Algorithms for Model Checking (2IW55)

Lecture 13
Timed Verification: Timed Automata
Chapter 16, 17

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
HG 6.81

TU/e

Outline

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

Timed Automata

Let $\mathcal{T}=\left\langle L, l_{0}, A c t, C, \longrightarrow, l, A P, \ell\right\rangle$ be a Timed Automaton.

- Time divergent paths have infinite execution time:

$$
\Delta\left(s_{0} \stackrel{d_{0}}{\rightsquigarrow} s_{1} \stackrel{d_{1}}{\rightsquigarrow} \ldots\right)=\sum_{i=0}^{\infty} d_{i}=\infty
$$

- A Timed Automaton is timelock-free if no reachable state contains a timelock
- a state contains a timelock if it has no time-divergent path
- A Timed Automaton is non-Zeno if there is no initial Zeno path in $[\mathcal{T}]$
- a path is Zeno if it is time-convergent and performs infinitely many actions

Timed CTL

Syntax of TCTL state-formulae over $A P$ and set of clocks C :

$$
\mathcal{S}::=\operatorname{true}|A P| \mathcal{S} \wedge \mathcal{S}|\neg \mathcal{S}| \mathrm{EF}_{J} \mathcal{S} \mid \mathrm{AF}_{J} \mathcal{S}
$$

where $J \subseteq \mathbb{R}_{\geq 0}$ is an interval whose bounds are naturals

- J can have the following forms: $[n, m],(n, m],[n, m)$ or (n, m) for $n, m \in \mathbb{N}$ and $n \leq m$
- For right-open intervals, $m=\infty$ is also allowed

Timed CTL

Let $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota, A P, \ell\right\rangle$ be a Timed Automaton.

- Satisfaction of a TCTL formula ϕ is defined as $(l, v) \models \phi$
- For TCTL state-formulae ϕ, the satisfaction set $\operatorname{sat}(\phi)$ is defined by:

$$
\operatorname{sat}(\phi)=\left\{s \in L \times\left(C \rightarrow \mathbb{R}_{\geq 0}\right) \mid s \models \phi\right\}
$$

- \mathcal{T} satisfies TCTL-formula ϕ iff ϕ holds in all initial states of \mathcal{T} :

$$
\mathcal{T} \models \phi \quad \text { if and only if } \quad \forall l \in L_{0}\left(l, v_{0}\right) \models \phi
$$

where $v_{0}(x)=0$ for all clocks $x \in C$.

TCTL

- A timelock points at a modelling problem
- A timelock-free state has at least one time-divergent path
- Absence of timelock for a state s holds iff $s \models$ E G true
- Absence of timelock in a Timed Automaton \mathcal{T} holds iff for all reachable state $s \in[\mathcal{T}], s=\mathrm{E}$ G true holds
- Hence, timelocks can be found by means of model checking

TUle

Outline

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

TUle

Clock Equivalence

Let $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota, A P, \ell\right\rangle$ be a non-Zeno Timed Automaton.
Definition
Let ϕ be a TCTL formula. Then

$$
\mathcal{T} \models \phi \quad \text { iff } \quad[\mathcal{T}] \models \phi
$$

Problem: $[\mathcal{T}]$ is infinite state, so it cannot be explored exhaustively. Therefore:

1. Map TCTL formulae ϕ onto proper CTL formulae $\hat{\phi}$
2. Consider a finite quotient of $[\mathcal{T}]$ with respect to a bisimulation relation \sim such that: $\mathcal{T} \models_{T C T L} \phi \quad$ iff $\quad \mathcal{T} / \sim \models_{C T L} \hat{\phi}$

TUle

Clock Equivalence

Let ϕ be a TCTL formula and $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota, A P, \ell\right\rangle$ a Timed Automaton

- Assume $J \neq[0, \infty)$ occurs in ϕ
- Let $\mathcal{T} \oplus z=\left\langle L, L_{0}, A c t, C \cup\{z\}, \longrightarrow, l, A P, \ell\right\rangle$ for $z \notin C$
- $(l, v) \models \mathrm{E} \mathrm{F}_{J} \phi$ iff $\left(l,[v]_{\{z\}}\right) \models(z \in J) \wedge \phi$
- Likewise, $E \mathrm{G}_{J}, \mathrm{AF}_{J}$ and $\mathrm{A} \mathrm{G}_{J}$

Formally

for any state $(l, v) \in \mathcal{T} \oplus z$:

$$
(l, v) \models \mathrm{E} \mathrm{~F}_{J} \phi \quad \text { iff } \quad\left(l,[v]_{\{z\}}\right) \models \mathrm{EF}((z \in J) \wedge \phi)
$$

