Algorithms for Model Checking (2IW55)

ecture 5

Bounded Model Checking Handout: A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu: Bounded model checking. Advances in Computers 58: 118-149 (2003)

> Tim Willemse (timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

technische universiteit eindhoven

LTL Model Checking

Bounded Model Checking

Reduction of BMC to SAT

Example

LTL Model Checking

TU/e

LTL-based model checking:

- checks temporal operators along single paths
- LTL is claimed to be more intuitive than CTL (see e.g. [1]):
 - in LTL: X F $p \equiv$ F X p (p holds sometimes in the strict future)
 - in CTL: A X A F p [?] = A F A X p; does at least one of these express "p holds sometimes in the strict future"?
- ► counter examples are easy: "lasso"
- typical tool: SPIN

[1]. Moshe Vardi, *Branching vs. Linear Time: Final Showdown*, Proc. of TACAS'01, 2001.

technische universiteit eindhoven

Let $M = \langle S, R, L \rangle$ be a Kripke Structure. Recall the syntax and semantics of LTL: $\mathcal{P} ::= \text{true} \mid \text{false} \mid AP \mid \neg \mathcal{P} \mid \mathcal{P} \land \mathcal{P} \mid \mathcal{P} \lor \mathcal{P} \mid X \mathcal{P} \mid \mathsf{F} \mathcal{P} \mid \mathsf{G} \mathcal{P} \mid [\mathcal{P} \cup \mathcal{P}] \mid [\mathcal{P} \land \mathcal{P}]$ For a path π , we have:

 $\pi \models \text{true}$ $\pi \not\models \mathsf{false}$ $\pi \models p$ iff $p \in L(\pi(0))$ $\pi \models \neg f$ iff $\pi \not\models f$ $\pi \models f \land g$ iff $\pi \models f$ and $\pi \models g$ $\pi \models f \lor g$ iff $\pi \models f$ or $\pi \models g$ iff $\pi^1 \models f$ $\pi \models \mathsf{X} f$ $\pi \models \mathsf{F} f$ iff for some $i \ge 0$, $\pi^i \models f$ for all $i \ge 0, \pi^i \models f$ $\pi \models \mathbf{G} f$ iff $\pi \models [f \cup g]$ iff $\exists i \geq 0$. $\pi^i \models g \land \forall j < i$. $\pi^j \models f$ $\pi \models [f \mathbf{R} g]$ iff $\forall j > 0. ((\forall i < j, \pi^i \not\models f) \Rightarrow \pi^j \models g)$

Checking M = f requires checking that $\pi \models f$ holds for all initialised paths

LTL Model Checking

TU/e

LTL has a nice automata-theoretic algorithm (see Chapter 9.2–9.4):

- Complexity of LTL model checking is PSPACE-complete.
- for a state space of size *n* and a formula of size *m*, the problem has complexity $n2^{\mathcal{O}(m)}$.
- Hence, checking for $M \models \phi$ is not always feasible.

Alternative: Bounded Model Checking

LTL Model Checking

Bounded Model Checking

Reduction of BMC to SAT

Example

/ department of mathematics and computer science

technische universiteit eindhoven

Bounded Model Checking

TU/e

- Observation: LTL model checking requires checking all initialised paths.
- ► On the other hand: a counterexample to an LTL formula *f* corresponds to the question whether there exists a witness for ¬*f*
 - A counterexample for **G** *f* is a finite prefix of a path in which $F \neg f$ holds.
 - A counterexample for F f is a finite prefix of a path that is a lasso in which G $\neg f$ holds.

Idea behind BMC:

- ► BMC is performed only on the basis of finite, bounded prefixes of paths $|[M]|^k$ of the system *M*
- ► BMC searches for a witness to an existentially quantified LTL formula *f*, interpreted over bounded prefixes of paths: |[*f*]|^k.
- BMC can efficiently be solved using SAT-solvers:
 - If the formula $|[M]|^k \wedge |[f]|^k$ is satisfiable, a counterexample has been found
 - If the formula $|[M]|^k \wedge |[f]|^k$ is unsatisfiable, no counterexample of length *k* exists

Bounded Model Checking

TU/e

Let $M = \langle S, R, L \rangle$ be a Kripke Structure.

Consider a *k*-bounded path π . Such a bounded path can represent

- all its infinite extensions (case a)
- ► a (k, l)-loop (case b), i.e. if $\pi(k) R \pi(l)$ then π represents an infinite path $\rho = u v^{\omega}$, with $u = \pi(0) \dots \pi(l-1)$ and $v = \pi(l) \dots \pi(k)$ for some $l \le k$.

Definition (k-loops)

If there is an $l \le k$, such that π is a (k, l)-loop, π is called a *k*-loop.

