in the concrete
specification. Additionally, the only visible actions are the invocations and responses of each method.
Finally, the actual process is a parallel composition of two threads, the linked list, and the atomic process.
The last process has to be included, since this becomes a shared resource of the system.

This abstract specification encompasses three atomic behaviors: the invocation action, the atomic block
containing the body of the method, and the response action. Considering that any changes incurred on
the system happen in the body of the method, this atomic block behaves as a linearization action within
the system. Namely, considering that there are no interleavings during the execution of the body, one
can observe that any change on the system occurs instantaneously some time between the invocation and

Modeling and Verifying Concurrent Data Structures 19

CHAPTER 3. TREIBER’S STACK

the response of the method. Thus, as mentioned in Section 2.4, this abstract specification contains all
the linearizable histories that can be generated from the parallelization of the finite clients. This implies
that a legal sequential history can be found for every concurrent history generated through the abstract
specification. Additionally, the LTS obtained from the concrete specification contains all the execution
histories, both concurrent and sequential, that are executed from the finite clients. Furthermore, if branch-
ing bisimulation or weak trace equivalence can be established for the two specifications, this implies that
all the histories captured in the concrete specification are also found in the abstract specification. Since it
has been established that all histories in the abstract specification are linearizable, then all the histories
in the concrete specification are linearizable as well. Thus, the concurrent object modeled through the
concrete specification is linearizable.

sort Node = struct null | node(data: Nat, next: Node);

act rcv_ReadTop: Node; snd ReadTop: Node; ReadTop: Node;
rcv_CAS: Node#Node; snd CAS: Node#Node; CAS: Node#Node;
rcv__Result: Bool; snd_ Result: Bool; Result: Bool;
CallPush: Nat#Nat; CallPop: Nat; ReturnPush: Nat;
ReturnPop: Nat#Int; ReturnEmpty: Nat;
NewNode: Nat; AssignNext: Node; GetNext: Node;
rcv_StartAtomicBlock; snd_ StartAtomicBlock; StartAtomicBlock;
rcv_EndAtomicBlock; snd EndAtomicBlock; EndAtomicBlock;
AtomicStatement ;

proc LinkedList (top: Node) = rcv_ReadTop(top).LinkedList (top) +
sum old: Node, new: Node. (rcv. CAS(old, new) | snd Result(old = top)).
((old = top) —> LinkedList (new) <> LinkedList (top));

proc Atomic = rcv_StartAtomicBlock. rcv_EndAtomicBlock. Atomic +
AtomicStatement. Atomic;

proc CallPushPrime(tid: Nat, v: Nat) = CallPush(tid, v) . snd_ StartAtomicBlock;

proc CallPopPrime(tid: Nat) = CallPop(tid) . snd_ StartAtomicBlock;

proc ReturnPushPrime(tid: Nat) = snd EndAtomicBlock . ReturnPush(tid);

proc ReturnPopPrime(tid: Nat, v: Int) = snd EndAtomicBlock . ReturnPop(tid, v);

proc ReturnEmptyPrime(tid: Nat) = snd EndAtomicBlock . ReturnEmpty(tid);

proc Push(tid: Nat, v: Nat) = CallPushPrime(tid, v). NewNode(v). PushWhile(tid, v);
proc PushWhile(tid: Nat, v: Nat) = sum old:Node. snd_ ReadTop(old).
AssignNext (node (v, old)).
((snd_CAS(old, node(v, old)) | rcv_Result(true). ReturnPushPrime(tid)) +
(snd_CAS(old, node(v, old)) | rcv_Result(false)).PushWhile(tid, v));

proc Pop(tid: Nat) = CallPopPrime(tid). PopWhile(tid);
proc PopWhile(tid: Nat) = sum old:Node. snd ReadTop(old).
(old = null) —> ReturnEmptyPrime(tid)
<> GetNext(next(old)).
((snd_CAS(old, next(old)) | rcv_Result(true)).
ReturnPopPrime (tid , data(old)) +
(snd_CAS(old, next(old)) | rcv_Result(false)).PopWhile(tid));

proc Thread(id: Nat, nOp: Nat, elms: List(Nat)) = (nOp > 0) —>
ThreadProgress (id, nOp, elms, 1);

proc ThreadProgress(id: Nat, nOp: Nat, elms: List(Nat), nDone: Nat) =
(nDone <= nOp) —> (Push(id, head(elms)) + Pop(id)).
ThreadProgress (id, nOp, tail(elms), nDone+1);

init

hide ({ NewNode, AssignNext, GetNext, ReadTop, CAS, Result,
AtomicStatement , StartAtomicBlock, EndAtomicBlock

}, allow({ CallPush | AtomicStatement, CallPop | AtomicStatement,
ReturnPush | AtomicStatement, ReturnPop | AtomicStatement,
ReturnEmpty | AtomicStatement, NewNode, AssignNext, GetNext,

ReadTop, CAS | Result, StartAtomicBlock, EndAtomicBlock

}, comm({ rcv_ReadTop | snd ReadTop —> ReadTop,
rcv. CAS | snd CAS —> CAS, rcv_Result | snd Result —> Result,
rcv_StartAtomicBlock | snd_StartAtomicBlock —> StartAtomicBlock,
rcv_EndAtomicBlock | snd EndAtomicBlock —> EndAtomicBlock

Modeling and Verifying Concurrent Data Structures 20

CHAPTER 3. TREIBER’S STACK

}, LinkedList(null) || Atomic ||
Thread (1, 2, [2, 4]) || Thread(2, 2, [4, 8]))));

Listing 3.3: Abstract specification of Treiber’s stack

Both these specifications are given as input to the mCRL2 tool. Each specification is transformed to an
LPS (linear process specification), which is then transformed to the corresponding LTS. The last step
of the verification is comparing the two LTSs using branching bisimulation. For this verification to be
accurate, one requirement emerges regarding the most general client. Both specifications should have the
same instances of the most general client, i.e. same number of threads and same number of operations per
thread. Given the two above specifications, the tool returns that their LTSs are both branching bisimilar
and weak trace equivalent.

This approach of verifying linearizability has a limitation, which manifests itself in the most general
client. To exhaustively verify linearizability, the client should invoke an arbitrary number of methods, in
any order and with all possible parameters, as described in Section 2.4. However, since mCRL2 cannot
produce infinite state spaces, infinite domains pose some challenges in this context. Thus, the threads
consider a finite abstraction of the most general client, which considers only a finite set of parameters.
The reason behind this is that the value of the parameters do not influence the correctness of the methods.
Additionally, these threads call a bounded number of operations.

The question still remains which type of conclusions can be drawn from these equivalences. This method-
ology verifies linearizability, but with certain restrictions, namely a bounded number of threads, as well
as bounded number of operations per thread. As mentioned above, an object o is linearizable if and only
if all its execution histories are linearizable. Obtaining these histories depends on the specification of
the concurrent system. Let n and m be two positive, fixed numbers. Consider histories generated by a
concurrent system that consists of n clients of o, where each client invokes at most m methods. Proving
that these execution histories are linearizable leads to establishing linearizability,, » of the object, i.e. a
restricted version of linearizability.

Given an object that is linearizable for unbounded histories, one can conclude that this object is also
linearizable,, n, for all positive numbers m and n. Establishing linearizability,,,», follows from the fact
that all histories generated by m clients, each client invoking n methods, should be verified as linearizable.
This is already implied from the statement that the object is linearizable for all possible histories. How-
ever, it is not as clear whether the converse can also be so easily established. Hence, if one can conclude
that an object is linearizable,, », one still needs to investigate whether this leads to the conclusion that
the object is linearizable. Naturally, if one can establish that the object is linearizable,,,, for all m and
n, the one can also conclude that the object is linearizable. However, this requires an exhaustive search
over all positive numbers, which is unfeasible in the current setting.

Using the methodology described thus far, one can conclude linearizability,,,, of the object. This orig-
inates from the construction mechanism of the two specifications. However, if the two LTSs are not
equivalent (i.e. branching bisimilar or weak trace equivalent), then the object is not linearizable,, .
When mCRL2 determines an inequivalence, it can generate a counterexample, which is a trace that is
found in one specification, but not in the other. Thus, this trace represents an execution history that does
not follow the sequential specification, e.g. two push methods return the same Top. This cannot happen
in a sequential setting, since the Top would be overwritten by the push method. Additionally, if an object
is not linearizable,, , then it is also not linearizable, since an execution history that is not linearizable
has already been found in the bounded environment.

Returning to the Treiber’s stack, the two specifications given are branching bisimilar. In this context,
there are two clients, each invoking two operations. Thus, Treiber’s stack is linearizables » in this case.
This conclusion is not surprising, since Treiber’s stack has already been illustrated as linearizable by pre-
vious work ([17], [25]). Thus, a counterexample could not have been found by mCRL2.

Modeling and Verifying Concurrent Data Structures 21

4. Linearizability in mCRL2

In the context of mCRIL2, verifying linearizability consists of defining two specifications, the concrete and
the abstract one, that derive from the implementation of a concurrent data structure. These specifications
are checked to verify whether they are branching bisimilar (or trace equivalent). This model checking
approach establishes linearizability,,», due to the restrictions imposed to avoid state space explosion.

4.1. Defining specifications

To define the specifications, there are several underlying properties that the modeled system should in-
corporate. Firstly, the system is characterized as being shared-memory multiprocessor, in which threads
operate on concurrent data structures, e.g. Treiber’s stack. Nevertheless, the concurrent data structures
can function properly even in a single processor system that have multiple threads running in parallel.
Several challenges arise regarding reading and writing data in such a context, such as reading old data
or losing data. Thus, it is necessary to define a memory consistency model, which specifies how instruc-
tions on the memory are ordered and processed. The most commonly assumed model, as stated in [1], is
the sequential consistency model, which requires that all memory operations appear to execute one at a
time and that all operations of a single thread appear to execute in the order described by that thread’s
program. Secondly, the concurrent data structure should employ some synchronization mechanism, to
avoid interleavings that result in incorrect data. There are two types of synchronization mechanisms:
blocking (the delay of a thread causes a delay in all the other threads), and nonblocking (the delay of a
thread does not cause the delay of all the other threads). As described in [19], blocking techniques include
locks (coarse-grained or fine-grained) or combining trees. Additionally, non-blocking techniques concerns
themselves with atomic hardware operations (e.g. Compare-and-Swap), which are supported by modern
multiprocessor systems.

The properties described above provide an overview of how memory is administered in the modeled
system. This is the basis for constructing the specifications, since the specifications should adhere to the
memory model. Thus, the specifications should include some tasks supported by an operating system:
memory management and access (ordering of memory operations, accessing of data), as well as process
scheduling (defining the behavior of a thread, scheduling time-slices on the available resources).

The concurrent data structure should be robust in shared-memory multiprocessor systems. The im-
plementation defines the synchronization mechanism used. Additionally, this implementation provides
details about the type of information stored and the methods to access that information. Treiber’s stack
provided in the previous chapter fulfills these properties. The synchronization mechanism used in the
stack is non-blocking, since it employs the atomic instruction CAS. This CAS instruction was modeled
through two actions, one that sends the data to the stack and one that returns the result of updating the
stack. This represents the low-level behavior that occurs on a processor.

In the approach suggested, two specifications are required to verify linearizability for a concurrent data
structure. The concrete specification closely mimics the implementation of the concurrent data structure,
allowing interleavings at every possible moment. When modeling the methods that the data structure
provides, two actions should be added for each method, the invocation and the response of that method.
The invocation action should occur before any action in the method has executed, while the response
action should be the last action that is executed by the method. The abstract specification should be
obtained from the concrete specification and it disallows interleavings while executing the method’s body.
This restriction is achieved by adding an atomic layer on top of the concrete specification, where each
body of a method is encapsulated in an atomic block. The resulting methods in this abstract specification
can have interleavings only at the following moments: before the invocation action; after the invocation
action and before the body of the method; after the body of the method and before the response action.

One way of achieving the atomicity of the abstract specification is annotating the start and end of the
atomic blocks at all the appropriate moments, namely exactly after the invocation and exactly before the

Modeling and Verifying Concurrent Data Structures 22

CHAPTER 4. LINEARIZABILITY IN MCRL2

response of a method. However, this is manual work that changes the original specification, resulting in
a solution that is not maintainable. To generalize this approach, the notion of prime action is going to
be used. These prime actions are invocations and responses that are marked with the keyword Prime.
These actions serve different purposes in the two specifications. In the concrete specification, each method
starts with a prime invocation and end with a prime response. In the abstract specification, these prime
actions are refined, where one prime invocation/response is replaced by the actual invocation/response
and the start, respectively the end, of an atomic block. To ensure that the these two specifications capture
the same idea semantically, the prime actions in the concrete specification are going to be renamed to
the actual invocations and responses. Then, the comparison between the traces of the two specifications
evaluate the same type of invocations and responses. This modeling principle is illustrated in the next
sections.

4.1.1 Concrete specification

The concrete specification reproduces the implementation of the concurrent data structure. There are
several steps that should be undertaken to build this specification:

1. Identify how the concurrent data structure should be stored and define the necessary structures (e.g.
a linked list of nodes, an array of nodes). These structures will serve as a parameter to the process
representing the concurrent data structure (e.g. the LinkedList process in Treiber’s stack). This is
one shared resource of the system. The next step is to identify all the other shared resources (e.g.
locks). These shared resources employ a certain memory management technique (e.g. references,
CAS), which are possibly expressed as low-level instructions. Thus, introduce one or more mCRL2
processes that can model the shared resources. In Treiber’s stack example, the only shared resource
is the process representing the linked list.

Additionally, identify the synchronization mechanism (e.g. acquiring a lock, executing a CAS state-
ment) and introduce the required actions in the shared resources. This is operating under the
assumption that synchronization is only needed for shared resources. The LinkedList process con-
tains actions for synchronizing on the CAS instruction, as well as returning the value of executing
the instruction.

2. For each method of the concurrent data structure, define a process called <MethodName>. This pro-
cess should have as parameters the thread id, to identify where the call of the method initiated from,
and the necessary parameters for the execution of the method. Furthermore, it should start with
a prime invocation, denoted by Call<MethodName>Prime, and should end with a prime response,
denoted by Return<MethodName>Prime. Both these events should be parameterized with the
thread id, as well as all the required parameters. For each of these events, introduce the invocation
and response actions containing the same parameters, of the shape <Call/Return><MethodName>.
These actions are the ones that will be visible in both specifications, while all the other actions are
hidden. Namely, the traces generated by both specifications will contain only invocations, responses
and the invisible actions 7.

Furthermore, for each statement in the body of the method, add an action in the specification.
Additionally, each action used for synchronization in the method body should communicate with
the counterpart of that action in the shared resource. The processes representing the methods of
the Treiber’s stack was obtained rather straightforwardly by introducing actions for each statement
in the code, and adding the prime invocations and responses (e.g. CallPushPrime, ReturnEmp-
tyPrime).

3. Define a process for the finite client, called Thread, parameterized with a process id and the number
of operations nOp that can be executed. The thread should make progress by repeatedly calling the
methods supported by the object. This poses the need for a loop. Thus, a second process is needed,
consisting of a summation of all the possible methods. At each step, there is a nondeterministic
choice that this thread can do amongst all the possible methods. These processes are added to carry
out the analysis of the data structure, by representing multiples threads in the system and also by
tuning nOp to evaluate different scenarios.

