technische universiteit eindhoven

Algorithms for Model Checking (2IW55)

Lecture 3

Symbolic Model Checking for CTL Chapter 2, 6.1, 6.2. Also read Chapter 5

Tim Willemse

(timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

Outline

Specification of Kripke Structures

Fixed Points

Symbolic Model Checking

Example (GCD)

Consider the following program:

```
repeat

if x > y - > x := x - y\mathcal{I}

[]x < y - > y := y - x\mathcal{I}

fi

until false
```

This program uses:

- ▶ variables: $\{x,y\}$, with an (implicit) domain of variables: N
- ▶ States of this program are functions of type: $\{x,y\} \to \mathbb{N}$
- ► An example state could be: $\{x \mapsto 5, y \mapsto 15\}$
- ► An execution is a sequence of transitions: e.g.

$$\{x \mapsto 5, y \mapsto 15\} \rightarrow \{x \mapsto 5, y \mapsto 10\} \rightarrow \{x \mapsto 5, y \mapsto 5\} \rightarrow \{x \mapsto 5, y \mapsto 5\} \rightarrow \dots$$

Example (SWAP)

Consider the following program fragment:

$$z := x;$$
 % l1
 $x := y;$ % l2
 $y := z;$ % l3

- ► Besides variables *x*, *y*, *z* : N, this program has a program counter, whose values are labels (line numbers)
- Let $pc: \{l_1, l_2, l_3\}$. Now, a state is a function that gives a value to $\{x, y, z, pc\}$
- ► A possible execution is the following sequence:

$$\begin{cases} x \mapsto 5, y \mapsto 15, z \mapsto 500, pc \mapsto l_1 \\ \\ \rightarrow \quad \{x \mapsto 5, y \mapsto 15, z \mapsto 5, pc \mapsto l_2 \} \\ \\ \rightarrow \quad \{x \mapsto 15, y \mapsto 15, z \mapsto 5, pc \mapsto l_3 \} \\ \\ \rightarrow \quad \{x \mapsto 15, y \mapsto 5, z \mapsto 5, pc \mapsto l_4 \}$$

Symbolic Representation

- Note: in general, there are infinitely many states and transitions. Even after restricting to MAXINT, the number often still is overwhelming.
- ► However, many of the states behave very similar (e.g. the start value of *z* did not matter)
- Idea: the set of states can be represented very concisely by a number of formulae
- ▶ for GCD:
 - initial set of states: $x < 100 \land y < 100$
 - next state predicate:

$$(x > y \land x' = x - y \land y' = y) \lor (x < y \land y' = y - x \land x' = x)$$

- for SWAP:
 - initial states: $x = 5 \land y = 15$
 - next state predicate:

$$(pc = l_1 \wedge pc' = l_2 \wedge z' = x \wedge \ldots) \vee \ldots$$

The system specification is represented by first-order formulae (later: propositional logic only)

- Let *V* be a set of variables v_0, v_1, \ldots, v_n
- ► Let *D* be the domain of these variables
- ▶ The states of the Kripke Structure will be functions $v: V \rightarrow D$
- A formula $S_0(V)$ represents the initial states
- Let V' be a copy of the variables in $V: v'_0, v'_1, \ldots, v'_n$
- A formula $\mathcal{R}(V,V')$ represents the transition relation.
 - V denotes the value of the variables before the transition
 - V' denotes the value of the variables after the transition.

Example

- \triangleright $V = \{E(lla), I(ohn)\},$
- $D = \{p(laying), q(uestioning), a(nswered)\}$
- \triangleright $S_0(E,I) := E = p \land I = p$
- $\mathcal{R}(E, I, E', I') := R_1 \vee R_2 \vee R_3 \vee R_4 \vee R_5 \vee R_6$, where:
 - $R_1 := E = p \wedge E' = q \wedge J' = J$ • $R_2 := E = q \wedge E' = a \wedge J' = J \wedge J \neq a$
 - $R_3 := E = a \wedge E' = p \wedge J' = J$
 - $R_{\Delta} := I = p \wedge I' = q \wedge E' = E$ • $R_5 := I = a \wedge I' = a \wedge E' = E \wedge E \neq a$
 - $R_6 := I = a \wedge I' = p \wedge E' = E$

Notes:

- this corresponds to the demanding children Kripke Structure in previous lectures
- ▶ a specification for *n* children gives $O(3^n)$ states \Rightarrow State space explosion

TU/e

technische universiteit eindhoven

Outline

Specification of Kripke Structures

Fixed Points

Symbolic Model Checking

Consider a Kripke Structure $M = \langle S, R, L \rangle$

- ► Identify sets of states and predicates on states
- ▶ So, two notations are often mixed:
 - subsets: $X \subseteq S$ or $X \in \mathcal{P}(S)$
 - predicates: $X \in 2^S$ or $X : S \to \{0,1\}$ $s \in X \Leftrightarrow X(s) = 1$ and $s \notin X \Leftrightarrow X(s) = 0$
- ► Also: CTL formulae are identified with the set of states where they hold: f versus $\{s \mid s \models f\}$
- ▶ As a consequence, \lor , \land and \cup , \cap are mixed: compare $\varnothing \cup \mathsf{E} \mathsf{G} f$ and false $\lor \mathsf{E} \mathsf{G} f$

Predicate Transformers and Monotonicity

Consider a Kripke Structure $M = \langle S, R, L \rangle$

- ► The set $(\mathcal{P}(S), \subseteq)$ is a partial order (aka as the complete lattice of state predicates)
- ► A predicate transformer is a function on predicates. For example, the relations *Pre* and *Post* that lift the transition relation *R* to sets of states:

$$Pre_R(X) = \{ s \in S \mid \exists t \in X. \ s \ R \ t \}$$

$$Post_R(X) = \{ t \in S \mid \exists s \in X. \ s \ R \ t \}$$

- ▶ Let $\tau : \mathcal{P}(S) \to \mathcal{P}(S)$ be an arbitrary predicate transformer.
- τ is monotonic iff $P \subseteq Q$ implies $\tau(P) \subseteq \tau(Q)$.
- We write $\tau^i(X)$ for applying τ *i* times to X:

$$\begin{cases} \tau^0(X) = X \\ \tau^{i+1}(X) = \tau(\tau^i(X)) \end{cases}$$

Let $\tau : \mathcal{P}(S) \to \mathcal{P}(S)$.

- A fixed point of τ is a set Z such that $\tau(Z) = Z$
- ► The least fixed point of τ , denoted $\mu X.\tau(X)$ is a set Z such that:
 - $Z = \tau(Z)$ (i.e. Z is a fixed point)
 - for all X, if $\tau(X) = X$, then $Z \subseteq X$
- The greatest fixed point of τ , denoted $\nu X.\tau(X)$ is a set Z such that:
 - $Z = \tau(Z)$ (i.e. Z is a fixed point)
 - for all X, if $\tau(X) = X$, then $X \subseteq Z$

A theorem by Tarski: a monotonic operator on $\mathcal{P}(S)$ always has least and greatest fixed points:

- $\mu Z.\tau(Z) = \bigcap \{X \mid \tau(X) \subseteq X\}$
- $\nu Z.\tau(Z) = \bigcup \{X \mid X \subseteq \tau(X)\}$

Assume now that:

- S (hence also $\mathcal{P}(S)$) is finite, and
- ▶ $\tau : \mathcal{P}(S) \to \mathcal{P}(S)$ is monotonic

Then:

- 1. $\forall i.\tau^i(\varnothing) \subseteq \tau^{i+1}(\varnothing)$ (induction on i and monotonicity)
- **2.** There exists an i such that $\tau^i(\emptyset) = \tau^{i+1}(\emptyset)$. (sets become bigger and S is finite)
- 3. If $\tau^i(\emptyset) = \tau^{i+1}(\emptyset)$, then $\tau^i(\emptyset)$ is a fixed point of τ (by definition)
- 4. If X is a fixed point of τ , then $\forall i.\tau^i(\emptyset)\subseteq X$...(induction on i and monotonicity)

So an approximant τ^i can be found such that $\tau^i(\emptyset) = \tau^{i+1}(\emptyset)$, and this set is the least fixed point of τ .

Similarly, the smallest i such that $\tau^i(S) = \tau^{i+1}(S)$ yields the greatest fixed point.

