Algorithms for Model Checking (2IW55)

Lecture 11

Timed Verification: Timed Automata Chapter 16, 17

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

technische universiteit eindhoven

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise

Timed Systems

TU/e

So far, we have only considered untimed systems.

- Timing is of crucial importance for many systems:
 - controllers found in airplanes (landing gear, collision avoidance).
 - controllers found in cars (airbag, future drive-by-wire systems).
 - communication protocols (re-routing upon timeouts).

Functional correctness is only one of many aspect:

- the correct timing of an event is crucial.
- timing influences behaviour: the passing of time may disable events.

which model of time to use:

- Discrete time.
- Continuous time.

Timed Systems

TU/e

In discrete time, time has a discrete nature:

- Time can be described by natural numbers
- A special tick action is used to model the advance of a single time unit

Advantage: standard temporal logic can be used to express timing properties: The next-operator measures time.

Example

A timeout is set two time units after a message is sent:

 $A \: G \: (\text{sent} \to X \: X \: (\text{timeout}))$

Discrete time is mainly used for synchronous systems, such as hardware.

Timed Systems

TU/e

Simplicity is the key advantage to discrete time:

- We can reuse mixed Kripke Structures: timed transitions are labelled with a tick action.
- We can check properties using existing languages such as CTL*.

This means that traditional model checking algorithms are applicable.

Main disadvantages of discrete time:

- delay between any pair of actions is a multiple of an a priori fixed minimal delay.
- model is therefore only accurate up-to this minimal delay.
- finding the minimal delay is difficult in practice:
 - how to find the minimal delay in a distributed, asynchronous system?

Timed Systems

In continuous time, time has a continuous nature:

- Time can be described by a dense domain, such as real numbers
- State changes can happen at any point in time

Example

An event on that must take place between time 0 and time 10 can be executed at time 0.000001, 1, e, π , . . .:

0.000001	1	επ		10
on	on	on on		
\checkmark	\	$\stackrel{\checkmark}{\frown}$		
\bigcirc	\bigcirc	$\bigcirc \bigcirc$	• • •	

Problem: there are **infinitely** many moments that action *on* can happen. How to check that it happens before time *t*?

Timed Systems

Approach by Alur and Dill:

Restrict expressive power of the temporal logic Timed CTL

Describe timed systems symbolically Timed Automata

• Compute a finite representation of the infinite state space on-demand ... Region Automata

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

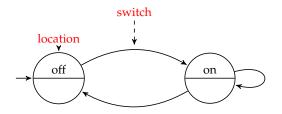
Summary

Exercise

/ department of mathematics and computer science

technische universiteit eindhoven

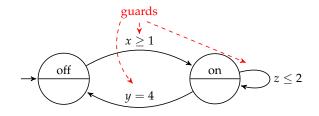
Informally: Timed Automata



A Timed Automaton:

- has vertices called locations,
- ▶ has edges called switches which are labelled with actions (not shown),
- Intuition: executing a switch consumes no time, i.e. it is instantaneous.
- time progresses in locations.

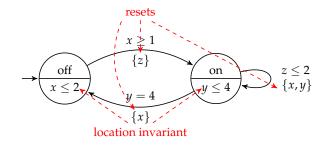
Informally: Timed Automata



. . .

- ► Has real-valued clocks *x*, *y*, *z*, . . ., which all advance with the same speed,
- Has guards indicating when an edge may be taken.
- Intuition: Guards express at which moments in time a transition is *enabled*.
- Enabledness depends on the constraints on clocks.

Informally: Timed Automata



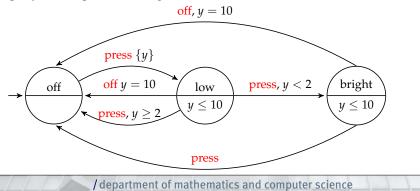
- Switches can reset clocks upon execution, i.e. set some clocks to 0.
- Time can only increase as long as the location invariant holds.
- A switch must be taken before the invariant becomes invalid.

Informally: Timed Automata

TU/e

Example

The following timed automaton models a simple lamp with three locations: off, low and bright. If a button is pressed the lamp is turned on for at most ten time-units. If the button is pressed again, the lamp is turned off. However, if the button is pressed rapidly, the lamp becomes bright.



