Algorithms for Model Checking (2IW55)

Lecture 13

Timed Verification: Timed Automata Chapter 16, 17

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

technische universiteit eindhoven

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

Timed Automata

TU/e

Let $\mathcal{T} = \langle L, l_0, Act, C, \longrightarrow, \iota, AP, \ell \rangle$ be a Timed Automaton.

Time divergent paths have infinite execution time:

$$\Delta(s_0 \stackrel{d_0}{\rightsquigarrow} s_1 \stackrel{d_1}{\rightsquigarrow} \ldots) = \sum_{i=0}^{\infty} d_i = \infty$$

- A Timed Automaton is timelock-free if no reachable state contains a timelock
 - a state contains a timelock if it has no time-divergent path
- ► A Timed Automaton is non-Zeno if there is no initial Zeno path in [*T*]
 - · a path is Zeno if it is time-convergent and performs infinitely many actions

Syntax of TCTL state-formulae over *AP* and set of clocks *C*:

technische universiteit eindhoven

 $\mathcal{S} ::= \mathsf{true} \mid AP \mid \mathcal{S} \land \mathcal{S} \mid \neg \mathcal{S} \mid \mathsf{E} \mathsf{F}_{J} \mathcal{S} \mid \mathsf{A} \mathsf{F}_{J} \mathcal{S}$

where $J \subseteq \mathbb{R}_{>0}$ is an interval whose bounds are naturals

- ► *J* can have the following forms: [n, m], (n, m], [n, m) or (n, m) for $n, m \in \mathbb{N}$ and $n \leq m$
- For right-open intervals, $m = \infty$ is also allowed

Timed CTL

TU/e

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota, AP, \ell \rangle$ be a Timed Automaton.

- Satisfaction of a TCTL formula ϕ is defined as $(l, \nu) \models \phi$
- For TCTL state-formulae ϕ , the satisfaction set sat(ϕ) is defined by:

technische universiteit eindhoven

 $\mathsf{sat}(\phi) = \{s \in L \times (C \to \mathbb{R}_{\geq 0}) \mid s \models \phi\}$

• \mathcal{T} satisfies TCTL-formula ϕ iff ϕ holds in all initial states of \mathcal{T} :

 $\mathcal{T} \models \phi$ if and only if $\forall l \in L_0(l, \nu_0) \models \phi$

where $\nu_0(x) = 0$ for all clocks $x \in C$.

- A timelock points at a modelling problem
- A timelock-free state has at least one time-divergent path

technische universiteit eindhoven

- Absence of timelock for a state *s* holds iff $s \models E G$ true
- Absence of timelock in a Timed Automaton T holds iff for all reachable state $s \in [T], s \models E G$ true holds
- Hence, timelocks can be found by means of model checking

technische universiteit eindhoven

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

Clock Equivalence

TU/e

Let $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota, AP, \ell \rangle$ be a non-Zeno Timed Automaton.

technische universiteit eindhoven

Definition

Let ϕ be a TCTL formula. Then

 $\mathcal{T} \models \phi$ iff $[\mathcal{T}] \models \phi$

Problem: [T] is infinite state, so it cannot be explored exhaustively. Therefore:

- 1. Map TCTL formulae ϕ onto proper CTL formulae $\hat{\phi}$
- 2. Consider a finite quotient of [\mathcal{T}] with respect to a bisimulation relation \sim

such that: $\mathcal{T}\models_{TCTL} \phi$ iff $\mathcal{T} / \sim \models_{CTL} \hat{\phi}$

Clock Equivalence

Let ϕ be a TCTL formula and $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota, AP, \ell \rangle$ a Timed Automaton

- Assume $J \neq [0, \infty)$ occurs in ϕ
- Let $\mathcal{T} \oplus z = \langle L, L_0, Act, C \cup \{z\}, \longrightarrow, \iota, AP, \ell \rangle$ for $z \notin C$
- ► $(l, \nu) \models \mathsf{E} \mathsf{F}_J \phi$ iff $(l, [\nu]_{\{z\}}) \models (z \in J) \land \phi$
- Likewise, $E G_J$, $A F_J$ and $A G_J$