Modeling and Verifying Concurrent Data Structures 23

CHAPTER 4. LINEARIZABILITY IN MCRL2

In the processes representing the shared resources and the methods, the actions identified are either prime
invocations, prime responses, or internal actions. As linearizability is only concerned with events, the
actions that should be visible in the system are the non-prime invocation and responses. This is achieved
through the following tasks. First, the internal actions should be abstracted from the concrete specifica-
tion. This manifests itself as hiding all actions, except the invocations and responses, marked with either
Call or Return. Secondly, the set of actions that should be allowed in the specification contains all defined
actions, except the prime actions. From this method of modeling, the only visible allowed actions in the
specification are the invocations and responses, e.g. CallPush and ReturnPush. However, this actions are
not executed in the specification currently, since the prime invocations and responses are added in the
methods, as can be seen from Listing 4.1. Thirdly, a rename block should be introduced, where every
prime event is renamed to its corresponding event (e.g. CallPushPrime -> CallPush).

proc Push(tid: Nat, v: Nat) = CallPushPrime(tid, v).
NewNode(v). PushWhile(tid, v);
init %...
allow ({ CallPush
}, rename({ CallPushPrime —> CallPush
%all the remaining prime actions
1)

Listing 4.1: Snapshot of the Treiber’s stack concrete specification

The system is a parallelization of all shared resources and m threads, where each thread executes n
operations. The concrete specification obtained serves as input to the process of building the abstract
specification, where the prime actions are going to be refined to include the atomic block.

4.1.2 Abstract specification

The abstract specification restricts the interleavings that the concurrent data structure can have by en-
forcing that the method body executes sequentially. This is achieved by adding an atomic layer on top
of the concrete specification, where all internal actions in a method body are encapsulated in an atomic
block. From an external perspective, the methods in the abstract specification consist of three actions:
the invocation action, the body action, and the response action. This follows the reasoning described in
[17], where a method is decomposed into these three actions. This decomposition ensures that the change
on the state of the system occurs consistently during the body action, and this block can be considered
as the linearization point of the method.

As can be observed from the example of Treiber’s stack, the start of the atomic block should occur
immediately after an invocation, while the end of the atomic block should occur immediately before the
response. To generalize this annotation of atomic blocks, the prime actions are used. Namely, the prime
invocation action should be replaced by an invocation and the start of the atomic block. A similar rea-
soning should be used regarding the prime response actions. Thus, to build the abstract specification, the
following steps should be undertaken:

1. Define the process Atomic. This process has two choices: to build an atomic block or to build an
atomic statement. This enforces the atomicity protocol, where the method body is executed without
interleavings. Additionally, this process can be considered as a shared resource in the system, where
all the clients are trying to get a time-slice on the CPU. This process is identical in all the abstract
specifications, and is given in Listing 4.2.

The action StartAtomicBlock should be executed immediately after a call action, while the ac-
tion EndAtomicBlock should be executed immediately before a return action. By the construction
of the Atomic process, once the start of an atomic block has occurred, the process needs to wait
for the end of an atomic block to occur. This is equivalent to acquiring a lock and releasing a lock.
Hence, any other method that wants to execute its body is forced to wait for the previous method
to finish its execution. However, the invocations and responses are placed outside atomic blocks to
ensure that the method consists of three uninterrupted moments: the invocation action, the atomic
block, and the response action. If no communication is added to enforce that the invocations and

Modeling and Verifying Concurrent Data Structures 24

CHAPTER 4. LINEARIZABILITY IN MCRL2

responses communicate with the Atomic process, then these actions can interleave at any moment.
Thus, the action AtomicStatement is used to ensure that the invocations and responses are exe-
cuted only outside of atomic blocks. This action should always be part of a multi-action of the
shape <Call/ReturnAction> | AtomicStatement.

2. To ensure that the body of each method is placed within an atomic block, the specification should
contain some kind of action refinement. Considering the prime actions already introduced and the
markers of atomic blocks, it is clear that each prime call action should be refined to a call action
followed by an action representing the start of the atomic block. Subsequently, each prime return
action should be refined to an action representing the end of the atomic block followed by a return ac-
tion. Thus, for each event as defined in the general specification, namely Call<MethodName>Prime
and Return<MethodName>Prime, introduce a process with the same name, consisting of the cor-
responding action and the marker of the atomic block (e.g. CallPushPrime(id: Nat, item: Nat) =
CallPush(id, nat . snd_ StartAtomicBlock). To avoid naming conflicts, the actions for the events,
which have been refined, should be removed from this specification. Additionally, the rename block
should be removed. An example can be seen in the abstract specification of the Treiber’s stack.

act <other actions>
rcv_StartAtomicBlock; snd StartAtomicBlock; StartAtomicBlock;
rcv_EndAtomicBlock; snd EndAtomicBlock; EndAtomicBlock;
AtomicStatement ;

<other_ processes>

proc Atomic = rcv_StartAtomicBlock. rcv_ EndAtomicBlock. Atomic +
AtomicStatement. Atomic;

init

hide ({ <other actions>
StartAtomicBlock , EndAtomicBlock, AtomicStatement

}, allow ({ <other actions>
CallPushPrime | AtomicStatement,
ReturnPushPrime | AtomicStatement,
StartAtomicBlock , EndAtomicBlock

}, comm({ <other actions>
rcv_StartAtomicBlock | snd StartAtomicBlock —> StartAtomicBlock,
rcv_EndAtomicBlock | snd_EndAtomicBlock —> EndAtomicBlock

o))

Listing 4.2: Atomic process defined in an abstract specification

The concurrent system as generated by this specification should still concern itself with only invocations
and responses. Thus, the atomic actions should be hidden from the system. As the Atomic process is
a shared resource, it should also be added in the parallelization given in the concrete specification. One
remark is that the abstract system should consider the same number n for threads, and same number m
for number of operations as the system generated from the concrete specification.

The concrete specification obtained through this mechanism generates all possible execution histories,
when the object is accessed by a finite client. This is achieved through the nature of the parallel com-
position in mCRL2. When n threads are executed in parallel, where each thread calls m operations,
then all the possible interleavings of the actions in the methods are generated. After hiding the internal
actions, the result of this specification is an LTS whose weak traces represent all the execution histories of
a system calling m - n operations. Similarly, the abstract specification obtained through this mechanism
generates all linearizable execution histories. The reason behind this phenomenon is that the body of the
methods executes atomically, meaning that no interleaving can occur. Interleavings at the level of method
statements are the source of incorrect concurrent data structures. This results in a specification that is
linearizable, since the only interleavings that can occur is among the invocations, responses and execution
bodies. These interleavings do not affect the changes that happen on the system.

Modeling and Verifying Concurrent Data Structures 25

CHAPTER 4. LINEARIZABILITY IN MCRL2

4.2. Verification

Due to the way the specifications are constructed, to verify linearizability it suffices to compare them using
either branching bisimulation or weak trace equivalence. One underlying assumption for the specifications
is that they employ finite domains and finite number of threads, to ensure that there are finitely many
states in the generated LTSs. The first step towards the comparison is transforming each specification
into a linear process specification (LPS), automatically done via the tool mCRL2. These LPSs are then
transformed into labeled transitions systems, also done via the toolset. The obtained LTSs are then
compared against each other to verify if they are equivalent (branching bisimilar or weak trace equivalent).
This verification mechanism functions because the abstract specification is linearizable, which is a notion
claimed by the following theorem.

Theorem 4.1. (Linearizable abstract specification) Let L, be the LTS generated from the abstract
specification. Then all weak traces of Lo are linearizable.

An informal rationale behind this theorem follows from the method in which the abstract specification
is constructed. Let H € WeakTraces(La). Let T be an execution path that generated this trace. This
implies that T consists of invocations, responses, and invisible actions. Additionally, the body of each
method is executed within an atomic block. This block ensures that any change on the system occurs in a
sequential manner (i.e. no interleavings from the other processes while accessing and modifying the data).
Thus, there is a sequence of invisible actions in the trace that represents that atomic block, which can
be considered as the linearization point of the method. Then, a sequential history can be built following
the order of these linearization points. This follows from the fact that any two operations can be either
concurrent or partially ordered. Let o be a shared object, which provides the method Modify. Then, a
trace that can be generated from the abstract specification when calling this method from two parallel
processes is given next. For illustrating the linearization points, the atomic blocks are not hidden.

T: CallModify(1, 1), CallModify(2, 2), Start AtomicBlock, InternalActions(2), EndAtomicBlock, Star-
tAtomicBlock, InternalActions(1), EndAtomicBlock, ReturnModify(1), ReturnModify(2), CallModify(1,
3), StartAtomicBlock, InternalActions(1), EndAtomicBlock, ReturnModify(1)

This trace contains operations that are partially ordered, namely Modify(1, 1) < Modify(1, 3) and Mod-
ify(2, 2) < Modify(1, 3). Additionally, the operations Modify(1, 1) and Modify(2, 2) are concurrent. The
linearization point of each method occurs between the start of the atomic block and the end of the atomic
block. Then, one can build sequential trace S that respects both the ordering of the operations, as well
as the ordering of the linearization points. This trace is given next.

S: CallModify(2, 2), StartAtomicBlock, InternalActions(2), EndAtomicBlock, ReturnModify(2), CallMod-
ify(1, 1), StartAtomicBlock, InternalActions(1), EndAtomicBlock, ReturnModify(1), CallModify(1, 3),
Start AtomicBlock, InternalActions(1), EndAtomicBlock, ReturnModify(1)

By hiding all the atomic and internal actions, one obtains a weak trace that is a legal sequential his-
tory. The change on the system occurs only during atomic blocks, in a purely sequential manner, ensuring
that this history respects the sequential specification of o. Thus, since there exists a legal sequential
history equivalent with H, one can conclude that H is linearizable.

The toolset produces a result based on the two specifications. The first comparison of the two specifica-
tions could be done with branching bisimulation. As van Glabbeek claimed in [23], branching bisimulation
implies weak trace equivalence. Thus, if the two labeled transitions are branching bisimilar, one can con-
clude that their respective sets of weak traces are equal. Deciding branching bisimulation is more time
efficient than weak trace equivalence in mCRL2. However, presuming that the result returned for checking
branching bisimulation is false, then the two systems should be checked using weak trace equivalence. A
counterexample generated by mCRL2 in this scenario includes a trace that can be found in the concrete
LTS, but not in the abstract LTS. This trace represents a subhistory that is not linearizable, presenting
an invalid sequence of invocations and responses. Hence, provided that the concurrent data structure is
linearizable, then the concrete LTS and the abstract LTS should contain the same set of weak traces. This
result is presented by the following theorem.

Modeling and Verifying Concurrent Data Structures 26

CHAPTER 4. LINEARIZABILITY IN MCRL2

Theorem 4.2. (Capturing linearizability) Let L. be the LTS generated from the concrete specification
and Lo be the LTS generated from the abstract specification, given a finite client (i.e. n threads, m
operations per thread). Then L. is linearizablen, n if and only if WeakTraces(L.) = WeakTraces(Lqg) .

An informal argument for this theorem follows from the construction mechanism of the specifications, as
well as from establishing that the abstract specification is linearizable. Firstly, assume L. is linearizable, ,,
and let H € WeakTraces(Lc). Then H is a linearizable,,,» history. Following the construction of the ab-
stract specification and the restriction on the finite client, L, contains all linearizable,, » histories. Thus,
H must also be an element of L,. Additionally, L. captures all execution histories generated from the
finite client, and it is also linearizable, ». Since L, is obtained from L. and is also linearizable,, ,, intu-
itively it must hold that L. captures all linearizable,,,, execution histories that are also contained in L.
Secondly, assume WeakTraces(L.) = WeakTraces(La). It is established that all the weak traces in L,
are linearizable. Since the concrete LTS and the abstract LTS contain the same weak traces, one can con-
clude that all the weak traces in L. are linearizable. Thus, L. is linearizable, and thus also linearizabley, .

In conclusion, if the two LTSs do not contain the same weak traces, then one can conclude that the
concurrent data structure is not linearizable. A counterexample can be produced by the toolset, which
clearly demonstrates an execution history that is not linearizable. However, in the case of concluding
that the two LTSs are branching bisimilar, then the concurrent data structure is linearizable,, ,. The two
parameters n and m originate from the two specifications, representing the number of selected threads, as
well as the number of operations per thread.

Modeling and Verifying Concurrent Data Structures 27

5. Case Studies

This chapter presents the models for some given concurrent data structures, in order to test the general
approach presented in the previous chapter. The implementations of the concurrent data structures are
given in Appendix A, while the full concrete specifications are given in Appendix B. The verification
results, as well as statistics on the state space, are given in the next chapter.

5.1. Concurrent set

Herlihy and Shavit [14] present multiple algorithms for implementing a concurrent set. This set can be
manipulated through two methods: adding or removing an element, both returning a boolean depending on
whether the element is already contained in the set. The common notion among all these algorithms is the
representation of a set as a linked list of nodes. Each node stores the actual value of the element, its hash
value and a reference to the next node. The nodes are sorted by their hash values. The difference among
these algorithms is the type of synchronization used, ranging from lock-based to lock-free algorithms.

5.1.1 Coarse-grained set

The coarse-grained algorithm is lock-based, using a single lock for the entire list. The data requirements
are given in Listing 5.1. The set is stored as a linked list, with a reference head to the first element in the
list. The two methods provided by the object should acquire the lock before manipulating the list. This is
shown in Listing 5.3, where the implementation of the add method is shown. Thus, both methods access
and modify the list only when holding the lock. This results in executing the body of the methods in a
sequential manner. Following this reasoning, it becomes clear that the coarse-grained set is linearizable.
The methodology described thus far should reach the same conclusion.

private class Node {
T item; int key; Node next;

public class CoarseList<T> {
private Node head;
private Lock lock = new ReentrantLock();
public CoarseList () {
head = new Node(Integer .MIN VALUE) ;
head.next = new Node(Integer .MAX VALUE) ;

Listing 5.1: Data structures of the coarse-grained set

The concrete specification is constructed following the steps described in Section 4.1. To achieve this, the
first step is identifying the data requirements, which are shown in Listing 5.1. The coarse-grained set is
stored as a linked list of nodes. A node contains three elements: the item representing the data to be
stored, the key of that item, and a pointer to the next node in the list. The items in the linked list should
be sorted by the value of the key. The necessary structures and functions to manipulate the list should
be created. Additionally, there are two shared resources, namely the coarse list and the lock. Thus, a
process should be introduced for each of these resources, with the respective needed actions. Modeling
these concepts results in the data specification shown in Listing 5.2, which represents an integral part of
the concrete specification. Further specification details can be found in Appendix B, Listing B.1.

sort Node = struct null | node(item: Int, key: Int, next: Node);
map MinKey: Int; MaxKey: Pos; hashCode: Nat —> Nat;
insert: Nat#Node —> Node; insertHelper: Nat#Nat#Node#Node —> Node;
remove: Nat#Node —> Node; removeHelper: Nat#Nat#Node#Node —> Node;
eqn MinKey = —1; MaxKey = 100;

act rcv_ReadHead: Node; snd ReadHead: Node; ReadHead: Node;
rcv_Insertltem: Nat; snd_ Insertltem: Nat; InsertItem: Nat;

Modeling and Verifying Concurrent Data Structures 28

CHAPTER 5. CASE STUDIES

rcv_Removeltem: Nat; snd Removeltem: Nat; Removeltem: Nat;
rcv_Lock: Nat; snd Lock: Nat; Lock: Nat;
rcv_Unlock: Nat; snd_ Unlock: Nat; Unlock: Nat;

proc LinkedList (nodes: Node) = rcv_ReadHead(nodes). LinkedList(nodes) +
sum iteml: Nat. rcv_InsertItem (iteml). LinkedList(insert (iteml, nodes)) +

sum item2: Nat. rcv_Removeltem (item2). LinkedList (remove(item2, nodes));

proc ReentrantLock = sum id: Nat. rcv_Lock(id). rcv_Unlock(id). ReentrantLock;

Listing 5.2: Data specification of the coarse-grained set

The second step is identifying all the methods provided by the concurrent data structure, and introduce
a process for each of the methods. The concurrent set provides two methods: add and remove. The
implementation of the add method is given in Listing 5.3. The implementation of the remove method is
omitted here, due to employing a similar reasoning, but can be found in Appendix A. The processes, and
corresponding actions, for modeling the add method are given in Listing 5.4.

public boolean add(T item) {
Node pred, curr;
int key = item.hashCode();
lock .lock () ;
try {
pred = head;
curr = pred.next;
while (curr.key < key) {
pred = curr;
curr = curr.next;

if (key = curr.key) {
return false;
} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
} finally {
lock . unlock () ;
I3

