
12

/ department of mathematics and computer science 1/28

Algorithms for Model Checking (2IW55)
Lecture 13

Timed Verification: Timed Automata
Chapter 16, 17

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

12

/ department of mathematics and computer science 2/28

Outline

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

12

/ department of mathematics and computer science 3/28

Timed Automata

Let T = 〈L, l0, Act, C,−→, ι, AP, `〉 be a Timed Automaton.
I Time divergent paths have infinite execution time:

∆(s0
d0 s1

d1 . . .) =
∞

∑
i=0

di = ∞

I A Timed Automaton is timelock-free if no reachable state contains a timelock
• a state contains a timelock if it has no time-divergent path

I A Timed Automaton is non-Zeno if there is no initial Zeno path in [[T]]
• a path is Zeno if it is time-convergent and performs infinitely many actions

12

/ department of mathematics and computer science 4/28

Timed CTL

Syntax of TCTL state-formulae over AP and set of clocks C:

S ::= true | AP | S ∧ S | ¬S | E FJ S | A FJ S

where J ⊆ R≥0 is an interval whose bounds are naturals

I J can have the following forms: [n, m], (n, m], [n, m) or (n, m) for n, m ∈ N and
n ≤ m

I For right-open intervals, m = ∞ is also allowed

12

/ department of mathematics and computer science 5/28

Timed CTL

Let T = 〈L, L0, Act, C,−→, ι, AP, `〉 be a Timed Automaton.

I Satisfaction of a TCTL formula φ is defined as (l, ν)|= φ

I For TCTL state-formulae φ, the satisfaction set sat(φ) is defined by:

sat(φ) = {s ∈ L × (C → R≥0) | s|= φ}

I T satisfies TCTL-formula φ iff φ holds in all initial states of T :

T |= φ if and only if ∀l ∈ L0(l, ν0)|= φ

where ν0(x) = 0 for all clocks x ∈ C.

12

/ department of mathematics and computer science 6/28

TCTL

I A timelock points at a modelling problem
I A timelock-free state has at least one time-divergent path
I Absence of timelock for a state s holds iff s|= E G true

I Absence of timelock in a Timed Automaton T holds iff for all reachable state
s ∈ [[T]], s|= E G true holds

I Hence, timelocks can be found by means of model checking

12

/ department of mathematics and computer science 7/28

Outline

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

12

/ department of mathematics and computer science 8/28

Clock Equivalence

Let T = 〈L, L0, Act, C,−→, ι, AP, `〉 be a non-Zeno Timed Automaton.

Definition

Let φ be a TCTL formula. Then

T |= φ iff [[T]]|= φ

Problem: [[T]] is infinite state, so it cannot be explored exhaustively. Therefore:

1. Map TCTL formulae φ onto proper CTL formulae φ̂

2. Consider a finite quotient of [[T]] with respect to a bisimulation relation ∼
such that: T |=TCTL φ iff T / ∼ |=CTL φ̂

12

/ department of mathematics and computer science 9/28

Clock Equivalence

Let φ be a TCTL formula and T = 〈L, L0, Act, C,−→, ι, AP, `〉 a Timed Automaton

I Assume J 6= [0, ∞) occurs in φ

I Let T ⊕ z = 〈L, L0, Act, C ∪ {z},−→, ι, AP, `〉 for z /∈ C
I (l, ν)|= E FJ φ iff (l, [ν]{z})|= (z ∈ J) ∧ φ

I Likewise, E GJ , A FJ and A GJ

Formally

for any state (l, ν) ∈ T ⊕ z:

(l, ν)|= E FJ φ iff (l, [ν]{z})|= E F ((z ∈ J) ∧ φ)

I Note: atomic clock constraints are atomic propositions in [[T ⊕ z]]
I So, the transformation yields a CTL formula
I For instance, E G[0,2] φ yields E G ((0 ≤ z ∧ z ≤ 2) → φ)

12

/ department of mathematics and computer science 10/28

Clock Equivalence

Observations:
I A Timed Automaton T has a finite number of locations
I [[T]] has an infinite number of states due to clock valuations only

Impose an equivalence ∼ on clock valuations such that (C → R≥0)/∼ is finite.
Moreover:

1. Equivalent clock valuations satisfy the same clock constraints:

ν ∼ ν′ implies (ν|= φ iff ν′|= φ)

2. Time-divergent paths starting from equivalent states are equivalent

12

/ department of mathematics and computer science 11/28

Clock Equivalence

Major result from [1]:
I Criteria 1 and 2 are satisfied if equivalent clock valuations:

• Agree on the integer parts of all clock values, and
• Agree on the ordering of the fractional parts of all clocks

I This gives rise to a countably infinite set of equivalence classes

I Finiteness is obtained by considering the maximal constants to which clocks are
compared:

I If a clock grows beyond the maximal constant to which it is compared, its exact
value is no longer of importance.

