w / technische-universiteit-eindhoven
/e

Algorithms for Model Checking (2IW55)

Symbolic Model Checking: Fairness and Counterexamples
Chapter 6.3, 6.4.

Tim Willemse
(imw@win.tue.nl)
http:/ /www.win.tue.nl/ ~timw
HG 6.81

/ department of mathematics and computer science 1/18

technische-universiteit-eindhoven

Symbolic Model Checking

/ department of mathematics and computer science 2/18

technische-universiteit-eindhoven

Symbolic Model Checking

In summary, symbolic model checking;:
» Recursively processes subformulae
» Represent the set of states satisfying a subformula by OBDDs
» Treats temporal operators by fixed point computations

> Relies on efficient implementation of equivalence test, and A, V, -~ and 3
connectives on OBDDs.

/ department of mathematics and computer science 3/18

technische-universiteit-eindhoven

Symbolic Model Checking

Fix a Kripke Structure M = (S, R, L).

The temporal operators of CTL are characterised by fixed points:
»EFg=uZgvEXZ
»EGf=vZfANEXZ
» E[fUgl=uZgV(fANEXZ)

» Least Fixed Points: start iteration at false ()

» Greatest Fixed Points: start iteration at true (S)

Intuition:
» Eventually ... least fixed points
» Globally ... greatest fixed points

/ department of mathematics and computer science 4/18

technische-universiteit-eindhoven

Symbolic Model Checking

CTL model checking with Fixed Points

Function CHECK(f) takes a formula f and returns the set of states where f holds:
{s| sl= f} (given a fixed Kripke Structure M = (S, R, L)).

CHECK(p) {slpel(s)}

CHECK(—f) S\ CHECK(f)

CHECK(f V g) CHECK(f)U CHECK(g)

CHECK(E X f) Preg (CHECK(f)

CHECK(E [fUg]) LFP(Z +— CHECK(g) U (CHECK(f) N Preg(Z))))
CHECK(E G f) GFP(Z — CHECK(f) N Preg(Z))

Recall: Preg(Z) ={se€ S|t € ZsRt}

/ department of mathematics and computer science 5/18

technische-universiteit-eindhoven

Fair Symbolic Model Checking

/ department of mathematics and computer science 6/18

technische-universiteit-eindhoven

Fair Symbolic Model Checking

Fix a fair Kripke Structure M = (S, R, L, {Fy,..., F.})
Recall that a fair path infinitely often hits some state from each fairness constraint F;
» First, note that in fair CTL (with |=p),
n
EGf=fANEXE[fU(FRAEGYS)] (prove C and D)
k=1

» Next, if
n
Z=fANNEXE[fU(FAZ)
k=1

Then Z C E G f (construct a path cycling through Fy, ..., F;)

» Hence, we found:

EszvZ.f/\/n\EXE[fU(FkAZ)]
k=1

/ department of mathematics and computer science 7/18

technische-universiteit-eindhoven

Fair Symbolic Model Checking

The equivalence

EszvZ.fA/n\EXE[fU(FkAZ)]
k=1

leads to the following algorithm:

CHECKF(EG f) GFP(Z > CHECK(f A A\ EX (E [fU (F A Z)])

So, in the greatest fixed point computation for E G , we perform nested least fixed
point computations to compute E [U].

Next, we can compute an OBDD fair := CHECKf(E G true). The remaining
temporal operators can then be encoded as follows:

CHECKfp(E X f) CHECK(E X (f A fair))
CHECKp(E [fUg]) CHECK(E [f U (g A fair)])

/ department of mathematics and computer science 8/18

technische-universiteit-eindhoven

Fair Symbolic Model Checking

Example
» Tocheck: EG p
» Fairness constraint: —r
» Compute: vZ.CHECK(p NANEX (E [pU (=r A 2))))
p p r » Set ¢(Z) = LFP(Y
D @‘ D (CHECK(—r) N Z) U (CHECK(p) N PRER(Y)))
Lo 7 =5
Z1 = CHECK(p) n PRER(QD(S)) = {51,52,53, 56,57}
Z, = CHECK(p) N PRER({s1,52,53,56,57})

= {51152153157}
Z3 = CHECK(p) N PRER({s1,52,53,57})

= {s1,52,53,57}

Zy = Z3, so this is the greatest fixed point.

/ department of mathematics and computer science 9/18

technische-universiteit-eindhoven

Fair Symbolic Model Checking

Example
» To check: E [p U g]
» Fairness constraint: —r
» Compute fair := CHECKr(E G true) (= S)
» Compute: 1Z.(q A fair) V (p ANE X Z) (with LEP)

Zy =false=0
Zy =qV(pNEXZy) = {s5}
Zy —qV(p/\EXZl)—{S5,S6}
Zs =gV (pANEXZy) = {ss55657}
Zy = =qV (P ANEX Z3) - {52155156/57}
()
()

=@ @
‘G@’@‘G
‘39’

=(@)—()~

Zs =qV(pNEXZy) = {s1,52,53,55,5,57}
Zg =qV (pNEXZs) = {s1,52,53,55,5,57}

Zs = Zg, so this is the least fixed point.

