Algorithms for Model Checking (2IW55)

Lecture 7
Boolean Equation Systems
Background material: Chapter 3 and 6 of
A. Mader, "Verification of Modal Properties using Boolean Equation Systems", Ph.D. thesis, 1997

> Tim Willemse
> (timw@win.tue.nl)
> http:/ /www.win.tue.nl/~timw
> HG 6.81

TUle

Outline

Boolean Equation Systems

Model Checking using BESs

Solving BESs

Exercise

Boolean Equation Systems

- Boolean Equation Systems are a versatile formal framework for verification.
- Boolean Equation Systems are systems of fixed point equations.

Given a set Var of propositional variables. A Boolean Expression is defined by:

$$
f::=X \mid \text { true } \mid \text { false }|f \wedge f| f \vee f
$$

A Boolean Equation is an equation of the form $\sigma X=f$, where $X \in \operatorname{Var}, \sigma \in\{\mu, v\}$ and f is a Boolean Expression. A Boolean Equation System is a sequence of Boolean Equations:

$$
\mathcal{E}::=\varepsilon \mid(\sigma X=f) \mathcal{E}
$$

Note:

- Negation is not allowed, in order to ensure monotonicity.
- The order of equations is important. Intuitively, the topmost sign has priority.

Boolean Equation Systems

- A variable W that occurs in a Boolean Expression of a BES \mathcal{E} is called bound, if there is an equation for W in \mathcal{E}, otherwise W is called free.
- If propositional variables are bound uniquely, the BES is well-formed; we only consider well-formed BESs.
- If \mathcal{E} contains no free variables, \mathcal{E} is closed, otherwise it is open.

Boolean Equation Systems

- A variable W that occurs in a Boolean Expression of a BES \mathcal{E} is called bound, if there is an equation for W in \mathcal{E}, otherwise W is called free.
- If propositional variables are bound uniquely, the BES is well-formed; we only consider well-formed BESs.
- If \mathcal{E} contains no free variables, \mathcal{E} is closed, otherwise it is open.

Example

An example of a closed BES \mathcal{E} with three propositional variables X, Y and Z :

$$
(\mu X=(X \wedge Y) \vee Z)(v Y=X \wedge Y)(\mu Z=Z \wedge X)
$$

An example of an open BES \mathcal{F} with two propositional variables X and Y :

$$
(\mu X=Y \vee Z)(v Y=X \wedge Y)
$$

An example of a BES that is not well-formed:

$$
(\mu X=X)(v X=X)
$$

TUle

Boolean Equation Systems

Intuitive semantics:

- The solution of a BEAS is a valuation: Val : Var $\rightarrow\{$ false, true $\}$.
- Let $[f](\eta)$ denote the value of boolean expression f under valuation η.
- For the solution η of a BES \mathcal{E}, we wish $\eta(X)=[f](\eta)$ for all equations $\sigma X=f$ in \mathcal{E}.
- Also, we want the smallest (for μ) or greatest (for v) solution, where higher signs take priority.
Precise semantics: Given a BES \mathcal{E}, we define $[\mathcal{E}]$: Val \rightarrow Val by recursion on \mathcal{E}.

$$
\begin{cases}{[\mathcal{E}](\eta)} & :=\eta \\ {[(\mu X=f) \mathcal{E}](\eta)} & :=[\mathcal{E}]\left(\eta\left[X:=[f]\left(\eta_{\mu}\right)\right]\right) \text { where } \eta_{\mu}:=[\mathcal{E}](\eta[X:=\text { false }]) \\ {[(\nu X=f) \mathcal{E}](\eta)} & :=[\mathcal{E}]\left(\eta\left[X:=[f]\left(\eta_{\mu}\right)\right]\right) \text { where } \eta_{v}:=[\mathcal{E}](\eta[X:=\text { true }])\end{cases}
$$

TUle

Outline

Boolean Equation Systems

Model Checking using BESs

Solving BESs

Exercise

Model Checking using BESs

Transformation of the μ-calculus model checking problem to BES

- Given is the following model checking problem:
- a closed μ-calculus formula σX. f in Positive Normal Form and,
- a Mixed Kripke Structure $M=\left\langle S, s_{0}, A c t, R, L\right\rangle$.
- We define a BES \mathcal{E} with the following property:

$$
([\mathcal{E}](\eta))(X)=\text { true iff } M, s \models \sigma X . f
$$

i.e. formula σX. f holds in state s if and only if the solution for X_{s} yields true.

- This BES is defined as follows:
- For each subformula $\sigma X . g$ and for each state $s \in S$, we add the following equation:

$$
\sigma X_{s}=\operatorname{RHS}(s, g)
$$

- The order of the equations respects the subterm ordering in the original formula $\sigma X . f$.