Formally

for any state $(l, \nu) \in \mathcal{T} \oplus z$:

 $(l, \nu) \models \mathsf{E} \mathsf{F}_J \phi$ iff $(l, [\nu]_{\{z\}}) \models \mathsf{E} \mathsf{F} ((z \in J) \land \phi)$

- Note: atomic clock constraints are atomic propositions in $[\mathcal{T} \oplus z]$
- ► So, the transformation yields a CTL formula
- ► For instance, $\mathsf{E} \mathsf{G}_{[0,2]} \phi$ yields $\mathsf{E} \mathsf{G} ((0 \le z \land z \le 2) \rightarrow \phi)$

Clock Equivalence

Observations:

- ► A Timed Automaton *T* has a finite number of locations
- [T] has an infinite number of states due to clock valuations only

Impose an equivalence \sim on clock valuations such that $(C \to \mathbb{R}_{\geq 0}) / \sim$ is finite. Moreover:

1. Equivalent clock valuations satisfy the same clock constraints:

 $\nu \sim \nu'$ implies $(\nu \models \phi \text{ iff } \nu' \models \phi)$

2. Time-divergent paths starting from equivalent states are equivalent

Clock Equivalence

TU/e

Major result from [1]:

- Criteria 1 and 2 are satisfied if equivalent clock valuations:
 - · Agree on the integer parts of all clock values, and
 - Agree on the ordering of the fractional parts of all clocks
- ► This gives rise to a countably infinite set of equivalence classes
- Finiteness is obtained by considering the maximal constants to which clocks are compared:
- If a clock grows beyond the maximal constant to which it is compared, its exact value is no longer of importance.

[1] R. Alur and D.L. Dill, *A theory of timed automata*, in **Theoretical Computer** Science 126(2):183–235, 1994

Clock Equivalence

Clock Equivalence (1)

- $\nu \models x < c$ whenever $\nu(x) < c$
- Equivalently: $\lfloor \nu(x) \rfloor < c$ (i.e. the greatest integer at most $\nu(x)$

•
$$\nu \models x \le c$$
 whenever $\nu(x) < c$ or $\nu(x) = c$

• Equivalently: $\lfloor \nu(x) \rfloor < c \text{ or } \lfloor \nu(x) \rfloor = c \text{ and } \operatorname{frac}(\nu(x)) = 0$

First proposal

Two clock valuations ν and ν' are equivalent, denoted $\nu \sim \nu'$ iff

- 1. for any $x \in C$: $\lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$ and $\operatorname{frac}(\nu(x)) = 0$ iff $\operatorname{frac}(\nu'(x)) = 0$
- ► Decidability of ~ is guaranteed because clocks are compared to natural numbers.

Clock Equivalence

TU/e

Clock Equivalence (2)

- Assume a location *l* with invariant true and two outgoing switches:
 - action *a*, guarded by $x \ge 2$; action *b*, guarded by y > 1
- ► Assume 1 < v(x) < 2 and 0 < v(y) < 1</p>
 - then $(l, \nu) \xrightarrow{a}$ and $(l, \nu) \xrightarrow{b}$
 - invariant *l* is true, so time may elapse
- The transition that is first enabled depends on x < y or $x \ge y$
 - action *a* is enabled first if $\operatorname{frac}(\nu(x)) \ge \operatorname{frac}(\nu(y))$

Second proposal

Two clock valuations ν and ν' are equivalent, denoted $\nu \sim \nu'$ iff

- 1. for any $x \in C$: $\lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$, and frac $(\nu(x)) = 0$ iff frac $(\nu'(x)) = 0$
- **2.** for all $x, y \in C$: frac $(\nu(x)) \leq$ frac $(\nu(y))$ iff frac $(\nu'(x)) \leq$ frac $(\nu'(y))$

Clock Equivalence

TU/e

Clock Equivalence (3)

- Problem second proposal: countable, but still infinite
- Solution: for $\mathcal{T} \models \phi$, only the clock constraints in \mathcal{T} and ϕ are relevant.
- Let $c_x \in \mathbb{N}$ be the largest constant to which *x* is compared in \mathcal{T} or ϕ
- If $v(x) > c_x$, then the exact value of *x* is of no importance (*x* only grows)

