Algorithms for Model Checking (2IW55)

Lecture 2
Fairness \& Basic Model Checking Algorithm for CTL and fair CTL

- based on strongly connected components Chapter 4.1, 4.2 + SIAM Journal of Computing 1(2), 1972

Tim Willemse
(timw@win.tue.nl)
http://www.win.tue.nl/~timw
HG 6.81

TUle

Outline

Fairness for CTL
Strongly Connected Components
CTL Model Checking Algorithm

Example: demanding children
CTL Model Checking with Fairness
Summary
Exercise

Temporal Logics: Fairness

- Atomic Propositions: EP, EQ, EA, JP, JQ, JA
- Intended meaning: John or Ella is either Playing, posing Questions, getting Answers
- To exclude that one child gets all attention, we want that both $\neg E Q$ as well as $\neg J Q$ hold infinitely often
- fairness constraints ensuring this:
$F=\left\{\left\{s_{00}, s_{01}, s_{02}, s_{20}, s_{21}\right\},\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\}\right\}$

Temporal Logics: Fairness

Sometimes properties are violated by "unrealistic" paths only, for instance due to a scheduler. In this case, one may restrict to fair paths.

A Kripke Structure over $A P$ with fairness constraints is a structure $M=\langle S, R, L, F\rangle$, where:

- $\langle S, R, L\rangle$ is an "ordinary" Kripke Structure as before
- $F \subseteq 2^{S}$ is a set of fairness constraints

A path is fair if it "hits" each fairness constraint infinitely often: fair (π) iff $\forall C \in F .\{i \mid \pi(i) \in C\}$ is an infinite set

Temporal Logics: Fairness

In CTL* with fairness semantics $\left(\models_{F}\right)$, only fair paths will be considered.

Given a fixed Kripke Structure with fairness constraints $M=\langle S, R, L, F\rangle, s \models_{F} f$ means: formula f holds in state s in the fair CTL* semantics.

The definition of \models_{F} coincides with \models except for the following four clauses:
$s \models_{F}$ true iff there is some fair path starting in s
$s \models_{F} p \quad$ iff $\quad p \in L(s)$ and there is some fair path starting in s
$s \models_{F} \mathrm{~A} f$ iff for all fair paths π starting in s, we have $\pi \models_{F} f$
$s \models_{F} \mathrm{E} f \quad$ iff \quad for some fair path π starting in s, we have $\pi \models_{F} f$

TU/e

Temporal Logics: Fairness

Note that $s_{0}=$ E F G p, but $s_{0} \not \models=$ A F G p

- First, consider as Fairness constraint: $F=\left\{\left\{s_{3}\right\}\right\}$
- then all fair paths contain s_{3} infinitely often
- we have $s_{0} \models_{F}$ A F G p
- Next, consider as Fairness constraint: $F=\left\{\left\{s_{2}\right\}\right\}$
- then all fair paths contain s_{2} infinitely often
- in particular, fair paths cannot contain s_{3}
- so $s_{0} \ell_{F}$ EFG p

TUle

Outline

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise

Strongly Connected Components

Given a directed graph $G=\langle V, E\rangle$

- let $s \rightarrow{ }_{G}^{*} t$ mean that there is a path from node s to t in G
- a strongly connected component (SCC) is a maximal subgraph S of G, such that for all $s, t \in S, s \rightarrow{ }_{G}^{*} t$ and $t \rightarrow{ }_{G}^{*} s$
- an SCC is non-trivial if it contains at least one edge

The SCCs of a graph (e.g. a Kripke Structure) can be computed in $\mathcal{O}(|V|+|E|)$ time with an algorithm based on depth-first search:

- Text book version (see Introduction to Algorothms, Corben et al)
- Tarjan's original algorithm (se SIAM Journal on Computing 1(2), 1972)

The second algorithm is most useful in model checking contexts

Strongly Connected Components

Idea behind Tarjan's SCC algorithm
Given is a directed graph $G=\langle V, E\rangle$

- compute spanning trees by depth-first search; number the nodes in the order they are visited
- the other, non-tree edges are either:
- forward edges (can be ignored)
- backward edges (to an ancestor)
- cross edges (to another subtree)
backward and cross edges lead to nodes with smaller numbers
- nodes are kept on a stack; the nodes of a discovered SCC will be popped immediately from this stack
- compute root $[v]$: the smallest node which is:
- reachable from v by a sequence of tree-edges followed by at most one non-tree edge; and
- if $\operatorname{root}[v]=v$, the root of a new SCC is found, and the whole SCC is popped from the stack