Listing 5.3: Implementation of the add method of the coarse-grained set

The process Add models the behavior of the add method. As mentioned in the methodology, the process
should be parameterized with the id of the thread that initiated the call. Since the add method takes as a
parameter the item to be added, this parameter should be also included in the process. Furthermore, the
process should start with a prime invocation, denoted by the action CallAddPrime, which contains the
same parameters as the process. There is a one-to-one mapping between the statements in the method
implementation and the actions in the method specification. To model the while-loop in the method,
the recursive process AddWhile has been introduced, containing the necessary parameters to traverse the
list. The traversal stops when the right position has been reached. After the loop finishes, there are two
possible cases: either the element exists, in which case the method returns false, or the element does not
exist, in which case the list is modified and the method returns true. This response is achieved through
the action ReturnAddPrime, which contains the value to be returned. On top of that, it also the identifier
of the invoking thread. The actions for the invocations and responses are also defined, to ensure that
the histories generated by this specification can be compared to the histories generated by the abstract
specification.

act CallAdd: Nat#Nat; ReturnAdd: Nat#Bool;
CallAddPrime: Nat#Nat; ReturnAddPrime: Nat#Bool;
GetHashCode: Nat; Nextlteration;

proc Add(id: Nat, itemToAdd: Nat) = CallAddPrime(id, itemToAdd).
GetHashCode (hashCode (itemToAdd)). snd Lock(id).
sum predNode: Node. snd ReadHead (predNode) .
AddWhile(id , itemToAdd, predNode, next(predNode));

Modeling and Verifying Concurrent Data Structures 29

CHAPTER 5. CASE STUDIES

proc AddWhile(id: Nat, itemToAdd: Nat, predNode: Node, curr: Node) =
(key(curr) < hashCode (itemToAdd))
—> Nextlteration. AddWhile(id, itemToAdd, curr, next(curr))
<> ((key(curr) = hashCode (itemToAdd))
—> snd_Unlock(id). ReturnAddPrime(id, false)
<> snd_InsertItem (itemToAdd). snd Unlock(id). ReturnAddPrime(id, true));

Listing 5.4: Method specification of the coarse-grained set

The third step in building the concrete specification is defining the finite client, which can be found in
Listing 5.5. The process Thread has an identifier, a bounded number of operations that can execute, and
a list of items that can be added or removed from the set. To allow the thread to make progress, a loop
is needed, which is modeled through a second process. This process calls non-deterministically the two
methods provided by the object.

proc Thread(id: Nat, nOp: Nat, elms: List(Nat)) =
(nOp > 0) —> ThreadProgress(id, nOp, elms, 1);

proc ThreadProgress(id: Nat, nOp: Nat, elms: List(Nat), nDone: Nat) =
(nDone <= nOp) —> (Add(id, head(elms)) + Remove(id, head(elms))).
ThreadProgress (id, nOp, tail(elms), nDone + 1);

Listing 5.5: Client of the coarse-grained set

The initial process for this specification can be found in Listing 5.6. The internal actions are hidden,
to ensure that the generated LTS consists only of invocations and responses. The allowed actions in
this specification are all the ones defined, except the prime actions, and the required communication is
enforced. Finally, the prime invocations and prime responses are renamed to their non-prime counterparts.
Then, the process is a parallel composition of the two shared resources, the linked list and the lock, and
two threads, each executing two operations.

init
hide ({ NextlIteration , ReadHead, InsertItem , Removeltem, Lock,
Unlock , GetHashCode
}, allow ({ CallAdd, ReturnAdd, CallRemove, ReturnRemove,
ReadHead, Insertltem , Removeltem, Lock, Unlock, GetHashCode, Nextlteration
}, comm({ rcv_ReadHead | snd ReadHead —> ReadHead,
rcv_InsertItem | snd InsertlItem —> Insertltem ,
rcv_Removeltem | snd Removeltem —> Removeltem,
rcv_Lock | snd_ Lock —> Lock, rcv_Unlock | snd Unlock —> Unlock
}, rename({ CallAddPrime —> CallAdd, ReturnAddPrime —> ReturnAdd,
CallRemovePrime —> CallRemove, ReturnRemovePrime —> ReturnRemove
}, LinkedList (node(MinKey, MinKey, node(MaxKey, MaxKey, null))) ||
ReentrantLock || Thread(1l, 2, [2, 4]) || Thread(2, 2, [4, 8])))));

Listing 5.6: Start process of the coarse-grained set

The abstract specification is obtained from the concrete specification, as described in the methodology.
This means that the process Atomic is added in the abstract specification, with the corresponding actions
and communication. This process is also added in the parallel composition, as it is a shared resource.
Additionally, the processes representing the action refinement are added to the specification, as shown in
Listing 5.7. To avoid conflicts, the actions with the same name as the processes should be removed from
the abstract specification, as well as the rename operator.

CallAddPrime (id: Nat, itemToAdd: Nat) =
CallAdd (id, itemToAdd) . snd_StartAtomicBlock;
ReturnAddPrime(id: Nat, res: Bool) = snd EndAtomicBlock. ReturnAdd(id, res);
CallRemovePrime (id: Nat, itemToRemove: Nat) =
CallRemove (id , itemToRemove). snd_ StartAtomicBlock;
ReturnRemovePrime(id: Nat, res: Bool) = snd EndAtomicBlock. ReturnRemove(id, res);

Listing 5.7: Action refinement of the coarse-grained set

Modeling and Verifying Concurrent Data Structures 30

CHAPTER 5. CASE STUDIES

5.1.2 Fine-grained set

The fine-grained algorithm is also lock-based, using a lock for every node in the list, rather than using a
lock for the entire list. The data requirements imposed by the implementation are the same as given in
the coarse-grained set. The two methods provided by the object acquire locks as they traverse the list,
in a hand-over-hand manner: except for the initial node, acquire the lock for the current node only when
holding the lock for the predecessor of the node [14]. Currently, threads can traverse the list together,
which was not possible with the coarse-grained implementation. This mechanism is shown in Listing 5.8,
where the implementation of the add method is shown. Both methods access and modify the list only when
holding the appropriate locks. As the manipulation of the list occurs when locks are held, the statements
executing in between locking a node and unlocking that node contain linearization points. Consequently,
the modification of a particular node happens in an exclusive manner. Therefore, the authors claim that
this concurrent data structure is linearizable.

public boolean add(T item) {
int key = item.hashCode();
head.lock () ;
Node pred = head;
try {
Node curr = pred.next;
curr.lock ()
try {
while (curr.key < key) {
pred.unlock () ;
pred = curr;
curr = curr.next;
curr.lock ();

if (curr.key = key) {
return false;

}

Node newNode = new Node(item) ;
newNode. next = curr;

pred.next = newNode;

return true;

} finally {

curr . unlock () ;

}
} finally {
pred . unlock () ;

i3

Listing 5.8: Implementation of the add method of the fine-grained set

The concrete specification for the fine-grained set is modeled first. To achieve this, identify the data
requirements. In the implementation, the fine-grained set is stored as a linked list of nodes. Using
references, each node can be locked individually. However, as mCRL2 lacks the notion of global memory,
there is no way to add references to a linked list of nodes. To mitigate this issue, the linked list of nodes
is stored as an array in the mCRL2 model, allowing for access to individual nodes. This array is modeled
as a function, that maps a number to a node. The necessary structures and functions to manipulate the
array should be created. The nodes now include a variable representing whether this node is locked, and
a variable representing its memory location (i.e. the index of the node in the array). There is one shared
resources, namely the linked list. Thus, a process is introduced for this resource, with the respective
needed actions. Modeling these concepts results in the data specification shown in Listing 5.9, which
represents an integral part of the concrete specification. The variables and mappings are omitted from
this specification, and can be found in Appendix B, Listing B.2.

sort Node = struct null | node(item: Int, key: Int, next: Int, lock: Bool, mem: Nat

)

sort ArrayNodes = Int —> Node;

act snd ReadNode: Int#Node; rcv_ReadNode: Int#Node; ReadNode: Int#Node;
snd _ReadNext: Int#Node; rcv_ReadNext: Int#Node; ReadNext: Int#Node;
snd _LockNode: Int; rcv_LockNode: Int; LockNode: Int;
snd UnlockNode: Int; rcv_UnlockNode: Int; UnlockNode: Int;

Modeling and Verifying Concurrent Data Structures 31

CHAPTER 5. CASE STUDIES

CallAdd: Nat#Nat; ReturnAdd: Nat#Bool;

CallRemove: Nat#Nat; ReturnRemove: Nat#Bool;

CallAddPrime: Nat#Nat; ReturnAddPrime: Nat#Bool;

CallRemovePrime: Nat#Nat; ReturnRemovePrime: Nat#Bool;

rcv_Insertltem: Nat#Nat; snd_ Insertltem: Nat#Nat; Insertltem: Nat#Nat;
rcv_Removeltem: Nat; snd Removeltem: Nat; Removeltem: Nat; GetHashCode: Nat;

proc LinkedList (nodes: ArrayNodes, nextLoc: Nat) =
sum element: Int. snd ReadNode(element, nodes(element)).
LinkedList (nodes, nextLoc) +
sum elementN: Int. snd ReadNext(elementN, nodes(next(nodes(elementN)))).
LinkedList (nodes, nextLoc) +
sum n: Int. (!lock(nodes(n))) —> rcv_LockNode(n).
LinkedList (nodes [n—>lockNode (nodes(n))|, nextLoc) +
sum nn: Int. rcv_UnlockNode(nn).
LinkedList (nodes [nn—unlockNode (nodes(nn))|, nextLoc) +
sum iteml, loc: Nat. rcv_Insertltem (iteml, loc).
LinkedList (insertNode (nodes, nextLoc, iteml, loc), (mnextLoc+1)) +
sum loc: Nat. rcv_Removeltem(loc). LinkedList(removeNode(nodes, loc), nextLoc);

Listing 5.9: Data specification of the fine-grained set

The second step is identifying all the methods provided by the concurrent data structure, and introduce
a process for each of the methods. The concurrent set provides two methods: add and remove. The
implementation of the add method is given in Listing 5.8. The implementation of the remove method is
omitted here, due to employing a similar reasoning, but can be found in Appendix A. The processes for
modeling the add method are given in Listing 5.10.

The process Add models the behavior of the add method. As mentioned in the previous section, the
process should be parameterized with the id of the thread and the item to be added. Furthermore, the
process should start with a prime invocation, denoted by the action CallAddPrime, which contains the
same parameters as the process. There is a one-to-one mapping between the statements in the method
implementation and the actions in the method specification. As can be seen, the head node is locked
before reading the next node. To model the while-loop in the method, the recursive process AddWhile
has been introduced, containing the necessary parameters to traverse the list. During the traversal, the
hand-over-hand locking occurs, and the traversal stops when the right position has been reached. After the
loop finishes, the same two cases apply as in the previous implementation. Finally, the method concludes
with the action ReturnAddPrime.

proc Add(id: Nat, itemToAdd: Nat) = CallAddPrime(id, itemToAdd).
GetHashCode (hashCode (itemToAdd)). snd LockNode(0) .
sum predNode: Node. rcv_ReadNode (0, predNode).
sum curr: Node. rcv_ReadNext (mem(predNode), curr). snd LockNode(mem(curr)).
AddWhile(id , itemToAdd, predNode, curr);
proc AddWhile(id: Nat, itemToAdd: Nat, predNode: Node, curr: Node) =
(key (curr) < hashCode (itemToAdd))
—> snd_UnlockNode (mem(predNode)). sum nn: Node. rcv_ReadNext (mem(curr), nn).
snd LockNode (mem(nn)). AddWhile(id, itemToAdd, curr, nn)
<> ((key(curr) = hashCode (itemToAdd))
—> snd_UnlockNode (mem(curr)). snd UnlockNode (mem(predNode)).
ReturnAddPrime (id, false)
<> snd_InsertItem (itemToAdd, mem(predNode)). snd UnlockNode (mem(curr)).
snd _UnlockNode (mem(predNode)). ReturnAddPrime(id, true));

Listing 5.10: Method specification of the fine-grained set

The third step in building the concrete specification is defining the finite client, which is the same as the
one defined for the coarse-grained set. The initial process for this specification can be found in Listing
5.11. The internal actions are hidden, to ensure that the generated LTS consists only of invocations and
responses. The allowed actions in this specification are all the ones defined, except the prime actions, and
the required communication is enforced. Finally, the prime invocations and prime responses are renamed
to their non-prime counterparts. Then, the process is a parallel composition of the linked list and two
threads, each executing two operations.

Modeling and Verifying Concurrent Data Structures 32

CHAPTER 5. CASE STUDIES

init
hide ({
GetHashCode, Insertltem , Removeltem, LockNode, UnlockNode, ReadNode,
ReadNext
}, allow ({

CallAdd, ReturnAdd, CallRemove, ReturnRemove, Insertltem , Removeltem
GetHashCode, LockNode, UnlockNode, ReadNode, ReadNext
b, comm({
rcv_InsertItem | snd_ InsertItem —> InsertItem ,
rcv_Removeltem | snd_Removeltem —> Removeltem,
rcv_LockNode | snd_ LockNode —> LockNode,
rcv_UnlockNode | snd UnlockNode —> UnlockNode,
rcv_ReadNode | snd_ReadNode —> ReadNode,
rcv_ReadNext | snd ReadNext —> ReadNext
}, rename ({
CallAddPrime —> CallAdd, ReturnAddPrime —> ReturnAdd,
CallRemovePrime —> CallRemove, ReturnRemovePrime —> ReturnRemove
}, LinkedList ((lambda n: Nat.null)[0—>node(MinKey, MinKey, 1, false, 0)]
[1—>node (MaxKey, MaxKey, —1, false, 1)]|, 2)
|| Thread(1, 2, [2, 4]) || Thread(2, 2, [4, 8])))));

Listing 5.11: Start process of the fine-grained set

The abstract specification is obtained from the concrete specification, as described in the methodology.
This means that the process Atomic is added in the abstract specification, with the corresponding actions
and communication. This process is also added in the parallel composition, as it is a shared resource.
Additionally, the processes representing the action refinement are added to the specification, and they are
the same as for the abstract specification of the fine-grained set. From this abstract specification, the
elements considering the prime actions should be removed.

