
12

/ department of mathematics and computer science 1/29

Algorithms for Model Checking (2IW55)
Lecture 11

Timed Verification: Timed Automata
Chapter 16, 17

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

12

/ department of mathematics and computer science 2/29

Outline

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise

12

/ department of mathematics and computer science 3/29

Timed Systems

So far, we have only considered untimed systems.

I Timing is of crucial importance for many systems:
• controllers found in airplanes (landing gear, collision avoidance).
• controllers found in cars (airbag, future drive-by-wire systems).
• communication protocols (re-routing upon timeouts).

Functional correctness is only one of many aspect:
I the correct timing of an event is crucial.
I timing influences behaviour: the passing of time may disable events.

which model of time to use:
I Discrete time.
I Continuous time.

12

/ department of mathematics and computer science 4/29

Timed Systems

In discrete time, time has a discrete nature:

I Time can be described by natural numbers
I A special tick action is used to model the advance of a single time unit

Advantage: standard temporal logic can be used to express timing properties: The
next-operator measures time.

Example
A timeout is set two time units after a message is sent:

A G (sent → X X (timeout))

Discrete time is mainly used for synchronous systems, such as hardware.

12

/ department of mathematics and computer science 5/29

Timed Systems

Simplicity is the key advantage to discrete time:
I We can reuse mixed Kripke Structures: timed transitions are labelled with a tick

action.
I We can check properties using existing languages such as CTL∗.

This means that traditional model checking algorithms are applicable.

Main disadvantages of discrete time:
I delay between any pair of actions is a multiple of an a priori fixed minimal

delay.
I model is therefore only accurate up-to this minimal delay.
I finding the minimal delay is difficult in practice:

• how to find the minimal delay in a distributed, asynchronous system?

12

/ department of mathematics and computer science 6/29

Timed Systems

In continuous time, time has a continuous nature:

I Time can be described by a dense domain, such as real numbers
I State changes can happen at any point in time

Example
An event on that must take place between time 0 and time 10 can be executed at
time 0.000001, 1, e, π, . . .:

0.000001 . . . 1 . . . e . . . π . . . 10

. . .
on on on on

Problem: there are infinitely many moments that action on can happen. How to
check that it happens before time t?

12

/ department of mathematics and computer science 7/29

Timed Systems

Approach by Alur and Dill:

I Restrict expressive power of the temporal logic . Timed CTL

I Describe timed systems symbolically . Timed Automata

I Compute a finite representation of the infinite state space on-demand . . . Region
Automata

12

/ department of mathematics and computer science 8/29

Outline

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise

12

/ department of mathematics and computer science 9/29

Informally: Timed Automata

off on

location

switch

A Timed Automaton:
I has vertices called locations,
I has edges called switches which are labelled with actions (not shown),
I Intuition: executing a switch consumes no time, i.e. it is instantaneous.
I time progresses in locations.

12

/ department of mathematics and computer science 10/29

Informally: Timed Automata

off on

x ≥ 1

y = 4
z ≤ 2

guards

. . .
I Has real-valued clocks x, y, z, . . ., which all advance with the same speed,
I Has guards indicating when an edge may be taken.
I Intuition: Guards express at which moments in time a transition is enabled.
I Enabledness depends on the constraints on clocks.

12

/ department of mathematics and computer science 11/29

Informally: Timed Automata

off
x ≤ 2

on
y ≤ 4

x ≥ 1

{z}

y = 4

{x}

z ≤ 2
{x, y}

location invariant

resets

. . .
I Switches can reset clocks upon execution, i.e. set some clocks to 0.
I Time can only increase as long as the location invariant holds.
I A switch must be taken before the invariant becomes invalid.

12

/ department of mathematics and computer science 12/29

Informally: Timed Automata

Example
The following timed automaton models a simple lamp with three locations: off, low
and bright. If a button is pressed the lamp is turned on for at most ten time-units. If
the button is pressed again, the lamp is turned off. However, if the button is pressed
rapidly, the lamp becomes bright.

off low
y ≤ 10

bright

y ≤ 10

press {y}

off y = 10

press, y ≥ 2

press, y < 2

press

off, y = 10

12

/ department of mathematics and computer science 13/29

Outline

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise

12

/ department of mathematics and computer science 14/29

Formally: Timed Automata

Timing constraints are provided by clock constraints:

φ ::= true | x < c | x − y < c | x ≤ c | x − y ≤ c | ¬φ | φ ∧ φ

I c ∈ N are constants (sometimes rational numbers);
I x, y ∈ C are clocks
I As usual:

• x ≥ c is short for ¬(x < c);
• x ∈ [c1, c2) is short for ¬(x < c1) ∧ (x < c2)

The set of clock constraints over a set of clocks C is denoted C(C).

12

/ department of mathematics and computer science 15/29

Formally: Timed Automata

A timed automaton is a tuple

T = 〈L, L0, Act, C,−→, ι〉

I L is a finite set of locations; L0 ⊆ L is a non-empty set of initial locations
I Act is the set of actions
I C is a finite set of clock variables
I −→⊆ L× C(C)×Act× 2C × L is the set of switches
I ι : L → C(C) is the invariant assignment function

12

/ department of mathematics and computer science 16/29

Formally: Timed Automata

I A clock constraint φ contains free variables
I The truth of a clock constraint φ depends on the values of the clocks
I A clock valuation ν for a set C of clocks is a function ν : C → R≥0

I Clock constraints are evaluated in the context of a clock valuation ν:
• [[true]]ν = true
• [[x < c]]ν = ν(x) < c
• [[x − y < c]]ν = ν(x)− ν(y) < c
• [[x ≤ c]]ν = ν(x) ≤ c
• [[x − y ≤ c]]ν = ν(x)− ν(y) ≤ c
• [[¬φ]]ν = not [[φ]]ν
• [[φ1 ∧ φ2]]ν = [[φ1]]ν and [[φ2]]ν

I We write ν|= φ iff [[φ]]ν = true.
I Clock valuation update: ν + d is defined as: (ν + d)(x) = ν(x) + d for all

d ∈ R≥0.
I Clock valuation reset: [ν]R is defined as: [ν]R(x) = 0 if x ∈ R, else ν(x).