/ department of mathematics and computer science 10/18

technische-universiteit-eindhoven

Counterexamples and Witnesses

/ department of mathematics and computer science 11/18

technische-universiteit-eindhoven

Counterexamples and Witnesses

» Motivation:
« In practice, a model checker is often used as an extended debugger
« If a bug is found, the model checker should provide a particular trace, which shows
it
» A formula with a universal path quantifier has a counterexample consisting of
one trace

» A formula with an existential path quantifier has a witness consisting of one
trace
» Due to the dualities in CTL, we only have to consider:

+ a finite trace witnessing E [f U g]
+ an infinite trace witnessing E G f; for finite systems, the latter is a so-called lasso,
consisting of a prefix and a loop

» For fair counter examples we require that the loop contains a state from each
fairness constraint

/ department of mathematics and computer science 12/18

technische-universiteit-eindhoven

Counterexamples and Witnesses — Witnesses for E[U]

»E[fUgl=pZ.gVI(fANEXZ)

» Unfolding the recursion, we get:

Zy = false

Zy = g

Z, = gVI(fAEXg)

Zz = gV(fAEX(gV(fAEXY)))

» So, the fixed point computation corresponds to a backward reachability analysis

» Z; contains those states that can reach g in at most i — 1 steps (and f holds in
between).

» Assume sol= E [f U g]. To find a minimal witness from state sy, we start in the
smallest N such that sy € Zy.

» Fori€1,...,N—1, we define s; to be a state in Zx_; satisfying s;_1 R s;.

/ department of mathematics and computer science 13/18

technische-universiteit-eindhoven

Counterexamples and Witnesses — Witnesses for fair E G

» We want an initial path to a cycle on which each fairness constraint {Fy, ..., F,}
occurs (i.e. the cycle must contain at least one state from all F;).

n
»EGf=vZfA NEXE[fU(FAZ)]
k=1
» Unfolding the recursion, we get:

Zy = true
' n
Zu = fANEXE[FUHAZ)

» Let Z :=Z; = Z;_1 = E G f be the fixed point

» To compute Z, we compute for each k (1 <k <n), E [f U (F, A Z)] using
backward reachability. So, we have for each k the approximations:
QCoicAc...co

» From the E [U] case, recall that Qf‘ contains those states that can reach Fy A Z in
at most i steps

/ department of mathematics and computer science 14/18

technische-universiteit-eindhoven

Counterexamples and Witnesses — Witnesses for fair E G

» Assume sol=r EG f, hence, sy € Z

» We will now inductively construct a path sy —* s; —* ... =" s;;, such that:

+ f holds along the whole path
e St EZNF (forl <k <n)

» Observe: by induction s;_1 = Z, so, by definition of Z:
sce1iF EXE[fU(ZAF)]
» For1 <k <ndo:

1. Determine the minimal M such that s;_ has a successor t’é € Q’I‘\A.
2. Construct (as the witness for E [U]):

sk —th— . =tk e ZAF
3. Define sy := t’,‘w,

» heuristic improvement: Visit the Fy in a different order: continue with the
closest Fy that has not yet been visited.

/ department of mathematics and computer science 15/18

technische-universiteit-eindhoven

Counterexamples and Witnesses — Witnesses for fair E G

» Finally, we must close the loop, but this is not always possible: Check if
suE EX E[fU{s1}].
» If so: the E [U |-witness closes the loop

» If not: the cycle cannot be closed. Hence:
+ The sequence so far sy — --- — s, is in the prefix of the lasso, not yet on the loop.
* Restart the whole procedure of the previous slide, now starting in s, € Z.
» Eventually, this process must terminate:
» We only restart if s, cannot reach s;
» so we moved to the next Strongly Connected Component
+ The SCC graph cannot contain cycles
» Optimisation: By precomputing E [f U {s; }], one can detect earlier that closing
the cycle will not be possible.

/ department of mathematics and computer science 16/18

technische-universiteit-eindhoven

Exercise

/ department of mathematics and computer science 17/18

technische-universiteit-eindhoven

Example

P p p r
D)—>(52)«—(3)«—(9) » Check thats1 = EG (pV q)
A‘ » Fairness constraint: -+ and g
o)
p p p

» Construct a witness for s;=r EG (p V q)
q

/ department of mathematics and computer science 18/18

	Symbolic Model Checking
	Fair Symbolic Model Checking
	Counterexamples and Witnesses
	Witnesses for E [U]
	Witnesses for fair E G

	Exercise