Bounded Model Checking

TU/e

Example (k-loops)

Consider the following 4-bounded path π :

- π is actually a (4, 2)-loop.
- We can check whether $\pi \models \phi$ for all formulae ϕ
- For instance: $\phi = \mathsf{F} [p \mathsf{U} q]$ or $\phi = \mathsf{F} \mathsf{G} \neg (p \land q)$

Bounded Model Checking

TU/e

Example (no loop)

Consider the following 4-bounded path π :

- *π* is not a 4-loop.
- Observe that we have $\rho \models \mathsf{F} q$ for all infinite extensions ρ of π
- We do not know $\rho \models \mathbf{G} p$ for any infinite extension ρ of π .

Bounded Model Checking

TU/e

- From hereon, restrict to LTL formulae in Normal Form (NF)
- formulae in NF only have negation in front of atomic propositions
- NF is not a restriction: every LTL formula can be translated to an equivalent NF formula.

Formulae in NF are given a Bounded Semantics.

- Bounded Semantics approximates the unbounded (i.e. ordinary) semantics
- Bounded Semantics is based on *k*-bounded paths.

Bounded Model Checking

TU/e

Definition

Let $\pi = s_0 s_1 \dots$ be a bounded path, and let $k \ge 0$ be a bound. Then an LTL formula f is valid along the path π with bound k (denoted $\pi \models_k f$) iff:

- π is a *k*-loop and $\pi \models f$
- π is not a *k*-loop and $\pi \models_k^0 f$, where for non-temporal operators:

$$\begin{split} \pi &\models_{k}^{i} \text{ true } & \text{always holds} \\ \pi &\models_{k}^{i} \text{ false } & \text{ is always false} \\ \pi &\models_{k}^{i} p & \text{ iff } p \in L(\pi(i)) \\ \pi &\models_{k}^{i} \neg p & \text{ iff } p \notin L(\pi(i)) \\ \pi &\models_{k}^{i} f \wedge g & \text{ iff } \pi &\models_{k}^{i} f \text{ and } \pi &\models_{k}^{i} g \\ \pi &\models_{k}^{i} f \lor g & \text{ iff } \pi &\models_{k}^{i} f \text{ or } \pi &\models_{k}^{i} g \end{split}$$

Bounded Model Checking

TU/e

Definition

Let $\pi = s_0 s_1 \dots$ be a bounded path, and let $k \ge 0$ be a bound. Then an LTL formula f is valid along the path π with bound k (denoted $\pi \models_k f$) iff:

• π is a *k*-loop and $\pi \models f$

• π is not a *k*-loop and $\pi \models_k^0 f$, where for temporal operators:

$$\begin{aligned} \pi &\models_{k}^{i} \mathbf{G} f & \text{is always false} \\ \pi &\models_{k}^{i} \mathbf{F} f & \text{iff} \quad \exists j.i \leq j \leq k \land \pi \models_{k}^{j} f \\ \pi &\models_{k}^{i} \mathbf{X} f & \text{iff} \quad i < k \text{ and } \pi \models_{k}^{i+1} f \\ \pi &\models_{k}^{i} [f \mathbf{U} g] & \text{iff} \quad \exists j.i \leq j \leq k \land \pi \models_{k}^{j} g \text{ and } \forall n.i \leq n < j \Rightarrow \pi \models_{k}^{n} f \\ \pi &\models_{k}^{i} [f \mathbf{R} g] & \text{iff} \quad \exists j.i \leq j \leq k \land \pi \models_{k}^{j} f \text{ and } \forall n.i \leq n < j \Rightarrow \pi \models_{k}^{n} g \end{aligned}$$

Bounded Model Checking

TU/e

Some properties of \models_k :

- \models_k under-approximates \models :
 - if *f* holds for a *k*-bounded path, it also holds a longer path: if $\pi \models_k f$ then $\pi \models_{k+1} f$.
 - for all paths π and all k: $\pi \models_k f$ then $\pi \models f$.
- For each ultimately periodic path π there is a *k* such that π is a *k*-loop and thus $\pi \models f$ iff $\pi \models_k f$ for some *k*.
- From this, it follows that the existential model checking question $M \models \mathsf{E} f$ can be solved by computing $M \models_k \mathsf{E} f$ for a sufficiently large *k*.

Bounded Model Checking

TU/e

Example

Let $\pi = s_{00} s_{10} s_{11} s_{12}$ be a bounded path

- *π* is a (3, 1)-loop
- $\pi \models_3 \mathbf{G} (EP \lor EQ)$
- $\pi \not\models_3 \mathbf{G} EP \lor \mathbf{G} EQ$

Consider the bounded path $\rho = s_{00} s_{10} s_{11} s_{21}$

- *ρ* is not a looping path
- $\rho \models_3 \mathsf{F} EA$
- ▶ ρ ⊭₃ G (¬JA)

technische universiteit eindhoven

LTL Model Checking

Bounded Model Checking

Reduction of BMC to SAT

Example

Reduction of BMC to SAT

TU/e

SAT-problem: given a propositional formula ϕ , find a valuation for the variables of ϕ that make ϕ true.

