TU/e

Algorithms for Model Checking (2IW55)

Lecture 2

Fairness & Basic Model Checking Algorithm for CTL and fair CTL – based on strongly connected components – Chapter 4.1, 4.2 + SIAM Journal of Computing 1(2), 1972

> Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

TU/e

Fairness for CTL

- Strongly Connected Components
- CTL Model Checking Algorithm
- Example: demanding children
- **CTL Model Checking with Fairness**
- Summary
- Exercise

/ department of mathematics and computer science

technische universiteit eindhoven

TU/e technisc

technische universiteit eindhoven

Temporal Logics: Fairness

- Atomic Propositions: EP, EQ, EA, JP, JQ, JA
- Intended meaning: John or Ella is either Playing, posing Questions, getting Answers
- To exclude that one child gets all attention, we want that both $\neg EQ$ as well as $\neg JQ$ hold infinitely often
- fairness constraints ensuring this:
 - $F = \{\{s_{00}, s_{01}, s_{02}, s_{20}, s_{21}\}, \{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}\}$

Temporal Logics: Fairness

TU/e

Sometimes properties are violated by "unrealistic" paths only, for instance due to a scheduler. In this case, one may restrict to fair paths.

A Kripke Structure over *AP* with fairness constraints is a structure $M = \langle S, R, L, F \rangle$, where:

- $\langle S, R, L \rangle$ is an "ordinary" Kripke Structure as before
- $F \subseteq 2^S$ is a set of fairness constraints

A path is fair if it "hits" each fairness constraint infinitely often:

fair(π) *iff* $\forall C \in F$. { $i \mid \pi(i) \in C$ } is an infinite set

Temporal Logics: Fairness

TU/e

In CTL^{*} with fairness semantics (\models_F), only fair paths will be considered.

Given a fixed Kripke Structure with fairness constraints $M = \langle S, R, L, F \rangle$, $s \models_F f$ means: formula *f* holds in state *s* in the fair CTL* semantics.

The definition of \models_F coincides with \models except for the following four clauses:

$s \models_F true$	iff	there is some fair path starting in <i>s</i>
$s\models_F p$	iff	$p \in L(s)$ and there is some fair path starting in s
$s \models_F A f$	iff	for all fair paths π starting in <i>s</i> , we have $\pi \models_F f$
$s \models_F E f$	iff	for some fair path π starting in <i>s</i> , we have $\pi \models_F f$

Temporal Logics: Fairness

TU/e

Note that $s_0 \models \mathsf{E} \mathsf{F} \mathsf{G} p$, but $s_0 \not\models \mathsf{A} \mathsf{F} \mathsf{G} p$

- First, consider as Fairness constraint: $F = \{ \{s_3\} \}$
 - then all fair paths contain s₃ infinitely often
 - we have $s_0 \models_F \mathsf{AFG} p$
- Next, consider as Fairness constraint: $F = \{ \{s_2\} \}$
 - then all fair paths contain s2 infinitely often
 - in particular, fair paths cannot contain s₃
 - so $s_0 \not\models_F \mathsf{E} \mathsf{F} \mathsf{G} \mathsf{F} \mathsf{G}$

TU/e

technische universiteit eindhoven

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise

Strongly Connected Components

TU/e

Given a directed graph $G = \langle V, E \rangle$

- let $s \rightarrow^*_G t$ mean that there is a path from node *s* to *t* in *G*
- ► a strongly connected component (SCC) is a maximal subgraph *S* of *G*, such that for all $s, t \in S$, $s \rightarrow_G^* t$ and $t \rightarrow_G^* s$
- an SCC is non-trivial if it contains at least one edge

The SCCs of a graph (e.g. a Kripke Structure) can be computed in O(|V| + |E|) time with an algorithm based on depth-first search:

- Text book version (see Introduction to Algorothms, Corben et al)
- ► Tarjan's original algorithm (se SIAM Journal on Computing 1(2), 1972)

The second algorithm is most useful in model checking contexts

Strongly Connected Components

TU/e

Idea behind Tarjan's SCC algorithm Given is a directed graph $G = \langle V, E \rangle$

- compute spanning trees by depth-first search; number the nodes in the order they are visited
- the other, non-tree edges are either:
 - forward edges (can be ignored)
 - backward edges (to an ancestor)
 - cross edges (to another subtree)

backward and cross edges lead to nodes with smaller numbers

- nodes are kept on a stack; the nodes of a discovered SCC will be popped immediately from this stack
- ► compute *root*[*v*]: the smallest node which is:
 - reachable from v by a sequence of tree-edges followed by at most one non-tree edge; and
 - if root[v] = v, the root of a new SCC is found, and the whole SCC is popped from the stack

