w / technische-universiteit-eindhoven
/e

Algorithms for Model Checking (2IW55)

Fairness & Basic Model Checking Algorithm for CTL and fair CTL
— based on strongly connected components —
Chapter 4.1, 4.2 + SIAM Journal of Computing 1(2), 1972

Tim Willemse
(timw@win.tue.nl)
http:/ /www.win.tue.nl/ ~timw
HG 6.81

/ department of mathematics and computer science 1/36

technische-universiteit-eindhoven

Fairness for CTL

/ department of mathematics and computer science 2/36

technische-universiteit-eindhoven

Temporal Logics: Fairness

» Atomic Propositions: EP, EQ, EA, P, JQ, JA

» Intended meaning: John or Ella is either Playing, posing Questions, getting
Answers

» To exclude that one child gets all attention, we want that both ~EQ as well as
—JQ hold infinitely often

» fairness constraints ensuring this:
F = {{s00,501, 502,520,521 }, {500, 510, 520, 502, 512} }

/ department of mathematics and computer science 3/36

technische-universiteit-eindhoven

Temporal Logics: Fairness

Sometimes properties are violated by “unrealistic” paths only, for instance due to a
scheduler. In this case, one may restrict to fair paths.

A Kripke Structure over AP with fairness constraints is a structure M = (S, R, L, F),
where:

» (5,R, L) is an “ordinary” Kripke Structure as before

» [C 2% is a set of fairness constraints

A path is fair if it “hits” each fairness constraint infinitely often:

fair(mr) iff VC € F. {i | n(i) € C} is an infinite set

/ department of mathematics and computer science 4/36

technische-universiteit-eindhoven

Temporal Logics: Fairness

In CTL* with fairness semantics (=f), only fair paths will be considered.

Given a fixed Kripke Structure with fairness constraints M = (S, R, L, F), s=f f
means: formula f holds in state s in the fair CTL* semantics.

The definition of =F coincides with = except for the following four clauses:

sk=p true iff there is some fair path starting in s

sErp iff p € L(s) and there is some fair path starting in s
s=p Af iff for all fair paths 7 starting in s, we have wl=p f
si=p Ef iff for some fair path 7t starting in s, we have rtl=p f

/ department of mathematics and computer science 5/36

technische-universiteit-eindhoven

Temporal Logics: Fairness

‘\/@—> Zrt)! {:p}

{a}

Note that syl= EF G p,butsy =AFGp

» First, consider as Fairness constraint: F = { {s3} }
+ then all fair paths contain s3 infinitely often
« wehaveso)=r AFGp

» Next, consider as Fairness constraint: F = { {s} }

+ then all fair paths contain s, infinitely often
* in particular, fair paths cannot contain s3

* SO Sp /Y:]:EFGP

/ department of mathematics and computer science 6/36

technische-universiteit-eindhoven

Strongly Connected Components

/ department of mathematics and computer science 7/36

technische-universiteit-eindhoven

Strongly Connected Components

Given a directed graph G = (V, E)
» lets —(; t mean that there is a path from node s to t in G

» astrongly connected component (SCC) is a maximal subgraph S of G, such that
foralls,t € S,s = tandt —(s

» an SCC is non-trivial if it contains at least one edge

The SCCs of a graph (e.g. a Kripke Structure) can be computed in O(|V| + |E|) time
with an algorithm based on depth-first search:

» Text book version (see Introduction to Algorothms, Corben et al)

» Tarjan’s original algorithm (se SIAM Journal on Computing 1(2), 1972)

The second algorithm is most useful in model checking contexts

/ department of mathematics and computer science 8/36

technische-universiteit-eindhoven

Strongly Connected Components

Idea behind Tarjan’s SCC algorithm
Given is a directed graph G = (V, E)

» compute spanning trees by depth-first search; number the nodes in the order
they are visited

» the other, non-tree edges are either:

» forward edges (can be ignored)
*» backward edges (to an ancestor)
« cross edges (to another subtree)

backward and cross edges lead to nodes with smaller numbers

» nodes are kept on a stack; the nodes of a discovered SCC will be popped
immediately from this stack

» compute r00t[v]: the smallest node which is:

» reachable from v by a sequence of tree-edges followed by at most one non-tree edge;
and

« if root[v] = v, the root of a new SCC is found, and the whole SCC is popped from the
stack

/ department of mathematics and computer science 9/36

technische-universiteit-eindhoven

Strongly Connected Components

Procedure FIND_SCC applies a repeated depth-first search on yet unprocessed nodes
of the input graph G = (V,E)
The depth-first search is delegated to the procedure DFs_sccC.