[1] R. Alur and D.L. Dill, A theory of timed automata, in Theoretical Computer
Science 126(2):183–235, 1994

12

/ department of mathematics and computer science 12/28

Clock Equivalence

Clock Equivalence (1)

I ν|= x < c whenever ν(x) < c
I Equivalently: bν(x)c < c (i.e. the greatest integer at most ν(x)

I ν|= x ≤ c whenever ν(x) < c or ν(x) = c
I Equivalently: bν(x)c < c or bν(x)c = c and frac(ν(x)) = 0

First proposal

Two clock valuations ν and ν′ are equivalent, denoted ν ∼ ν′ iff

1. for any x ∈ C:
bν(x)c = bν′(x)c and frac(ν(x)) = 0 iff frac(ν′(x)) = 0

I Decidability of ∼ is guaranteed because clocks are compared to natural
numbers.

12

/ department of mathematics and computer science 13/28

Clock Equivalence

Clock Equivalence (2)
I Assume a location l with invariant true and two outgoing switches:

• action a, guarded by x ≥ 2; action b, guarded by y > 1
I Assume 1 < ν(x) < 2 and 0 < ν(y) < 1

• then (l, ν) 6 a−→ and (l, ν) 6 b−→
• invariant l is true, so time may elapse

I The transition that is first enabled depends on x < y or x ≥ y
• action a is enabled first if frac(ν(x)) ≥ frac(ν(y))

Second proposal

Two clock valuations ν and ν′ are equivalent, denoted ν ∼ ν′ iff

1. for any x ∈ C:
bν(x)c = bν′(x)c, and frac(ν(x)) = 0 iff frac(ν′(x)) = 0

2. for all x, y ∈ C: frac(ν(x)) ≤ frac(ν(y)) iff frac(ν′(x)) ≤ frac(ν′(y))

12

/ department of mathematics and computer science 14/28

Clock Equivalence

Clock Equivalence (3)

I Problem second proposal: countable, but still infinite
I Solution: for T |= φ, only the clock constraints in T and φ are relevant.
I Let cx ∈ N be the largest constant to which x is compared in T or φ

I If ν(x) > cx, then the exact value of x is of no importance (x only grows)

Final proposal

Two clock valuations ν and ν′ are equivalent, denoted ν ∼ ν′ iff

1. for any x ∈ C: ν(x), ν′(x) > cx or ν(x), ν′(x) ≤ cx

2. for any x ∈ C: if ν(x), ν′(x) ≤ cx then:
bν(x)c = bν′(x)c and frac(ν(x)) = 0 iff frac(ν′(x)) = 0

3. for any x, y ∈ C: if ν(x), ν′(x) ≤ cx and ν(y), ν′(y) ≤ cy, then:
frac(ν(x)) ≤ frac(ν(y)) iff frac(ν′(x)) ≤ frac(ν′(y))

12

/ department of mathematics and computer science 15/28

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with cx = 2 and cy = 1. The clock
regions are shown below:

0 1 2 3

1

2

Regions:

I 6 Corner points, e.g. [(0, 0)]

12

/ department of mathematics and computer science 16/28

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with cx = 2 and cy = 1. The clock
regions are shown below:

0 1 2 3

1

2

Regions:

I 14 Open line segments: e.g. [0 < x = y < 1]

12

/ department of mathematics and computer science 17/28

Clock Equivalence

Example

Consider a Timed Automaton with clocks x and y, with cx = 2 and cy = 1. The clock
regions are shown below:

0 1 2 3

1

2

Regions:

I 8 Open regions: e.g. [0 < x < y < 1]

12

/ department of mathematics and computer science 18/28

Clock Equivalence

I The clock region of ν ∈ [C → R≥0], denoted [ν] is defined by:

[ν] := {ν′ : C → R≥0 | ν ∼ ν′}

I The state region of a state (l, ν) in [[T]] is defined by:

[(l, ν)] := (l, [ν])

I The number of clock regions is bounded from below by:

if for all x ∈ C : cx ≥ 1 then Rl := |C|! × ∏
x∈C

cx

I The number of clock regions is bounded from above by:

if for all x ∈ C : cx ≥ 1 then Ru := |C|! × 2|C|−1 × ∏
x∈C

(2(cx + 1))

I The number of state regions in [[T]]/∼ is finite:

|L| × Rl ≤ S/∼ ≤ |L| × Ru

12

/ department of mathematics and computer science 19/28

Clock Equivalence

Let T = 〈L, l0, Act, C,−→, ι, AP, `〉 be a Timed Automaton. Let
[[T]] = 〈S, S0, Act,→, 7→, AP′, `′〉
I Let φ ∈ Ca(C). For ν, ν′ : C → R≥0 such that [ν] = [ν′]

ν|= φ iff ν′|= φ

I Let p ∈ AP′. For any s, s′ ∈ S such that s ∼ s′:

s|= p iff s′|= p

12

/ department of mathematics and computer science 20/28

Clock Equivalence

Theorem

Clock equivalence is a (time abstract) bisimulation equivalence over AP′

Property φ: reachability of the location q.