TUle

Model Checking using BESs

The Right-Hand Side of an equation is defined inductively by the structure of the μ-calculus formula:

$$
\begin{array}{ll}
R H S(s, p) & =L(s) \\
R H S(s, X) & =X_{s} \\
R H S(s, f \wedge g) & =R H S(s, f) \wedge R H S(s, g) \\
R H S(s, f \vee g) & =\operatorname{RHS}(s, f) \vee R H S(s, g) \\
R H S(s,[a] f) & =\wedge_{t \in S}\{R H S(t, f) \mid s \xrightarrow{a} t\} \\
R H S(s,\langle a\rangle f) & =\bigvee_{t \in S}\{R H S(t, f) \mid s \xrightarrow{a} t\} \\
& \\
R H S(s, \mu X . f) & =X_{s} \\
R H S(s, v X . f) & =X_{s}
\end{array}
$$

TUle

Model Checking using BESs

Example

- RHS $(1,[a] X)=\operatorname{RHS}(2, X) \wedge R H S(3, X)=X_{2} \wedge X_{3}$.
- $\operatorname{RHS}(2,\langle b\rangle Y)=\operatorname{RHS}(1, Y) \vee \operatorname{RHS}(2, Y)=Y_{1} \vee \Upsilon_{2}$.

- $\operatorname{RHS}(3,\langle b\rangle Y)=$ false (empty disjunction!)
- $\quad \operatorname{RHS}(1,[a]\langle b\rangle \mu \mathrm{Z} . \mathrm{Z})$
$=R H S(2,\langle b\rangle \mu \mathrm{Z} . \mathrm{Z}) \wedge \operatorname{RHS}(3,\langle b\rangle \mu \mathrm{Z} . \mathrm{Z}) \wedge$
$=(R H S(1, \mu \mathrm{Z} . Z) \vee R H S(3, \mu \mathrm{Z} . Z)) \wedge$ false
$=\left(Z_{1} \vee Z_{3}\right) \wedge$ false
- Translation of $\mu X .\langle b\rangle$ true $\vee\langle a\rangle X$ to BES:

$$
\left(\mu X_{1}=X_{3} \vee X_{2}\right)\left(\mu X_{2}=\text { true }\right)\left(\mu X_{3}=\text { false }\right)
$$

TUle

Model Checking using BESs

Example
μ-calculus formula: $v X .([a] X \wedge v Y . \mu Z .(\langle b\rangle \curlyvee \vee\langle a\rangle Z))$
Translates to the following BES:

$$
\begin{aligned}
v X_{1} & =X_{3} \wedge Y_{1} \\
v X_{2} & =X_{2} \wedge Y_{2} \\
v X_{3} & =X_{4} \wedge Y_{3} \\
v X_{4} & =\text { true } \wedge Y_{4} \\
v Y_{1} & =Z_{1} \\
v Y_{2} & =Z_{2} \\
v Y_{3} & =Z_{3} \\
v Y_{4} & =Z_{4} \\
\mu Z_{1} & =Y_{2} \vee Z_{3} \\
\mu Z_{2} & =\text { false } \vee Z_{2} \\
\mu Z_{3} & =\text { false } \vee Z_{4} \\
\mu Z_{4} & =Y_{3} \vee \text { false }
\end{aligned}
$$

TUle

Outline

Boolean Equation Systems

Model Checking using BESs

Solving BESs

Exercise

Solving BESs

- We reduced the model checking problem $M, s \models f$ to the solution of a BES with $\mathcal{O}(|M| \times|f|)$ equations.
- We now want a fast procedure to solve such BESs.
- An extremely tedious way to solve a BES is to unfold its semantics.
- A very appealing solution is to solve it by Gauß Elimination.

Solving BESs

Gauß Elimination uses the following 4 basic operations to solve a BES:

- local solution: eliminate X in its defining equation:

$$
\begin{array}{lll}
\mathcal{E}_{0}(\mu X=f) \mathcal{E}_{1} & \text { becomes } & \mathcal{E}_{0}\left(\mu X=[f[X:=\text { false }]) \mathcal{E}_{1}\right. \\
\mathcal{E}_{0}(v X=f) \mathcal{E}_{1} & \text { becomes } & \mathcal{E}_{0}(v X=f[X:=\text { true }]) \mathcal{E}_{1}
\end{array}
$$

