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Temporal Logics: Fairness
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I Atomic Propositions: EP, EQ, EA, JP, JQ, JA
I Intended meaning: John or Ella is either Playing, posing Questions, getting

Answers
I To exclude that one child gets all attention, we want that both ¬EQ as well as
¬JQ hold infinitely often

I fairness constraints ensuring this:
F = {{s00, s01, s02, s20, s21}, {s00, s10, s20, s02, s12}}
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Temporal Logics: Fairness

Sometimes properties are violated by “unrealistic” paths only, for instance due to a
scheduler. In this case, one may restrict to fair paths.

A Kripke Structure over AP with fairness constraints is a structure M = 〈S, R, L, F〉,
where:

I 〈S, R, L〉 is an “ordinary” Kripke Structure as before
I F ⊆ 2S is a set of fairness constraints

A path is fair if it “hits” each fairness constraint infinitely often:

fair(π) iff ∀C ∈ F. {i | π(i) ∈ C} is an infinite set
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Temporal Logics: Fairness

In CTL∗ with fairness semantics (|=F), only fair paths will be considered.

Given a fixed Kripke Structure with fairness constraints M = 〈S, R, L, F〉, s|=F f
means: formula f holds in state s in the fair CTL∗ semantics.

The definition of |=F coincides with |= except for the following four clauses:

s|=F true iff there is some fair path starting in s
s|=F p iff p ∈ L(s) and there is some fair path starting in s
s|=F A f iff for all fair paths π starting in s, we have π|=F f
s|=F E f iff for some fair path π starting in s, we have π|=F f
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Temporal Logics: Fairness

s0

s2

s1 s3

{p, q}

{q}

{p}

Note that s0|= E F G p, but s0 6 |= A F G p

I First, consider as Fairness constraint: F = { {s3} }
• then all fair paths contain s3 infinitely often
• we have s0|=F A F G p

I Next, consider as Fairness constraint: F = { {s2} }
• then all fair paths contain s2 infinitely often
• in particular, fair paths cannot contain s3
• so s0 6 |=F E F G p
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Strongly Connected Components

Given a directed graph G = 〈V, E〉
I let s →∗

G t mean that there is a path from node s to t in G
I a strongly connected component (SCC) is a maximal subgraph S of G, such that

for all s, t ∈ S, s →∗
G t and t →∗

G s
I an SCC is non-trivial if it contains at least one edge

The SCCs of a graph (e.g. a Kripke Structure) can be computed in O(|V|+ |E|) time
with an algorithm based on depth-first search:

I Text book version (see Introduction to Algorothms, Corben et al)
I Tarjan’s original algorithm (se SIAM Journal on Computing 1(2), 1972)

The second algorithm is most useful in model checking contexts
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Strongly Connected Components

Idea behind Tarjan’s SCC algorithm
Given is a directed graph G = 〈V, E〉

I compute spanning trees by depth-first search; number the nodes in the order
they are visited

I the other, non-tree edges are either:
• forward edges (can be ignored)
• backward edges (to an ancestor)
• cross edges (to another subtree)

backward and cross edges lead to nodes with smaller numbers
I nodes are kept on a stack; the nodes of a discovered SCC will be popped

immediately from this stack
I compute root[v]: the smallest node which is:

• reachable from v by a sequence of tree-edges followed by at most one non-tree edge;
and

• if root[v] = v, the root of a new SCC is found, and the whole SCC is popped from the
stack
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Strongly Connected Components

Procedure FIND_SCC applies a repeated depth-first search on yet unprocessed nodes
of the input graph G = 〈V, E〉
The depth-first search is delegated to the procedure DFS_SCC.

procedure FIND_SCC
i := 0;
empty the stack;
leave all nodes unnumbered;
for vertice w ∈ V do

if w is not yet numbered then
DFS_SCC(w);

end if
end for

end procedure
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Strongly Connected Components

procedure DFS_SCC(v)
root[v] := number[v] := i := i + 1;
push v on the stack;
for successor w of v do

if w is not yet numbered then {tree edge}
DFS_SCC(w);
root[v] := min(root[v], root[w]);

else if number[w] < number[v] and w on the stack then {cross/back edge}
root[v] := min(root[v], number[w]);

end if
end for
if root[v] = number[v] then {start new SCC}

while top w of stack satisfies number(w) ≥ number(v) do
pop w from stack;

end while
end if

end procedure
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Strongly Connected Components

Example: SCC algorithm
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A possible run of the SCC algo-
rithm, with DFS node numbers, fi-
nal root-values (in square brack-
ets), tree edges (plain arrow), for-
ward edges (dotted), back edges
(dashed), cross edges (dash/dot).
Two SCCs are found: number and
root value are equal