- Note: atomic clock constraints are atomic propositions in $[\mathcal{T} \oplus z]$
- So, the transformation yields a CTL formula
- For instance, $\mathrm{E}_{[0,2]} \phi$ yields $\mathrm{E} \mathrm{G}((0 \leq z \wedge z \leq 2) \rightarrow \phi)$

Clock Equivalence

Observations:

- A Timed Automaton \mathcal{T} has a finite number of locations
- $[\mathcal{T}]$ has an infinite number of states due to clock valuations only

Impose an equivalence \sim on clock valuations such that $\left(C \rightarrow \mathbb{R}_{\geq 0}\right) / \sim$ is finite. Moreover:

1. Equivalent clock valuations satisfy the same clock constraints:

$$
v \sim v^{\prime} \quad \text { implies } \quad\left(v \models \phi \quad \text { iff } \quad v^{\prime} \models \phi\right)
$$

2. Time-divergent paths starting from equivalent states are equivalent

Clock Equivalence

Major result from [1]:

- Criteria 1 and 2 are satisfied if equivalent clock valuations:
- Agree on the integer parts of all clock values, and
- Agree on the ordering of the fractional parts of all clocks
- This gives rise to a countably infinite set of equivalence classes
- Finiteness is obtained by considering the maximal constants to which clocks are compared:
- If a clock grows beyond the maximal constant to which it is compared, its exact value is no longer of importance.
[1] R. Alur and D.L. Dill, A theory of timed automata, in Theoretical Computer Science 126(2):183-235, 1994

TUle

Clock Equivalence

Clock Equivalence (1)

- $v=x<c$ whenever $v(x)<c$
- Equivalently: $\lfloor v(x)\rfloor<c$ (i.e. the greatest integer at most $v(x)$
- $v \equiv x \leq c$ whenever $v(x)<c$ or $v(x)=c$
- Equivalently: $\lfloor v(x)\rfloor<c$ or $\lfloor v(x)\rfloor=c$ and $\operatorname{frac}(v(x))=0$

First proposal
Two clock valuations v and v^{\prime} are equivalent, denoted $v \sim v^{\prime}$ iff

1. for any $x \in C$:

$$
\lfloor v(x)\rfloor=\left\lfloor v^{\prime}(x)\right\rfloor \text { and } \operatorname{frac}(v(x))=0 \text { iff frac }\left(v^{\prime}(x)\right)=0
$$

- Decidability of \sim is guaranteed because clocks are compared to natural numbers.

Clock Equivalence

Clock Equivalence (2)

- Assume a location l with invariant true and two outgoing switches:
- action a, guarded by $x \geq 2$; action b, guarded by $y>1$
- Assume $1<v(x)<2$ and $0<v(y)<1$
- then $(l, v) \stackrel{9}{\rightarrow}$ and $(l, v) \stackrel{y}{\rightarrow}$
- invariant l is true, so time may elapse
- The transition that is first enabled depends on $x<y$ or $x \geq y$
- action a is enabled first if $\operatorname{frac}(v(x)) \geq \operatorname{frac}(v(y))$

Second proposal

Two clock valuations v and v^{\prime} are equivalent, denoted $v \sim v^{\prime}$ iff

1. for any $x \in C$:
$\lfloor v(x)\rfloor=\left\lfloor v^{\prime}(x)\right\rfloor$, and frac $(v(x))=0$ iff frac $\left(v^{\prime}(x)\right)=0$
2. for all $x, y \in C$: $\operatorname{frac}(v(x)) \leq \operatorname{frac}(v(y))$ iff $\operatorname{frac}\left(v^{\prime}(x)\right) \leq \operatorname{frac}\left(v^{\prime}(y)\right)$

Clock Equivalence

Clock Equivalence (3)

- Problem second proposal: countable, but still infinite
- Solution: for $\mathcal{T} \models \phi$, only the clock constraints in \mathcal{T} and ϕ are relevant.
- Let $c_{x} \in \mathbb{N}$ be the largest constant to which x is compared in \mathcal{T} or ϕ
- If $v(x)>c_{x}$, then the exact value of x is of no importance (x only grows)

Final proposal

Two clock valuations v and v^{\prime} are equivalent, denoted $v \sim v^{\prime}$ iff

