
12

/ department of mathematics and computer science 1/18

Algorithms for Model Checking (2IW55)
Lecture 4

Symbolic Model Checking: Fairness and Counterexamples
Chapter 6.3, 6.4.

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

12

/ department of mathematics and computer science 2/18

Outline

Symbolic Model Checking

Fair Symbolic Model Checking

Counterexamples and Witnesses
Witnesses for E [U]
Witnesses for fair E G

Exercise

12

/ department of mathematics and computer science 3/18

Symbolic Model Checking

In summary, symbolic model checking:

I Recursively processes subformulae
I Represent the set of states satisfying a subformula by OBDDs
I Treats temporal operators by fixed point computations
I Relies on efficient implementation of equivalence test, and ∧,∨,¬ and ∃

connectives on OBDDs.

12

/ department of mathematics and computer science 4/18

Symbolic Model Checking

Fix a Kripke Structure M = 〈S, R, L〉.

The temporal operators of CTL are characterised by fixed points:
I E F g = µZ.g ∨ E X Z
I E G f = νZ. f ∧ E X Z
I E [f U g] = µZ.g ∨ (f ∧ E X Z)

I Least Fixed Points: start iteration at false (∅)
I Greatest Fixed Points: start iteration at true (S)

Intuition:
I Eventually . least fixed points
I Globally . greatest fixed points

12

/ department of mathematics and computer science 5/18

Symbolic Model Checking

CTL model checking with Fixed Points

Function CHECK(f) takes a formula f and returns the set of states where f holds:
{s | s|= f } (given a fixed Kripke Structure M = 〈S, R, L〉).

CHECK(p) {s | p ∈ L(s)}
CHECK(¬ f) S \ CHECK(f)
CHECK(f ∨ g) CHECK(f)∪ CHECK(g)
CHECK(E X f) PreR(CHECK(f)
CHECK(E [f U g]) LFP

(
Z 7→ CHECK(g) ∪ (CHECK(f) ∩ PreR(Z)))

)
CHECK(E G f) GFP

(
Z 7→ CHECK(f) ∩ PreR(Z)

)
Recall: PreR(Z) = {s ∈ S | ∃t ∈ Z.s R t}

12

/ department of mathematics and computer science 6/18

Outline

Symbolic Model Checking

Fair Symbolic Model Checking

Counterexamples and Witnesses
Witnesses for E [U]
Witnesses for fair E G

Exercise

12

/ department of mathematics and computer science 7/18

Fair Symbolic Model Checking

Fix a fair Kripke Structure M = 〈S, R, L, {F1, . . . , Fn}〉
Recall that a fair path infinitely often hits some state from each fairness constraint Fi

I First, note that in fair CTL (with |=F),

E G f ≡ f ∧
n∧

k=1

E X E [f U (Fk ∧ E G f)] (prove ⊆ and ⊇)

I Next, if

Z ≡ f ∧
n∧

k=1

E X E [f U (Fk ∧ Z)]

Then Z ⊆ E G f (construct a path cycling through F1, . . . , Fn)
I Hence, we found:

E G f ≡ νZ. f ∧
n∧

k=1

E X E [f U (Fk ∧ Z)]

12

/ department of mathematics and computer science 8/18

Fair Symbolic Model Checking

The equivalence

E G f ≡ νZ. f ∧
n∧

k=1

E X E [f U (Fk ∧ Z)]

leads to the following algorithm:

CHECKF(E G f) GFP
(
Z 7→ CHECK(f ∧

n∧
k=1

E X (E [f U (Fk ∧ Z)]))

So, in the greatest fixed point computation for E G , we perform nested least fixed
point computations to compute E [U].

Next, we can compute an OBDD f air := CHECKF(E G true). The remaining
temporal operators can then be encoded as follows:

CHECKF(E X f) CHECK(E X (f ∧ f air))
CHECKF(E [f U g]) CHECK(E [f U (g ∧ f air)])

12

/ department of mathematics and computer science 9/18

Fair Symbolic Model Checking

Example

s1 s2 s3 s4

s5 s6 s7 s8

p p p r

q p p p

I To check: E G p
I Fairness constraint: ¬r
I Compute: νZ.CHECK(p ∧ E X (E [p U (¬r ∧ Z)]))
I Set φ(Z) = LFP(Y 7→

(CHECK(¬r) ∩ Z) ∪ (CHECK(p) ∩ PRER(Y)))

Z0 = S
Z1 = CHECK(p) ∩ PRER(φ(S)) = {s1, s2, s3, s6, s7}
Z2 = CHECK(p) ∩ PRER({s1, s2, s3, s6, s7})

= {s1, s2, s3, s7}
Z3 = CHECK(p) ∩ PRER({s1, s2, s3, s7})

= {s1, s2, s3, s7}
Z2 = Z3, so this is the greatest fixed point.

12

/ department of mathematics and computer science 10/18

Fair Symbolic Model Checking

Example

s1 s2 s3 s4

s5 s6 s7 s8

p p p r

q p p p

I To check: E [p U q]
I Fairness constraint: ¬r
I Compute f air := CHECKF(E G true) (= S)
I Compute: µZ.(q ∧ f air) ∨ (p ∧ E X Z) (with LFP)

Z0 = false = ∅
Z1 = q ∨ (p ∧ E X Z0) = {s5}
Z2 = q ∨ (p ∧ E X Z1) = {s5, s6}
Z3 = q ∨ (p ∧ E X Z2) = {s5, s6, s7}
Z4 = q ∨ (p ∧ E X Z3) = {s2, s5, s6, s7}
Z5 = q ∨ (p ∧ E X Z4) = {s1, s2, s3, s5, s6, s7}
Z6 = q ∨ (p ∧ E X Z5) = {s1, s2, s3, s5, s6, s7}

Z5 = Z6, so this is the least fixed point.