5.1.3 Optimistic set

The optimistic algorithm is lock-based, having a lock for every node in the list in a similar manner as
with the fine-grained set. However, the fine-grained set requires many lock acquisitions and releases. The
optimistic set mitigates this overload of locking by traversing the list without acquiring any locks. Then,
in the methods provided, the node that should be modified is locked, as well as its predecessor. Finally,
the nodes are validated to ensure that they have not been modified by another thread. If the validation
fails, the locks are released and the methods restart. The motivation for this design principle is that the
probability that the method would restart is small. The data requirements are the same as given as for
the fine-grained set. The methods provided are equivalent to the methods given in the previous versions
of the set. Both methods modify the list only when holding the appropriate locks. On top of the add
and remove methods, there is a wvalidate method that checks the correctness of the locked nodes. The
implementation add and walidate is given in 5.12. As the manipulation of a node occurs only when the
corresponding locks are acquired, the node is modified in an exclusive manner. Therefore, the authors
claim that this concurrent data structure is linearizable.

public boolean add(T item) {
int key = item.hashCode();
while (true) {
Node pred = head;

Node curr = pred.next;
while (curr.key <= key) {
pred = curr; curr = curr.next;

pred.lock (); curr.lock();

try {
if (validate (pred, curr)) {

if (curr.key key) {
return false;
} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;

return true;

Modeling and Verifying Concurrent Data Structures 33

CHAPTER 5. CASE STUDIES

}

}
} finally {
pred.unlock (); curr.unlock();
P

private boolean validate (Node pred, Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node = pred)
return pred.next = curr;
node = node.next;

}

return false;

}

Listing 5.12: Implementation of the add method of the optimistic set

The concrete specification for the optimistic set is modeled first. As mentioned above, the data require-
ments are identical with the requirements for the fine-grained set, namely the set is stored as a linked list
of nodes, where each node can be locked individually. The same principles for modeling the linked list
given for the fine-grained set apply to the optimistic set. On top of the process representing the shared
linked list, there is a Validate process, representing the validation method of the set. Listing 5.13 described
this process, as well as the required actions and the modifications applied to the linked list. The process
Validate checks that the node to be modified and its predecessor still exist in the linked list, and that the
next node of the predecessor points to the current node. The remainder of the data specification can be
found in Appendix B, Listing B.3.

act snd_ ValidateNodes: Node#Node; rcv_ValidateNodes: Node#Node;
ValidateNodes: Node#Node;
snd _Validation: Bool; rcv_Validation: Bool; Validation: Bool; Nextlteration;

proc LinkedList (nodes: ArrayNodes, nextLoc: Nat) =
sum element: Int. snd ReadNode(element, nodes(element)).
LinkedList (nodes, nextLoc) +
sum elementN: Int. snd ReadNext(elementN, nodes(next(nodes(elementN)))).
LinkedList (nodes, nextLoc) +
sum n: Int. (!lock(nodes(n))) —> rcv_LockNode(n).
LinkedList (nodes [n—>lockNode (nodes(n))|, nextLoc) +
sum nn: Int. rcv_UnlockNode(nn).
LinkedList (nodes [nn—>unlockNode (nodes(nn))|, nextLoc) +
sum iteml, loc: Nat. rcv_Insertltem (iteml, loc).
LinkedList (insertNode (nodes, nextLoc, iteml, loc), (nextLoc+1)) +
sum loc: Nat. rcv_Removeltem(loc). LinkedList(removeNode(nodes, loc), nextLoc)
+
sum predNode, curr: Node. rcv_ValidateNodes(predNode, curr).
Validate (nodes, predNode, curr, 0). LinkedList(nodes, nextLoc);
proc Validate (nodes: ArrayNodes, predNode: Node, curr: Node, nd: Int) =
(nodes(nd)!= null && key(nodes(nd)) <= key(predNode))
—> ((nodes(nd) = predNode)
—> ((nodes(next(nodes(nd))) = curr)
—> snd_Validation (true) <> snd_Validation(false))
<> Nextlteration. Validate(nodes, predNode, curr, next(nodes(nd))))
<> snd_Validation (false);

Listing 5.13: Data specification of the optimistic set

The second step consists of introducing a process for each of the two method, namely add and remove. The
implementation of the add method is given in Listing 5.12. The implementation of the remove method
can be found in Appendix A, Listing A.3. The processes for modeling the add method are given in Listing
5.14. The process Add is the start point of modeling the add method. As mentioned in the previous
sections, the process should be parameterized with the id of the thread and the item to be added, and
it should start with a prime invocation, denoted by the action CallAddPrime. The method contains two
nested loops, which are modeled by introducing two processes, Add While and AddWhile2. The first while-
loop reads the head of the list and its successor. The second while-loop starts from these two nodes and
traverses the list without locking until the correct position is reached. At this point, the current node and

Modeling and Verifying Concurrent Data Structures 34

CHAPTER 5. CASE STUDIES

its predecessor are locked and validated. If the validation succeeds, meaning that the nodes have not been
changed by a parallel thread, then the process continues with one of two options: either the node exists,
and the item is not added; or the converse occurs. However, if the validation fails, the process restarts
with reading the head of the list. The method concludes with the action ReturnAddPrime.

proc Add(id: Nat, itemToAdd: Nat) = CallAddPrime(id, itemToAdd).
GetHashCode (hashCode (itemToAdd)). AddWhile(id, itemToAdd);
proc AddWhile(id: Nat, itemToAdd: Nat) = sum predNode: Node.
rcv_ReadNode (0, predNode).
sum curr: Node. rcv_ReadNext (mem(predNode), curr).
AddWhile2 (id , itemToAdd, predNode, curr);
proc AddWhile2(id: Nat, itemToAdd: Nat, predNode: Node, curr: Node) =
(key (curr) < hashCode (itemToAdd))
—> sum nextCurr: Node. rcv_ReadNext(mem(curr), nextCurr).
AddWhile2 (id , itemToAdd, curr, nextCurr)
<> snd_LockNode (mem(predNode)). snd LockNode(mem(curr)).
snd_ValidateNodes (lockNode (predNode) , lockNode(curr)).
(rev_Validation(true). ((key(curr) hashCode (itemToAdd))
—> snd_UnlockNode (mem(predNode)). snd UnlockNode (mem(curr)).
ReturnAddPrime(id, false)
<> snd_InsertItem (itemToAdd, mem(predNode)).
snd_UnlockNode (mem(predNode)) .
snd _UnlockNode (mem(curr)). ReturnAddPrime(id, true)) +
rcv_Validation (false). snd UnlockNode (mem(predNode)) .
snd _UnlockNode (mem(curr)). AddWhile(id, itemToAdd));

Listing 5.14: Method specification of the optimistic set

The third step in building the concrete specification is defining the finite client, which is the same as
the one defined for the previous sets. Finally, the initial process can be found in Listing 5.15. The
reasoning concerning the previous sets applies for this process as well, when it relates to hiding, allowing,
communicating and renaming actions. Then, the system can be defined as the parallel composition of the
linked list and two threads, each executing two operations.

init

hide ({
GetHashCode, Insertltem , Removeltem, LockNode, UnlockNode, ReadNode,
ReadNext, ValidateNodes, NextlIteration, Validation

}, allow ({
CallAdd, ReturnAdd, CallRemove, ReturnRemove, Insertltem , Removeltem
GetHashCode, LockNode, UnlockNode, ReadNode, ReadNext, ValidateNodes,
Nextlteration , Validation

}, comm({
rcv_InsertItem | snd_InsertItem —> Insertltem,
rcv_Removeltem | snd_Removeltem —> Removeltem,
rcv_LockNode | snd LockNode —> LockNode,
rcv_UnlockNode | snd_UnlockNode —> UnlockNode,
rcv_ReadNode | snd ReadNode —> ReadNode,
rcv_ReadNext | snd_ReadNext —> ReadNext,
snd_ValidateNodes | rcv_ValidateNodes —> ValidateNodes,
snd_ Validation | rcv_Validation —> Validation

}, rename ({
CallAddPrime —> CallAdd, ReturnAddPrime —> ReturnAdd,
CallRemovePrime —> CallRemove, ReturnRemovePrime —> ReturnRemove
}, LinkedList ((lambda n: Nat.null)[0—>node(MinKey, MinKey, 1, false, 0)]

[1—>node (MaxKey, MaxKey, —1, false, 1)], 2)
|| Thread(1, 2, [2, 4]) || Thread(2, 2, [4, 8])))));

Listing 5.15: Start process of the optimistic set

The abstract specification is obtained from the concrete specification, as described in the methodology.
The process Atomic and the corresponding elements are added to the abstract specification. Additionally,
the processes concerning the invocations and responses are added to the specification, and the relevant
elements pertaining to the prime actions should be removed. The processes resulting from this mechanism
are equivalent to those defined in the abstract specification of the previous sets.

Modeling and Verifying Concurrent Data Structures 35

CHAPTER 5. CASE STUDIES

5.1.4 Lazy set

The lazy algorithm optimizes the optimistic algorithm by ensuring that the list is traversed once, compared
to the two traversals done by the optimistic algorithm. This is achieved by adding a marked field to each
node that reflects whether that node still belongs to the set. This concept impacts the implementation of
the validate method, which can be seen in Listing 5.16, which does not need to traverse the list in order
to check that a node is reachable from the head of the list. Alternatively, this method verifies that the
current node, as well as its predecessor, have not been marked for removal, and that the predecessor’s next
field still references the current node. In this context, the method traverse the list in a similar manner as
the optimistic set, without acquiring any locks. The addition of an element follows closely the algorithm
given in the optimistic set, while using the update validate method. However, the removal of an element
currently occurs in two steps: first, the node is logically removed by marking the node; second, the node
is physically removed by redirecting the next field of the predecessor node. The implementation of the
remove method is also given in Listing 5.16. The data requirements have been updated to include the
marked field in each node, as well as the corresponding mappings to change this field, as can be seen in
Listing 5.17. Additionally, this listing describes the modifications realized on the Validate process.

public boolean remove(T item) {
int key = item.hashCode();
while (true) {
Node pred = head;

Node curr = head.next;
while (curr.key < key) {
pred = curr; curr = curr.next;

pred.lock () ;

try {
curr.lock () ;
try {
if (validate(pred, curr)) {
if (curr.key != key) {
return false;
} else {
curr . marked = true;
pred.next = curr.next;

return true;

b
} finally {
curr . unlock () ;

} finally {
pred . unlock () ;
P
private boolean validate (Node pred, Node curr) {
return !pred.marked && !curr.marked && pred.next = curr;

}

Listing 5.16: Implementation of the remove method of the optimistic set

The concrete specification for the lazy set replicates the concrete specification of the optimistic set, and
can be found in Appendix B, Listing B.4. As mentioned above, the difference lies in each node having an
additional field, the Boolean marked, that indicates the removal of the node. The required variables and
actions to access and modify this field have been added to the specification.

The implementation for both methods, add and remove, is given in Listing A.4. The processes for these
methods behave equivalently with the method processes for the optimistic set. Thus, each process has the
necessary parameters (i.e. id of the thread, item to be added or removed), starts with a prime invocation,
continues with the required internal actions, and concludes with a prime response. Both methods employ
nested loops, which are modeled through two recursive processes per method. However, the validation is
realized using the marked field. Additionally, the processes required for the remove method include two
actions for removing a node, an action for the logical removal of the node and an action for the physical
removal of the node.

Modeling and Verifying Concurrent Data Structures 36

CHAPTER 5. CASE STUDIES

sort Node = struct null | node(itm: Int, ky: Int, nxt: Int,
mkd: Bool, lck: Bool, mm: Nat);
act snd MarkRemoved: Int; rcv_MarkRemoved: Int; MarkRemoved: Int;

proc LinkedList(nodes: ArrayNodes, nextLocation: Nat) =
%equivalent behavior as optimistic set +
sum nnn: Int. rcv__MarkRemoved (nnn) .
LinkedList (nodes [nnn—>markNode(nodes (nnn))|, nextLocation);
proc Validate (nodes: ArrayNodes, predNode: Nat, curr: Nat) =
(!marked (nodes (predNode)) && !marked(nodes(curr)) &&
next (nodes(predNode)) = curr)
—> snd_Validation(true) <> snd_Validation(false);

Listing 5.17: Data specification of the lazy set

Subsequently, the concrete specification includes the finite client and the initial process. These elements
are similar to the ones described in the previous set. The action for marking a removed node is added
in the respective blocks of the initial process, specifically the hide, allow and comm blocks. Finally, the
system equals the parallel composition of the linked list and two threads, each executing two operations.

The abstract specification is obtained from the concrete specification, as described in the methodology.
The processes concerning the atomic protocol, the prime invocations and the prime responses are added
to the abstract specification, as well as the corresponding elements. The relevant elements pertaining to
the prime actions should be removed. The processes resulting from this mechanism are equivalent to those
defined in the abstract specification of the previous sets.

5.2. Non-blocking queue

Shann et al.[20] present an algorithm for a non-blocking queue, and claim that this queue is linearizable.
However, it has already been established that this queue is not linearizable [17]. In this section, the queue
is modeled according to the methodology described in the previous chapter.

The data requirements for the non-blocking queue are given in Listing 5.18. The queue is stored as a
circular array, with fixed length L. Each item of the array consists of two parts: the value that should
be stored in the queue and a counter that represents the number of references that a particular memory
location has held so far. Additionally, two methods are possible on a queue: enqueue, which adds an ele-
ment at the rear of the queue, and dequeue, which removes an element from the front of the queue. There
are also two variables that represent the front and the rear of the queue. The queue uses non-blocking
synchronization, achieved through the CAS instruction.

Q: array [0..L—1] of structure {val: qitem; ref: counter}
FRONT, REAR: counter

Listing 5.18: Data structures of the non-blocking queue

The implementation of the enqueue method is given in Listing 5.19. This methods adds an element in the
queue only when the queue still has capacity and the rear stores no element. If the queue is full, then the
process waits until a parallel process dequeues an element. If the variable rear stores an element, then
another process might operate on the queue at the same time. In this case, the current process helps the
other processes by incrementing the rear variable. The dequeue behaves in a simialr fashion, and can be
found in Appendix A, Listing A.5.

enqueue (X: qitem)
enq try again:
rear := REAR

x := Q[rear mod L]

if rear != REAR then goto enq try again endif

if rear = FRONTHL then goto enq try again endif
if x.val = NULL then

if CAS(Q[rear mod L], x, <X || x.ref+I>) then
CAS(REAR, rear, rear+1)
return

endif

Modeling and Verifying Concurrent Data Structures 37

CHAPTER 5. CASE STUDIES

elseif

CAS(REAR, rear, rear+1) # help others increment REAR
endif
goto enq_try again

Listing 5.19: Implementation of the enqueue method of the non-blocking queue

The concrete specification should be constructed according to the method described in Section 4.1. To
achieve this, the first step is identifying the data requirements, which are shown in Listing 5.18. The
non-blocking queue is stored as an array of items, modeled as a function. The necessary structures and
functions to manipulate the array should be created. This specification contains a process representing the
shared resources, the Queuelnterface. This process models the behavior of the low-level instruction CAS.
This object contains three different resources that should be accessed, i.e. an element in the array, the rear,
and the front. Thus, there are three instances of the CAS instruction, each defined per shared resource.
Modeling these concepts results in the data specification shown in Listing 5.20. Further specification
details can be found in Appendix B, Listing B.5.

sort Null = struct null;

sort Item = struct item(nl: Null, ref: Nat) | item(value: Nat, ref: Nat);
sort Array = Nat —> Item;

map L: Pos; isNull: Item —> Bool;

act rcv_ReadRear: Nat; snd ReadRear: Nat; ReadRear: Nat;
rcv_ReadFront: Nat; snd_ ReadFront: Nat; ReadFront: Nat;
rcv_ReadElement: Nat#ltem; snd ReadElement: Nat#Item; ReadElement: Nat#ltem;
rcv__Result: Bool; snd_ Result: Bool; Result: Bool;
rcv_CASRear: Nat#Nat; snd CASRear: Nat#Nat; CASRear: Nat#Nat;
rcv_CASFront: Nat#Nat; snd CASFront: Nat#Nat; CASFront: Nat#Nat;
rcv_CASElement: Nat#ltem#Item; snd CASElement: Nat#ltem#Item;
CASElement: Nat#Item#Item ;

proc Queuelnterface(q: Array, rear: Nat, front: Nat) =
rcv_ReadRear(rear). Queuelnterface(q, rear, front) +
rcv_ReadFront(front). Queuelnterface(q, rear, front) +
sum n: Nat. rcv_ReadElement(n, gq(n)). Queuelnterface(q, rear, front) +

sum oldR, newR: Nat. (rcv_CASRear(oldR, newR) | snd Result(oldR = rear)).
((0oldR == rear) —> Queuelnterface(q, newR, front)
<> Queuelnterface(q, rear, front)) +
sum oldF, newF: Nat. (rcv_CASFront(oldF, newF) | snd Result(oldF = front)).
((oldF = front) —> Queuelnterface(q, rear, newF)

<> Queuelnterface(q, rear, front)) +

sum n: Nat, oldX, newX: Item. (rcv_CASElement(n, oldX, newX) |
snd Result(q(n) = oldX)).
((a(n) == oldX) —> Queuelnterface (q[n—>newX], rear, front)
<> Queuelnterface(q, rear, front)) ;

Listing 5.20: Data specification of the non-blocking queue

The second step is identifying all the methods provided by the concurrent data structure, and introduce
a process for each of the methods. The non-blocking queue provides two methods: enqueue and dequeue.
The processes, and corresponding actions, for modeling the enqueue method are given in Listing 5.21. The
processes Enqueue and EnqueueTryAgain model the behavior of the enqueue method. The processes are
parameterized with the id of the thread that initiated the call, and the item to be added. Additionally,
the method call should start with a prime invocation. Thus, the action CallEnqueuePrime is added as
the initial action, and it contains the same parameters as the processes. There is a one-to-one mapping
between the statements in the method implementation and the actions in the method specification. To
model the jump statement represented by goto, the recursive process EnqueueTryAgain was introduced.
The method first checks that the required conditions for adding an element are fulfilled. If the conditions
are met, then the process executes two CAS instructions, one for the element to be added and one for the
rear of the list. Conversely, the process executes one CAS instruction to update the rear. The method
concludes with a response, denoted by the action ReturnEnqueuePrime. The actions for the non-prime
invocations and responses are also defined. These actions are used to ensure that the histories generated
by this specification can be compared to the histories generated by the abstract specification.