Final proposal

Two clock valuations ν and ν' are equivalent, denoted $\nu \sim \nu'$ iff

- 1. for any $x \in C$: $\nu(x)$, $\nu'(x) > c_x$ or $\nu(x)$, $\nu'(x) \le c_x$
- 2. for any $x \in C$: if $\nu(x), \nu'(x) \le c_x$ then: $\lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$ and $\operatorname{frac}(\nu(x)) = 0$ iff $\operatorname{frac}(\nu'(x)) = 0$
- 3. for any $x, y \in C$: if $\nu(x), \nu'(x) \leq c_x$ and $\nu(y), \nu'(y) \leq c_y$, then: frac $(\nu(x)) \leq$ frac $(\nu(y))$ iff frac $(\nu'(x)) \leq$ frac $(\nu'(y))$

TU/e Clock Equivalence

Example

Consider a Timed Automaton with clocks *x* and *y*, with $c_x = 2$ and $c_y = 1$. The clock regions are shown below:

technische universiteit eindhoven

Regions:

6 Corner points, e.g. [(0,0)]

Clock Equivalence

TU/e

Example

Consider a Timed Automaton with clocks *x* and *y*, with $c_x = 2$ and $c_y = 1$. The clock regions are shown below:

technische universiteit eindhoven

Regions:

14 Open line segments: e.g. [0 < x = y < 1]

Clock Equivalence

Example

Consider a Timed Automaton with clocks *x* and *y*, with $c_x = 2$ and $c_y = 1$. The clock regions are shown below:

Regions:

8 Open regions: e.g. [0 < x < y < 1]

Clock Equivalence

• The clock region of $\nu \in [C \to \mathbb{R}_{\geq 0}]$, denoted $[\nu]$ is defined by:

$$[\nu] := \{\nu': C \to \mathbb{R}_{\geq 0} \mid \nu \sim \nu'\}$$

• The state region of a state (l, v) in $[\mathcal{T}]$ is defined by:

 $[(l,\nu)]:=(l,[\nu])$

The number of clock regions is bounded from below by:

if for all $x \in C$: $c_x \ge 1$ then $R_l := |C|! \times \prod_{x \in C} c_x$

• The number of clock regions is bounded from above by:

if for all $x \in C$: $c_x \ge 1$ then $R_u := |C|! \times 2^{|C|-1} \times \prod_{x \in C} (2(c_x + 1))$

• The number of state regions in $[\mathcal{T}]/\sim$ is finite:

 $|L| \times R_l \leq S/\sim \leq |L| \times R_u$

Clock Equivalence

TU/e

Let
$$\mathcal{T} = \langle L, l_0, Act, C, \longrightarrow, \iota, AP, \ell \rangle$$
 be a Timed Automaton. Let $[\mathcal{T}] = \langle S, S_0, Act, \rightarrow, \mapsto, AP', \ell' \rangle$

technische universiteit eindhoven

• Let $\phi \in C_a(C)$. For $\nu, \nu' : C \to \mathbb{R}_{\geq 0}$ such that $[\nu] = [\nu']$

$$\nu \models \phi$$
 iff $\nu' \models \phi$

• Let
$$p \in AP'$$
. For any $s, s' \in S$ such that $s \sim s'$:

$$s \models p$$
 iff $s' \models p$

Clock Equivalence

technische universiteit eindhoven

Theorem

Clock equivalence is a (time abstract) bisimulation equivalence over AP'

Property ϕ : reachability of the location q.

Time abstract bisimulation: two states (l, ν) and (l, ν') have the same behaviour (w.r.t. ϕ) when:

- 1. Any action transition enabled from ν is also enabled from ν' ; and the target states have the same behaviour
- 2. For any delay transition *d* from ν , there is a delay transition *d'*, such that $(l, \nu + d)$ and $(l, \nu' + d')$ have the same behaviour

...(and vice versa)

