
12

/ department of mathematics and computer science 1/25

Algorithms for Model Checking (2IW55)
Lecture 5

Bounded Model Checking
Handout: A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu: Bounded model

checking. Advances in Computers 58: 118-149 (2003)

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

12

/ department of mathematics and computer science 2/25

Outline

LTL Model Checking

Bounded Model Checking

Reduction of BMC to SAT

Example

12

/ department of mathematics and computer science 3/25

LTL Model Checking

LTL-based model checking:

I checks temporal operators along single paths
I LTL is claimed to be more intuitive than CTL (see e.g. [1]):

• in LTL: X F p ≡ F X p (p holds sometimes in the strict future)
• in CTL: A X A F p

?≡ A F A X p; does at least one of these express “p holds sometimes in
the strict future”?

I counter examples are easy: “lasso”
I typical tool: SPIN

[1]. Moshe Vardi, Branching vs. Linear Time: Final Showdown, Proc. of TACAS’01,
2001.

12

/ department of mathematics and computer science 4/25

LTL Model Checking

Let M = 〈S, R, L〉 be a Kripke Structure. Recall the syntax and semantics of LTL:

P ::= true | false | AP | ¬P | P ∧ P | P ∨ P | X P | F P | G P | [P U P] | [P R P]

For a path π, we have:

π|= true
π 6 |= false
π|= p iff p ∈ L(π(0))
π|= ¬ f iff π 6 |= f
π|= f ∧ g iff π|= f and π|= g
π|= f ∨ g iff π|= f or π|= g
π|= X f iff π1|= f
π|= F f iff for some i ≥ 0, πi|= f
π|= G f iff for all i ≥ 0, πi|= f
π|= [f U g] iff ∃i ≥ 0. πi|= g ∧ ∀j < i. π j|= f
π|= [f R g] iff ∀j ≥ 0. ((∀i < j. πi 6 |= f) ⇒ π j|= g)

Checking M|= f re-
quires checking that
π|= f holds for all ini-
tialised paths

12

/ department of mathematics and computer science 5/25

LTL Model Checking

LTL has a nice automata-theoretic algorithm (see Chapter 9.2–9.4):

LTL formula φ

Büchi automaton Sφ

Kripke Structure M

Büchi automaton AM

M|= φ iff L(AM) ⊆ L(Sφ)

I Complexity of LTL model checking is PSPACE-complete.
I for a state space of size n and a formula of size m, the problem has complexity

n2O(m).
I Hence, checking for M|= φ is not always feasible.

Alternative: Bounded Model Checking

12

/ department of mathematics and computer science 6/25

Outline

LTL Model Checking

Bounded Model Checking

Reduction of BMC to SAT

Example

12

/ department of mathematics and computer science 7/25

Bounded Model Checking

I Observation: LTL model checking requires checking all initialised paths.
I On the other hand: a counterexample to an LTL formula f corresponds to the

question whether there exists a witness for ¬ f
• A counterexample for G f is a finite prefix of a path in which F ¬ f holds.
• A counterexample for F f is a finite prefix of a path that is a lasso in which G ¬ f

holds.

Idea behind BMC:
I BMC is performed only on the basis of finite, bounded prefixes of paths |[M]|k

of the system M
I BMC searches for a witness to an existentially quantified LTL formula f ,

interpreted over bounded prefixes of paths: |[f]|k.
I BMC can efficiently be solved using SAT-solvers:

• If the formula |[M]|k ∧ |[f]|k is satisfiable, a counterexample has been found
• If the formula |[M]|k ∧ |[f]|k is unsatisfiable, no counterexample of length k exists

12

/ department of mathematics and computer science 8/25

Bounded Model Checking

Let M = 〈S, R, L〉 be a Kripke Structure.

si sk sl si sk
(a) no loop (b) (k, l)-loop

Consider a k-bounded path π. Such a bounded path can represent
I all its infinite extensions (case a)
I a (k, l)-loop (case b), i.e. if π(k) R π(l) then π represents an infinite path

ρ = u vω , with u = π(0) . . . π(l − 1) and v = π(l) . . . π(k) for some l ≤ k.