12

/ department of mathematics and computer science 13/36

Strongly Connected Components

We analyse the space and time requirements for running FIND_SCC on a graph
G = 〈V, E〉:

I for every node:
• DFS_SCC is called exactly once
• all its outgoing edges are explored exactly once

I each node is pushed and popped from the stack exactly once
I checking whether a node is on the stack can be done in constant time, for

instance by maintaining a Boolean array

Conclusion: Tarjan’s algorithm for finding strongly connected components runs in
time and space O(|V|+ |E|)
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CTL Model Checking Algorithm

Recall that CTL has the following ten temporal operators:

I A X and E X : for all/some next state
I A F and E F : inevitably and potentially
I A G and E G : invariantly and potentially always
I A [ U ] and E [ U ]: for all/some paths, until
I A [ R ] and E [ R ]: for all/some paths, releases

Besides atomic propositions (AP), the constant true and the Boolean connectives
(¬,∨), the following temporal operators are sufficient: E X , E G , E [ U ].

Hence: only algorithms for computing formulae of the above form are needed.
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CTL Model Checking Algorithm

Main loop of model checking CTL: check formula f on a Kripke Structure 〈S, R, L〉.

By recursion on f , algorithm MC_CTL( f ) computes label(s) for all states s ∈ S,
where label(s) shall contain those subformulae of f that hold in s.

Algorithm MC_CTL( f ) employs a case distinction on the structure of f :
f = p add p to label(s) for those states s with p ∈ L(s)
f = g0 ∨ g1 MC_CTL(g0); MC_CTL(g1); add f to all states labelled with g0 or g1
f = ¬g MC_CTL(g); add f to all states not labelled with g
f = E X g MC_CTL(g); add f to all states with an R-successor labelled by g
f = E [g0 U g1] MC_CTL(g0); MC_CTL(g1); CHECK_EU(g0, g1)
f = E G g MC_CTL(g); CHECK_EG(g)

Upon termination, s|= f if and only if f ∈ label(s)
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CTL Model Checking Algorithm

procedure CHECK_EU(f,g)
T := {s | g ∈ label(s)};
for all s∈T do label(s) := label(s) ∪ {E [ f U g]};
end for
while T 6= ∅ do

choose s ∈ T;
T := T \ {s};
for all t satisfying t R s do

if E [ f U g] /∈ label(t) and f ∈ label(t) then
label(t) := label(t) ∪ E [ f U g];
T := T ∪ {t};

end if
end for

end while
end procedure

Observations:
I label all states where

g holds
I search backwards

over states where f
holds



12

/ department of mathematics and computer science 18/36

CTL Model Checking Algorithm

procedure CHECK_EG(f)
S′ := {s | f ∈ label(s)};
SCC := {C | C is a nontrivial SCC of S′};
T :=

⋃
C∈SCC {s | s ∈ C};

for all s ∈ T do label(s) := label(s) ∪ {E G f };
end for
while T 6= ∅ do

choose s ∈ T;
T := T \ {s};
for all t satisfying t ∈ S′ and t R s do

if E G f /∈ label(t) then
label(t) := label(t) ∪ {E G f };
T := T ∪ {t};

end if
end for

end while
end procedure

Observations:
I restrict attention to

subgraph where f
holds

I an infinite path in a
finite graph
eventually reaches a
non-trivial SCC
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CTL Model Checking Algorithm

We analyse the time complexity for the standard CTL model checking algorithm of
formula f (with | f | the number of subformulae) on Kripke Structure M = 〈S, R, L〉.

I There are at most | f | calls to MC_CTL

I Backward reachability and detecting strongly connected components can be
done in time linear to the Kripke Structure: O(|S|+ |R|)

I Hence, each recursive call takes at most O(|S|+ |R|) time

So, the complexity of this CTL model checking algorithm is O(| f | · (|S|+ |R|)),
which is linear in both the formula and the state space.
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Example: demanding children

s00

s01

s02

s10 s20

s11 s21

s12

{EP,JP} {EQ,JP} {EA,JP}

{EP,JQ}

{EP,JA}

{EQ,JQ} {EA,JQ}

{EQ,JA}

I Atomic Propositions: EP, EQ, EA, JP, JQ, JA
I Intended meaning: John or Ella is either Playing,

posing Questions, getting Answers

Requirement: Whenever John asks a question, he eventually gets an answer
Formula: A G (JQ → A F JA)
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Example: demanding children

s00
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I Atomic Propositions: EP, EQ, EA, JP, JQ, JA
I Intended meaning: John or Ella is either Playing,

posing Questions, getting Answers

I Step 1: express using basic operators

A G (JQ → A F JA)
≡

¬E [true U ¬(¬JQ ∨ ¬E G ¬JA)]
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Example: demanding children
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I Step 2: treat E G ¬JA
• Restrict to the subgraph where ¬JA holds
• Find non-trivial SCCs
• Backward reachability
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Example: demanding children
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Example: demanding children

s00

s01

s10 s20

s11 s21

{EP,JP} {EQ,JP} {EA,JP}

{EP,JQ} {EQ,JQ} {EA,JQ}

I Step 2: treat E G ¬JA
• Restrict to the subgraph where ¬JA holds
• Find non-trivial SCCs
• Backward reachability

