Algorithms for Model Checking (2IW55)

.ecture 4

Symbolic Model Checking: Fairness and Counterexamples Chapter 6.3, 6.4.

Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

Symbolic Model Checking

Fair Symbolic Model Checking

Counterexamples and Witnesses Witnesses for E [U] Witnesses for fair E G

Exercise

/ department of mathematics and computer science

Symbolic Model Checking

TU/e

In summary, symbolic model checking:

- Recursively processes subformulae
- Represent the set of states satisfying a subformula by OBDDs
- Treats temporal operators by fixed point computations
- Relies on efficient implementation of equivalence test, and ∧, ∨, ¬ and ∃ connectives on OBDDs.

Fix a Kripke Structure $M = \langle S, R, L \rangle$.

The temporal operators of CTL are characterised by fixed points:

technische universiteit eindhoven

- $E F g = \mu Z.g \lor E X Z$
- $E G f = \nu Z.f \wedge E X Z$
- $\mathsf{E}[f \mathsf{U} g] = \mu Z.g \lor (f \land \mathsf{E} \mathsf{X} Z)$
- ► Least Fixed Points: start iteration at false (∅)
- Greatest Fixed Points: start iteration at true (S)

Intuition:

Eventuallyleast fixed points
Globallygreatest fixed points

Symbolic Model Checking

TU/e

CTL model checking with Fixed Points

Function CHECK(*f*) takes a formula *f* and returns the set of states where *f* holds: $\{s \mid s \models f\}$ (given a fixed Kripke Structure $M = \langle S, R, L \rangle$).

CHECK(p)	$\{s \mid p \in L(s)\}$
$CHECK(\neg f)$	$S \setminus \text{CHECK}(f)$
$CHECK(f \lor g)$	$CHECK(f) \cup CHECK(g)$
CHECK($E X f$)	$Pre_R(CHECK(f))$
CHECK($E[f U g]$)	$LFP(Z \mapsto CHECK(g) \cup (CHECK(f) \cap Pre_R(Z))))$
CHECK($\mathbf{E} \mathbf{G} f$)	$GFP(Z \mapsto CHECK(f) \cap Pre_R(Z))$

Recall: $Pre_R(Z) = \{s \in S \mid \exists t \in Z.s \ R \ t\}$

Symbolic Model Checking

Fair Symbolic Model Checking

Counterexamples and Witnesses Witnesses for E [U] Witnesses for fair E G

Exercise

/ department of mathematics and computer science

Fair Symbolic Model Checking

TU/e

Fix a fair Kripke Structure $M = \langle S, R, L, \{F_1, \dots, F_n\} \rangle$

Recall that a fair path infinitely often hits some state from each fairness constraint F_i

• First, note that in fair CTL (with \models_F),

$$\mathsf{E}\,\mathsf{G}\,f \equiv f \wedge \bigwedge_{k=1}^{n} \mathsf{E}\,\mathsf{X}\,\mathsf{E}\,[f\,\mathsf{U}\,(F_{k} \wedge \mathsf{E}\,\mathsf{G}\,f)] \qquad (\text{prove} \subseteq \text{and} \supseteq)$$

Next, if

$$Z \equiv f \land \bigwedge_{k=1}^{n} \mathsf{E} \mathsf{X} \mathsf{E} [f \mathsf{U} (F_k \land Z)]$$

Then $Z \subseteq \mathsf{E} \mathsf{G} f$ (construct a path cycling through F_1, \ldots, F_n)

Hence, we found:

$$\mathsf{E}\,\mathsf{G}\,f \equiv \nu Z.f \wedge \bigwedge_{k=1}^{n} \mathsf{E}\,\mathsf{X}\,\mathsf{E}\,[f\,\mathsf{U}\,(F_{k}\wedge Z)]$$

Fair Symbolic Model Checking

The equivalence

TU/e

$$\mathsf{E}\,\mathsf{G}\,f \equiv \nu Z.f \wedge \bigwedge_{k=1}^{n} \mathsf{E}\,\mathsf{X}\,\mathsf{E}\,[f\,\mathsf{U}\,(F_{k}\wedge Z)]$$

leads to the following algorithm:

CHECK_F(**E G** f) GFP(
$$Z \mapsto$$
 CHECK($f \land \bigwedge_{k=1}^{n}$ **E X** (**E** [f **U** ($F_k \land Z$)]))

So, in the greatest fixed point computation for E G , we perform nested least fixed point computations to compute E [U].