1. for any $x \in C$: $v(x), v^{\prime}(x)>c_{x}$ or $v(x), v^{\prime}(x) \leq c_{x}$
2. for any $x \in C$: if $v(x), v^{\prime}(x) \leq c_{x}$ then:
$\lfloor v(x)\rfloor=\left\lfloor v^{\prime}(x)\right\rfloor$ and $\operatorname{frac}(v(x))=0$ iff frac $\left(v^{\prime}(x)\right)=0$
3. for any $x, y \in C$: if $v(x), v^{\prime}(x) \leq c_{x}$ and $v(y), v^{\prime}(y) \leq c_{y}$, then: $\operatorname{frac}(v(x)) \leq \operatorname{frac}(v(y))$ iff $\operatorname{frac}\left(v^{\prime}(x)\right) \leq \operatorname{frac}\left(v^{\prime}(y)\right)$

TUle

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with $c_{x}=2$ and $c_{y}=1$. The clock regions are shown below:

Regions:
6 Corner points, e.g. $[(0,0)]$

TUle

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with $c_{x}=2$ and $c_{y}=1$. The clock regions are shown below:

Regions:
14 Open line segments: e.g. $[0<x=y<1]$

TUle

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with $c_{x}=2$ and $c_{y}=1$. The clock regions are shown below:

Regions:
8 Open regions: e.g. $[0<x<y<1]$

TUle

Clock Equivalence

- The clock region of $v \in\left[C \rightarrow \mathbb{R}_{\geq 0}\right]$, denoted $[v]$ is defined by:

$$
[v]:=\left\{v^{\prime}: C \rightarrow \mathbb{R}_{\geq 0} \mid v \sim v^{\prime}\right\}
$$

- The state region of a state (l, v) in $[\mathcal{T}]$ is defined by:

$$
[(l, v)]:=(l,[v])
$$

- The number of clock regions is bounded from below by:

$$
\text { if for all } x \in C: c_{x} \geq 1 \text { then } R_{l}:=|C|!\times \prod_{x \in C} c_{x}
$$

- The number of clock regions is bounded from above by:

$$
\text { if for all } x \in C: c_{x} \geq 1 \text { then } R_{u}:=|C|!\times 2^{|C|-1} \times \prod_{x \in C}\left(2\left(c_{x}+1\right)\right)
$$

- The number of state regions in $[\mathcal{T}] / \sim$ is finite:

$$
|L| \times R_{l} \leq S / \sim \leq|L| \times R_{u}
$$

TUle

Clock Equivalence

Let $\mathcal{T}=\left\langle L, l_{0}, A c t, C, \longrightarrow, \iota, A P, \ell\right\rangle$ be a Timed Automaton. Let $[\mathcal{T}]=\left\langle S, S_{0}, A c t, \rightarrow, \mapsto, A P^{\prime}, \ell^{\prime}\right\rangle$

- Let $\phi \in \mathcal{C}_{a}(C)$. For $v, v^{\prime}: C \rightarrow \mathbb{R}_{\geq 0}$ such that $[v]=\left[v^{\prime}\right]$

$$
v=\phi \quad \text { iff } \quad v^{\prime} \models \phi
$$

- Let $p \in A P^{\prime}$. For any $s, s^{\prime} \in S$ such that $s \sim s^{\prime}$:

$$
s \models p \quad \text { iff } \quad s^{\prime} \models p
$$

TUle

Clock Equivalence

Theorem

Clock equivalence is a (time abstract) bisimulation equivalence over $A P^{\prime}$
Property ϕ : reachability of the location q.

Time abstract bisimulation: two states (l, v) and $\left(l, v^{\prime}\right)$ have the same behaviour (w.r.t. ϕ) when:

1. Any action transition enabled from v is also enabled from v^{\prime}; and the target states have the same behaviour
2. For any delay transition d from v, there is a delay transition d^{\prime}, such that $(l, v+d)$ and $\left(l, v^{\prime}+d^{\prime}\right)$ have the same behaviour
...(and vice versa)

Time abstract bisimulation: $(l, v) B\left(l, v^{\prime}\right)$ when

1. For any $l \xrightarrow{g a R} l^{\prime}$, we have
$(l, v) \xrightarrow{a}\left(l^{\prime},[v]_{R}\right)$ implies
there is $\left(l, v^{\prime}\right) \xrightarrow{a}\left(l^{\prime},\left[v^{\prime}\right]_{R}\right)$ and $\left(l,[v]_{R}\right) B\left(l,\left[v^{\prime}\right]_{R}\right)$ (and vice versa)
2. For any $(l, v) \stackrel{d}{\mapsto}(l, v+d)$
there is d^{\prime} such that
$\left(l, v^{\prime}\right) \stackrel{d^{\prime}}{\mapsto}\left(l, v^{\prime}+d^{\prime}\right)$ and $(l, v+d) B\left(l, v^{\prime}+d^{\prime}\right)$ (and vice versa)