procedure FIND_SCC
i:=0;
empty the stack;
leave all nodes unnumbered,;
for verticew € V do
if w is not yet numbered then
DFS_SCC(w);
end if
end for
end procedure

/ department of mathematics and computer science 10/36

technische-universiteit-eindhoven

Strongly Connected Components

procedure DFS_SCC(V)
root[v] := number[v] :=i:=i+1;
push v on the stack;
for successor w of v do
if w is not yet numbered then {tree edge}
DFS_SCC(w);
root[v] := min(root[v], root[w]);
else if number[w| < number[v] and w on the stack then {cross/back edge}

root[v] := min(root[v], number[w));
end if
end for
if root[v] = number|[v] then {start new SCC}

while top w of stack satisfies number(w) > number(v) do
pop w from stack;
end while
end if
end procedure

/ department of mathematics and computer science 11/36

technische-universiteit-eindhoven

Strongly Connected Components

Example: SCC algorithm

14
6
2
8 10
3 4 9

A possible run of the SCC algo-
rithm, with DFS node numbers, fi-
nal root-values (in square brack-
ets), tree edges (plain arrow), for-
ward edges (dotted), back edges
(dashed), cross edges (dash/dot).
Two SCCs are found: number and
root value are equal

/ department of mathematics and computer science 12/36

technische-universiteit-eindhoven

Strongly Connected Components

We analyse the space and time requirements for running FIND_SCC on a graph
G=(V,E):

» for every node:

+ DFS_SCC is called exactly once
« all its outgoing edges are explored exactly once

» each node is pushed and popped from the stack exactly once

» checking whether a node is on the stack can be done in constant time, for
instance by maintaining a Boolean array

Conclusion: Tarjan’s algorithm for finding strongly connected components runs in
time and space O(|V| + |E|)

/ department of mathematics and computer science 13/36

technische-universiteit-eindhoven

CTL Model Checking Algorithm

/ department of mathematics and computer science 14/36

technische-universiteit-eindhoven

CTL Model Checking Algorithm

Recall that CTL has the following ten temporal operators:

» AX and E X for all/some next state

» AF and E F : inevitably and potentially

» AG and E G : invariantly and potentially always
A[U]and E [U]: for all/some paths, until
A[R]and E [R]: for all/some paths, releases

v

v

Besides atomic propositions (AP), the constant true and the Boolean connectives
(=, V), the following temporal operators are sufficient: EX ,EG,E[U].

Hence: only algorithms for computing formulae of the above form are needed.

/ department of mathematics and computer science 15/36

technische-universiteit-eindhoven

CTL Model Checking Algorithm

Main loop of model checking CTL: check formula f on a Kripke Structure (S, R, L).

By recursion on f, algorithm MC_CTL(f) computes label(s) for all states s € S,
where label (s) shall contain those subformulae of f that hold in s.

Algorithm MC_CTL(f) employs a case distinction on the structure of f:

f=vr add p to label(s) for those states s with p € L(s)

f=gVa MC_CTL(gp); MC_CTL(g1); add f to all states labelled with gg or g1
f=-g MC_CTL(g); add f to all states not labelled with g

f=EXg MC_CTL(g); add f to all states with an R-successor labelled by g
f=E][goUg1] | MC_CTL(g0); MC_CTL(g71); CHECK_EU(g0,81)

f=EGg MC_CTL(g); CHECK_EG(g)

Upon termination, sf= f if and only if f € label(s)

/ department of mathematics and computer science 16/36

technische-universiteit-eindhoven

CTL Model Checking Algorithm

procedure CHECK_EU(f,g)
T:={s| g € label(s)};
for all s€T do label(s) := label(s) U{E [f U g]};

end for
while T 7# @ do Observations:
;h.of S; \S {ES ;; > label all states where
- f ¢ holds

for all ¢ satisfying t R s do

if E[fUg] ¢ label(t) and f € label(t) then | > searchbackwards
label (t) := label(t) UE [f U gl; over states where f

T:=TU {t},‘ holds

end if

end for

end while
end procedure

/ department of mathematics and computer science 17/36

technische-universiteit-eindhoven

CTL Model Checking Algorithm

procedure CHECK_EG(f)
S":={s| f €label(s)};
SCC := {C| Cis a nontrivial SCC of §'};

T:=Ucescc {s|s € C};
foralls € T do label(s) := label(s) U{E G f}; Observations:

en}ii-lfogﬂ » restrict attention to
while T 7O do subgraph where f
chooses € T; Toldes
T=T\ () .
for all ¢ satisfying t € S’ and t R s do > an .mfmlte pathina
ifEG f ¢ label(t) then finite graph
label (t) := label(t) U{E G f}; eventu.al.ly reaches a
T:=TU{t}; non-trivial SCC
end if
end for
end while

end procedure

/ department of mathematics and computer science 18/36

technische-universiteit-eindhoven

CTL Model Checking Algorithm

We analyse the time complexity for the standard CTL model checking algorithm of
formula f (with | f| the number of subformulae) on Kripke Structure M = (S, R, L).