Strongly Connected Components

Procedure FIND_SCC applies a repeated depth-first search on yet unprocessed nodes of the input graph $G=\langle V, E\rangle$
The depth-first search is delegated to the procedure DFS_SCC.

```
procedure FIND_SCC
    \(i:=0 ;\)
    empty the stack;
    leave all nodes unnumbered;
    for vertice \(w \in V\) do
        if \(w\) is not yet numbered then
            DFS_SCC(w);
        end if
    end for
end procedure
```


TU/e

Strongly Connected Components

```
procedure DFS_SCC(v)
    root[v]:= number [v]:=i:=i+1;
    push v}\mathrm{ on the stack;
    for successor w of v do
        if w}\mathrm{ is not yet numbered then
        DFS_SCC(w);
        root[v]:= min}(\operatorname{root}[v],\operatorname{root}[w])
    else if number [w] < number [v] and w on the stack then {cross/back edge}
        root [v]:= min(root [v],number [w]);
        end if
    end for
    if root[v] = number[v] then
        {start new SCC}
        while top w of stack satisfies number (w)\geqnumber(v) do
            pop w from stack;
        end while
    end if
end procedure
```


TUle

Strongly Connected Components

Example: SCC algorithm

A possible run of the SCC algorithm, with DFS node numbers, final root-values (in square brackets), tree edges (plain arrow), forward edges (dotted), back edges (dashed), cross edges (dash/dot). Two SCCs are found: number and root value are equal

Strongly Connected Components

We analyse the space and time requirements for running FIND_SCC on a graph $G=\langle V, E\rangle$:

- for every node:
- DFS_SCC is called exactly once
- all its outgoing edges are explored exactly once
- each node is pushed and popped from the stack exactly once
- checking whether a node is on the stack can be done in constant time, for instance by maintaining a Boolean array

Conclusion: Tarjan's algorithm for finding strongly connected components runs in time and space $\mathcal{O}(|V|+|E|)$

TUle

Outline

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise

CTL Model Checking Algorithm

Recall that CTL has the following ten temporal operators:

- AX and E X : for all/some next state
- AF and EF : inevitably and potentially
- A G and E G: invariantly and potentially always
- $A[U]$ and $E[U]$: for all/some paths, until
- $A[R]$ and $E[R]$: for all/some paths, releases

Besides atomic propositions $(A P)$, the constant true and the Boolean connectives (\neg, V), the following temporal operators are sufficient: $E X, E G, E[U]$.

Hence: only algorithms for computing formulae of the above form are needed.

CTL Model Checking Algorithm

Main loop of model checking CTL: check formula f on a Kripke Structure $\langle S, R, L\rangle$.
By recursion on f, algorithm MC_CTL (f) computes label (s) for all states $s \in S$, where label(s) shall contain those subformulae of f that hold in s.

Algorithm MC_CTL (f) employs a case distinction on the structure of f :

$$
\begin{aligned}
& f=p \\
& f=g_{0} \vee g_{1} \\
& f=\neg g \\
& f=\mathrm{E} \times g \\
& f=\mathrm{E}\left[g_{0} \cup g_{1}\right]
\end{aligned}
$$

$$
\text { add } p \text { to } \operatorname{label}(s) \text { for those states } s \text { with } p \in L(s)
$$

$$
f=g_{0} \vee g_{1} \quad \text { MC_CTL }\left(g_{0}\right) ; \text { MC_CTL }\left(g_{1}\right) ; \text { add } f \text { to all states labelled with } g_{0} \text { or } g_{1}
$$

$$
f=\neg g \quad \text { MC_CTL }(g) ; \text { add } f \text { to all states not labelled with } g
$$

$$
\text { MC_CTL }(g) \text {; add } f \text { to all states with an } R \text {-successor labelled by } g
$$

$$
\operatorname{MC} _C T L\left(g_{0}\right) ; \operatorname{MC} _C T L\left(g_{1}\right) ; \text { CHECK_EU }\left(g_{0}, g_{1}\right)
$$

$$
\text { MC_CTL }(g) \text {; CHECK_EG }(g)
$$

Upon termination, $s=f$ if and only if $f \in \operatorname{label}(s)$

TUle

CTL Model Checking Algorithm

```
procedure CHECK_EU(f,g)
    \(T:=\{s \mid g \in \operatorname{label}(s)\} ;\)
    for all \(s \in T\) do label \((s):=\operatorname{label}(s) \cup\{E[f \cup g]\}\);
    end for
    while \(T \neq \varnothing\) do
        choose \(s \in T\);
        \(T:=T \backslash\{s\}\);
        for all \(t\) satisfying \(t R s\) do
        if \(\mathrm{E}[f \cup g] \notin \operatorname{label}(t)\) and \(f \in \operatorname{label}(t)\) then
                label \((t):=\operatorname{label}(t) \cup E[f \cup g] ;\)
                \(T:=T \cup\{t\} ;\)
            end if
        end for
    end while
end procedure
```