Strongly Connected Components

TU/e

```
Procedure FIND_SCC applies a repeated depth-first search on yet unprocessed nodes of the input graph G = \langle V, E \rangle
The depth-first search is delegated to the procedure DFS_SCC.
```

```
procedure FIND_SCC

i := 0;

empty the stack;

leave all nodes unnumbered;

for vertice w \in V do

if w is not yet numbered then

DFS_SCC(w);

end if

end for

end procedure
```

Strongly Connected Components

TU/e

```
procedure DFS_SCC(v)
   root[v] := number[v] := i := i + 1;
   push v on the stack;
   for successor w of v do
      if w is not yet numbered then
                                                                      {tree edge}
          DFS_SCC(w);
          root[v] := \min(root[v], root[w]);
      else if number[w] < number[v] and w on the stack then {cross/back edge}
          root[v] := \min(root[v], number[w]);
      end if
   end for
                                                                 {start new SCC
   if root[v] = number[v] then
      while top w of stack satisfies number(w) > number(v) do
          pop w from stack;
      end while
   end if
end procedure
```

TU/e technische universiteit eindhoven Strongly Connected Components

Example: SCC algorithm

A possible run of the SCC algorithm, with DFS node numbers, final root-values (in square brackets), tree edges (plain arrow), forward edges (dotted), back edges (dashed), cross edges (dash/dot). Two SCCs are found: number and root value are equal

Strongly Connected Components

We analyse the space and time requirements for running FIND_SCC on a graph $G = \langle V, E \rangle$:

for every node:

TU/e

- DFS_SCC is called exactly once
- all its outgoing edges are explored exactly once
- each node is pushed and popped from the stack exactly once
- checking whether a node is on the stack can be done in constant time, for instance by maintaining a Boolean array

Conclusion: Tarjan's algorithm for finding strongly connected components runs in time and space O(|V| + |E|)

TU/e

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise

/ department of mathematics and computer science

technische universiteit eindhoven

CTL Model Checking Algorithm

TU/e

Recall that CTL has the following ten temporal operators:

- ► A X and E X : for all/some next state
- ► A F and E F : inevitably and potentially
- A G and E G : invariantly and potentially always
- \blacktriangleright A [U] and E [U]: for all/some paths, until
- ► A [R] and E [R]: for all/some paths, releases

Besides atomic propositions (*AP*), the constant true and the Boolean connectives (\neg, \lor) , the following temporal operators are sufficient: $\mathsf{E} \mathsf{X}$, $\mathsf{E} \mathsf{G}$, $\mathsf{E} [\mathsf{U}]$.

Hence: only algorithms for computing formulae of the above form are needed.

CTL Model Checking Algorithm

TU/e

Main loop of model checking CTL: check formula *f* on a Kripke Structure (S, R, L).

By recursion on f, algorithm MC_CTL(f) computes label(s) for all states $s \in S$, where label(s) shall contain those subformulae of f that hold in s.

Algorithm $MC_CTL(f)$ employs a case distinction on the structure of f:

0	
f = p	add <i>p</i> to <i>label</i> (<i>s</i>) for those states <i>s</i> with $p \in L(s)$
$f = g_0 \vee g_1$	MC_CTL(g_0); MC_CTL(g_1); add f to all states labelled with g_0 or g_1
$f = \neg g$	MC_CTL (g) ; add f to all states not labelled with g
f = E X g	MC_CTL(g); add f to all states with an R -successor labelled by g
$f = E\left[g_0 Ug_1\right]$	MC_CTL (g_0) ; MC_CTL (g_1) ; CHECK_EU (g_0, g_1)
f = EGg	$MC_CTL(g)$; CHECK_EG(g)

Upon termination, $s \models f$ if and only if $f \in label(s)$

CTL Model Checking Algorithm

TU/e

```
procedure CHECK_EU(f,g)
    T := \{ s \mid g \in label(s) \};
    for all s \in T do label(s) := label(s) \cup \{ \mathsf{E} [f \mathsf{U} g] \};
    end for
    while T \neq \emptyset do
         choose s \in T;
         T := T \setminus \{s\};
         for all t satisfying t R s do
             if E[f \cup g] \notin label(t) and f \in label(t) then
                 label(t) := label(t) \cup \mathsf{E} [f \cup g];
                 T := T \cup \{t\};
             end if
         end for
    end while
end procedure
```

Observations:

- label all states where g holds
- search backwards over states where *f* holds

CTL Model Checking Algorithm

TU/e

```
procedure CHECK_EG(f)
    S' := \{s \mid f \in label(s)\};\
    SCC := \{C \mid C \text{ is a nontrivial SCC of } S'\};
    T := \bigcup_{C \in SCC} \{ s \mid s \in C \};
    for all s \in T do label(s) := label(s) \cup \{ \mathsf{E} \mathsf{G} f \};
    end for
    while T \neq \emptyset do
         choose s \in T;
         T := T \setminus \{s\};
         for all t satisfying t \in S' and t R s do
              if E G f \notin label(t) then
                  label(t) := label(t) \cup \{ \mathsf{E} \mathsf{G} f \};
                  T := T \cup \{t\};
              end if
         end for
    end while
end procedure
```

Observations:

- restrict attention to subgraph where *f* holds
- an infinite path in a finite graph eventually reaches a non-trivial SCC

CTL Model Checking Algorithm

TU/e

We analyse the time complexity for the standard CTL model checking algorithm of formula f (with |f| the number of subformulae) on Kripke Structure $M = \langle S, R, L \rangle$.