Modeling and Verifying Concurrent Data Structures 38

CHAPTER 5. CASE STUDIES

act CallEnqueue: Nat#Nat; ReturnEnqueue: Nat;
CallEnqueuePrime: Nat#Nat; ReturnEnqueuePrime: Nat;

proc Enqueue(tid: Nat, v: Nat) = CallEnqueuePrime(tid, v). EnqueueTryAgain(tid, v);
proc EnqueueTryAgain(tid: Nat, v: Nat) = sum rl: Nat. snd ReadRear(rl).

sum x: Item. snd_ ReadElement ((rl mod L), x).

sum r2: Nat. snd ReadRear(r2).

((r1 !'= r2) —> EnqueueTryAgain(tid, v)
<> sum fl: Nat. snd ReadFront(fl).
((r1 = f1 + L) —> EnqueueTryAgain(tid, v)

<> ((isNull(x)) —
((snd CASElement ((rl mod L), x, item(v, ref(x)+1)) | rcv_Result(true)).
(sum bl: Bool. (snd CASRear(rl, (rl+1)) | rcv_Result(bl))).
ReturnEnqueuePrime (tid) +
(snd_CASElement ((rl mod L), x, item(v, ref(x)+1)) | rcv_Result(false)).
EnqueueTryAgain(tid, v))
<> sum b2: Bool. (snd CASRear(rl, (rl1+1)) | rcv_Result(b2)).
EnqueueTryAgain (tid, v))));

Listing 5.21: Method specification of the non-blocking queue

The third step in building the concrete specification is defining the finite client, which can be found in
Listing 5.22. The process Thread has an identifier and a bounded number of operations that can execute.
To allow the thread to make progress, a loop is needed, which is modeled through a second process. This
process calls non-deterministically the two methods provided by the object.

proc Thread(id: Nat, nOp: Nat, elms: List(Nat)) =
(nOp > 0) —> ThreadProgress(id, nOp, elms, 1);

proc ThreadProgress(id: Nat, nOp: Nat, elms: List(Nat), nDone: Nat) =
(nDone <= nOp) —> (Enqueue(id, head(elms)) + Dequeue(id)).
ThreadProgress (id, nOp, tail(elms), nDone + 1);

Listing 5.22: Client of the coarse-grained set

The initial process for this specification can be found in Listing 5.23. The internal actions are hidden,
to ensure that the generated LTS consists only of invocations and responses. The allowed actions in this
specification are all the actions that are not prime, and the required communication is enforced. Finally,
the prime invocations and prime responses are renamed to their non-prime counterparts. Then, the process
is a parallel composition of the queue and two threads, each executing two operations.

init
hide ({ ReadRear, ReadFront, ReadElement, CASElement, CASFront, CASRear, Result
}, allow ({ CallEnqueue, ReturnEnqueue, CallDequeue, ReturnDequeue,
ReadRear, ReadFront, ReadElement ,
CASRear | Result, CASFront | Result, CASElement | Result
}, comm({ rcv_ReadRear | snd ReadRear —> ReadRear,
rcv_ReadFront | snd_ReadFront —> ReadFront,
rcv_ReadElement | snd ReadElement —> ReadElement ,
rcv_Result | snd Result —> Result,
rcv_CASRear | snd_CASRear —> CASRear,
rcv_ CASFront | snd CASFront —> CASFront,
rcv_CASElement | snd_CASElement —> CASElement
}, rename({ CallEnqueuePrime —> CallEnqueue, CallDequeuePrime —> CallDequeue,
ReturnEnqueuePrime —> ReturnEnqueue, ReturnDequeuePrime —> ReturnDequeue
}, Queuelnterface ((lambda n:Nat.item(null, 0)), 0, 0) ||
Thread(1, 2, [2, 4]) || Thread(2, 2, [4, 8])))));

Listing 5.23: Start process of the non-blocking queue

The abstract specification is obtained from the concrete specification, as described in the methodology.
This means that the process Atomic and its corresponding elements are added in the abstract specification.
Additionally, the processes representing the action refinement are added to the specification, as shown in
Listing 5.24. To avoid conflicts, the actions with the same name as the processes should be removed from
the abstract specification, as well as the rename operator.

Modeling and Verifying Concurrent Data Structures 39

CHAPTER 5. CASE STUDIES

proc

proc
proc
proc

CallEnqueuePrime(tid: Nat, v: Nat) = CallEnqueue(tid, v).

snd _StartAtomicBlock;

ReturnEnqueuePrime(tid: Nat) = snd EndAtomicBlock . ReturnEnqueue(tid);
CallDequeuePrime (tid: Nat) = CallDequeue(tid). snd_ StartAtomicBlock;
ReturnDequeuePrime(tid: Nat, v: Nat) = snd EndAtomicBlock.
ReturnDequeue (tid , v);

Listing 5.24: Action refinement of the non-blocking queue

The LTSs generated by these two specifications are given as input to mCRL2, to check for branching
bisimilarity. The tool returns that the two specifications are not branching bisimilar. The verification
of weak trace equivalence returns false as well, and produces a trace that serves as a counterexample to
linearizability. The trace is given in Figure 5.1. This trace is a history that is found in the concrete
specification, but not in the abstract one. Thus, the object allows the following behavior: call to dequeue
an element, enqueue element 3 (which becomes the first element in the queue), enqueue element 4, and
return the dequeue method with value 4. This is a violation of the FIFO (First-In-First-Out) principle of
the queue, since the element that should have been dequeued is 3. Consequently, there is no legal sequential
history equivalent to this execution history, implying that this concurrent history is not linearizable. Thus,
the queue is not linearizable.

CallDequeue(1)
CallEnqueue(2, 3)
ReturnEnqueue(2)
CallEnqueue(2, 4)

ReturnDequeue(1, 4)

Figure 5.1: Trace produced by mCRL2 as counterexample for non-blocking queue

Modeling and Verifying Concurrent Data Structures 40

6. Results

This chapter presents the results of providing the case studies as an input to the mCRL2 tool. The ex-
periments were run on the tool version 201707.1, on a computer equipped with 5-core Intel CPU @ 2.80
GHz and 4GB of memory. All case studies were verified with a finite client consisting of n threads, each
thread calling m operations, where m,n € {2,3}. Thus, if the two specifications are equivalent, then the
data structure is linearizable,, n, for the selected parameters. Table 6.1 includes the results. For each
case study, the number of states and transitions in the concrete and abstract specifications are presented,
denoted by the columns St/Treone and St/ Trgps. Finally, the times required to check the equivalences
of the given specifications are given in the last columns, where BB stands for branching bisimulation and
WTE stands for weak trace equivalence. These times were calculated as the average of five runs of the tool.

Case Study Linearizable,, , St/ Trcone St/ Traps BB | WTE
Treiber’s stack Yes [2, 2 1724 / 3275 1662 / 2121 0.04 0.05
Treiber’s stack Yes [2, 3 12750 / 24391 10097 / 12853 | 0.31 0.43
Treiber’s stack Yes [3, 2] 205634 / 564862 | 87389 / 124740 | 5.8 8.91
Coarse-grained set Yes [2, 2] 1545 / 2844 1749 / 2106 0.04 0.05
Coarse-grained set Yes [2, 3] 6377 / 11824 7133 / 8570 0.15 0.21
Coarse-grained set Yes [3, 2] 55444 / 145043 50488 / 64729 | 1.63 2.20
Fine-grained set Yes [2, 2] 5077 / 9006 3305 / 3720 0.09 0.12
Fine-grained set Yes [2, 3] 37666 / 68665 21991 / 24548 | 0.75 0.92
Optimistic set Yes [2, 2] 20312 / 47467 3713 / 4128 0.40 0.48
Optimistic set Yes [2, 3] 234332 / 3893344 | 25435 / 28154 3.92 5.36
Lazy set Yes 2, 2] 94496 / 41431 3565 /3080 | 0.35 | 0.42
Non-blocking queue No [2, 2] 2966 / 5707 1198 / 1423 0.05 0.06
Non-blocking queue No [3, 2] 870243 / 2440900 | 41967 / 54109 | 18.42 | 27.06

Table 6.1: Results of verifying the case studies

From the previous table, it is noticeable that branching bisimulation and weak trace equivalence produce
the same results for all case studies. Intuitively, this observation is sustained by the mode in which the
specifications are built. That is, the abstract specification is built from the concrete specification by
restricting its behavior, but this restriction preserves the branching structure of the labeled transitions
systems. The number of possible interleavings is reduced in the abstract specification, which affects the
ordering of the internal actions. The coarse-grained set deviates from this idea, since this set behaves in
a similar manner with the abstract specification (i.e. invocation, acquiring a lock, releasing a lock, re-
sponse). Thus, the atomic protocol does not restrict the possible interleavings, but increases the number
of states. Provided that the concurrent data structure is linearizable, the external behavior of both LTSs
the same. The advantage of branching bisimulation is its efficiency, outputting the result in less time,
which is visible in all case studies.

From the table, it becomes apparent that the number of states increase with the complexity of the
algorithm. In the optimistic and lazy implementations of the set, the increase in the number of states
is considerable. These set implementations do not have fixed linearization points. Both implementations
traverse the set without locking, and lock only when reaching the appropriate nodes. Then, if the vali-
dation of the nodes fails, both implementations restart the process from the beginning of the set. These
versions of the set should be used when conflicts are rare. However, the mCRL2 tool generates all the
possible traces, containing all the possible invalidations that can be present in the system. This greatly
reduces the efficiency of these sets, since each method has to restart many times, resulting in the big
amount of states and transitions.

Modeling and Verifying Concurrent Data Structures 41

CHAPTER 6. RESULTS

This approach does not scale well when the number of threads is increased, but scales better when only
the number of operations is increased. Adding an extra thread in the system results in having many more
interleavings of the different provided methods. Furthermore, these case studies suggest the validity of
the approach. The results of these case studies match those that have been claimed by previous work.

Modeling and Verifying Concurrent Data Structures 42

7. Related Work

Verifying linearizability has been the focus of many studies, since linearizability is one of the main correct-
ness properties of concurrent data structures. Herlihy and Wing [15] defined linearizability and introduced
a method of verification. Their approach requires defining a function that maps every state of the object
to the set of possible abstract values that can occur in that state. This approach results in a manual proof,
requiring the domain knowledge of the analyzed object. Manual proofs are prone to errors that are hard
to identify.

Lowe [18] proposes a testing framework for linearizability. The first step is to randomly generate his-
tories of the concurrent object. Then, each history should be checked whether it is linearizable. To
perform this check, the paper uses five different algorithms, varying in efficiency and generality. However,
testing does not serve as a formal verification technique, but rather complementary to one.

Liang and Feng [16] propose a program logic with an instrumentation mechanism that verifies algorithms
with non-fixed linearization points. This mechanism relates concrete implementations with abstract oper-
ations, allowing the abstract operations to execute simultaneously with the concrete code. One challenge
they encounter is proving that their logic is sound with respect to linearizability. Their work is similar
to Vafeiadis’ [22], which presents a technique for automatically verifying linearizability. This technique
was implemented into a tool, and applied on different concurrent algorithms. Furthermore, Vafeiadis
also contributed to giving an aspect-oriented proof for linearizability [13]. This proof mechanism involves
concluding linearizability by verifying four simpler properties, where each property can be established
individually. However, this proof mechanism is neither complete, nor fully automated.

Bouajjani et al. tackle the problem of formally proving linearizability of a concurrent priority queue
[6]. They represent the queue as an automaton. Using this representation, verification of linearizability
can be transformed into a reachability analysis or invariant checking. This implies that establishing lin-
earizability is decidable for finite-state systems. This proposed solution is based on their previous work
[4], which also involves the reduction of checking linearizability to control-state reachability.

Model checking has also been employed in [6]. This method focuses on deterministic sequential spec-
ifications. Their contribution includes building an automatic linearizability checker. The verification
consists of systematically identifying the sequential executions of the object, and then verifying if every
concurrent execution is equivalent to some sequential one. This approach is complete, but only sound
regarding some given inputs. Cerny et al. [7] use model checking to verify linearizability for concurrent
linked-list implementations. Their verification consists of checking reachability in a method automaton
that follows the manipulation of the concurrent data structure. This solution also has the limitation of
bounding the number of operations. As can be observed, the challenge encountered in all model check-
ing techniques is the state-space explosion, which enforces the bound on the number of operations and
processes.

Modeling and Verifying Concurrent Data Structures 43

8. Conclusion

This work investigated the process of modeling and verifying concurrent data structures, where the main
property to be verified is linearizability. As defined by Herlihy and Wing [15], linearizability considers the
execution histories of an object, where an object is an instance of the data structure. An object can be
manipulated only through its methods, where each method starts with an invocation (i.e. the method call
is initiated) and ends with a response (i.e. the method finishes executing). Then, an execution history
consists only of these invocations and responses. To prove linearizability, prove that every concurrent
history is equivalent to some sequential history. When this property is met, the concurrent data structure
can be analyzed using sequential reasoning rather than complex concurrent reasoning. The reason behind
this follows from the fact that linearizability ensures that all possible interleavings respect the sequential
specification of the object.

The approach explored in this work consists of building two specifications, a concrete one and an abstract
one. These specifications are built using the mCRL2 specification language, which is a process algebra.
The concrete specification formalizes the behavior of the implementation by introducing processes for each
method and each shared resource. By definition, investigating linearizability requires invocations and re-
sponses of the methods. Actions representing these events are added in the corresponding processes. To
express the executions of methods, a process representing a thread should be introduced, which calls all
the provided methods non-deterministically. To allow for concurrent processing of the object, a number
of threads run in parallel, which represent the client of the object. Both the number of threads and the
number of methods called should be bounded, resulting in a finite client. This client is needed to ensure
that the corresponding LTS can be generated. The restriction on the client motivates the need for lin-
earizabilitym,n, where n represents the number of threads, and m represents the number of operations per
threads. Thus, it follows that this methodology can establish only linearizabilitym,n, a restricted version
of linearizability that considers the bounds imposed by the model checking approach.

The abstract specification is obtained from the concrete specification by adding an atomic layer on top of
it. This is realized by appending an atomic block around the internal actions in the body of every method.
Thus, the possible interleavings occur between the invocations, responses, or atomic blocks. The execution
of the internal actions is purely sequential. The same finite client should be used in this specification to
generate the LTS. By construction, this abstract specification is linearizable, in the sense that all the
histories contained in its labeled transition system are linearizable.

The last step in verifying linearizability is comparing these two specifications using branching bisimu-
lation. When mCRL2 validates their equivalence, then one can conclude that the object on which these
specifications are based is linearizable. However, if the two specifications are not branching bisimilar, then
the two specifications should be checked using weak trace equivalence. The tool produces a counterexam-
ple trace when the weak trace equivalence cannot be concluded. This trace serves as an execution history
that is not linearizable, which suffices to conclude that the object is not linearizable.

This methodology was applied on a number of case studies. The results matched the literature, namely
correct and incorrect implementations of objects were detected in all cases. Regarding the correct im-
plementations, one can conclude that they are linearizable,,, ,, where the two parameters originate from
the finite client defined in the specifications. Unfortunately, this approach does not scale well, since the
number of states increases exponentially with the number of threads or operations.

Future work could investigate how to improve the scalability of the approach, by possibly analyzing
only parts of the traces or reducing the number of internal actions used in a specification. Furthermore,
the arguments for verification should be formalized to ensure that linearizability can be verified in a formal
setting. As mentioned, this work establishes linearizability,,,». One could explore whether it is possible to
generalize this approach, by concluding linearizability from establishing it for n threads and m operations.
Finally, an algorithm could be developed to automate the translation from a concrete specification to an
abstract specification.