TUle

Outline

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

Region Automata

Model Checking TCTL over $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota, A P, \ell\right\rangle$

Main Procedure

Reduce the verification of TCTL formulae over Timed Automata to a model checking problem over the Region Automaton for a CTL formula

- For a TCTL formula ϕ introduce a new clock z_{J} for every interval $J(\neq[0, \infty))$ occurring in ϕ; let $c_{z_{J}}$ be the maximal integer to which z_{J} is compared
- Let z_{ϕ} be the set of all clocks introduced by ϕ
- Compute the clock regions for the clock valuations $C \cup z_{\phi} \rightarrow \mathbb{R}_{\geq 0}$
- Then $\mathcal{T} \models_{T C T L} \phi$ iff $R\left(\mathcal{T} \oplus z_{\phi}\right) \models_{C T L} \hat{\phi}$

Region Automata

Let $\mathcal{T}=\left\langle L, l_{0}, A c t, C, \longrightarrow, \iota, A P, \ell\right\rangle$ be a Timed Automaton.

- Clock region $r_{\infty}=\left\{v \in\left[C \rightarrow \mathbb{R}_{\geq 0}\right] \mid \forall x \in C: v(x)>c_{x}\right\}$ is unbounded
- r^{\prime} is the successor clock region of r, denoted $r^{\prime}=\operatorname{succ}(r)$, if either:

1. $r=r_{\infty}$ and $r=r^{\prime}$, or
2. $r \neq r_{\infty}, r \neq r^{\prime}$ and for all $v \in r$:

$$
\exists d \in \mathbb{R}_{\geq 0}:\left(v+d \in r^{\prime} \quad \text { and } \quad \forall 0 \leq d^{\prime} \leq d: v+d^{\prime} \in r \cup r^{\prime}\right)
$$

- The successor region: $\operatorname{succ}((l, v)):=(l, \operatorname{succ}(v))$
- Resetting a region: $r[R:=0]:=\left\{v \in\left[C \rightarrow \mathbb{R}_{\geq 0}\right] \mid \exists v^{\prime} \in r: v=\left[v^{\prime}\right]_{R}\right\}$

Region Automata

Clock regions and their successor regions.

horiz/vert line regions
\square lower open regions
\square upper open regions

Tule

Region Automata

The Region Automaton $R(\mathcal{T})$ of a non-Zeno $\mathcal{T}=\left\langle L, L_{0}, A c t, C, \longrightarrow, \iota, A P, \ell\right\rangle$ is defined as:

$$
R(\mathcal{T})=\left\langle S, S_{0}, A c t \cup\{\tau\}, \rightarrow^{\prime}, A P^{\prime}, \ell^{\prime}\right\rangle
$$

where the state regions are defined as:

- $S=\left(L \times\left(C \rightarrow \mathbb{R}_{\geq 0}\right)\right) / \sim=\left\{[s] \mid s \in S_{[\mathcal{T}]}\right\}$
- $S_{0}=\left\{[s] \mid s \in S_{0[\mathcal{T}]}\right\}$
- $\ell^{\prime}((l, r))=\ell(l) \cup\left\{\phi \in \mathcal{C}_{a}(C) \mid r=\phi\right\}$
- $\rightarrow^{\prime} \subseteq S \times \operatorname{Act} \cup\{\tau\} \times S$ is defined as:

$$
\frac{l \xrightarrow{g a R} l^{\prime} \quad r \models g \quad r[R:=0] \models \iota\left(l^{\prime}\right)}{(l, r) \xrightarrow{a \prime}\left(l^{\prime}, r[R:=0]\right)}
$$

$$
\frac{r=\iota(l) \quad \operatorname{succ}(r) \models \iota(l)}{(l, r) \xrightarrow{\tau}\left(l^{\prime}, \operatorname{succ}(r)\right)}
$$

TUle

Outline

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

Wrap-up

Other verification problems:

1. The TCTL model checking problem is PSPACE-complete
2. The model checking problem for timed LTL (and TCTL*) is undecidable
3. The satisfaction problem for TCTL is undecidable

Some open questions:

- Adding clock constraints $x+y<c$:
- for two clocks, decidable,
- for four clocks, undecidable,
- for three clocks, unknown.