Next, we can compute an OBDD $fair := CHECK_F(\mathsf{E} \mathsf{G} \mathsf{true})$. The remaining temporal operators can then be encoded as follows:

$CHECK_F(E X f)$	CHECK($E X (f \land fair)$)
$CHECK_F(E[f Ug])$	CHECK($E[f U(g \land fair)])$

Fair Symbolic Model Checking

TU/e

Example

- To check: E G p
- Fairness constraint: $\neg r$
- Compute: $\nu Z.CHECK(p \land \mathsf{E} \mathsf{X} (\mathsf{E} [p \mathsf{U} (\neg r \land Z)]))$

► Set
$$\phi(Z) = \text{LFP}(Y \mapsto (\text{CHECK}(\neg r) \cap Z) \cup (\text{CHECK}(p) \cap \text{PRE}_R(Y)))$$

$$Z_0 = S$$

$$Z_1 = CHECK(p) \cap PRE_R(\phi(S)) = \{s_1, s_2, s_3, s_6, s_7\}$$

$$Z_2 = CHECK(p) \cap PRE_R(\{s_1, s_2, s_3, s_6, s_7\})$$

$$= \{s_1, s_2, s_3, s_7\}$$

$$Z_3 = CHECK(p) \cap PRE_R(\{s_1, s_2, s_3, s_7\})$$

$$= \{s_1, s_2, s_3, s_7\}$$

 $Z_2 = Z_3$, so this is the greatest fixed point.

Fair Symbolic Model Checking

TU/e

Example

- To check: $E[p \cup q]$
- Fairness constraint: $\neg r$
- Compute $fair := CHECK_F(\mathsf{E} \mathsf{G} \mathsf{true}) (= S)$
- Compute: $\mu Z.(q \wedge fair) \lor (p \land \mathsf{E} \mathsf{X} Z)$ (with LFP)

$$\begin{array}{ll} Z_0 &= \mathsf{false} = \varnothing \\ Z_1 &= q \lor (p \land \mathsf{E} \mathsf{X} Z_0) = \{s_5\} \\ Z_2 &= q \lor (p \land \mathsf{E} \mathsf{X} Z_1) = \{s_5, s_6\} \\ Z_3 &= q \lor (p \land \mathsf{E} \mathsf{X} Z_2) = \{s_5, s_6, s_7\} \\ Z_4 &= q \lor (p \land \mathsf{E} \mathsf{X} Z_3) = \{s_2, s_5, s_6, s_7\} \\ Z_5 &= q \lor (p \land \mathsf{E} \mathsf{X} Z_4) = \{s_1, s_2, s_3, s_5, s_6, s_7\} \\ Z_6 &= q \lor (p \land \mathsf{E} \mathsf{X} Z_5) = \{s_1, s_2, s_3, s_5, s_6, s_7\} \end{array}$$

 $Z_5 = Z_6$, so this is the least fixed point.

Symbolic Model Checking

Fair Symbolic Model Checking

Counterexamples and Witnesses

Witnesses for E [U] Witnesses for fair E G

Exercise

/ department of mathematics and computer science

Counterexamples and Witnesses

Motivation:

TU/e

- · In practice, a model checker is often used as an extended debugger
- If a bug is found, the model checker should provide a particular trace, which shows it
- A formula with a universal path quantifier has a counterexample consisting of one trace
- A formula with an existential path quantifier has a witness consisting of one trace
- Due to the dualities in CTL, we only have to consider:
 - a finite trace witnessing E [f U g]
 - an infinite trace witnessing E G *f*; for finite systems, the latter is a so-called lasso, consisting of a prefix and a loop
- For fair counter examples we require that the loop contains a state from each fairness constraint

Counterexamples and Witnesses – Witnesses for E [U]

- $\blacktriangleright \mathsf{E} [f \mathsf{U} g] = \mu Z. g \lor (f \land \mathsf{E} \mathsf{X} Z)$
- Unfolding the recursion, we get:

- ▶ So, the fixed point computation corresponds to a backward reachability analysis
- Z_i contains those states that can reach g in at most i 1 steps (and f holds in between).
- ► Assume $s_0 \models \mathsf{E} [f \mathsf{U} g]$. To find a minimal witness from state s_0 , we start in the smallest *N* such that $s_0 \in Z_N$.
- For $i \in 1, ..., N-1$, we define s_i to be a state in Z_{N-i} satisfying $s_{i-1} R s_i$.