Algorithms for computing the least fixed point and the greatest fixed point based on the observations on the previous slide.

```
function LFP(\tau:\mathcal{P}(S) \rightarrow \mathcal{P}(S)): \mathcal{P}(S)
Q := \emptyset;
Q' := \tau(Q);
while Q \neq Q' do
Q := Q';
Q' := \tau(Q');
end while
\text{return } Q;
end function
```

```
function GFP(\tau:\mathcal{P}(S) \rightarrow \mathcal{P}(S)): \mathcal{P}(S)

Q := S;

Q' := \tau(Q);

while Q \neq Q' do

Q := Q';

Q' := \tau(Q');

end while

return Q;

end function
```

Outline

Specification of Kripke Structures

Fixed Points

Symbolic Model Checking

CTL operators can be seen as fixed point operators. Fix a Kripke Structure $M = \langle S, R, L \rangle$. Identify a CTL formula f with predicate $\{s \mid s \models f\}$.

- ▶ A F $f = \mu Z.f \cup A X Z$ and E F $f = \mu Z.f \cup E X Z$
- ▶ A G $f = \nu Z.f \cap A X Z$ and E G $f = \nu Z.f \cap E X Z$
- ► $E[f \cup g] = \mu Z.g \cup (f \cap E \times Z)$

Intuition:

- ► least and greatest fixed points deal differently with loops:
 - · Greatest fixed point: recursion includes loops, so possibly infinitely many "steps"
 - Least fixed point: finite recursion through loops, so only finitely many "steps"
- Eventualitiesleast fixed points (a witness of the eventuality is needed in finitely many steps)
- ► Globally greatest fixed points (an infinite path without error is OK)

Proof obligations for E G:

- The transformer Z → f ∧ E X Z is monotonic, so its fixed point can be com§ puted by iteration, see LFP and GFP (If Z₁ ⊆ Z₂ then f ∧ E X Z₁ ⊆ f ∧ E X Z₂).
- 2. $\mathsf{E} \mathsf{G} f$ is a fixed point of $Z \mapsto f \land \mathsf{E} \mathsf{X} Z$ $(\mathsf{E} \mathsf{G} f = f \land \mathsf{E} \mathsf{X} \mathsf{E} \mathsf{G} f)$
- 3. $\mathsf{E} \mathsf{G} f$ is the largest such fixed point (for all Z: if $Z = f \land \mathsf{E} \mathsf{X} Z$, then $Z \subseteq \mathsf{E} \mathsf{G} f$)
- ► For 1,2,3: prove $X \subseteq Y$ by $\forall s.s \in X \Rightarrow s \in Y$.
- ▶ For 2: prove \subseteq and \supseteq .
- ► For 2,3: use the semantics of CTL-formulae

Proof obligations for E [U] are similar (see for yourself)

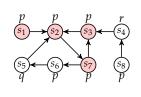
CTL model checking with Fixed Points

Function $\mathsf{CHECK}(f)$ takes a formula f and returns the set of states where f holds: $\{s \mid s \models f\}$ (given a fixed Kripke Structure $M = \langle S, R, L \rangle$).

```
 \begin{array}{lll} & & \{s \mid p \in L(s)\} \\ & & \text{Check}(\neg f) & & S \setminus \text{Check}(f) \\ & & \text{Check}(f \vee g) & & \text{Check}(f) \cup \text{Check}(g) \\ & & \text{Check}(\mathsf{E} \ X \ f) & & Pre_R(\text{Check}(f)) \\ & & \text{Check}(\mathsf{E} \ [f \ \mathsf{U} \ g]) & & \text{Lfp}(Z \mapsto \text{Check}(g) \cup (\text{Check}(f) \cap Pre_R(Z)))) \\ & & \text{Check}(\mathsf{E} \ \mathsf{G} \ f) & & \text{Gfp}(Z \mapsto \text{Check}(f) \cap Pre_R(Z)) \\ \end{array}
```

Recall: $Pre_R(Z) = \{ s \in S \mid \exists t \in Z.s \ R \ t \}$

Example



- ▶ To check: E G p
- ► Compute: $\nu Z.p \wedge \mathsf{E} \mathsf{X} \mathsf{Z}$ (with GFP)

$$\begin{array}{ll} Z_0 &= \mathsf{true} = \{s_i \mid 1 \leq i \leq 8\} \\ Z_1 &= p \land \mathsf{E} \ \mathsf{X} \ Z_0 = \{s_1, s_2, s_3, s_6, s_7, s_8\} \\ Z_2 &= p \land \mathsf{E} \ \mathsf{X} \ Z_1 = \{s_1, s_2, s_3, s_7\} \\ Z_3 &= p \land \mathsf{E} \ \mathsf{X} \ Z_2 = \{s_1, s_2, s_3, s_7\} \end{array}$$

 $Z_2 = Z_3$, so this is the greatest fixed point.