- Boolean satisfiability is NP-complete.
- a SAT-solver computes a valuation (if it exists) or it returns *unsatisfiable*.
- SAT-solvers accept formulae in Conjunctive Normal Form (CNF), i.e. a conjunction of clauses (disjunctions of literals and negated literals).
- turning a formula ϕ into CNF can be done either:
 - naively (yields formulae exponential in the size of ϕ , think of an example), or
 - cleverly, by introducing $\mathcal{O}([\phi])$ auxiliary variables, where $|\phi|$ is the number of sub expressions in ϕ .
- Typical tools: MINISAT and zCHAFF

TU/e Reduction of BMC to SAT

Given a Kripke Structure $M = \langle S, R, L \rangle$, a formula *f* and a bound *k*.

technische universiteit eindhoven

 $[M, f]_k$ encodes the problem $M \models_k f$ as a propositional formula.

The encoding $[_]_k$ proceeds in three steps:

- ► Compute [*M*]_{*k*}, encoding all initialised paths of length *k*.
- Compute *L*_k, encoding the loop condition as a proposition.
- Constrain the encoded paths to paths that satisfy *f*

Note: the size of $[M, f]_k$ is $\mathcal{O}(|f| \times k \times |M|)$

Reduction of BMC to SAT

TU/e

Given a Kripke Structure $M = \langle S, R, L \rangle$ and a bound *k*.

- Represent all states in *S* uniquely by a state vector *s* of *n* Boolean state variables $\langle s[0], s[1], \ldots, s[n-1] \rangle$
- Take k + 1 copies of the system state vector, denoted by s_0, s_1, \ldots, s_k
- Let $S_0(s)$ be the initial state(s) of the system, and R(s, s') be the transition relation, both expressed as propositional formulae.

Definition

The *k*-unfolding $[M]_k$ of a Kripke Structure is given by the following propositional formula

$$[M]_k := S_0(s_0) \land \bigwedge_{i=1}^k R(s_{i-1}, s_i)$$

Example

TU/e

Symbolic representation of M:

- $\mathcal{S}_0(s) := s[E] = p \wedge s[J] = p$
- $\mathcal{R}(s, s') := R_1 \lor R_2 \lor R_3 \lor R_4 \lor R_5 \lor R_6$, where:

$$\begin{array}{l} \bullet \ R_1 := \ s[E] = p \land s'[E] = q \land s[J] = s'[J] \\ \bullet \ R_2 := \ s[E] = q \land s'[E] = a \land s'[J] = \\ s[J] \land s[J] \neq a \\ \bullet \ R_3 := \ s[E] = a \land s'[E] = p \land s'[J] = s[J] \\ \bullet \ R_4 := \ s[J] = p \land s'[J] = q \land s'[E] = s[E] \\ \bullet \ R_5 := \ s[J] = q \land s'[J] = a \land s'[E] = \\ s[E] \land s[E] \neq a \\ \bullet \ R_6 := \ s[J] = a \land s'[J] = p \land s'[E] = s[E] \end{array}$$

Use vectors s_0 , s_1 and s_2 to represent the states of the system; use propositional variables to represent $s_0[E] = p$, etc.

The 2-unfolding of *M* is given by the following propositional formula :

$$(s_0[E] = p \land s_0[J] = p) \land \mathcal{R}(s_0, s_1) \land \mathcal{R}(s_1, s_2)$$

Reduction of BMC to SAT

TU/e

Recall that the Bounded Semantics for LTL depends on the structure of the path:

- ▶ for loops, the Bounded Semantics coincides with the ordinary semantics
- ► for loop-free paths, the Bounded Semantics differs.

The propositional formula $_{l}L_{k}$ is true iff there is a transition from state s_{k} to state s_{l} :

$$_{l}L_{k} := R(s_{k}, s_{l})$$

Definition

The loop-condition L_k is given by the following proposition:

$$L_k := \bigvee_{l=0}^k {}_l L_k$$

TU/e technise Reduction of BMC to SAT

Given a Kripke Structure $M = \langle S, R, L \rangle$, a bound *k* and an LTL formula *f*

technische universiteit eindhoven

The encoding of f in case f is interpreted over a path that is a (k, l)-loop:

$_{l}[p]_{k}^{i}$	$:= p(s_i)$
$l[\neg p]_k^i$	$:= \neg p(s_i)$
$l[f \lor g]_k^i$	$:=_{l} [f]_{k}^{i} \vee_{l} [g]_{k}^{i}$
$l[f \wedge g]_k^i$	$:=_{l} [f]_{k}^{i} \wedge_{l} [g]_{k}^{i}$
$_{l}[X f]_{k}^{i}$	$:=_{l} [f]_{k}^{\operatorname{succ}(i)}$
$_{l}[G f]_{k}^{i}$	$:=_{l} [f]_{k}^{i} \wedge_{l} [G f]_{k}^{succ(i)}$
$_{l}[F f]_{k}^{i}$	$:=_{l} [f]_{k}^{i} \vee_{l} [F f]_{k}^{succ(i)} $
$_{l}[[f \cup g]]_{k}^{i}$	$:=_{l} [g]_{k}^{i} \vee (_{l}[f]_{k}^{i} \wedge_{l} [[f \cup g]]_{k}^{succ(i)}$
$_l[[f R g]]_k^i$	$:=_{l} [g]_{k}^{i} \wedge (_{l}[f]_{k}^{i} \vee_{l} [[f R g]]_{k}^{succ(i)}$

 $\begin{aligned} & \mathsf{succ}(i) \text{ is defined as:} \\ & \left\{ \begin{array}{ll} i+1 & \text{if } i < k \\ l & \text{if } i = k \end{array} \right. \end{aligned}$

Note: *i*, $(i \le k)$ indicates the depth of "unfolding"

TU/e technise Reduction of BMC to SAT

Given a Kripke Structure $M = \langle S, R, L \rangle$, a bound *k* and an LTL formula *f*

technische universiteit eindhoven

The encoding of *f* in case *f* is interpreted over a path that is *not* a loop:

$[p]_k^i$	$:= p(s_i)$
$[\neg p]_k^i$	$:= \neg p(s_i)$
$[f \lor g]_k^i$	$:= [f]_k^i \vee [g]_k^i$
$[f \wedge g]_k^i$	$:= [f]_k^i \wedge [g]_k^i$
$[\mathbf{X} f]_k^i$	$:= [f]_k^{i+1}$
$[\mathbf{G} f]_k^i$	$:= [f]_k^i \wedge [G f]_k^{i+1}$
$[F f]_k^i$	$:= [f]_k^i \vee [F f]_k^{i+1}$
$[[f \cup g]]_k^i$	$:= [g]_k^i \vee ([f]_k^i \wedge [[f \cup g]]_k^{i+1}$
$\left[\left[f R g\right]\right]_{k}^{i}$	$:= [g]_k^{\tilde{i}} \wedge ([f]_k^{\tilde{i}} \vee [[f R g]]_k^{\tilde{i}+1}$

Formulae beyond depth *k* never hold:

 $[f]_k^{k+1} := \mathsf{false}$

Note: *i*, $(i \le k)$ indicates the depth of "unfolding"

Reduction of BMC to SAT

TU/e

Given a Kripke Structure $M = \langle S, R, L \rangle$, an LTL formula f and a bound $k \ge 0$.

technische universiteit eindhoven

The propositional formula corresponding to the Existential Bounded Model Checking problem is given by $[M, f]_k$:

$$[M,f]_k := [M]_k \wedge \left(\left(\neg L_k \wedge [f]_k^0
ight) \lor \bigvee_{l=0}^k \left({}_l L_k \wedge_l [f]_k^0
ight)
ight)$$

- ► The left side of the disjunction represents the case when there is no back-loop in a path of length k (L_k does not hold)
- The right side of the disjunction represents the case when there is a back-loop at some point between 0 and k (*lL_k* holds for some *l*)
- $[M, f]_k$ is satisfiable iff $M \models_k \mathsf{E} f$.

technische universiteit eindhoven

LTL Model Checking

Bounded Model Checking

Reduction of BMC to SAT

Example

Example

- Kripke Structure *M*, represented by:
- Initial state proposition: $S_0(s) = \neg s[0] \land \neg s[1]$.
- ► Transition relation: $\mathcal{R}(s, s') = (s[0] \leftrightarrow s[1] \land (s'[0] \leftrightarrow \neg s[0]) \land (s'[1] \leftrightarrow s[1])) \\ \lor (\neg s[0] \land s[1] \land s'[0] \land s'[1]) \\ \lor (s[0] \land (s'[0] \leftrightarrow \neg s[0]) \land (s'[1] \leftrightarrow \neg s[1]))$
- ► To check: **G** *p*
- paths starting in s_{00} have (a.o.) a (2,0)-loop and a (3,1)-loop.
- $[M, \mathsf{F} \neg p]_2$ is not satisfiable.
- $[M, \mathsf{F} \neg p]_3$ is satisfiable:

$$\begin{array}{lll} & (s_0[0],s_0[1]) & = ({\sf false},{\sf false}) \\ & (s_1[0],s_1[1]) & = ({\sf false},{\sf true}) \\ & (s_2[0],s_2[1]) & = ({\sf true},{\sf true}) \\ & (s_3[0],s_3[1]) & = ({\sf true},{\sf false}) \end{array}$$