- Substitute definitions backwards:

$$
\begin{array}{ll}
& \mathcal{E}_{0}\left(\sigma_{1} X=X \vee Y\right) \mathcal{E}_{1}\left(\sigma_{2} Y=Y \wedge X\right) \mathcal{E}_{2} \\
\text { becomes: } & \mathcal{E}_{0}\left(\sigma_{1} X=X \vee(Y \wedge X)\right) \mathcal{E}_{1}\left(\sigma_{2} Y=Y \wedge X\right) \mathcal{E}_{2}
\end{array}
$$

- Substitute closed equations forward:

$$
\begin{array}{ll}
& \mathcal{E}_{0}\left(\sigma_{1} X=\text { true }\right) \mathcal{E}_{1}\left(\sigma_{2} Y=Y \wedge X\right) \mathcal{E}_{2} \\
\text { becomes: } & \mathcal{E}_{0}\left(\sigma_{1} X=\text { true }\right) \mathcal{E}_{1}\left(\sigma_{2} Y=Y \wedge \text { true }\right) \mathcal{E}_{2}
\end{array}
$$

- Boolean simplication: At least the following:

$$
b \wedge \text { true } \rightarrow b \quad b \vee \text { true } \rightarrow \text { true } \quad b \wedge \text { false } \rightarrow \text { false } \quad b \vee \text { false } \rightarrow b
$$

TU/e

Solving BESs

Example

$$
\begin{aligned}
& (\mu X=X \vee Y)(v Y=X \vee(Y \wedge Z))(\mu Z=Y \wedge Z) \\
& (\mu X=\text { false } \vee Y)(\nu Y=X \vee(\text { true } \wedge Z))(\mu Z=Y \wedge \text { false }) \\
& (\mu X=Y)(\nu Y=X \vee Z))(\mu Z=\text { false })
\end{aligned}
$$

local \rightarrow
simplifications \rightarrow
substitution backwards \rightarrow

$$
(\mu X=Y)(\nu Y=X \vee \text { false })(\mu Z=\text { false })
$$

simplifications \rightarrow

$$
(\mu X=Y)(v Y=X)(\mu Z=\text { false })
$$

substitution backwards \rightarrow

$$
(\mu X=X)(v Y=X)(\mu Z=\text { false })
$$

local \rightarrow

$$
(\mu X=\text { false })(v Y=X)(\mu Z=\text { false })
$$

substitution forwards \rightarrow

$$
(\mu X=\text { false })(\nu Y=\text { false })(\mu Z=\text { false })
$$

Solving BESs

Gauß Elimination is a decision procedure for computing the solution to a BES.
Input: a BES $\left(\sigma_{1} X_{1}=f_{1}\right) \ldots\left(\sigma_{n} X_{n}=f_{n}\right)$. Returns: the solution for X_{1}.
for $i=n$ downto 1 do
if $\sigma_{i}=\mu$ then $f_{i}:=f_{i}\left[X_{i}:=\right.$ false $]$
else $f_{i}:=f_{i}\left[X_{i}:=\right.$ true $]$
end if
for $j=1$ to $i-1$ do $f_{j}:=f_{j}\left[X_{i}:=f_{i}\right]$
end for
end for
Note:

- Invariant of the outer loop: f_{i} contains only variables x_{j} with $j<i$.
- Upon termination, $\sigma_{1} X_{1}=f_{1}$ is closed and evaluates to true or false.
- One could forward-substitute the solution for X_{1} and repeat the procedure to solve X_{2}, etcetera.

Solving BESs

Complexity of Gauß Elimination.

- Note that in $\mathcal{O}\left(n^{2}\right)$ substitutions, we obtain the final answer for X_{1}.
- However, f_{1} can have $\mathcal{O}\left(2^{n}\right)$ different copies of e_{n} as subterms, so intermediate expressions could become exponentially big.
- Practical efficiency increases a lot if one keeps all intermediate terms simplified all the time.
- Gauß Elimination can be sped up if a forward dependency analysis is conducted (so-called local model checking).
- Precise efficiency depends heavily on the set of simplification rules.
- Precise complexity of Gauß Elimination is yet unknown.
- Interesting: the complexity seems to be independent of the alternation depth of the μ-Calculus formula.

TUle

Outline

Boolean Equation Systems

Model Checking using BESs

Solving BESs

Exercise

Exercise

Consider the following μ-Calculus formula f :

$$
v X .([a] X \wedge v Y . \mu Z .(\langle b\rangle Y \vee\langle a\rangle Z))
$$

- Use the Emerson-Lei algorithm for computing whether $M, s_{1} \models f$.
- Translate the model checking question $M \models f$ to a BES; indicate how $M, s \models \phi$ corresponds to the variables in the BES.
- Solve the BES by Gauß Elimination.