Time abstract bisimulation: $(l, \nu) B (l, \nu')$ when

TU/e

- 1. For any $l \xrightarrow{g \ a \ R} l'$, we have $(l, \nu) \xrightarrow{a} (l', [\nu]_R)$ implies there is $(l, \nu') \xrightarrow{a} (l', [\nu']_R)$ and $(l, [\nu]_R) B(l, [\nu']_R)$ (and vice versa)
- 2. For any $(l, \nu) \stackrel{d}{\mapsto} (l, \nu + d)$ there is d' such that $(l, \nu') \stackrel{d'}{\mapsto} (l, \nu' + d')$ and $(l, \nu + d) B (l, \nu' + d')$ (and vice versa)

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

/ department of mathematics and computer science

technische universiteit eindhoven

Region Automata

TU/e

Model Checking TCTL over $\mathcal{T} = \langle L, L_0, Act, C, \longrightarrow, \iota, AP, \ell \rangle$

Main Procedure

Reduce the verification of TCTL formulae over Timed Automata to a model checking problem over the Region Automaton for a CTL formula

- ► For a TCTL formula ϕ introduce a new clock z_J for every interval J (\neq [0, ∞)) occurring in ϕ ; let c_{z_I} be the maximal integer to which z_I is compared
- Let z_{ϕ} be the set of all clocks introduced by ϕ
- Compute the clock regions for the clock valuations $C \cup z_{\phi} \to \mathbb{R}_{\geq 0}$
- Then $\mathcal{T}\models_{TCTL} \phi$ iff $R(\mathcal{T}\oplus z_{\phi})\models_{CTL} \hat{\phi}$

Region Automata

TU/e

Let $\mathcal{T} = \langle L, l_0, Act, C, \longrightarrow, \iota, AP, \ell \rangle$ be a Timed Automaton.

- Clock region $r_{\infty} = \{ \nu \in [C \to \mathbb{R}_{\geq 0}] \mid \forall x \in C : \nu(x) > c_x \}$ is unbounded
- r' is the successor clock region of r, denoted r' = succ(r), if either:
 1. r = r_∞ and r = r', or
 2. r ≠ r_∞, r ≠ r' and for all v ∈ r:
 $\exists d \in \mathbb{R}_{\geq 0}$: (v + d ∈ r' and $\forall 0 \leq d' \leq d$: v + d' ∈ r ∪ r')

technische universiteit eindhoven

- The successor region: succ((l, v)) := (l, succ(v))
- Resetting a region: $r[R := 0] := \{ \nu \in [C \to \mathbb{R}_{\geq 0}] \mid \exists \nu' \in r : \nu = [\nu']_R \}$

Region Automata

TU/e

Clock regions and their successor regions.

Region Automata

TU/e

The Region Automaton R(T) of a non-Zeno $T = \langle L, L_0, Act, C, \rightarrow, \iota, AP, \ell \rangle$ is defined as:

$$R(\mathcal{T}) = \langle S, S_0, Act \cup \{\tau\}, \rightarrow', AP', \ell' \rangle$$

where the state regions are defined as:

S = (L × (C → ℝ_{≥0}))/~= {[s] | s ∈ S_[T]}
 S₀ = {[s] | s ∈ S_{0 [T]}}
 ℓ'((l,r)) = ℓ(l) ∪ {φ ∈ C_a(C) | r⊨ φ}
 · →'⊆ S × Act ∪ {τ} × S is defined as:

$$\frac{l \xrightarrow{g a R} l' r⊨ g r[R := 0] \models \iota(l')}{(l,r) \xrightarrow{a'} (l', r[R := 0])} \xrightarrow{r[L := 0] \models \iota(l')} \frac{r \models \iota(l) \operatorname{succ}(r) \models \iota(l)}{(l,r) \xrightarrow{\tau} (l', \operatorname{succ}(r))}$$

Timed Automata

Clock Equivalence

Region Automata

Wrap-up

/ department of mathematics and computer science

technische universiteit eindhoven

Wrap-up

Other verification problems:

- 1. The TCTL model checking problem is PSPACE-complete
- 2. The model checking problem for timed LTL (and TCTL*) is undecidable
- 3. The satisfaction problem for TCTL is undecidable

Some open questions:

- ► Adding clock constraints *x* + *y* < *c*:
 - for two clocks, decidable,
 - · for four clocks, undecidable,
 - for three clocks, unknown.