Example

- ▶ To check: E [p U q]
- ► Compute: $\mu Z.q \lor (p \land E X Z)$ (with LFP)

$$\begin{array}{ll} Z_0 &= \mathsf{false} = \varnothing \\ Z_1 &= q \lor (p \land \mathsf{E} \mathsf{X} \, Z_0) = \{s_5\} \\ Z_2 &= q \lor (p \land \mathsf{E} \mathsf{X} \, Z_1) = \{s_5, s_6\} \\ Z_3 &= q \lor (p \land \mathsf{E} \mathsf{X} \, Z_2) = \{s_5, s_6, s_7\} \\ Z_4 &= q \lor (p \land \mathsf{E} \mathsf{X} \, Z_3) = \{s_2, s_5, s_6, s_7\} \\ Z_5 &= q \lor (p \land \mathsf{E} \mathsf{X} \, Z_4) = \{s_1, s_2, s_3, s_5, s_6, s_7\} \\ Z_6 &= q \lor (p \land \mathsf{E} \mathsf{X} \, Z_5) = \{s_1, s_2, s_3, s_5, s_6, s_7\} \end{array}$$

 $Z_5 = Z_6$, so this is the least fixed point.

Outline

Specification of Kripke Structures

Fixed Points

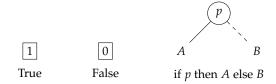
Symbolic Model Checking

We wish to avoid representing the state space and its subsets explicitly. To efficiently implement symbolic model checking, we need:

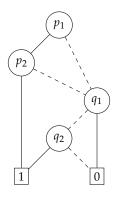
- ► A concise representation of sets of states
- Quick operations for:
 - Boolean operators ∧, ∨, ¬
 - Existential quantification (for the relational composition)
 - Equivalence test

Solution: Ordered Binary Decision Diagrams (OBDD)

- Symbolic model checking is restricted to finite Kripke Structures
- All finite data can be encoded in "bits"
- Boolean functions can be represented concisely as (Ordered) Binary Decision Diagrams
- Binary Decision Diagrams are directed acyclic graphs, with the following ingredients:



BDD representation of $(p_1 \land p_2) \lor (\neg q_1 \land q_2)$:



- In ordered BDDs, tests along a path occur in a fixed order (e.g. p₁ < p₂ < q₁ < q₂).</p>
- ► Theorem[Bryant'86]: OBDDs are a unique representation for Boolean Functions.
- Claim: many practical formulae have a concise OBDD representation due to maximal sharing
- Disclaimer 1: some small formulae have only exponentially large BDDs. (multiplier)
- Disclaimer 2: the size of an OBDD can crucially depend on the ordering of the variables

More on OBDDs:

- ► OBDDs are implemented as maximally shared pointer structures in memory.
- The order of variables is fixed (some implementations feature dynamic reordering)
- Equivalence test can be performed in constant time, in particular, also checking for satisfiability and tautology.
- ▶ Boolean operations can be performed efficiently. Let *B*₁ and *B*₂ be OBDDs with *m* and *n* nodes, respectively, then:
 - OBDDs for $B_1 \wedge B_2$ and $B_1 \vee B_2$ can be computed in $\mathcal{O}(m \cdot n)$ time.
 - OBDDs for $\neg B_1$ can be computed in $\mathcal{O}(m)$ time.
 - the OBDD of $\exists x.B_1$ can be computed in $\mathcal{O}(m^2)$ time.
- ▶ Note: still a formula of size $\mathcal{O}(n)$ may have a BDD of size $\mathcal{O}(2^n)$.

- ► The implementation of a symbolic model checking relies on a representation of all sets in CHECK, LFP and GFP by OBDDs.
- ► Hence, in summary, symbolic model checking:
 - Recursively processes subformulae
 - Represent the set of states satisfying a subformula by OBDDs
 - Treats temporal operators by fixed point computations
 - Relies on efficient implementation of equivalence test, and ∧, ∨, ¬ and ∃ connectives on OBDDs.