- ► There are at most |*f*| calls to MC_CTL
- ► Backward reachability and detecting strongly connected components can be done in time linear to the Kripke Structure: O(|S| + |R|)
- Hence, each recursive call takes at most O(|S| + |R|) time

So, the complexity of this CTL model checking algorithm is $O(|f| \cdot (|S| + |R|))$, which is **linear** in both the formula and the state space.

TU/e

technische universiteit eindhoven

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise

Example: demanding children

TU/e

- Atomic Propositions: EP, EQ, EA, JP, JQ, JA
- Intended meaning: John or Ella is either Playing, posing Questions, getting Answers

Requirement: Whenever John asks a question, he eventually gets an answer Formula: $A \in (JQ \rightarrow A \models JA)$

Example: demanding children

TU/e

- Atomic Propositions: EP, EQ, EA, JP, JQ, JA
- Intended meaning: John or Ella is either Playing, posing Questions, getting Answers

• Step 1: express using basic operators

```
\equiv \begin{array}{c} \mathsf{A} \mathsf{G} (JQ \to \mathsf{A} \mathsf{F} JA) \\ \neg \mathsf{E} [\mathsf{true} \mathsf{U} \neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)] \end{array}
```

Example: demanding children

- Step 2: treat $E G \neg JA$
 - Restrict to the subgraph where $\neg JA$ holds
 - Find non-trivial SCCs
 - · Backward reachability

Example: demanding children

- Step 2: treat $E G \neg JA$
 - Restrict to the subgraph where $\neg JA$ holds
 - Find non-trivial SCCs
 - · Backward reachability

Example: demanding children

- Step 2: treat $E G \neg JA$
 - Restrict to the subgraph where $\neg JA$ holds
 - Find non-trivial SCCs
 - · Backward reachability

Example: demanding children

- Step 2: treat $E G \neg JA$
 - Restrict to the subgraph where $\neg JA$ holds
 - Find non-trivial SCCs
 - Backward reachability

No new states are found. So, $E G \neg JA$ holds in the states { $s_{00}, s_{10}, s_{20}, s_{01}, s_{11}, s_{21}$ };

- Step 3: treat $\neg E G \neg JA$
 - $\mathsf{E} \mathsf{G} \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{01}, s_{11}, s_{21}\}$, so $\neg \mathsf{E} \mathsf{G} \neg JA$ holds in $\{s_{02}, s_{12}\}$
- ► Step 4: treat ¬JQ
 - $\neg JQ$ holds in { $s_{00}, s_{10}, s_{20}, s_{02}, s_{12}$ }
- Step 5: treat $\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA$
 - $\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\} \cup \{s_{02}, s_{12}\} = \{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}$

- Step 6: treat $\neg(\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$
 - $\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}$, so $\neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$ holds in $\{s_{01}, s_{11}, s_{12}\}$
- ► Step 7: compute $\mathsf{E} [true \mathsf{U} \neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)]$
 - Start in $\{s_{01}, s_{11}, s_{12}\}$
 - · Perform a backward reachability analysis over states for which true holds

- Step 6: treat $\neg(\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$
 - $\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}$, so $\neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$ holds in $\{s_{01}, s_{11}, s_{12}\}$
- ► Step 7: compute $\mathsf{E} [true \mathsf{U} \neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)]$
 - Start in $\{s_{01}, s_{11}, s_{12}\}$
 - Perform a backward reachability analysis over states for which true holds

- Step 6: treat $\neg(\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$
 - $\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}$, so $\neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$ holds in $\{s_{01}, s_{11}, s_{12}\}$
- ► Step 7: compute $\mathsf{E} [true \mathsf{U} \neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)]$
 - Start in $\{s_{01}, s_{11}, s_{12}\}$
 - Perform a backward reachability analysis over states for which true holds

- Step 6: treat $\neg(\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$
 - $\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}$, so $\neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$ holds in $\{s_{01}, s_{11}, s_{12}\}$
- ► Step 7: compute $\mathsf{E} [true \mathsf{U} \neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)]$
 - Start in $\{s_{01}, s_{11}, s_{12}\}$
 - Perform a backward reachability analysis over states for which true holds