12

/ department of mathematics and computer science 17/29

Formally: Timed Automata

Example
Let x, y be clocks and ν : {x, y} → R≥0 a clock valuation.

I if ν(x) = 2 and ν(y) = π, then x < 3∧ y ≥ 3 holds
I the clock constraint x − y > 2 is valid whenever ν(x)− ν(y) > 2.
I the clock constraint x ≥ 2∧ x ≤ 2 is only valid whenever ν(x) = 2.
I the clock constraint x ≥ 2∧ x − y < 2 is only valid for ν(x) ≥ 2 and

ν(y) > ν(x)− 2

12

/ department of mathematics and computer science 18/29

Formally: Timed Automata

Example
The effect of a lower bound guarding a switch:

true
x ≤ 2
{x}

2 4 6 8 10

2

4

value
of x

time

12

/ department of mathematics and computer science 19/29

Formally: Timed Automata

Example
The effect of a lower bound and upper bound guarding a switch:

true
2 ≤ x ≤ 3

{x}

2 4 6 8 10

2

3

4

value
of x

time

12

/ department of mathematics and computer science 20/29

Formally: Timed Automata

Example
The effect of an invariant:

x ≤ 3
true
{x}

2 4 6 8 10

2

3

4

value
of x

time

12

/ department of mathematics and computer science 21/29

Formally: Timed Automata

Example
The effect of an invariant and guard combined:

x ≤ 3
x ≥ 2
{x}

2 4 6 8 10

2

3

4

value
of x

time

12

/ department of mathematics and computer science 22/29

Formally: Timed Automata

Example
Switches that reset different clocks can cause an arbitrary difference between clock
values. This is impossible to describe in a discrete time setting.

true

x ≥ 2
{x}

y ≥ 2
{y}

2 4 6 8 10

2

3

4

value
of x and y

time

x
y

12

/ department of mathematics and computer science 23/29

Formally: Timed Automata

Let T = 〈L, L0, Act, C,−→, ι〉 be a Timed Automaton. Its semantics is defined as a
timed transition system: [[T]] = 〈S, S0, Act,→, 7→〉

I S = {(l, ν) | l ∈ L ∧ ν : C → R≥0 ∧ ν|= ι(l)}, i.e. all combinations of locations
and clock valuations that do not violate the location invariant.

I S = {(l, ν) | l ∈ L0 ∧ ν : C → R≥0 ∧ ν|= ι(l)}.
I −→⊆ S×Act× S is defined as follows:

l
g a R−−−→ l′ ν|= g ∧ ι(l) ν′ = [ν]R ν′|= ι(l′)

(l, ν) a−→ (l′, ν′)

I 7→⊆ S×R≥0 × S is defined as follows:

ν|= ι(l) ∀0 ≤ d′ ≤ d : ν + d′|= ι(l)

(l, ν) d7→ (l, ν + d)

12

/ department of mathematics and computer science 24/29

Formally: Timed Automata

Lemma
Let ι(l) be a negation-free location invariant. Then for all d ∈ R≥0 and all ν:

ν|= ι(l) and ν + d|= ι(l) implies ∀0 ≤ d′ ≤ d : ν + d′|= ι(l)

I The proof follows by a structural induction on ι(l).
I This means that for negation-free location invariants, we can simplify the rule

for timed transition relations:

ν|= ι(l) ν + d|= ι(l)

(l, ν) d7→ (l, ν + d)

12

/ department of mathematics and computer science 25/29

Formally: Timed Automata

Recalling intuition:

I A switch l
g a R−−−→ l′ means that:

• action a is enabled whenever guard g evaluates to true.
• upon executing the switch, we move from location l to location l′ and reset all clocks

in R to zero.
• only locations l′ that can be reached with clock values that satisfy the location

invariant.
I an invariant ι(l) limits the time that can be spent in location l.

• staying in location l only is allowed as long as the invariant evaluates to true.
• before the invariant becomes invalid location l must be left.
• if no switch is enabled when the invariant becomes invalid no further progress is

possible.

I Thus, we need to determining when a clock constraint is valid or invalid.

12

/ department of mathematics and computer science 26/29

Outline

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise

12

/ department of mathematics and computer science 27/29

Summary

I Timed Systems can be modelled by discrete time or continuous time.
I For discrete time, existing model checking can be reused.
I For continuous time, a new model is introduced: Timed Automata.
I Timed Automata give rise to infinite transition systems.
I Timed Automata can model systems that cannot be described by means of

discrete time.

12

/ department of mathematics and computer science 28/29

Outline

Timed Systems

Informally: Timed Automata

Formaly: Timed Automata

Summary

Exercise

12

/ department of mathematics and computer science 29/29

Exercise

Consider the following Timed Automaton.

off
x ≤ 2

on
x ≤ 4

on, x ≥ 1

{x}

off, x = 4

{x}

repeat
x ≤ 2

I Explain which switches can be executed.
I Is there a possibility that the Timed Automaton enters a state in which time

cannot progress anymore?
I Give the Timed Transition System for the Timed Automaton.

	Timed Systems
	Informally: Timed Automata
	Formaly: Timed Automata
	Summary
	Exercise