Time abstract bisimulation: two states (l, ν) and (l, ν′) have the same behaviour
(w.r.t. φ) when:

1. Any action transition enabled from ν is also enabled from ν′; and the target
states have the same behaviour

2. For any delay transition d from ν, there is a delay transition d′, such that
(l, ν + d) and (l, ν′ + d′) have the same behaviour

. . .(and vice versa)

12

/ department of mathematics and computer science 21/28

Time abstract bisimulation: (l, ν) B (l, ν′) when

1. For any l
g a R−−−→ l′, we have

(l, ν) a−→ (l′, [ν]R) implies
there is (l, ν′) a−→ (l′, [ν′]R) and (l, [ν]R) B (l, [ν′]R) (and vice versa)

2. For any (l, ν) d7→ (l, ν + d)
there is d′ such that
(l, ν′) d′7→ (l, ν′ + d′) and (l, ν + d) B (l, ν′ + d′) (and vice versa)

12

/ department of mathematics and computer science 22/28

Outline

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

12

/ department of mathematics and computer science 23/28

Region Automata

Model Checking TCTL over T = 〈L, L0, Act, C,−→, ι, AP, `〉

Main Procedure

Reduce the verification of TCTL formulae over Timed Automata to a model
checking problem over the Region Automaton for a CTL formula

I For a TCTL formula φ introduce a new clock zJ for every interval J (6= [0, ∞))
occurring in φ; let czJ be the maximal integer to which zJ is compared

I Let zφ be the set of all clocks introduced by φ

I Compute the clock regions for the clock valuations C ∪ zφ → R≥0

I Then T |=TCTL φ iff R(T ⊕ zφ)|=CTL φ̂

12

/ department of mathematics and computer science 24/28

Region Automata

Let T = 〈L, l0, Act, C,−→, ι, AP, `〉 be a Timed Automaton.

I Clock region r∞ = {ν ∈ [C → R≥0] | ∀x ∈ C : ν(x) > cx} is unbounded

I r′ is the successor clock region of r, denoted r′ = succ(r), if either:
1. r = r∞ and r = r′, or
2. r 6= r∞, r 6= r′ and for all ν ∈ r:

∃d ∈ R≥0 : (ν + d ∈ r′ and ∀0 ≤ d′ ≤ d : ν + d′ ∈ r ∪ r′)

I The successor region: succ((l, ν)) := (l, succ(ν))

I Resetting a region: r[R := 0] := {ν ∈ [C → R≥0] | ∃ν′ ∈ r : ν = [ν′]R}

12

/ department of mathematics and computer science 25/28

Region Automata

Clock regions and their successor regions.

infinite regions

diagonal line regions

horiz/vert line regions

lower open regions

upper open regions

12

/ department of mathematics and computer science 26/28

Region Automata

The Region Automaton R(T) of a non-Zeno T = 〈L, L0, Act, C,−→, ι, AP, `〉 is
defined as:

R(T) = 〈S, S0, Act∪ {τ},→′, AP′, `′〉
where the state regions are defined as:

I S = (L × (C → R≥0))/∼= {[s] | s ∈ S[[T]]}
I S0 = {[s] | s ∈ S0 [[T]]}
I `′((l, r)) = `(l) ∪ {φ ∈ Ca(C) | r|= φ}
I →′⊆ S ×Act∪ {τ} × S is defined as:

l
g a R−−−→ l′ r|= g r[R := 0]|= ι(l′)

(l, r) a−→
′
(l′, r[R := 0])

r|= ι(l) succ(r)|= ι(l)

(l, r) τ−→
′
(l′, succ(r))

12

/ department of mathematics and computer science 27/28

Outline

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

12

/ department of mathematics and computer science 28/28

Wrap-up

Other verification problems:

1. The TCTL model checking problem is PSPACE-complete

2. The model checking problem for timed LTL (and TCTL∗) is undecidable

3. The satisfaction problem for TCTL is undecidable

Some open questions:
I Adding clock constraints x + y < c:

• for two clocks, decidable,
• for four clocks, undecidable,
• for three clocks, unknown.

	Timed Automata
	Clock Equivalence
	Region Automata
	Wrap-up