12

/ department of mathematics and computer science 11/18

Outline

Symbolic Model Checking

Fair Symbolic Model Checking

Counterexamples and Witnesses
Witnesses for E [U]
Witnesses for fair E G

Exercise

12

/ department of mathematics and computer science 12/18

Counterexamples and Witnesses

I Motivation:
• In practice, a model checker is often used as an extended debugger
• If a bug is found, the model checker should provide a particular trace, which shows

it

I A formula with a universal path quantifier has a counterexample consisting of
one trace

I A formula with an existential path quantifier has a witness consisting of one
trace

I Due to the dualities in CTL, we only have to consider:
• a finite trace witnessing E [f U g]
• an infinite trace witnessing E G f ; for finite systems, the latter is a so-called lasso,

consisting of a prefix and a loop

I For fair counter examples we require that the loop contains a state from each
fairness constraint

12

/ department of mathematics and computer science 13/18

Counterexamples and Witnesses – Witnesses for E [U]

I E [f U g] = µZ. g ∨ (f ∧ E X Z)
I Unfolding the recursion, we get:

Z0 = false
Z1 = g
Z2 = g ∨ (f ∧ E X g)
Z3 = g ∨ (f ∧ E X (g ∨ (f ∧ E X g)))

I So, the fixed point computation corresponds to a backward reachability analysis
I Zi contains those states that can reach g in at most i − 1 steps (and f holds in

between).
I Assume s0|= E [f U g]. To find a minimal witness from state s0, we start in the

smallest N such that s0 ∈ ZN .
I For i ∈ 1, . . . , N−1, we define si to be a state in ZN−i satisfying si−1 R si.

12

/ department of mathematics and computer science 14/18

Counterexamples and Witnesses – Witnesses for fair E G

I We want an initial path to a cycle on which each fairness constraint {F1, . . . , Fn}
occurs (i.e. the cycle must contain at least one state from all Fi).

I E G f = νZ. f ∧
n∧

k=1
E X E [f U (Fk ∧ Z)]

I Unfolding the recursion, we get:

Z0 = true
. . .

ZL = f ∧
n∧

k=1
E X E [f U (Fk ∧ ZL−1)]

I Let Z := ZL = ZL−1 = E G f be the fixed point
I To compute Z, we compute for each k (1 ≤ k ≤ n), E [f U (Fk ∧ Z)] using

backward reachability. So, we have for each k the approximations:
Qk

0 ⊆ Qk
1 ⊆ Qk

2 ⊆ . . . ⊆ Qk
jk

I From the E [U] case, recall that Qk
i contains those states that can reach Fk ∧ Z in

at most i steps

12

/ department of mathematics and computer science 15/18

Counterexamples and Witnesses – Witnesses for fair E G

I Assume s0|=F E G f , hence, s0 ∈ Z
I We will now inductively construct a path s0 →∗ s1 →∗ . . . →∗ sn, such that:

• f holds along the whole path
• sk ∈ Z ∧ Fk (for 1 ≤ k ≤ n)

I Observe: by induction sk−1|= Z, so, by definition of Z:
sk−1|= E X E [f U (Z ∧ Fk)]

I For 1 ≤ k ≤ n do:
1. Determine the minimal M such that sk−1 has a successor tk

0 ∈ Qk
M .

2. Construct (as the witness for E [U]):

sk−1 → tk
0 → · · · → tk

M ∈ Z ∧ Fk

3. Define sk := tk
M .

I heuristic improvement: Visit the Fk in a different order: continue with the
closest Fk that has not yet been visited.

12

/ department of mathematics and computer science 16/18

Counterexamples and Witnesses – Witnesses for fair E G

I Finally, we must close the loop, but this is not always possible: Check if
sn|= E X E [f U {s1}].

I If so: the E [U]-witness closes the loop
I If not: the cycle cannot be closed. Hence:

• The sequence so far s0 → · · · → sn is in the prefix of the lasso, not yet on the loop.
• Restart the whole procedure of the previous slide, now starting in sn ∈ Z.

I Eventually, this process must terminate:
• We only restart if sn cannot reach s1
• so we moved to the next Strongly Connected Component
• The SCC graph cannot contain cycles

I Optimisation: By precomputing E [f U {s1}], one can detect earlier that closing
the cycle will not be possible.

12

/ department of mathematics and computer science 17/18

Outline

Symbolic Model Checking

Fair Symbolic Model Checking

Counterexamples and Witnesses
Witnesses for E [U]
Witnesses for fair E G

Exercise

12

/ department of mathematics and computer science 18/18

Exercise

Example

s1 s2 s3 s4

s5 s6 s7 s8

p p p r

q p p p

I Check that s1|=F E G (p ∨ q)
I Fairness constraint: ¬r and q
I Construct a witness for s1|=F E G (p ∨ q)

	Symbolic Model Checking
	Fair Symbolic Model Checking
	Counterexamples and Witnesses
	Witnesses for E [U]
	Witnesses for fair E G

	Exercise