Modeling and Verifying Concurrent Data Structures 44

Bibliography

(1]
2]
3l
4]

(5]
(6]

(7]

(8]
Bl

[10]
[11]

[12]
[13]

[14]
[15]

16]
17]
18]
19]
[20]
[21]

22]
23]
24]

S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. Computer, 29:66—
76, 1996.

D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction for verifying
linearizability. Proc. 19th Int’l Conf. Computer Aided Verification, pages 477-490, 2007.

J. Baeten, T. Basten, and M. Reniers. Process Algebra: FEquational Theories of Communicating
Processes. Cambridge University Press, 2010.

A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. On reducing linearizability to state reachability.
In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, pages 95-107, 2015.

A. Bouajjani, C. Enea, and C. Wang. Checking linearizability of concurrent priority queues. CON-
CUR, 2017.

S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up: a complete and automatic linearizability
checker. In Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages 330-340, 2010.

P. Cerny, A. Radhakrishna, D. Zufferey, S. Chaudhuri, and R. Alur. Model checking of linearizability
of concurrent list implementations. In Computer Aided Verification, 22nd International Conference,
CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, pages 465-479, 2010.

S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a practical lock-free queue
algorithm. FORTE’04.

F. Ellen, Y. Lev, V. Luchangco, and M. Moir. Snzi: Scalable nonzero indicators. Proc. 26th Ann.
ACM Symp. Principles of Distributed Computing, pages 1322, 2007.

J. Groote and M. Mousavi. Modeling and analysis of communicating systems. 2014.

S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. S. III, and N. Shavit. A lazy concurrent list-based
algorithm. OPODIS "05.

D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. SPAA ’0/.

T. A. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented linearizability proofs. CONCUR, pages
242-256, 2013.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.

M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463-492, 1990.

H. Liang and X. Feng. Modular verification of linearizability with non-fixed linearization points.
PLDI, pages 459-470, 2013.

Y. Liu, W. Chen, and et al. Verifying linearizabiity via optmized refinement checking. IEEE Trans.
on Soft. Eng., 39(7):1018-1039, 2013.

G. Lowe. Testing for linearizability. Concurrency and Computation: Practice and Experience, 29(4),
2017.

M. Moir and N. Shavit. Concurrent data structures. In Handbook of Data Structures and Applications.
Chapman and Hall/CRC, 2004.

C. H. Shann, T. Huang, and C. Chen. A practical nonblocking queue algorithm using compare-and-
swap. Proc. Seventh Int’l Conf. Parallel and Distributed Systems, pages 470-475, 2000.

R. Treiber. Systems programming: Coping with parallelism. Technical Report RJ 5118, IBM Almaden
Research Center, 1986.

V. Vafeiadis. Automatically proving linearizability. CAV, 2010.
R. van Glabbeek. The linear time-branching time spectrum i. CONCUR, 1990.

M. Vechev and E. Yahav. Deriving linearizable fine-grained concurrent objects. Proc. ACM SIGPLAN
Conf. Programming Language Design and Implementation, pages 125-135, 2008.

Modeling and Verifying Concurrent Data Structures 45

BIBLIOGRAPHY

[25] X. Yang, J.-P. Katoen, H. Lin, and H. Wu. Proving linearizability via branching bisimulation.
CoRRabs/1609.07546, 2016.

[26] X. Yang, J.-P. Katoen, H. Lin, and H. Wu. Verifying concurrent stacks by divergence-sensitive
bisimulation. CoRR abs/1701.06104, 2017.

Modeling and Verifying Concurrent Data Structures 46

A. Implementation of concurrent data structures

Coarse-grained set

public class CoarseList<T> {
private Node head;
private Lock lock = new ReentrantLock () ;

public CoarseList () {
head = new Node(Integer .MIN VALUE) ;
head.next = new Node(Integer .MAX VALUE) ;
}

public boolean add(T item) {
Node pred, curr;
int key = item.hashCode();
lock.lock ();
try {
pred = head;
curr = pred.next;
while (curr.key < key) {
pred = curr;
curr = curr.next;

if (key = curr.key) {
return false;
} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
} finally {
lock . unlock () ;
i3

public boolean remove(T item) {
Node pred, curr;
int key = item.hashCode();
lock.lock ();

try {

pred = head;

curr = pred.next;

while (curr.key < key) {
pred = curr;
curr = curr.next;

if (key = curr.key) {
pred.next = curr.next;
return true;

} else {

return false;

} finally {
lock . unlock () ;
b

Listing A.1: Implementation of the coarse-grained set

Modeling and Verifying Concurrent Data Structures

APPENDIX A. IMPLEMENTATION OF CONCURRENT DATA STRUCTURES

Fine-grained set

public boolean add(T item) {
int key = item.hashCode();
head.lock () ;
Node pred = head;
try {
Node curr = pred.next;
curr.lock ();
try {
while (curr.key < key) {
pred.unlock () ;
pred = curr;
curr = curr.next;
curr.lock ();

if (curr.key = key) {
return false;
}
Node newNode = new Node(item) ;
newNode. next = curr;
pred.next = newNode;
return true;
} finally {
curr.unlock () ;
} finally {

pred . unlock () ;

1}

public boolean remove(T item) {
Node pred = null, curr = null;

int key = item.hashCode();
head.lock () ;

try {
pred = head;
curr = pred.next;
curr.lock ();
try {

while (curr.key < key) {
pred.unlock () ;

pred = curr;
curr — curr.next;
curr.lock();

}

if (curr.key =— key) {

pred.next = curr.next;
return true;

return false;
} finally {
curr . unlock () ;

} finally {
pred.unlock () ;
i3

Listing A.2: Implementation of the fine-grained set

Modeling and Verifying Concurrent Data Structures 48

APPENDIX A. IMPLEMENTATION OF CONCURRENT DATA STRUCTURES

Optimistic set

public boolean add(T item) {
int key = item.hashCode();
while (true) {
Node pred head;
Node curr pred.next;
while (curr.key <= key) {
pred = curr; curr = curr.next;

pred.lock (); curr.lock();
try {
if (validate (pred, curr)) {
if (curr.key key) {
return false;

} else {
Node node new Node (item);
node . next curr;
pred.next = node;

return true;

1}
} finally {
pred.unlock (); curr.unlock();

133

public boolean remove(T item) {
int key item . hashCode () ;
while (true) {

Node pred = head;

Node curr = pred.next;
while (curr.key < key) {
pred = curr; curr = curr.next;

pred.lock (); curr.lock();
try {
if (validate (pred, curr)) {

if (curr.key key) {
pred.next = curr.next;
return true;

} else {

return false;

1}
} finally {
pred.unlock (); curr.unlock();

133

private boolean validate (Node pred, Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node = pred)
return pred.next == curr;
node = node.next;
}

return false;

}

Listing A.3: Implementation of the optimistic set

Modeling and Verifying Concurrent Data Structures 49

APPENDIX A. IMPLEMENTATION OF CONCURRENT DATA STRUCTURES

Lazy set

public boolean add(T item) {
int key = item.hashCode();
while (true) {
Node pred head;
Node curr head . next;
while (curr.key < key) {
pred = curr; curr = curr.next;

pred.lock ();

try {
curr.lock ();
try {
if (validate(pred, curr)) {
if (curr.key =— key) {
return false;
} else {
Node node = new Node(item) ;
node.next = curr;
pred.next = node;
return true;
1}
} finally {

curr.unlock () ;

} finally {
pred . unlock () ;
33

public boolean remove(T item) {
int key = item.hashCode();
while (true) {
Node pred head;
Node curr = head.next;
while (curr.key < key) {
pred = curr; curr = curr.next;

pred.lock ();
try {
curr.lock ();
try {
if (validate(pred, curr)) {
if (curr.key != key) {
return false;

} else {
curr . marked = true;
pred.next = curr.next;

return true;

b
} finally {
curr . unlock () ;

} finally {
pred.unlock () ;
P

private boolean validate (Node pred, Node curr) {
return !pred.marked && !curr.marked && pred.next
}

curr;

Listing A.4: Implementation of the lazy set

Modeling and Verifying Concurrent Data Structures 50

APPENDIX A. IMPLEMENTATION OF CONCURRENT DATA STRUCTURES

Non-blocking queue

Q: array [0..L—1] of structure {val: gitem; ref: counter}
FRONT, REAR: counter
enqueue (X: qitem)

enq try again:

rear := REAR

x := Q[rear mod L]

if rear != REAR then goto enq try again endif

if rear = FRONTHL then goto enq try again endif

if x.val = NULL then

if CAS(Q[rear mod L], x, <X || x.ref+I>) then
CAS(REAR, rear, rear-1)

return
endif
elseif
CAS(REAR, rear, rear+1) # help others increment REAR
endif

goto enq_ try again

dequeue () : qitem t
deq try again:
front := FRONT
x := Q[front mod L]J

if front != FRONT then goto deq try again endif
if front = REAR then goto deq try again endif
if x.val != NULL then

if CAS(Q[front mod L], x, <NULL || x.ref+1>) then
CAS(FRONT, front, front+1)
return (x.val)
endif
elseif
CAS(FRONT, front, front+1) # help others increment FRONT
endif
goto deq try again

Listing A.5: Implementation of the non-blocking queue

Modeling and Verifying Concurrent Data Structures 51

B. Concrete specifications of case studies

Coarse-grained set

sort Node = struct null | node(item: Int, key: Int, next: Node);
map MinKey: Int; MaxKey: Pos; hashCode: Nat —> Nat;
insert: Nat#Node —> Node; insertHelper: Nat#Nat#Node#Node —> Node;
remove: Nat#Node —> Node; removeHelper: Nat#Nat#Node#Node —> Node;
var it : Nat; i, k: Int; n: Node;
ci, ck: Int; cn: Node; el, kEIl: Nat;
eqn MinKey = —1; MaxKey = 100;
hashCode(it) = if (it >= MaxKey, it mod MaxKey, it);
insert (el, node(i, k, n)) = insertHelper(el, hashCode(el), node(i, k, n), n);
insertHelper (el, kEl, node(i, k, n), node(ci, ck, cn)) =
if (ck = kEl, node(i, k, n),
if (ck < kEl, node(i, k, insertHelper(el, kEl, n, next(n))),
node (i, k, node(el, kEl, n))));
remove (el , node(i, k, n)) = removeHelper(el, hashCode(el), node(i, k, n), n);
removeHelper (el, kEl, node(i, k, n), node(ci, ck, cn)) =
if (ck = kEIl, node(i, k, cn),
if (ck < kEl, node(i, k, removeHelper(el, kEl, n, next(n))),
node (i, k, m))):

act rcv_ReadHead: Node; snd ReadHead: Node; ReadHead: Node;
rcv_Insertltem: Nat; snd Insertltem: Nat; InsertItem: Nat;
rcv_Removeltem: Nat; snd Removeltem: Nat; Removeltem: Nat;
rcv_Lock: Nat; snd Lock: Nat; Lock: Nat;
rcv_Unlock: Nat; snd_Unlock: Nat; Unlock: Nat;
CallAdd: Nat#Nat; ReturnAdd: Nat#Bool;
CallAddPrime: Nat#Nat; ReturnAddPrime: Nat#Bool;
CallRemove: Nat#Nat; ReturnRemove: Nat#Bool;
CallRemovePrime: Nat#Nat; ReturnRemovePrime: Nat#Bool;
GetHashCode: Nat; Nextlteration;

proc LinkedList (nodes: Node) = rcv_ReadHead(nodes). LinkedList(nodes) +
sum iteml: Nat. rcv_InsertItem (iteml). LinkedList(insert (iteml, nodes)) +
sum item2: Nat. rcv_Removeltem (item2). LinkedList (remove(item2, nodes));

proc ReentrantLock = sum id: Nat. rcv_Lock(id). rcv_Unlock(id). ReentrantLock;

proc Add(id: Nat, itemToAdd: Nat) = CallAddPrime(id, itemToAdd).
GetHashCode (hashCode (itemToAdd)). snd Lock(id).
sum predNode: Node. snd ReadHead (predNode).
AddWhile(id , itemToAdd, predNode, next(predNode));
proc AddWhile(id: Nat, itemToAdd: Nat, predNode: Node, curr: Node) =
(key(curr) < hashCode (itemToAdd))
—> Nextlteration. AddWhile(id, itemToAdd, curr, next(curr))
<> ((key(curr) = hashCode (itemToAdd))
—> snd_Unlock(id). ReturnAddPrime(id, false)
<> snd_InsertItem (itemToAdd). snd Unlock(id). ReturnAddPrime(id, true));

proc Remove(id: Nat, itemToRemove: Nat) = CallRemovePrime(id, itemToRemove).
GetHashCode (hashCode (itemToRemove)). snd_ Lock(id).
sum predNode: Node. snd ReadHead (predNode) .
RemoveWhile (id , itemToRemove, predNode, next(predNode));
proc RemoveWhile(id: Nat, itemToRemove: Nat, predNode: Node, curr: Node) =
(key (curr) < hashCode (itemToRemove))
—> Nextlteration. RemoveWhile(id, itemToRemove, curr, next(curr))
<> ((key(curr) = itemToRemove)
—> snd_Removeltem (itemToRemove) . snd_ Unlock(id).
ReturnRemovePrime (id, true)
<> snd_Unlock(id). ReturnRemovePrime(id, false));

Modeling and Verifying Concurrent Data Structures

92

APPENDIX B. CONCRETE SPECIFICATIONS OF CASE STUDIES

proc Thread(id: Nat, nOp: Nat, elms: List(Nat))
(nOp > 0) —> ThreadProgress(id, nOp, elms, 1);
proc ThreadProgress(id: Nat, nOp: Nat, elms: List(Nat), nDone: Nat) =
(nDone <= nOp) —> (Add(id, head(elms)) + Remove(id, head(elms))).
ThreadProgress(id, nOp, tail (elms), nDone + 1);

init
hide ({
NextlIteration , ReadHead, InsertItem , Removeltem, Lock, Unlock, GetHashCode
}, allow ({

CallAdd, ReturnAdd, CallRemove, ReturnRemove,

ReadHead, Insertltem , Removeltem, Lock, Unlock, GetHashCode,
}, comm({

rcv_ReadHead | snd ReadHead —> ReadHead,
rcv_InsertItem | snd_InsertItem —> Insertltem ,
rcv_Removeltem | snd_Removeltem —> Removeltem,

rcv_Lock | snd_Lock —> Lock, rcv_Unlock | snd_Unlock —> Unlock
}, rename ({

CallAddPrime —> CallAdd, ReturnAddPrime —> ReturnAdd,

CallRemovePrime —> CallRemove, ReturnRemovePrime —> ReturnRemove
}, LinkedList (node (MinKey, MinKey, node(MaxKey, MaxKey, null))) ||

ReentrantLock || Thread (1, 2, [2, 4]) || Thread(2, 2, [4, 8])))));

Nextlteration

Listing B.1: Concrete specification of the coarse-grained set

Modeling and Verifying Concurrent Data Structures 53

APPENDIX B. CONCRETE SPECIFICATIONS OF CASE STUDIES

Fine-grained set

sort Node = struct null | node(item: Int, key: Int, next: Int, lock: Bool, mem: Nat
)
sort ArrayNodes = Int —> Node;
map MinKey: Int; MaxKey: Pos; hashCode: Int —> Nat;
lockNode: Node —> Node; unlockNode: Node —> Node;
insertNode: ArrayNodes # Nat # Nat # Nat —> ArrayNodes;
removeNode: ArrayNodes # Nat —> ArrayNodes;
var i, k, n: Int; m: Nat; 1l: Bool;
an: ArrayNodes; loc: Nat; nextL: Nat; it: Nat;
eqn MinKey = —1; MaxKey = 100; hashCode(i) = i mod MaxKey;
lockNode(node(i, k, n, 1, m)) = node(i, k, n, true, m);
unlockNode(node(i, k, n, 1, m)) = node(i, k, n, false, m);
insertNode (an, nextL, it, loc) = an|[nextL —> node(it, hashCode(it), next(an(loc
))7
false , nextL)|[loc —> node(item(an(loc)), key(an(loc)), nextL, lock(an(loc))
; loc)];
removeNode(an, loc) = an|[loc —> node(item (an(loc)), key(an(loc)),
next (an(next(an(loc)))), lock(an(loc)), mem(an(loc)))|[next(an(loc)) —> null