» There are at most | f| calls to MC_CTL

» Backward reachability and detecting strongly connected components can be
done in time linear to the Kripke Structure: O(|S| + |R|)

» Hence, each recursive call takes at most O(|S| + |R]|) time

So, the complexity of this CTL model checking algorithm is O(|f] - (|S| + |R])),
which is linear in both the formula and the state space.

/ department of mathematics and computer science 19/36

technische-universiteit-eindhoven

Example: demanding children

/ department of mathematics and computer science 20/36

technische-universiteit-eindhoven

Example: demanding children

» Atomic Propositions: EP, EQ, EA, JP, JQ, JA

» Intended meaning: John or Ella is either Playing,
posing Questions, getting Answers

Requirement: Whenever John asks a question, he eventually gets an answer
Formula: AG (JQ — AF JA)

/ department of mathematics and computer science 21/36

technische-universiteit-eindhoven

Example: demanding children

» Atomic Propositions: EP, EQ, EA, JP, JQ, JA

» Intended meaning: John or Ella is either Playing,
posing Questions, getting Answers

» Step 1: express using basic operators

AG(JQ—AFJA)

—E [true U =(=JQV -E G —JA)]

/ department of mathematics and computer science 22/36

technische-universiteit-eindhoven

Example: demanding children

» Step 2: treat EG —JA
* Restrict to the subgraph where -] A holds
+ Find non-trivial SCCs
+ Backward reachability

/ department of mathematics and computer science 23/36

technische-universiteit-eindhoven

Example: demanding children

» Step 2: treat EG —JA
* Restrict to the subgraph where -] A holds
+ Find non-trivial SCCs
+ Backward reachability

/ department of mathematics and computer science 24/36

technische-universiteit-eindhoven

Example: demanding children

» Step 2: treat EG —JA
* Restrict to the subgraph where -] A holds
+ Find non-trivial SCCs
+ Backward reachability

/ department of mathematics and computer science 25/36

technische-universiteit-eindhoven

Example: demanding children

» Step 2: treat EG —JA

* Restrict to the subgraph where -] A holds
+ Find non-trivial SCCs
+ Backward reachability

No new states are found. So, E G =] A holds in the states {sgq, S10, $20, 501,511,521 }

/ department of mathematics and computer science 26/36

technische-universiteit-eindhoven

Example: demanding children

» Step 3: treat -E G —JA
» E G —JA holds in {sgo, 510, 520, So1, S11, 521 }, s0 =E G =JA holds in {sgy, s12 }
» Step 4: treat =]Q
« =JQ holds in {sgo, 510, 520, S02, 512 }
» Step 5: treat =.JQV -E G —JA
+ =JQV —E G —JA holds in {s00, 510,520, S02, 512} U {802,512} = {500, 510, 520, S02, 512}

/ department of mathematics and computer science 27/36

technische-universiteit-eindhoven

Example: demanding children

» Step 6: treat ~(—~JQV "E G —JA)
« =JQV —E G —JA holds in {so, 510,520, 502,512 }»
s0 —(—JQ V —E G =JA) holds in {s¢1, 511,512}
» Step 7: compute E [true U ~(=]JQV —E G —JA)]

« Startin {so1,811,512}
+ Perform a backward reachability analysis over states for which true holds

/ department of mathematics and computer science 28/36

technische-universiteit-eindhoven

Example: demanding children

» Step 6: treat ~(—~JQV "E G —JA)
« =JQV —E G —JA holds in {so, 510,520, 502,512 }»
s0 —(—JQ V —E G =JA) holds in {s¢1, 511,512}
» Step 7: compute E [true U ~(=]JQV —E G —JA)]

« Startin {so1,811,512}
+ Perform a backward reachability analysis over states for which true holds

/ department of mathematics and computer science 28/36

technische-universiteit-eindhoven

Example: demanding children

» Step 6: treat ~(—~JQV "E G —JA)
« =JQV —E G —JA holds in {so, 510,520, 502,512 }»
s0 —(—JQ V —E G =JA) holds in {s¢1, 511,512}
» Step 7: compute E [true U ~(=]JQV —E G —JA)]

« Startin {so1,811,512}
+ Perform a backward reachability analysis over states for which true holds