- Step 6: treat $\neg(\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$
 - $\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}$, so $\neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$ holds in $\{s_{01}, s_{11}, s_{12}\}$
- ► Step 7: compute $\mathsf{E} [true \mathsf{U} \neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)]$
 - Start in $\{s_{01}, s_{11}, s_{12}\}$
 - Perform a backward reachability analysis over states for which true holds

- Step 6: treat $\neg(\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$
 - $\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA$ holds in $\{s_{00}, s_{10}, s_{20}, s_{02}, s_{12}\}$, so $\neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$ holds in $\{s_{01}, s_{11}, s_{12}\}$
- ► Step 7: compute $\mathsf{E} [true \mathsf{U} \neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)]$
 - Start in $\{s_{01}, s_{11}, s_{12}\}$
 - Perform a backward reachability analysis over states for which true holds

Example: demanding children

TU/e

Conclusion:

- ► So, E [true $\mathsf{U} \neg (\neg JQ \lor \neg \mathsf{E} \mathsf{G} \neg JA)$] holds in all states
- Hence, its negation $A G (JQ \rightarrow A F JA)$ holds in no state
- The requirement does not hold for the full Kripke Structure
- Why? Because in this case, there is a path in which only Ella progresses while John is not being served.
- ▶ Next, we look at the Kripke Structure with Fairness Constraints

TU/e

Fairness for CTL

Strongly Connected Components

CTL Model Checking Algorithm

Example: demanding children

CTL Model Checking with Fairness

Summary

Exercise

/ department of mathematics and computer science

technische universiteit eindhoven

CTL Model Checking with Fairness

TU/e

Recall: Kripke Structure $M = \langle S, R, L, F \rangle$ with fairness constraints $F \subseteq 2^S$.

- ► A path is fair if it "hits" each fairness constraint infinitely often
- A fair SCC is an SCC that contains an element from each constraint $C \in F$

Main idea of fair model checking for CTL:

- Special treatment for $s \models_F \mathsf{E} \mathsf{G} f$: CHECK_FAIR_EG
 - Restrict attention to $S' \subseteq S$ where *f* holds
 - Find a path to a fair non-trivial SCC in S'
- Label states where E G true fairly holds with a new proposition symbol *fair*
- Treat the other operators using the original "unfair" procedures:

•	$s \models_F p$ $s \models p \land fair$
•	$s \models_F E X f$ $s \models E X (f \land fair)$
•	$s \models_F E[f U g]$ $s \models E[f U(g \land fair)]$

CTL Model Checking with Fairness

- Assume fairness constraints $\neg EQ$ and $\neg JQ$.
- Remark: full graph is one big fair SCC, so E G true holds everywhere

- EG $\neg JA$:
 - Restrict to subgraph with $\neg JA$
 - Find fair non-trivial SCCs
 - Do backward reachability
- Hence: $JQ \wedge E G \neg JA$ holds fairly in NO state
- Hence $\mathsf{E} \mathsf{F} (JQ \land \mathsf{E} \mathsf{G} \neg JA)$ holds nowhere fairly
- Hence, its negation, the requirement A G ($JQ \rightarrow$ A F JA) fairly holds everywhere!

TU/e

Fairness for CTL

- Strongly Connected Components
- CTL Model Checking Algorithm
- Example: demanding children
- **CTL Model Checking with Fairness**

Summary

Exercise

/ department of mathematics and computer science

technische universiteit eindhoven

Summary

CTL model checking:

TU/e

- SCC algorithm is used
- Tarjan's SCC algorithm runs one depth-first search, computing SCCs on-the-fly. Time complexity is linear
- CTL model checking can be done in time linear in the size of the formula as well as in the Kripke Structure
- Extension with Fairness Constraints is straightforward and is useful in practice
- Why not treat fairness in formulae?

 $\mathsf{A} \left[(\mathsf{G} \mathsf{F} C_1 \land \mathsf{G} \mathsf{F} C_2) \rightarrow Requirement \right]$

- · fairness cannot be expressed in CTL
- for LTL all known algorithms are exponential in the size of the formula

TU/e

Fairness for CTL

- Strongly Connected Components
- CTL Model Checking Algorithm
- Example: demanding children
- **CTL Model Checking with Fairness**

Summary

Exercise

/ department of mathematics and computer science

technische universiteit eindhoven

TU/e Exercise

CTL formulae: p, E $[q \ R \ p]$, A G E F p, A $((G \ p) \lor (F \ q))$

 Determine for each formula in which states of the above Kripke Structure it holds; use both the semantics and use the appropriate algorithms

technische universiteit eindhoven

- ▶ Extend the Kripke structure with the Fairness constraints *F* = { {*s*₁}, {*s*₂} }. In which states do the above formulae *fairly* hold?
- Similarly for the Fairness constraint $F = \{ \{s_3\} \}$