No new states are found. So, E G ¬JA holds in the states {s00, s10, s20, s01, s11, s21};
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Example: demanding children
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I Step 3: treat ¬E G ¬JA
• E G ¬JA holds in {s00, s10, s20, s01, s11, s21}, so ¬E G ¬JA holds in {s02, s12}

I Step 4: treat ¬JQ
• ¬JQ holds in {s00, s10, s20, s02, s12}

I Step 5: treat ¬JQ ∨ ¬E G ¬JA
• ¬JQ ∨ ¬E G ¬JA holds in {s00, s10, s20, s02, s12} ∪ {s02, s12} = {s00, s10, s20, s02, s12}
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Example: demanding children
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{EQ,JA}

I Step 6: treat ¬(¬JQ ∨ ¬E G ¬JA)
• ¬JQ ∨ ¬E G ¬JA holds in {s00, s10, s20, s02, s12},

so ¬(¬JQ ∨ ¬E G ¬JA) holds in {s01, s11, s12}
I Step 7: compute E [true U ¬(¬JQ ∨ ¬E G ¬JA)]

• Start in {s01, s11, s12}
• Perform a backward reachability analysis over states for which true holds
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Example: demanding children
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Example: demanding children

Conclusion:

I So, E [true U ¬(¬JQ ∨ ¬E G ¬JA)] holds in all states
I Hence, its negation A G (JQ → A F JA) holds in no state
I The requirement does not hold for the full Kripke Structure
I Why? Because in this case, there is a path in which only Ella progresses while

John is not being served.
I Next, we look at the Kripke Structure with Fairness Constraints
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CTL Model Checking with Fairness

Recall: Kripke Structure M = 〈S, R, L, F〉 with fairness constraints F ⊆ 2S.

I A path is fair if it “hits” each fairness constraint infinitely often
I A fair SCC is an SCC that contains an element from each constraint C ∈ F

Main idea of fair model checking for CTL:
I Special treatment for s|=F E G f : CHECK_FAIR_EG

• Restrict attention to S′ ⊆ S where f holds
• Find a path to a fair non-trivial SCC in S′

I Label states where E G true fairly holds with a new proposition symbol fair
I Treat the other operators using the original “unfair” procedures:

• s|=F p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s|= p ∧ f air
• s|=F E X f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s|= E X ( f ∧ f air)
• s|=F E [ f U g] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s|= E [ f U (g ∧ f air)]
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CTL Model Checking with Fairness

s00
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s11 s21
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{EP,JQ}

{EP,JA}
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{EQ,JA}

Fair SCC

Unfair SCC

I Assume fairness constraints ¬EQ
and ¬JQ.

I Remark: full graph is one big fair
SCC, so E G true holds everywhere

I E G ¬JA:
• Restrict to subgraph with ¬JA
• Find fair non-trivial SCCs
• Do backward reachability

I Hence: JQ ∧ E G ¬JA holds fairly in NO state
I Hence E F (JQ ∧ E G ¬JA) holds nowhere fairly
I Hence, its negation, the requirement A G (JQ → A F JA) fairly holds everywhere!
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Summary

CTL model checking:

I SCC algorithm is used
I Tarjan’s SCC algorithm runs one depth-first search, computing SCCs on-the-fly.

Time complexity is linear
I CTL model checking can be done in time linear in the size of the formula as well

as in the Kripke Structure
I Extension with Fairness Constraints is straightforward and is useful in practice
I Why not treat fairness in formulae?

A [(G F C1 ∧G F C2) → Requirement]

• fairness cannot be expressed in CTL
• for LTL all known algorithms are exponential in the size of the formula
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Exercise

s0

s1

s2

s3

{p, q}

{q}

{p}

CTL formulae: p, E [q R p], A G E F p,
A ((G p) ∨ (F q))

I Determine for each formula in which states of the above Kripke Structure it
holds; use both the semantics and use the appropriate algorithms

I Extend the Kripke structure with the Fairness constraints F = { {s1}, {s2} }. In
which states do the above formulae fairly hold?

I Similarly for the Fairness constraint F = { {s3} }
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