/ department of mathematics and computer science 28/36

technische-universiteit-eindhoven

Example: demanding children

» Step 6: treat ~(—~JQV "E G —JA)
« =JQV —E G —JA holds in {so, 510,520, 502,512 }»
s0 —(—JQ V —E G =JA) holds in {s¢1, 511,512}
» Step 7: compute E [true U ~(=]JQV —E G —JA)]

« Startin {so1,811,512}
+ Perform a backward reachability analysis over states for which true holds

/ department of mathematics and computer science 28/36

technische-universiteit-eindhoven

Example: demanding children

» Step 6: treat ~(—~JQV "E G —JA)
« =JQV —E G —JA holds in {so, 510,520, 502,512 }»
s0 —(—JQ V —E G =JA) holds in {s¢1, 511,512}
» Step 7: compute E [true U ~(=]JQV —E G —JA)]

« Startin {so1,811,512}
+ Perform a backward reachability analysis over states for which true holds

/ department of mathematics and computer science 28/36

technische-universiteit-eindhoven

Example: demanding children

» Step 6: treat ~(—~JQV "E G —JA)
« =JQV —E G —JA holds in {so, 510,520, 502,512 }»
s0 —(—JQ V —E G =JA) holds in {s¢1, 511,512}
» Step 7: compute E [true U ~(=]JQV —E G —JA)]

« Startin {so1,811,512}
+ Perform a backward reachability analysis over states for which true holds

/ department of mathematics and computer science 28/36

technische-universiteit-eindhoven

Example: demanding children

Conclusion:
» So, E [true U =(—=JQ V —E G =] A)] holds in all states
» Hence, its negation A G (JQ — A F JA) holds in no state
» The requirement does not hold for the full Kripke Structure

» Why? Because in this case, there is a path in which only Ella progresses while
John is not being served.

» Next, we look at the Kripke Structure with Fairness Constraints

/ department of mathematics and computer science 29/36

technische-universiteit-eindhoven

CTL Model Checking with Fairness

/ department of mathematics and computer science 30/36

technische-universiteit-eindhoven

CTL Model Checking with Fairness

Recall: Kripke Structure M = (S, R, L, F) with fairness constraints F C 25,

» A path is fair if it “hits” each fairness constraint infinitely often

» A fair SCC is an SCC that contains an element from each constraint C € F

Main idea of fair model checking for CTL:
» Special treatment for si=r E G f: CHECK_FAIR_EG

* Restrict attention to S’ C S where f holds
» Find a path to a fair non-trivial SCC in §’

» Label states where E G true fairly holds with a new proposition symbol fair

» Treat the other operators using the original “unfair” procedures:

S SR P Sk p A fair
s sEFEXSf sk= EX (f A fair)
esEpE[fUGl o sk=E [f U (g A fair)]

/ department of mathematics and computer science 31/36

technische-universiteit-eindhoven

CTL Model Checking with Fairness

» Assume fairness constraints ~EQ
| and -] Q.
> Remark: full graph is one big fair
SCC, so E G true holds everywhere

» EGJA:
* Restrict to subgraph with =] A
+ Find fair non-trivial SCCs
+ Do backward reachability

» Hence: JQ A E G =] A holds fairly in NO state
» Hence E F (JQ A E G —JA) holds nowhere fairly

» Hence, its negation, the requirement A G (JQ — A F JA) fairly holds everywhere!
/ department of mathematics and computer science 32/36

technische-universiteit-eindhoven

Summary

/ department of mathematics and computer science 33/36

technische-universiteit-eindhoven

CTL model checking:

» SCC algorithm is used

» Tarjan’s SCC algorithm runs one depth-first search, computing SCCs on-the-fly.
Time complexity is linear

» CTL model checking can be done in time linear in the size of the formula as well
as in the Kripke Structure

» Extension with Fairness Constraints is straightforward and is useful in practice

» Why not treat fairness in formulae?

A[(GF Cy AGF Cp) — Requirement]

» fairness cannot be expressed in CTL
« for LTL all known algorithms are exponential in the size of the formula

/ department of mathematics and computer science 34/36

technische-universiteit-eindhoven

Exercise

/ department of mathematics and computer science 35/36

technische-universiteit-eindhoven

@3 CTL formulae: p, E [g R p], AGEF p,

\@ 1 A((Gp)V(Fq)

{a}

» Determine for each formula in which states of the above Kripke Structure it
holds; use both the semantics and use the appropriate algorithms

» Extend the Kripke structure with the Fairness constraints F = { {s1}, {s2} }. In
which states do the above formulae fairly hold?

» Similarly for the Fairness constraint F = { {s3} }

/ department of mathematics and computer science 36/36

	Fairness for CTL
	Strongly Connected Components
	CTL Model Checking Algorithm
	Example: demanding children
	CTL Model Checking with Fairness
	Summary
	Exercise