Observations:

- label all states where g holds
- search backwards over states where f holds

CTL Model Checking Algorithm

```
procedure CHECK_EG(f)
    S'}:={s|f\in\operatorname{label(s)};
    SCC}:={C|C\mathrm{ is a nontrivial SCC of S'}\mp@subsup{S}{}{\prime}}
    T:= U C CSCC }{s|s\inC}
    for all }s\inT\mathrm{ do label(s):= label(s) }\cup{EGGf}
    end for
    while T F=\varnothing do
        choose s\inT;
        T:=T\{s};
        for all t satisfying t\in\mp@subsup{S}{}{\prime}}\mathrm{ and }tRs\mathrm{ do
        if E G f}\not\in\operatorname{label}(t)\mathrm{ then
                label (t):= label (t)\cup{E G f};
                T:=T\cup{t};
            end if
        end for
    end while
end procedure
```


TU/e

CTL Model Checking Algorithm

We analyse the time complexity for the standard CTL model checking algorithm of formula f (with $|f|$ the number of subformulae) on Kripke Structure $M=\langle S, R, L\rangle$.

- There are at most $|f|$ calls to MC_CTL
- Backward reachability and detecting strongly connected components can be done in time linear to the Kripke Structure: $\mathcal{O}(|S|+|R|)$
- Hence, each recursive call takes at most $\mathcal{O}(|S|+|R|)$ time

So, the complexity of this CTL model checking algorithm is $\mathcal{O}(|f| \cdot(|S|+|R|))$, which is linear in both the formula and the state space.

TUle

Outline

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise

Example: demanding children

- Atomic Propositions: EP, EQ, EA, JP, JQ, JA
- Intended meaning: John or Ella is either Playing, posing Questions, getting Answers

Requirement: Whenever John asks a question, he eventually gets an answer Formula: A G (JQ \rightarrow A F JA)

Example: demanding children

- Atomic Propositions: EP, EQ, EA, JP, JQ, JA
- Intended meaning: John or Ella is either Playing, posing Questions, getting Answers
- Step 1: express using basic operators

$$
\begin{aligned}
& \mathrm{AG}(J Q \rightarrow \mathrm{~A} \mathrm{~F} J A) \\
\equiv & \neg \mathrm{E}[\text { true } \mathrm{U} \neg(\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A)]
\end{aligned}
$$

Example: demanding children

- Step 2: treat E G $\neg J A$
- Restrict to the subgraph where $\neg J A$ holds
- Find non-trivial SCCs
- Backward reachability

TUle

Example: demanding children

- Step 2: treat E G $\neg J A$
- Restrict to the subgraph where $\neg J A$ holds
- Find non-trivial SCCs
- Backward reachability

TUle

Example: demanding children

- Step 2: treat E G $\neg J A$
- Restrict to the subgraph where $\neg J A$ holds
- Find non-trivial SCCs
- Backward reachability

Example: demanding children

- Step 2: treat E G $\neg J A$
- Restrict to the subgraph where $\neg J A$ holds
- Find non-trivial SCCs
- Backward reachability

No new states are found. So, $\mathrm{E} \mathrm{G} \neg J A$ holds in the states $\left\{s_{00}, s_{10}, s_{20}, s_{01}, s_{11}, s_{21}\right\}$;

Tule

Example: demanding children

- Step 3: treat $\neg \mathrm{E} \mathrm{G} \neg J A$
- $\mathrm{E} \mathrm{G} \neg J A$ holds in $\left\{s_{00}, s_{10}, s_{20}, s_{01}, s_{11}, s_{21}\right\}$, so $\neg \mathrm{E} \mathrm{G} \neg J A$ holds in $\left\{s_{02}, s_{12}\right\}$
- Step 4: treat $\neg J Q$
- $\neg J Q$ holds in $\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\}$
- Step 5: treat $\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A$
- $\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A$ holds in $\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\} \cup\left\{s_{02}, s_{12}\right\}=\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\}$

TUle

Example: demanding children

- Step 6: treat $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$
- $\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A$ holds in $\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\}$, so $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$ holds in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Step 7: compute $\mathrm{E}[$ true $\mathrm{U} \neg(\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A)]$
- Start in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Perform a backward reachability analysis over states for which true holds

TUle

Example: demanding children

- Step 6: treat $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$
- $\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A$ holds in $\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\}$, so $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$ holds in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Step 7: compute $\mathrm{E}[$ true $\mathrm{U} \neg(\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A)]$
- Start in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Perform a backward reachability analysis over states for which true holds

TUle

Example: demanding children

- Step 6: treat $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$
- $\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A$ holds in $\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\}$, so $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$ holds in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Step 7: compute $\mathrm{E}[$ true $\mathrm{U} \neg(\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A)]$
- Start in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Perform a backward reachability analysis over states for which true holds