Definition (k-loops)
If there is an l ≤ k, such that π is a (k, l)-loop, π is called a k-loop.

12

/ department of mathematics and computer science 9/25

Bounded Model Checking

Example (k-loops)
Consider the following 4-bounded path π:

L(si) {p} {q} {p, q} {p}

I π is actually a (4, 2)-loop.
I We can check whether π|= φ for all formulae φ

I For instance: φ = F [p U q] or φ = F G ¬(p ∧ q)

12

/ department of mathematics and computer science 10/25

Bounded Model Checking

Example (no loop)
Consider the following 4-bounded path π:

L(si) {p} {p} {p, q} {p, r} {p}

I π is not a 4-loop.
I Observe that we have ρ|= F q for all infinite extensions ρ of π

I We do not know ρ|= G p for any infinite extension ρ of π.

12

/ department of mathematics and computer science 11/25

Bounded Model Checking

I From hereon, restrict to LTL formulae in Normal Form (NF)
I formulae in NF only have negation in front of atomic propositions
I NF is not a restriction: every LTL formula can be translated to an equivalent NF

formula.

Formulae in NF are given a Bounded Semantics.
I Bounded Semantics approximates the unbounded (i.e. ordinary) semantics
I Bounded Semantics is based on k-bounded paths.

12

/ department of mathematics and computer science 12/25

Bounded Model Checking

Definition
Let π = s0 s1 . . . be a bounded path, and let k ≥ 0 be a bound. Then an LTL formula
f is valid along the path π with bound k (denoted π|=k f) iff:

I π is a k-loop and π|= f
I π is not a k-loop and π|=0

k f , where for non-temporal operators:

π|=i
k true always holds

π|=i
k false is always false

π|=i
k p iff p ∈ L(π(i))

π|=i
k ¬p iff p /∈ L(π(i))

π|=i
k f ∧ g iff π|=i

k f and π|=i
k g

π|=i
k f ∨ g iff π|=i

k f or π|=i
k g

12

/ department of mathematics and computer science 12/25

Bounded Model Checking

Definition
Let π = s0 s1 . . . be a bounded path, and let k ≥ 0 be a bound. Then an LTL formula
f is valid along the path π with bound k (denoted π|=k f) iff:

I π is a k-loop and π|= f
I π is not a k-loop and π|=0

k f , where for temporal operators:

π|=i
k G f is always false

π|=i
k F f iff ∃j.i ≤ j ≤ k ∧ π|=j

k f
π|=i

k X f iff i < k and π|=i+1
k f

π|=i
k [f U g] iff ∃j.i ≤ j ≤ k ∧ π|=j

k g and ∀n.i ≤ n < j ⇒ π|=n
k f

π|=i
k [f R g] iff ∃j.i ≤ j ≤ k ∧ π|=j

k f and ∀n.i ≤ n < j ⇒ π|=n
k g

12

/ department of mathematics and computer science 13/25

Bounded Model Checking

Some properties of |=k:

I |=k under-approximates |=:
• if f holds for a k-bounded path, it also holds a longer path: if π|=k f then π|=k+1 f .
• for all paths π and all k: π|=k f then π|= f .

I For each ultimately periodic path π there is a k such that π is a k-loop and thus
π|= f iff π|=k f for some k.

I From this, it follows that the existential model checking question M|= E f can
be solved by computing M|=k E f for a sufficiently large k.

12

/ department of mathematics and computer science 14/25

Bounded Model Checking

Example

s00

s01

s02

s10 s20

s11 s21

s12

{EP,JP} {EQ,JP} {EA,JP}

{EP,JQ}

{EP,JA}

{EQ,JQ} {EA,JQ}

{EQ,JA}

Let π = s00 s10 s11 s12 be a bounded path

I π is a (3, 1)-loop
I π|=3 G (EP ∨ EQ)
I π 6 |=3 G EP ∨G EQ

Consider the bounded path ρ = s00 s10 s11 s21
I ρ is not a looping path
I ρ|=3 F EA
I ρ 6 |=3 G (¬JA)

12

/ department of mathematics and computer science 15/25

Outline

LTL Model Checking

Bounded Model Checking

Reduction of BMC to SAT

Example

12

/ department of mathematics and computer science 16/25

Reduction of BMC to SAT

SAT-problem: given a propositional formula φ, find a valuation for the variables of φ
that make φ true.