Counterexamples and Witnesses – Witnesses for fair E G

► We want an initial path to a cycle on which each fairness constraint {*F*₁,...,*F_n*} occurs (i.e. the cycle must contain at least one state from all *F_i*).

• EG
$$f = \nu Z.f \wedge \bigwedge_{k=1}^{n} EX E[f U(F_k \wedge Z)]$$

Unfolding the recursion, we get:

$$Z_0 = \text{true}$$

...
$$Z_L = f \wedge \bigwedge_{k=1}^n \mathsf{E} \mathsf{X} \mathsf{E} [f \mathsf{U} (F_k \wedge Z_{L-1})]$$

- Let $Z := Z_L = Z_{L-1} = \mathsf{E} \mathsf{G} f$ be the fixed point
- ► To compute *Z*, we compute for each *k* ($1 \le k \le n$), $\mathsf{E} [f \mathsf{U} (F_k \land Z)]$ using backward reachability. So, we have for each *k* the approximations: $Q_0^k \subseteq Q_1^k \subseteq Q_2^k \subseteq \ldots \subseteq Q_{j_k}^k$
- From the E[U] case, recall that Q_i^k contains those states that can reach $F_k \wedge Z$ in at most *i* steps

Counterexamples and Witnesses – Witnesses for fair E G

- Assume $s_0 \models_F \mathsf{E} \mathsf{G} f$, hence, $s_0 \in Z$
- We will now inductively construct a path $s_0 \rightarrow^* s_1 \rightarrow^* \ldots \rightarrow^* s_n$, such that:
 - *f* holds along the whole path
 - $s_k \in Z \land F_k$ (for $1 \le k \le n$)
- ► Observe: by induction $s_{k-1} \models Z$, so, by definition of *Z*: $s_{k-1} \models \mathsf{E} \mathsf{X} \mathsf{E} [f \mathsf{U} (Z \land F_k)]$
- For $1 \le k \le n$ do:
 - 1. Determine the minimal M such that s_{k-1} has a successor $t_0^k \in Q_M^k$.
 - 2. Construct (as the witness for E [U]):

$$s_{k-1} \to t_0^k \to \cdots \to t_M^k \in Z \wedge F_k$$

- 3. Define $s_k := t_M^k$.
- heuristic improvement: Visit the F_k in a different order: continue with the closest F_k that has not yet been visited.

Counterexamples and Witnesses – Witnesses for fair E G

- Finally, we must close the loop, but this is not always possible: Check if $s_n \models \mathsf{E} \mathsf{X} \mathsf{E} [f \mathsf{U} \{s_1\}].$
- ► If so: the E [U]-witness closes the loop
- If not: the cycle cannot be closed. Hence:
 - The sequence so far $s_0 \rightarrow \cdots \rightarrow s_n$ is in the prefix of the lasso, not yet on the loop.
 - Restart the whole procedure of the previous slide, now starting in $s_n \in \mathbb{Z}$.
- Eventually, this process must terminate:
 - We only restart if s_n cannot reach s_1
 - · so we moved to the next Strongly Connected Component
 - The SCC graph cannot contain cycles
- Optimisation: By precomputing $E[f \cup \{s_1\}]$, one can detect earlier that closing the cycle will not be possible.

Symbolic Model Checking

Fair Symbolic Model Checking

Counterexamples and Witnesses Witnesses for E [U] Witnesses for fair E G

Exercise

/ department of mathematics and computer science

Exercise

Example

TU/e

- Check that $s_1 \models_F \mathsf{E} \mathsf{G} (p \lor q)$
- Fairness constraint: $\neg r$ and q
- Construct a witness for $s_1 \models_F \mathsf{E} \mathsf{G} (p \lor q)$