TUle

Example: demanding children

- Step 6: treat $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$
- $\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A$ holds in $\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\}$, so $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$ holds in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Step 7: compute $\mathrm{E}[$ true $\mathrm{U} \neg(\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A)]$
- Start in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Perform a backward reachability analysis over states for which true holds

TUle

Example: demanding children

- Step 6: treat $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$
- $\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A$ holds in $\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\}$, so $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$ holds in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Step 7: compute $\mathrm{E}[$ true $\mathrm{U} \neg(\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A)]$
- Start in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Perform a backward reachability analysis over states for which true holds

TUle

Example: demanding children

- Step 6: treat $\neg(\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A)$
- $\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A$ holds in $\left\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\right\}$, so $\neg(\neg J Q \vee \neg \mathrm{E} G \neg J A)$ holds in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Step 7: compute $\mathrm{E}[$ true $\mathrm{U} \neg(\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A)]$
- Start in $\left\{s_{01}, s_{11}, s_{12}\right\}$
- Perform a backward reachability analysis over states for which true holds

Example: demanding children

Conclusion:

- So, $\mathrm{E}[$ true $\mathrm{U} \neg(\neg J Q \vee \neg \mathrm{E} \mathrm{G} \neg J A)]$ holds in all states
- Hence, its negation A G ($J Q \rightarrow$ A F $J A$) holds in no state
- The requirement does not hold for the full Kripke Structure
- Why? Because in this case, there is a path in which only Ella progresses while John is not being served.
- Next, we look at the Kripke Structure with Fairness Constraints

TUle

Outline

Fairness for CTL

Strongly Connected Components
CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness
Summary

Exercise

CTL Model Checking with Fairness

Recall: Kripke Structure $M=\langle S, R, L, F\rangle$ with fairness constraints $F \subseteq 2^{S}$.

- A path is fair if it "hits" each fairness constraint infinitely often
- A fair SCC is an SCC that contains an element from each constraint $C \in F$

Main idea of fair model checking for CTL:

- Special treatment for $s \models_{F}$ E G f: CHECK_FAIR_EG
- Restrict attention to $S^{\prime} \subseteq S$ where f holds
- Find a path to a fair non-trivial SCC in S^{\prime}
- Label states where E G true fairly holds with a new proposition symbol fair
- Treat the other operators using the original "unfair" procedures:
$\cdot s \models_{F} p$.. $s \vDash p \wedge$ fair

- $s \models_{F} \mathrm{E}[f \mathrm{U} g] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots, s \vDash \mathrm{E}[f \mathrm{U}(g \wedge f a i r)]$

CTL Model Checking with Fairness

- Assume fairness constraints $\neg E Q$ and $\neg J Q$.
- Remark: full graph is one big fair SCC, so E G true holds everywhere
- E G $\neg J A$:
- Restrict to subgraph with $\neg J A$
- Find fair non-trivial SCCs
- Do backward reachability
- Hence: $J Q \wedge \mathrm{E} G \neg J A$ holds fairly in NO state
- Hence EF $(J Q \wedge E G \neg J A)$ holds nowhere fairly
- Hence, its negation, the requirement $\mathrm{A} \mathrm{G}(J Q \rightarrow \mathrm{AF} J A)$ fairly holds everywhere!

TUle

Outline

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise

Summary

CTL model checking:

- SCC algorithm is used
- Tarjan's SCC algorithm runs one depth-first search, computing SCCs on-the-fly. Time complexity is linear
- CTL model checking can be done in time linear in the size of the formula as well as in the Kripke Structure
- Extension with Fairness Constraints is straightforward and is useful in practice
- Why not treat fairness in formulae?

$$
\mathrm{A}\left[\left(\mathrm{GF} C_{1} \wedge \mathrm{GF} C_{2}\right) \rightarrow \text { Requirement }\right]
$$

- fairness cannot be expressed in CTL
- for LTL all known algorithms are exponential in the size of the formula

TUle

Outline

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise

Exercise

CTL formulae: $p, \mathrm{E}\left[\begin{array}{l}q \mathrm{R}\end{array} \mathrm{p}\right.$], A G E F p, $\mathrm{A}((\mathbf{G} p) \vee(\mathrm{F} q))$

- Determine for each formula in which states of the above Kripke Structure it holds; use both the semantics and use the appropriate algorithms
- Extend the Kripke structure with the Fairness constraints $F=\left\{\left\{s_{1}\right\},\left\{s_{2}\right\}\right\}$. In which states do the above formulae fairly hold?
- Similarly for the Fairness constraint $F=\left\{\left\{s_{3}\right\}\right\}$