I Boolean satisfiability is NP-complete.
I a SAT-solver computes a valuation (if it exists) or it returns unsatisfiable.
I SAT-solvers accept formulae in Conjunctive Normal Form (CNF), i.e. a

conjunction of clauses (disjunctions of literals and negated literals).
I turning a formula φ into CNF can be done either:

• naively (yields formulae exponential in the size of φ, think of an example), or
• cleverly, by introducing O(|φ|) auxiliary variables, where |φ| is the number of sub

expressions in φ.

I Typical tools: MINISAT and zCHAFF

12

/ department of mathematics and computer science 17/25

Reduction of BMC to SAT

Given a Kripke Structure M = 〈S, R, L〉, a formula f and a bound k.

[[M, f]]k encodes the problem M|=k f as a propositional formula.

The encoding [[_]]k proceeds in three steps:
I Compute [[M]]k, encoding all initialised paths of length k.
I Compute Lk, encoding the loop condition as a proposition.
I Constrain the encoded paths to paths that satisfy f

Note: the size of [[M, f]]k is O(| f | × k× |M|)

12

/ department of mathematics and computer science 18/25

Reduction of BMC to SAT

Given a Kripke Structure M = 〈S, R, L〉 and a bound k.

I Represent all states in S uniquely by a state vector s of n Boolean state variables
〈s[0], s[1], . . . , s[n− 1]〉

I Take k + 1 copies of the system state vector, denoted by s0, s1, . . . , sk
I Let S0(s) be the initial state(s) of the system, and R(s, s′) be the transition

relation, both expressed as propositional formulae.

Definition
The k-unfolding [[M]]k of a Kripke Structure is given by the following propositional
formula

[[M]]k := S0(s0) ∧
k∧

i=1
R(si−1, si)

12

/ department of mathematics and computer science 19/25

Example

s00

s01

s02

s10 s20

s11 s21

s12

{EP,JP} {EQ,JP} {EA,JP}

{EP,JQ}

{EP,JA}

{EQ,JQ} {EA,JQ}

{EQ,JA}

Symbolic representation of M:
I S0(s) := s[E] = p ∧ s[J] = p
I R(s, s′) := R1 ∨ R2 ∨ R3 ∨ R4 ∨ R5 ∨ R6,

where:
• R1 := s[E] = p ∧ s′[E] = q ∧ s[J] = s′[J]
• R2 := s[E] = q ∧ s′[E] = a ∧ s′[J] =

s[J] ∧ s[J] 6= a
• R3 := s[E] = a ∧ s′[E] = p ∧ s′[J] = s[J]
• R4 := s[J] = p ∧ s′[J] = q ∧ s′[E] = s[E]
• R5 := s[J] = q ∧ s′[J] = a ∧ s′[E] =

s[E] ∧ s[E] 6= a
• R6 := s[J] = a ∧ s′[J] = p ∧ s′[E] = s[E]

Use vectors s0, s1 and s2 to represent the states of the system; use propositional
variables to represent s0[E] = p, etc.
The 2-unfolding of M is given by the following propositional formula :

(s0[E] = p ∧ s0[J] = p) ∧R(s0, s1) ∧R(s1, s2)

12

/ department of mathematics and computer science 20/25

Reduction of BMC to SAT

Recall that the Bounded Semantics for LTL depends on the structure of the path:
I for loops, the Bounded Semantics coincides with the ordinary semantics
I for loop-free paths, the Bounded Semantics differs.