12/29

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise

/ department of mathematics and computer science

technische universiteit eindhoven

Formally: Timed Automata

TU/e

Timing constraints are provided by clock constraints:

$$\phi ::= \mathsf{true} \mid x < c \mid x - y < c \mid x \le c \mid x - y \le c \mid \neg \phi \mid \phi \land \phi$$

- $c \in \mathbb{N}$ are constants (sometimes rational numbers);
- $x, y \in C$ are clocks
- As usual:

 - x ≥ c is short for ¬(x < c);
 x ∈ [c₁, c₂) is short for ¬(x < c₁) ∧ (x < c₂)

The set of clock constraints over a set of clocks *C* is denoted $\mathcal{C}(C)$.

Formally: Timed Automata

TU/e

A timed automaton is a tuple

 $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$

- *L* is a finite set of locations; $L_0 \subseteq L$ is a non-empty set of initial locations
- Act is the set of actions
- *C* is a finite set of clock variables
- $\longrightarrow \subseteq L \times C(C) \times Act \times 2^C \times L$ is the set of switches
- ▶ $\iota : L \to C(C)$ is the invariant assignment function

Formally: Timed Automata

TU/e

- A clock constraint ϕ contains free variables
- The truth of a clock constraint ϕ depends on the values of the clocks
- A clock valuation ν for a set *C* of clocks is a function $\nu : C \to \mathbb{R}_{\geq 0}$
- Clock constraints are evaluated in the context of a clock valuation v:

 - $[\operatorname{true}]_{\nu} = \operatorname{true}$ $[x < c]_{\nu} = \nu(x) < c$ $[x y < c]_{\nu} = \nu(x) \nu(y) < c$ $[x \le c]_{\nu} = \nu(x) \le c$ $[x y \le c]_{\nu} = \nu(x) \nu(y) \le c$ $[\neg \phi]_{\nu} = \operatorname{not} [\phi]_{\nu}$

 - $[\phi_1 \land \phi_2]_{\nu} = [\phi_1]_{\nu}$ and $[\phi_2]_{\nu}$
- We write $\nu \models \phi$ iff $[\phi]_{\nu} =$ true.
- Clock valuation update: v + d is defined as: (v + d)(x) = v(x) + d for all $d \in \mathbb{R}_{>0}$.
- ► Clock valuation reset: $[\nu]_R$ is defined as: $[\nu]_R(x) = 0$ if $x \in R$, else $\nu(x)$.

Formally: Timed Automata

TU/e

Example

Let *x*, *y* be clocks and $\nu : \{x, y\} \to \mathbb{R}_{\geq 0}$ a clock valuation.

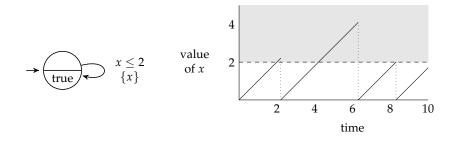
- if $\nu(x) = 2$ and $\nu(y) = \pi$, then $x < 3 \land y \ge 3$ holds
- the clock constraint x y > 2 is valid whenever $\nu(x) \nu(y) > 2$.
- the clock constraint $x \ge 2 \land x \le 2$ is only valid whenever $\nu(x) = 2$.
- ► the clock constraint $x \ge 2 \land x y < 2$ is only valid for $\nu(x) \ge 2$ and $\nu(y) > \nu(x) 2$

Formally: Timed Automata

TU/e

Example

The effect of a lower bound guarding a switch:

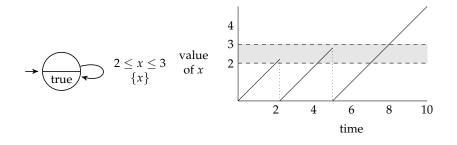


Formally: Timed Automata

TU/e

Example

The effect of a lower bound and upper bound guarding a switch:

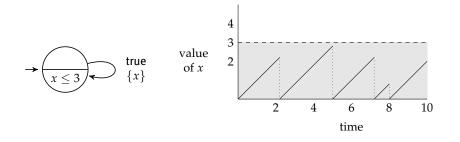


Formally: Timed Automata

TU/e

Example

The effect of an invariant:

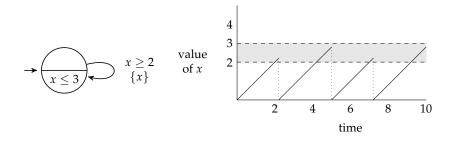


Formally: Timed Automata

TU/e

Example

The effect of an invariant and guard combined:

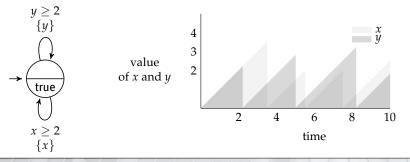


Formally: Timed Automata

TU/e

Example

Switches that reset different clocks can cause an arbitrary difference between clock values. This is impossible to describe in a discrete time setting.



Formally: Timed Automata

TU/e

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota \rangle$ be a Timed Automaton. Its semantics is defined as a timed transition system: $[\mathcal{T}] = \langle S, S_0, Act, \rightarrow, \mapsto \rangle$

- S = {(l, v) | l ∈ L ∧ v : C → ℝ_{≥0} ∧ v ⊨ ι(l)}, i.e. all combinations of locations and clock valuations that do not violate the location invariant.
- $\blacktriangleright S = \{(l,\nu) \mid l \in L_0 \land \nu : C \to \mathbb{R}_{\geq 0} \land \nu \models \iota(l)\}.$
- $\longrightarrow \subseteq S \times Act \times S$ is defined as follows:

$$\frac{l \xrightarrow{g \ a \ R}}{(l, \nu) \xrightarrow{a} (l', \nu')} \frac{\nu \models g \land \iota(l) \qquad \nu' = [\nu]_R \qquad \nu' \models \iota(l')}{(l, \nu) \xrightarrow{a} (l', \nu')}$$

• $\mapsto \subseteq S \times \mathbb{R}_{\geq 0} \times S$ is defined as follows:

$$\frac{\nu \models \iota(l) \quad \forall 0 \le d' \le d : \nu + d' \models \iota(l)}{(l, \nu) \stackrel{d}{\mapsto} (l, \nu + d)}$$

Formally: Timed Automata

Lemma

Let $\iota(l)$ *be a negation-free location invariant. Then for all* $d \in \mathbb{R}_{>0}$ *and all* ν *:*

$$\nu \models \iota(l) \text{ and } \nu + d \models \iota(l) \text{ implies } \forall 0 \le d' \le d : \nu + d' \models \iota(l)$$

- The proof follows by a structural induction on $\iota(l)$.
- This means that for negation-free location invariants, we can simplify the rule for timed transition relations:

$$\frac{\nu \models \iota(l) \qquad \nu + d \models \iota(l)}{(l, \nu) \stackrel{d}{\mapsto} (l, \nu + d)}$$

Formally: Timed Automata

Recalling intuition:

TU/e

- A switch $l \xrightarrow{g \ a \ R} l'$ means that:
 - action *a* is enabled whenever guard *g* evaluates to true.
 - upon executing the switch, we move from location *l* to location *l'* and reset all clocks in *R* to zero.
 - only locations l' that can be reached with clock values that satisfy the location invariant.
- an invariant $\iota(l)$ limits the time that can be spent in location *l*.
 - staying in location *l* only is allowed as long as the invariant evaluates to true.
 - before the invariant becomes invalid location *l* must be left.
 - if no switch is enabled when the invariant becomes invalid no further progress is possible.
- Thus, we need to determining when a clock constraint is valid or invalid.

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise

/ department of mathematics and computer science

technische universiteit eindhoven

Summary

TU/e

- Timed Systems can be modelled by discrete time or continuous time.
- For discrete time, existing model checking can be reused.
- For continuous time, a new model is introduced: Timed Automata.
- Timed Automata give rise to infinite transition systems.
- Timed Automata can model systems that cannot be described by means of discrete time.

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

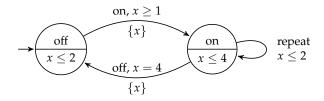
Summary

Exercise

/ department of mathematics and computer science

technische universiteit eindhoven

Consider the following Timed Automaton.



- Explain which switches can be executed.
- Is there a possibility that the Timed Automaton enters a state in which time cannot progress anymore?
- Give the Timed Transition System for the Timed Automaton.