])

act snd_ ReadNode: Int#Node; rcv_ReadNode: Int#Node; ReadNode: Int#Node;
snd ReadNext: Int#Node; rcv_ReadNext: Int#Node; ReadNext: Int#Node;
snd_LockNode: Int; rcv_LockNode: Int; LockNode: Int;
snd _UnlockNode: Int; rcv_UnlockNode: Int; UnlockNode: Int;
CallAdd: Nat#Nat; ReturnAdd: Nat#Bool;
CallRemove: Nat#Nat; ReturnRemove: Nat#Bool;
CallAddPrime: Nat#Nat; ReturnAddPrime: Nat#Bool;
CallRemovePrime: Nat#Nat; ReturnRemovePrime: Nat#Bool;
rcv_Insertltem: Nat#Nat; snd InsertItem: Nat#Nat; InsertlItem: Nat#Nat;
rcv_Removeltem: Nat; snd Removeltem: Nat; Removeltem: Nat; GetHashCode: Nat;

proc LinkedList (nodes: ArrayNodes, nextLoc: Nat) =
sum element: Int. snd ReadNode(element, nodes(element)).
LinkedList (nodes, nextLoc) +
sum elementN: Int. snd ReadNext(elementN, nodes(next(nodes(elementN)))).
LinkedList (nodes, nextLoc) +
sum n: Int. (!lock(nodes(n))) —> rcv_LockNode(n).
LinkedList (nodes [n—>lockNode (nodes(n))|, nextLoc) +
sum nn: Int. rcv_UnlockNode(nn).
LinkedList (nodes [nn—>unlockNode (nodes(nn))|, nextLoc) +
sum iteml, loc: Nat. rcv_InsertlItem (iteml, loc).
LinkedList (insertNode (nodes, nextLoc, iteml, loc), (mnextLoc+1)) +
sum loc: Nat. rcv_Removeltem(loc). LinkedList(removeNode(nodes, loc), nextLoc);

proc Add(id: Nat, itemToAdd: Nat) = CallAddPrime(id, itemToAdd).
GetHashCode (hashCode (itemToAdd)). snd LockNode(0) .
sum predNode: Node. rcv_ReadNode(0, predNode).
sum curr: Node. rcv_ReadNext (mem(predNode), curr). snd LockNode(mem(curr)).
AddWhile(id , itemToAdd, predNode, curr);
proc AddWhile(id: Nat, itemToAdd: Nat, predNode: Node, curr: Node)
(key (curr) < hashCode (itemToAdd))
—> snd_UnlockNode (mem(predNode)). sum nn: Node. rcv_ReadNext (mem(curr), nn).
snd LockNode(mem(nn)). AddWhile(id, itemToAdd, curr, nn)
<> ((key(curr) = hashCode (itemToAdd))
—> snd_UnlockNode (mem(curr)). snd UnlockNode (mem(predNode)).
ReturnAddPrime(id, false)
<> snd_InsertItem (itemToAdd, mem(predNode)). snd_ UnlockNode (mem(curr)).
snd _UnlockNode (mem(predNode)). ReturnAddPrime(id, true));

proc Remove(id: Nat, itemToRemove: Nat) = CallRemovePrime(id, itemToRemove).
GetHashCode (hashCode (itemToRemove)). snd LockNode(0) .
sum predNode: Node. rcv_ReadNode (0, predNode).
sum curr: Node. rcv_ReadNext (mem(predNode), curr). snd LockNode(mem(curr)).
RemoveWhile (id , itemToRemove, predNode, curr);

proc RemoveWhile(id: Nat, itemToRemove: Nat, predNode: Node, curr: Node) =

Modeling and Verifying Concurrent Data Structures 54

APPENDIX B. CONCRETE SPECIFICATIONS OF CASE STUDIES

(key (curr) < hashCode (itemToRemove))
—> snd_UnlockNode (mem(predNode)). sum nn: Node. rcv_ReadNext (mem(curr), nn).

snd LockNode (mem(nn)). RemoveWhile(id, itemToRemove, curr, nn)
<> ((key(curr) = hashCode(itemToRemove))
—> snd_Removeltem (mem(predNode)). snd UnlockNode (mem(predNode)) .
ReturnRemovePrime (id, true)
<> snd_UnlockNode (mem(curr)). snd_ UnlockNode (mem(predNode)).
ReturnRemovePrime (id, false));
proc Thread(id: Nat, nOp: Nat, elms: List(Nat)) =
(nOp > 0) —> ThreadProgress(id, nOp, elms, 1);
proc ThreadProgress(id: Nat, nOp: Nat, elms: List(Nat), nDone: Nat) =
(nDone <= nOp) —> (Add(id, head(elms)) + Remove(id, head(elms))).
ThreadProgress (id, nOp, tail(elms), nDone + 1);

init
hide ({
GetHashCode, Insertltem , Removeltem, LockNode, UnlockNode, ReadNode,
ReadNext
}, allow ({

CallAdd, ReturnAdd, CallRemove, ReturnRemove, Insertltem , Removeltem,
GetHashCode, LockNode, UnlockNode, ReadNode, ReadNext
b, comm({
rcv_InsertItem | snd Insertltem —> Insertltem,
rcv_Removeltem | snd_Removeltem —> Removeltem,
rcv_LockNode | snd_ LockNode —> LockNode,
rcv_UnlockNode | snd UnlockNode —> UnlockNode,
rcv_ReadNode | snd_ReadNode —> ReadNode,
rcv_ReadNext | snd ReadNext —> ReadNext
}, rename ({
CallAddPrime —> CallAdd, ReturnAddPrime —> ReturnAdd,
CallRemovePrime —> CallRemove, ReturnRemovePrime —> ReturnRemove
}, LinkedList ((lambda n: Nat.null)[0—>node(MinKey, MinKey, 1, false, 0)]
[I—>node (MaxKey, MaxKey, —1, false, 1)], 2) ||
Thread (1, 2, [2, 4]) || Thread(2, 2, [4. 8])))));

Listing B.2: Concrete specification of the fine-grained set

Modeling and Verifying Concurrent Data Structures

95

APPENDIX B. CONCRETE SPECIFICATIONS OF CASE STUDIES

Optimistic set

sort Node = struct null | node(item: Int, key: Int, next: Int, lock: Bool, mem: Nat
)5
sort ArrayNodes = Int —> Node;
map MinKey: Int; MaxKey: Pos; hashCode: Int —> Nat;
lockNode: Node —> Node; unlockNode: Node —> Node;
insertNode: ArrayNodes # Nat # Nat # Nat —> ArrayNodes;
removeNode: ArrayNodes # Nat —> ArrayNodes;
var i, k, n: Int; m: Nat; 1l: Bool;
an: ArrayNodes; loc: Nat; nextL: Nat; it: Nat;
eqn MinKey = —1; MaxKey = 100; hashCode(i) = i mod MaxKey;
lockNode(node(i, k, n, 1, m)) = node(i, k, n, true, m);
unlockNode(node(i, k, n, 1, m)) = node(i, k, n, false, m);
insertNode (an, nextL, it, loc) = an|[nextL —> node(it, hashCode(it)
next (an(loc)), false, nextL)][loc —> node(item(an(loc)), key(an
nextL, lock(an(loc)), loc)];
removeNode (an, loc) = an[loc —> node(item (an(loc)), key(an(loc)),
next (an(next(an(loc)))), lock(an(loc)), mem(an(loc)))|

(loc)),

)

act snd ReadNode: Int#Node; rcv_ReadNode: Int#Node; ReadNode: Int#Node;
snd _ReadNext: Int#Node; rcv_ReadNext: Int#Node; ReadNext: Int#Node;
snd _LockNode: Int; rcv_LockNode: Int; LockNode: Int;
snd UnlockNode: Int; rcv_UnlockNode: Int; UnlockNode: Int;
CallAdd: Nat#Nat; ReturnAdd: Nat#Bool;
CallRemove: Nat#Nat; ReturnRemove: Nat#Bool;
CallAddPrime: Nat#Nat; ReturnAddPrime: Nat#Bool;
CallRemovePrime: Nat#Nat; ReturnRemovePrime: Nat#Bool;
rcv_Insertltem: Nat#Nat; snd_ Insertltem: Nat#Nat; Insertltem: Nat#Nat;
rcv_Removeltem: Nat; snd Removeltem: Nat; Removeltem: Nat; GetHashCode: Nat;
snd ValidateNodes: Node#Node; rcv_ValidateNodes: Node#Node;
ValidateNodes: Node#Node;
snd _Validation: Bool; rcv_Validation: Bool; Validation: Bool; Nextlteration;

proc LinkedList (nodes: ArrayNodes, nextLoc: Nat) =
sum element: Int. snd ReadNode(element, nodes(element)).
LinkedList (nodes, nextLoc) +
sum elementN: Int. snd ReadNext(elementN, nodes(next(nodes(elementN)))).
LinkedList (nodes, nextLoc) +
sum n: Int. (!lock(nodes(n))) —> rcv_LockNode(n).
LinkedList (nodes [n—>lockNode (nodes(n))|, nextLoc) +
sum nn: Int. rcv_UnlockNode(nn).
LinkedList (nodes [nn—>unlockNode (nodes(nn))|, nextLoc) +
sum iteml, loc: Nat. rcv_Insertltem (iteml, loc).
LinkedList (insertNode (nodes, nextLoc, iteml, loc), (nextLoc+1)) +
sum loc: Nat. rcv_Removeltem(loc). LinkedList(removeNode(nodes, loc), nextLoc)
+
sum predNode, curr: Node. rcv_ValidateNodes(predNode, curr).
Validate (nodes, predNode, curr, 0). LinkedList(nodes, nextLoc);
proc Validate (nodes: ArrayNodes, predNode: Node, curr: Node, nd: Int) =
(nodes(nd)!= null && key(nodes(nd)) <= key(predNode))
—> ((nodes(nd) == predNode)
—> ((nodes(next(nodes(nd))) = curr)
—> snd_Validation(true) <> snd_ Validation(false))
<> Nextlteration. Validate(nodes, predNode, curr, next(nodes(nd))))
<> snd_Validation (false);

proc Add(id: Nat, itemToAdd: Nat) = CallAddPrime(id, itemToAdd).
GetHashCode (hashCode (itemToAdd)). AddWhile(id, itemToAdd);
proc AddWhile(id: Nat, itemToAdd: Nat) = sum predNode: Node.
rcv_ReadNode (0, predNode). sum curr: Node.
rcv_ReadNext (mem(predNode), curr). AddWhile2(id, itemToAdd, predNode, curr);
proc AddWhile2(id: Nat, itemToAdd: Nat, predNode: Node, curr: Node) =
(key (curr) < hashCode (itemToAdd))
—> sum nextCurr: Node. rcv_ReadNext(mem(curr), nextCurr).
AddWhile2 (id , itemToAdd, curr, nextCurr)
<> snd_LockNode (mem(predNode)). snd LockNode(mem(curr)).

Modeling and Verifying Concurrent Data Structures 56

APPENDIX B. CONCRETE SPECIFICATIONS OF CASE STUDIES

snd_ValidateNodes (lockNode (predNode) , lockNode(curr)).
(rcv_Validation(true). ((key(curr) hashCode (itemToAdd))
—> snd_UnlockNode (mem(predNode)). snd_ UnlockNode (mem(curr)).
ReturnAddPrime(id, false)
<> snd_InsertItem (itemToAdd, mem(predNode)).
snd _UnlockNode (mem(predNode)). snd UnlockNode (mem(curr)).
ReturnAddPrime(id, true)) -+
rcv_Validation (false). snd_ UnlockNode (mem(predNode))
snd _UnlockNode (mem(curr)). AddWhile(id, itemToAdd))

)

proc Remove(id: Nat, itemToRemove: Nat) = CallRemovePrime(id, itemToRemove).
GetHashCode (hashCode (itemToRemove)). RemoveWhile(id , itemToRemove) ;
proc RemoveWhile(id: Nat, itemToRemove: Nat) = sum predNode: Node.
rcv_ReadNode (0, predNode). sum curr: Node.
rcv_ReadNext (mem(predNode), curr). RemoveWhile2(id, itemToRemove, predNode,
curr) ;
proc RemoveWhile2(id: Nat, itemToRemove: Nat, predNode: Node, curr: Node) =
(key(curr) < hashCode (itemToRemove))
—> sum nextCurr: Node. rcv_ReadNext (mem(curr), nextCurr).
RemoveWhile2 (id , itemToRemove, curr, nextCurr)
<> snd_LockNode (mem(predNode)). snd LockNode(mem(curr)).
snd_ValidateNodes (lockNode (predNode), lockNode(curr)).
(rcv_Validation(true). ((key(curr) hashCode (itemToRemove))
—> snd_Removeltem (mem(predNode)). snd UnlockNode (mem(predNode)) .
snd _UnlockNode (mem(curr)). ReturnRemovePrime(id, true)
<> snd_UnlockNode (mem(predNode)). snd UnlockNode (mem(curr)).
ReturnRemovePrime (id , false)) +
rcv_Validation(false). snd UnlockNode (mem(predNode)).
snd _UnlockNode (mem(curr)). RemoveWhile(id, itemToRemove));

proc Thread(id: Nat, nOp: Nat, elms: List(Nat)) =
(nOp > 0) —> ThreadProgress(id, nOp, elms, 1);
proc ThreadProgress(id: Nat, nOp: Nat, elms: List(Nat), nDone: Nat) =
(nDone <= nOp) —> (Add(id, head(elms)) + Remove(id, head(elms))).
ThreadProgress (id, nOp, tail(elms), nDone + 1);

init

hide ({
GetHashCode, Insertltem , Removeltem, LockNode, UnlockNode, ReadNode,
ReadNext, ValidateNodes, Nextlteration, Validation

}, allow ({
CallAdd, ReturnAdd, CallRemove, ReturnRemove, Insertltem , Removeltem
GetHashCode, LockNode, UnlockNode, ReadNode, ReadNext, ValidateNodes,
Nextlteration , Validation

}, comm({
rcv_InsertItem | snd_InsertItem —> Insertltem,
rcv_Removeltem | snd_Removeltem —> Removeltem,
rcv_LockNode | snd_LockNode —> LockNode,
rcv_UnlockNode | snd_UnlockNode —> UnlockNode,
rcv_ReadNode | snd ReadNode —> ReadNode,
rcv_ReadNext | snd_ReadNext —> ReadNext,
snd ValidateNodes | rcv_ValidateNodes —> ValidateNodes,
snd _Validation | rcv_Validation —> Validation

}, rename({
CallAddPrime —> CallAdd, ReturnAddPrime —> ReturnAdd,
CallRemovePrime —> CallRemove, ReturnRemovePrime —> ReturnRemove

}, LinkedList ((lambda n: Nat.null)[0—>node(MinKey, MinKey, 1, false, 0)]
[1—>node (MaxKey, MaxKey, —1, false, 1)], 2) ||
Thread (1, 2, [2, 4]) || Thread(2, 2, [4, 8])))));