The propositional formula l Lk is true iff there is a transition from state sk to state sl :

l Lk := R(sk, sl)

Definition
The loop-condition Lk is given by the following proposition:

Lk :=
k∨

l=0
l Lk

12

/ department of mathematics and computer science 21/25

Reduction of BMC to SAT

Given a Kripke Structure M = 〈S, R, L〉, a bound k and an LTL formula f

The encoding of f in case f is interpreted over a path that is a (k, l)-loop:

l [[p]]ik := p(si)
l [[¬p]]ik := ¬p(si)
l [[f ∨ g]]ik :=l [[f]]ik ∨l [[g]]ik
l [[f ∧ g]]ik :=l [[f]]ik ∧l [[g]]ik
l [[X f]]ik :=l [[f]]succ(i)

k

l [[G f]]ik :=l [[f]]ik ∧l [[G f]]succ(i)
k

l [[F f]]ik :=l [[f]]ik ∨l [[F f]]succ(i)
k

l [[[f U g]]]ik :=l [[g]]ik ∨ (l [[f]]ik ∧l [[[f U g]]]succ(i)
k

l [[[f R g]]]ik :=l [[g]]ik ∧ (l [[f]]ik ∨l [[[f R g]]]succ(i)
k

succ(i) is defined as:{
i + 1 if i < k
l if i = k

Note: i, (i ≤ k) indicates the depth of “unfolding”

12

/ department of mathematics and computer science 22/25

Reduction of BMC to SAT

Given a Kripke Structure M = 〈S, R, L〉, a bound k and an LTL formula f

The encoding of f in case f is interpreted over a path that is not a loop:

[[p]]ik := p(si)
[[¬p]]ik := ¬p(si)
[[f ∨ g]]ik := [[f]]ik ∨ [[g]]ik
[[f ∧ g]]ik := [[f]]ik ∧ [[g]]ik
[[X f]]ik := [[f]]i+1

k
[[G f]]ik := [[f]]ik ∧ [[G f]]i+1

k
[[F f]]ik := [[f]]ik ∨ [[F f]]i+1

k
[[[f U g]]]ik := [[g]]ik ∨ ([[f]]ik ∧ [[[f U g]]]i+1

k
[[[f R g]]]ik := [[g]]ik ∧ ([[f]]ik ∨ [[[f R g]]]i+1

k

Formulae beyond depth
k never hold:

[[f]]k+1
k := false

Note: i, (i ≤ k) indicates the depth of “unfolding”

12

/ department of mathematics and computer science 23/25

Reduction of BMC to SAT

Given a Kripke Structure M = 〈S, R, L〉, an LTL formula f and a bound k ≥ 0.

The propositional formula corresponding to the Existential Bounded Model
Checking problem is given by [[M, f]]k:

[[M, f]]k := [[M]]k ∧
((
¬Lk ∧ [[f]]0k

)
∨

k∨
l=0

(
l Lk ∧l [[f]]0k

))

I The left side of the disjunction represents the case when there is no back-loop in
a path of length k (Lk does not hold)

I The right side of the disjunction represents the case when there is a back-loop at
some point between 0 and k (l Lk holds for some l)

I [[M, f]]k is satisfiable iff M|=k E f .

12

/ department of mathematics and computer science 24/25

Outline

LTL Model Checking

Bounded Model Checking

Reduction of BMC to SAT

Example

12

/ department of mathematics and computer science 25/25

Example

s00 s01

s10 s11

p p

q p

I Kripke Structure M, represented by:
I Initial state proposition: S0(s) = ¬s[0] ∧ ¬s[1].
I Transition relation: R(s, s′) =

(s[0] ↔ s[1] ∧ (s′[0] ↔ ¬s[0]) ∧ (s′[1] ↔ s[1]))
∨ (¬s[0] ∧ s[1] ∧ s′[0] ∧ s′[1])
∨ (s[0] ∧ (s′[0] ↔ ¬s[0]) ∧ (s′[1] ↔ ¬s[1]))

I To check: G p

I paths starting in s00 have (a.o.) a (2, 0)-loop and a (3, 1)-loop.
I [[M, F ¬p]]2 is not satisfiable.
I [[M, F ¬p]]3 is satisfiable:

(s0[0], s0[1]) = (false, false)
(s1[0], s1[1]) = (false, true)
(s2[0], s2[1]) = (true, true)
(s3[0], s3[1]) = (true, false)

	LTL Model Checking
	Bounded Model Checking
	Reduction of BMC to SAT
	Example