Listing B.3: Concrete specification of the optimistic set

Modeling and Verifying Concurrent Data Structures 57

APPENDIX B. CONCRETE SPECIFICATIONS OF CASE STUDIES

Lazy set

sort Node = struct null | node(item: Int, key: Int, next: Int,
marked: Bool, lock: Bool, mem: Nat);

sort ArrayNodes = Int —> Node;

map MinKey: Int; MaxKey: Pos; hashCode: Int —> Nat; markNode: Node —> Node;
lockNode: Node —> Node; unlockNode: Node —> Node;
insertNode: ArrayNodes # Nat # Nat # Nat —> ArrayNodes;
removeNode: ArrayNodes # Nat —> ArrayNodes;

var i, k, n: Int; mk, 1: Bool; m: Nat;
an: ArrayNodes; loc: Nat; nextL: Nat; it: Nat;

eqn MinKey = —1; MaxKey = 100; hashCode(i) = i mod MaxKey;
markNode(node (i, k, n, mk, 1, m)) = node(i, k, n, true, 1, m);
lockNode (node(i, k, n, mk, 1, m)) = node(i, k, n, mk, true, m);
unlockNode (node(i, k, n, mk, 1, m)) = node(i, k, n, mk, false, m)

insertNode (an, nextL, it, loc) = an[nextL —> node(it, hashCode(it), next(an(loc

))7

marked (an(loc)), false, nextL)|[loc —> node(item(an(loc)), key(an(loc)),
nextL, false, lock(an(loc)), loc)];

removeNode (an, loc) = an|[loc —> node(item (an(loc)), key(an(loc)),
next (an(next(an(loc)))), marked(an(loc)), lock(an(loc)), mem(an(loc)))];

act snd_ ReadNode: Int#Node; rcv_ReadNode: Int#Node; ReadNode: Int#Node;
snd ReadNext: Int#Node; rcv_ReadNext: Int#Node; ReadNext: Int#Node;
snd_LockNode: Int; rcv_LockNode: Int; LockNode: Int;
snd _UnlockNode: Int; rcv_UnlockNode: Int; UnlockNode: Int;
CallAdd: Nat#Nat; ReturnAdd: Nat#Bool;
CallRemove: Nat#Nat; ReturnRemove: Nat#Bool;
CallAddPrime: Nat#Nat; ReturnAddPrime: Nat#Bool;
CallRemovePrime: Nat#Nat; ReturnRemovePrime: Nat#Bool;
snd Insertltem: Nat#Nat; rcv_ Insertltem: Nat#Nat; InsertlItem: Nat#Nat;
snd _Removeltem: Nat; rcv_Removeltem: Nat; Removeltem: Nat;

snd MarkRemoved: Int; rcv_MarkRemoved: Int; MarkRemoved: Int; GetHashCode: Nat;
snd_ValidateNodes: Nat#Nat; rcv_ValidateNodes: Nat#Nat; ValidateNodes: Nat#Nat;

snd _Validation: Bool; rcv_Validation: Bool; Validation: Bool;

proc LinkedList (nodes: ArrayNodes, nextLocation: Nat) =
sum element: Int. snd ReadNode(element, nodes(element)).
LinkedList (nodes, nextLocation) +
sum elementN: Int. snd ReadNext(elementN, nodes(next(nodes(elementN)))).
LinkedList (nodes, nextLocation) +
sum n: Int. (!lock(nodes(n))) —> rcv_LockNode(n).
LinkedList (nodes [n—>lockNode (nodes(n))|, nextLocation) +
sum nn: Int. rcv_UnlockNode(nn).
LinkedList (nodes [nn—unlockNode (nodes(nn))], nextLocation) +
sum iteml, loc: Nat. rcv_Insertltem (iteml, loc).
LinkedList (insertNode (nodes, nextLocation, iteml, loc), (nextLocation+1))
sum loc: Nat. rcv_Removeltem(loc). LinkedList(removeNode(nodes, loc),
nextLocation) +
sum nnn: Int. rcv_MarkRemoved (nnn) .
LinkedList (nodes [nnn—>markNode(nodes (nnn))|, nextLocation) +
sum predNode, curr: Nat. rcv_ValidateNodes(predNode, curr).
Validate (nodes, predNode, curr). LinkedList(nodes, nextLocation);
proc Validate (nodes: ArrayNodes, predNode: Nat, curr: Nat) =
(!marked (nodes (predNode)) && !marked(nodes(curr)) && next(nodes(predNode)) =—
curr)
—> snd_Validation(true) <> snd_Validation(false);

proc Add(id: Nat, itemToAdd: Nat) = CallAddPrime(id, itemToAdd).

GetHashCode (hashCode (itemToAdd)). AddWhile(id, itemToAdd);
proc AddWhile(id: Nat, itemToAdd: Nat) = sum predNode: Node.

rcv_ReadNode (0, predNode). sum curr: Node.

rcv_ReadNext (mem(predNode), curr). AddWhile2(id, itemToAdd, predNode, curr);
proc AddWhile2(id: Nat, itemToAdd: Nat, predNode: Node, curr: Node) =

(key(curr) < hashCode (itemToAdd))

—> sum nextCurr: Node. rcv_ReadNext(mem(curr), nextCurr).
AddWhile2 (id , itemToAdd, curr, nextCurr)

+

Modeling and Verifying Concurrent Data Structures

o8

APPENDIX B. CONCRETE SPECIFICATIONS OF CASE STUDIES

<> snd_LockNode (mem(predNode)). snd LockNode(mem(curr)).

snd _ValidateNodes (mem(predNode) , mem(curr)) .

(rev_Validation(true). ((key(curr) = hashCode(itemToAdd))

—> snd_UnlockNode (mem(predNode)). snd UnlockNode (mem(curr)).
ReturnAddPrime (id , false)

<> snd_InsertItem (itemToAdd, mem(predNode)).
snd _UnlockNode (mem(predNode)). snd_ UnlockNode (mem(curr)) .
ReturnAddPrime (id, true)) -+

rcv_Validation (false). snd UnlockNode (mem(predNode)).

snd _UnlockNode (mem(curr)). AddWhile(id, itemToAdd));

proc Remove(id: Nat, itemToRemove: Nat) = CallRemovePrime(id, itemToRemove).
GetHashCode (hashCode (itemToRemove)). RemoveWhile(id , itemToRemove) ;
proc RemoveWhile(id: Nat, itemToRemove: Nat) = sum predNode: Node.
rcv_ReadNode (0, predNode). sum curr: Node.
rcv_ReadNext (mem(predNode), curr). RemoveWhile2(id, itemToRemove, predNode,
curr);
proc RemoveWhile2(id: Nat, itemToRemove: Nat, predNode: Node, curr: Node) =
(key (curr) < hashCode (itemToRemove))
—> sum nextCurr: Node. rcv_ReadNext (mem(curr), nextCurr).
RemoveWhile2(id, itemToRemove, curr, nextCurr)
<> snd_LockNode (mem(predNode)). snd LockNode(mem(curr)).
snd _ValidateNodes (mem(predNode) , mem(curr)).
(rev_Validation(true). ((key(curr) = hashCode (itemToRemove))
—> snd_MarkRemoved (mem(curr)). snd Removeltem (mem(predNode)).
snd _UnlockNode (mem(predNode)). snd_ UnlockNode (mem(curr)).
ReturnRemovePrime (id, true)
<> snd_UnlockNode (mem(predNode)). snd_ UnlockNode (mem(curr)).
ReturnRemovePrime (id, false)) +
rcv_Validation (false). snd UnlockNode (mem(predNode)).
snd _UnlockNode (mem(curr)). RemoveWhile(id, itemToRemove));

proc Thread(id: Nat, nOp: Nat, elms: List(Nat)) =
(nOp > 0) —> ThreadProgress(id, nOp, elms, 1);
proc ThreadProgress(id: Nat, nOp: Nat, elms: List(Nat), nDone: Nat) =
(nDone <= nOp) —> (Add(id, head(elms)) + Remove(id, head(elms))).
ThreadProgress (id, nOp, tail(elms), nDone + 1);

init

hide ({ GetHashCode, InsertItem , Removeltem, LockNode, UnlockNode,
ReadNode, ReadNext, ValidateNodes, Validation , MarkRemoved

}, allow ({ CallAdd, ReturnAdd, CallRemove, ReturnRemove,
InsertItem , Removeltem, GetHashCode, LockNode, UnlockNode,
ReadNode, ReadNext, ValidateNodes, Validation, MarkRemoved

}, comm({ rcv_InsertItem | snd_ Insertltem —> Insertltem ,
rcv_Removeltem | snd_Removeltem —> Removeltem,
rcv_MarkRemoved | snd_MarkRemoved —> MarkRemoved,
rcv_LockNode | snd_LockNode —> LockNode,
rcv_UnlockNode | snd_UnlockNode —> UnlockNode,
rcv_ReadNode | snd ReadNode —> ReadNode,
rcv_ReadNext | snd_ReadNext —> ReadNext,
snd ValidateNodes | rcv_ValidateNodes —> ValidateNodes,
snd _Validation | rcv_Validation —> Validation

}, rename({ CallAddPrime —> CallAdd, ReturnAddPrime —> ReturnAdd,
CallRemovePrime —> CallRemove, ReturnRemovePrime —> ReturnRemove

}, LinkedList ((lambda n: Int.null)[0—>node(MinKey, MinKey, 1, false, false, 0)]
[l—>node (MaxKey, MaxKey, —1, false, false, 1)]|, 2) ||
Thread (1, 2, [2, 4]) || Thread(2, 2, [4, 8])))));

Listing B.4: Concrete specification of the lazy set

Modeling and Verifying Concurrent Data Structures 59

APPENDIX B. CONCRETE SPECIFICATIONS OF CASE STUDIES

Non-blocking queue

sort Null = struct null;

sort Item = struct item(nl: Null, ref: Nat) | item(value: Nat, ref: Nat);
sort Array = Nat —> Item;

map L: Pos; isNull: Item —> Bool;

var a: Array; v, r: Nat;

eqn L = 5; isNull(item(v, r)) = false; isNull(item(null, r)) = true;

act CallEnqueue: Nat#Nat; ReturnEnqueue: Nat;
CallDequeue: Nat; ReturnDequeue: Nat#Nat;
CallEnqueuePrime: Nat#Nat; ReturnEnqueuePrime: Nat;
CallDequeuePrime: Nat; ReturnDequeuePrime: Nat#Nat;
rcv_ReadRear: Nat; snd ReadRear: Nat; ReadRear: Nat;
rcv_ReadFront: Nat; snd ReadFront: Nat; ReadFront: Nat;
rcv_ReadElement: Nat#ltem; snd ReadElement: Nat#Item; ReadElement: Nat#Item;
rcv_Result: Bool; snd Result: Bool; Result: Bool;
rcv_CASRear: Nat#Nat; snd CASRear: Nat#Nat; CASRear: Nat#Nat;
rcv_CASFront: Nat#Nat; snd CASFront: Nat#Nat; CASFront: Nat#Nat;
rcv_CASElement: Nat#ltem#Item; snd CASElement: Nat#Item#Item;
CASElement: Nat#ltem#Item ;

proc Queuelnterface(q: Array, rear: Nat, front: Nat) =
rcv_ReadRear(rear). Queuelnterface(q, rear, front) +
rcv_ReadFront (front). Queuelnterface(q, rear, front) +
sum n: Nat. rcv_ReadElement(n, q(n)). Queuelnterface(q, rear, front) +

sum oldR, newR: Nat. (rcv_CASRear(oldR, newR) | snd Result(oldR = rear)).
((oldR = rear) —> Queuelnterface(q, newR, front)
<> Queuelnterface(q, rear, front)) +
sum oldF, newF: Nat. (rcv_CASFront(oldF, newF) | snd Result(oldF = front)).
((oldF = front) —> Queuelnterface(q, rear, newF)

<> Queuelnterface(q, rear, front)) +
sum n: Nat, oldX, newX: Item. (rcv_CASElement(n, oldX, newX) | snd_ Result(q(n)
— oldX)).
((q(n) = oldX) —> Queuelnterface (q[n—>newX], rear, front)
<> Queuelnterface(q, rear, front)) ;

proc Enqueue(tid: Nat, v: Nat) = CallEnqueuePrime(tid, v). EnqueueTryAgain(tid, v);
proc EnqueueTryAgain(tid: Nat, v: Nat) = sum rl: Nat. snd ReadRear(rl).

sum x: Item. snd_ ReadElement ((rl mod L), x).
sum r2: Nat. snd ReadRear(r2).

((r1 !'= r2) — EnqueueTryAgain(tid, v)
<> sum fl: Nat. snd ReadFront(fl).
((rl1 = f1 + L) —> EnqueueTryAgain(tid, v)

<> ((isNull(x)) —>
((snd CASElement ((rl mod L), x, item(v, ref(x)+1)) | rcv_Result(true)).
(sum bl: Bool. (snd CASRear(rl, (rl+1)) | rcv_Result(bl))).
ReturnEnqueuePrime (tid) +
(snd_CASElement ((rl mod L), x, item(v, ref(x)+1)) | rcv_Result(false)).
EnqueueTryAgain(tid, v))
<> sum b2: Bool. (snd CASRear(rl, (rl1+1)) | rcv_Result(b2)).
EnqueueTryAgain (tid, v))));

proc Dequeue(tid: Nat) = CallDequeuePrime(tid). DequeueTryAgain(tid);
proc DequeueTryAgain(tid: Nat) = sum fl: Nat. snd ReadFront(fl).

sum x: Item. snd ReadElement ((fl mod L), x).
sum f2: Nat. snd ReadFront(f2).

((f1 !'= f2) —> DequeueTryAgain(tid)
<> sum rl: Nat. snd ReadRear(rl).
((f1 = r1) —> DequeueTryAgain(tid)

< ((!isNull(x)) —
((snd_CASElement ((fl1 mod L), x, item(null, ref(x) +1))
).
(sum bl: Bool. (snd CASFront(fl, (fl1+1)) | rcv_Result(bl))).
ReturnDequeuePrime (tid , value(x)) +

rcv_Result (true

Modeling and Verifying Concurrent Data Structures 60

APPENDIX B. CONCRETE SPECIFICATIONS OF CASE STUDIES

(snd_CASElement ((f1 mod L), x, item(null, ref(x)+1)) | rcv_Result(false)

DequeueTryAgain(tid))
<> sum b2: Bool. (snd CASFront(fl, (fl+1)) | rcv_Result(b2)).
DequeueTryAgain(tid))));

proc Thread(id: Nat, nOp: Nat, elms: List(Nat)) =
(nOp > 0) —> ThreadProgress(id, nOp, elms, 1);

proc ThreadProgress(id: Nat, nOp: Nat, elms: List(Nat), nDone: Nat) =
(nDone <= nOp) —> (Enqueue(id, head(elms)) + Dequeue(id)).
ThreadProgress (id, nOp, tail(elms), nDone + 1);

init
hide ({ ReadRear, ReadFront, ReadElement, CASElement, CASFront, CASRear, Result
}, allow ({ CallEnqueue, ReturnEnqueue, CallDequeue, ReturnDequeue,
ReadRear, ReadFront, ReadElement,
CASRear | Result, CASFront | Result, CASElement | Result
}, comm({ rcv_ReadRear | snd ReadRear —> ReadRear,
rcv_ReadFront | snd_ReadFront —> ReadFront,
rcv_ReadElement | snd ReadElement —> ReadElement,
rcv_Result | snd_ Result —> Result,
rcv_CASRear | snd CASRear —> CASRear,
rcv_CASFront | snd_CASFront —> CASFront,
rcv_CASElement | snd_CASElement —> CASElement
}, rename({ CallEnqueuePrime —> CallEnqueue, CallDequeuePrime —> CallDequeue,
ReturnEnqueuePrime —> ReturnEnqueue, ReturnDequeuePrime —> ReturnDequeue
}, Queuelnterface ((lambda n:Nat.item(null, 0)), 0, 0) ||
Thread (1, 2, [2, 4]) || Thread(2, 2, [4, 8])))));

Listing B.5: Concrete specification of the non-blocking queue

Modeling and Verifying Concurrent Data Structures 61

	Contents
	Listings
	Glossary and Acronyms
	Introduction
	Preliminaries
	Linearizability
	Labeled Transition Systems
	mCRL2
	Verifying Linearizability
	Formalization of proof techniques

	Treiber's Stack
	mCRL2 specifications

	Linearizability in mCRL2
	Defining specifications
	Concrete specification
	Abstract specification

	Verification

	Case Studies
	Concurrent set
	Coarse-grained set
	Fine-grained set
	Optimistic set
	Lazy set

	Non-blocking queue

	Results
	Related Work
	Conclusion
	Bibliography
	Bibliography
	Implementation of concurrent data structures
	Concrete specifications of case studies

